
University of Lethbridge Research Repository

OPUS https://opus.uleth.ca

Theses Arts and Science, Faculty of

Aklam, Farhana

2019

Dynamic group trip planning queries in

spatial databases

Department of Mathematics and Computer Science

https://hdl.handle.net/10133/5568

Downloaded from OPUS, University of Lethbridge Research Repository

CORE Metadata, citation and similar papers at core.ac.uk

Provided by OPUS: Open Uleth Scholarship - University of Lethbridge Research Repository

https://core.ac.uk/display/270080794?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DYNAMIC GROUP TRIP PLANNING QUERIES IN SPATIAL DATABASES

FARHANA AKLAM
Bachelor of Science, Military Institute of Science and Technology, 2016

A thesis submitted
in partial fulfilment of the requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

Department of Mathematics and Computer Science
University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

c© Farhana Aklam, 2019

DYNAMIC GROUP TRIP PLANNING QUERIES IN SPATIAL DATABASES

FARHANA AKLAM

Date of Defence: September 24, 2019

Dr. W. Osborn Associate Professor Ph.D.
Thesis Supervisor

Dr. J. Zhang Associate Professor Ph.D.
Thesis Examination Committee
Member

Dr. J. Anvik Assistant Professor Ph.D.
Thesis Examination Committee
Member

Dr. H. Cheng Associate Professor Ph.D.
Chair, Thesis Examination Com-
mittee

Dedication

I dedicate this thesis to my beloved parents for their love, endless support, encouragement

and sacrifices.

iii

Abstract

Trip planning queries are considered an integral part of Location Based Services. The

advancement of positioning devices and highly available internet facilities enable users to

access network information from anywhere at any time. In our research, we investigated

Sequential Group Trip Planning (SGTP) queries. Given a set of starting and destination

locations and an ordered sequence of Categories of Interests (COIs) for a group of users,

a SGTP query returns the route for each user from their respective start and destination

locations that minimizes the overall travel distance. We propose two approaches: Dynamic

Group Trip Planning (DGTP) and Modified Dynamic Group Trip Planning (M-DGTP).

The proposed DGTP approach enables users to plan a group trip in a more flexible manner

and the M-DGTP approach optimizes the total travel distance of the group. We compare

the results of our proposed strategies with an existing strategy called N-DGTP through

experimental evaluation.

iv

Acknowledgments

First of all, I would like to thank almighty Allah for giving me the ability, energy, and

patience to conduct this thesis work. I would like to express my sincere gratitude to my

supervisor Dr. Wendy Osborn for her continuous support, motivation and enthusiasm. Her

guidance, valuable advice and suggestions helped me in all the time of research and writing

of this thesis.

Besides my supervisor, I am grateful to my committee members, Dr. John Zhang and

Dr. John Anvik for their guidance and valuable suggestions throughout my research.

I would like to express my gratitude to the School of Graduate Studies (SGS) of the

University of Lethbridge for their financial support.

I would also like to thank all the people who helped me to make Lethbridge my new

home. I am indebted to my Lethbridge family for their immense help, love and care.

Finally, I must express my heartiest gratitude to my father, mother and parents-in-law

for their immense love and encouragement and my husband Zulfiqur for his endless support,

motivation and patience. Thank you Zulfiqur for believing in me and your encouragement.

v

Contents

Contents vi

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 4
1.3 Organization of Thesis . 4

2 Background and Related Work 5
2.1 Preliminaries . 5
2.2 Query Processing In Spatial Network Databases 7
2.3 Nearest Neighbor Query Strategies . 8
2.4 Aggregate Nearest Neighbor Queries . 12
2.5 Trip Planning Queries . 15

2.5.1 Trip Planning Queries . 16
2.5.2 Group Trip Planning Queries . 18
2.5.3 Sequenced Group Trip Planning Queries 20

2.6 Summary . 25

3 Proposed Strategy 26
3.1 Preliminaries . 26

3.1.1 Problem Statement . 26
3.1.2 Sample Road Network . 28

3.2 Overview of DGTP and M-DGTP Strategy 30
3.3 Dynamic Group Trip Planning (DGTP) Approach 32

3.3.1 Step-1: Shortest Distance and Path Computation 32
3.3.2 Step-2: Aggregate Distance Calculation 34
3.3.3 Step-3: Final Trip Result Computation 35

3.4 Modified Dynamic Group Trip Planning (M-DGTP) Approach 36
3.4.1 Step-2: Aggregate Distance Calculation 37

3.5 Running Example . 38
3.6 Summary . 44

vi

CONTENTS

4 Experiments and Evaluations 45
4.1 Adapted Naive Dynamic Programming Approach 45
4.2 Experimental Setup . 47

4.2.1 Data Sets . 47
4.2.2 Static Group Experimental Setup 48
4.2.3 Dynamic Group Experimental Setup 49

4.3 Performance Metrics . 51
4.4 Static Group Results . 52

4.4.1 Effect of Number of Points in Dataset 52
4.4.2 Effect of Number of COIs . 55
4.4.3 Effect of Group Size . 57

4.5 Dynamic Group Results . 59
4.5.1 Effect of Adding New Participants 59
4.5.2 Effect of Having Participants Depart 62
4.5.3 Effect of Addition and Departure of Participants 64

4.6 Discussion . 66
4.7 Summary . 67

5 Conclusion 68
5.1 Our Contribution . 68
5.2 Future Work . 69

Bibliography 71

vii

List of Tables

3.1 Meaning of symbols used in DGTP and M-DGTP 27
3.2 Shortest distance and aggregate distance calculation for C1 40
3.3 Shortest distance and aggregate distance calculation for C2 41
3.4 Shortest distance and aggregate distance calculation for C3 41
3.5 DGTP: Shortest distance and aggregate distance calculation for C4 42
3.6 M-DGTP: Shortest distance and aggregate distance calculation for C4 . . . 42
3.7 Result computation of DGTP approach . 43
3.8 Result computation of M-DGTP approach 44

4.1 California road network summary . 48
4.2 Categories used in experiment . 48
4.3 Static group parameters . 49
4.4 Dynamic group parameters . 50
4.5 Dynamic group parameters . 50
4.6 Dynamic group parameters . 51
4.7 Processing time in sec. 52
4.8 Processing time in sec. 55
4.9 Processing time in sec. 57
4.10 Processing time in sec. 60
4.11 Processing time in sec. 62
4.12 Processing time in sec. 64

viii

List of Figures

1.1 An example of DGTP . 2

3.1 A sample road network with POIs . 29
3.2 Generalized flow diagram for DGTP and M-DGTP 31
3.3 A sample road network with POIs . 39

4.1 Effect of number of POIs on average total distances 53
4.2 Effect of number of POIs on average trip distances 54
4.3 Effect of number of COIs on average total distances 56
4.4 Effect of number of COIs on average trip distances 56
4.5 Effect of group size on average total distances 58
4.6 Effect of group size on average trip distances 58
4.7 Effect of adding new participants on total distance 60
4.8 Effect of adding new participants on trip distance 61
4.9 Effect of having participants depart on total distance 63
4.10 Effect of having participants depart on trip distance 63
4.11 Effect of adding and departing participants on total distance 65
4.12 Effect of adding and departing participants on trip distance 65

ix

Chapter 1

Introduction

In this chapter we discuss our research area and present the research problem with a practi-

cal example. Section 1.1 discusses the motivation behind our research, a real-life problem

scenario on our research problem and the existing limitations of the current approaches.

The contributions of our thesis are discussed in Section 1.2. Section 1.3 presents the orga-

nization of the rest chapters of this thesis.

1.1 Motivation

The Geographic Information System (GIS) is a principal technology that is stimulating

continuing interests in Spatial Database Management Systems (SDBMSs) [30]. A GIS can

be defined as a system designed to capture, store, manipulate, analyze, and present spatial

or geographic data.

Nowadays the availability of Global Positioning Systems (GPS) has made it easier to

precisely determine the location of any client/user [30]. Location-based services (LBS)

have the capability to find the geographical location of a mobile device and provide services

based on that location [27].

One of the popular services offered by LBS is trip planning. Trip planning queries

(TPQs) [19] are considered an integral part of LBS. With the increasing availability of LBS,

extensions of TPQs-namely Group Trip Planning (GTP) [15] queries, Sequential Group

Trip Planning (SGTP) [2] queries, and Dynamic Group Trip Planning (DGTP) [33] queries-

are also being studied.

1

1.1. MOTIVATION

A Sequential Group Trip Planning Query (SGTPQ) [2] over a road network can be

defined as: a group of people having a set of starting locations S and a set of destination

locations D, intend to visit some categories of interest (COIs) in an ordered sequence. The

goal of a SGTPQ is to find the shortest route for a group of people starting from S, passing

through at least one point of interest (POI) from each COI before ending at D.

Sequential group trips can be divided into two categories namely: static and dynamic

trip. In a static trip the group size remains constant throughout the whole trip and the

order of the COIs can not be changed. In a dynamic trip the group size can vary at any

COI location, which means people can join and leave at any COI locations they wish.

Additionally, in a dynamic trip the COIs do not need to be pre-determined in advance. In

this thesis, we study the problem of DGTP for offering more flexible services to the group

members for planning a trip efficiently.

The problem scenario can be demonstrated with an example. Consider some friends

decide to visit four places: a coffee shop, a library, a restaurant, and a movie theatre. The

type of the visiting places which are called Category of Interests (COIs) can be predeter-

mined or can be changed during the trip. A Point of Interest (POI) is a specific instance of a

COI. For example, Figure 1.1 has three coffee shops (C1, C2, C3) which belong to the COI

coffee shop (C). Here, C1, C2 and C3 are three POIs that belong to a specific COI (C).

Coffee shop (C)

Library (L)

Source (s)

Destination (d)

s1

s3

s2

s4

d3

d1

d2

d4

C1

C2M1

M2

M3

L1

L2

L3

C3

R1

R2

R3

Movie theater (M)

Restaurant (R)

Figure 1.1: An example of DGTP

2

1.1. MOTIVATION

Let us consider, as the trip has been started there are several things that can happen:

• The group consisting of s1, s2 and s3 already have a predetermined sequence of COIs

that they want to visit or they can first meet at the closest POI instance of the first COI

(e.g. coffee shop) and decide where they want to go next. From this it can be said

that, at every POI they visit the group members have the flexibility to change their

mind on where to go next.

• Also, the group can visit as many COIs as they wish without having to predetermine

any of them in advance.

• In addition, group members can join and leave the trip at any time. For example, let

us assume the group wants to visit next a library, a restaurant and a movie theatre in

that order:

– A friend say s4, who cannot or does not want to visit the coffee shop and library

can join the group directly at the restaurant for dinner. So, the trip has the

flexibility to have any number of people join for any COI.

– Alternatively, a friend s3 that does not want to or cannot stay for the movie can

directly leave after dinner to their final destination. From this it can be said that,

the trip has the flexibility to have any number of group members depart at any

COI.

Although some approaches study the problem of DGTPQs in spatial databases [33] they

still have the following limitations which motivate us to study them with a more flexible

approach:

• They are only considered in Euclidean space,

• They require that the COIs that the group members intended to travel be specified in

advance before the start of the trip,

3

1.3. ORGANIZATION OF THESIS

• Finally, the existing approaches are costly as they apply a dynamic programming

strategy. The time complexity of a dynamic programming algorithm is O(n3) [9]

which even get worse when the trip is re-calculated again and again when any trip

change is made in real-time.

1.2 Contributions

In this thesis, we study DGTPs in a more practical scenario, which makes the following

contributions to this field of study:

• The trip is considered truly dynamic where the travellers can change their mind to

decide COIs at any point in the trip. We also consider the group is dynamic where

any number of travellers can join or leave at any COI,

• The travellers can choose any number of COIs to visit. In addition, the sequence of

COIs does not have to be pre-determined before the start of the trip,

• The proposed strategy has been formulated based on a real-world spatial network,

• We conduct extensive empirical evaluations using the real-world California dataset

[19] to present the effectiveness of our strategy.

1.3 Organization of Thesis

The rest of this thesis is organized in the following order. Chapter 2 presents back-

ground and related work for processing various types of SGTP and other nearest neighbour

(NN) queries in spatial databases. Chapter 3 presents our proposed approaches for pro-

cessing DGTP queries in spatial databases. The implementation details, experiments and

results obtained from the proposed strategies are discussed in Chapter 4. Finally, Chapter 5

presents the conclusion and future research directions.

4

Chapter 2

Background and Related Work

In this chapter, a short introduction on the research area of Sequential Group Trip Planning

(SGTP) queries and some of the existing works related to our research problem are summa-

rized. This chapter is organized as follows: Section 2.1 discusses chapter preliminaries and

Section 2.2, Section 2.3, Section 2.4 and Section 2.5 discuss related works in the research

problem area.

2.1 Preliminaries

A Spatial Database (SDB) [30] can be defined as a database system that is used to store

and access spatial data (i.e. the data defining a geometric shape) and their locations in n-

dimensional space. In spatial databases, generally spatial data are stored as four categories

namely: curve, surface, point and geometry collection [30].

In a Spatial Network Database (SNDB) [30] the data model that is utilized is a spatial

network. A Spatial Network is defined as a collection of interconnected elements that have

the shape of curves or poly-lines appearing in geographic applications [11]. The instance

of spatial network used in location-based services is a road network where edges stand for

road segments and nodes stand for intersections of road segments [11].

A road network contains locations on some vertices and edges representing Points of

Interest (POIs). In our work, a POI in a road network belongs to exactly one Category

of Interest (COI). For example, a COI can be “Airports” where each POI in this COI is a

specific instance of an airport.

5

2.1. PRELIMINARIES

Location based services (LBS) are applications for users to seek information on the

environment around them [27]. An LBS supports query processing for moving users. In

addition, the positions of spatial objects being queried exist on spatial networks in many

LBS-based applications. In such scenarios, the distance between any two objects is the

length of the shortest path connecting them. Therefore in LBS, especially when dealing

with SNDBs, the network distance has more importance over Euclidean distance as the

Euclidean distance may not exactly approximate the real road distance [27]. These LBS

applications require more complex query types that consider user trajectories on road net-

works [23].

The k-nearest neighbor (k-NN) search is the problem of efficiently finding object(s)

(i.e. nearest neighbor (NN)) in a dataset that are closest to a given query point [35]. The

number of NNs is usually defined as k, which can be a user-defined constant or vary for

other reasons such as on the local density of points. The distance computation technique

can generally be any metric measure, such as the standard Euclidean distance measure

which historically has been the most common choice. However, k-NN searching strategy

is becoming more frequent in road networks. Concepts such as Trip Planning Query (TPQ)

[19], Group Trip Planning Query (GTPQ) [15] and Sequenced Group Trip Planning Query

(SGTPQ) [2] are introduced and widely studied in SNDBs.

A TPQ [19] is defined as a query returning trip for a single user starting from a point

S (i.e. the start), passing through at least one POI from each COI on the trip and ends at E

(i.e. the end) A GTPQ [15] returns the best trip for a group and a SGTPQ [2] returns best

trip for a group travelling through intended COIs in an ordered sequence.

Consider, some friends decide to meet at a coffee shop. From there they want to visit

a library, a restaurant for dinner and a movie theatre. The goal of a SGTPQ is to find the

minimal route for the group in such a way that the group can visit one POI from each of the

COIs according to their intended order of visit. In the above example, the intended order of

visit is a coffee shop, library, restaurant, and movie theatre.

6

2.2. QUERY PROCESSING IN SPATIAL NETWORK DATABASES

In the upcoming sections some of the existing approaches on TPQs, GTPQs and SGT-

PQs are summarized. Additionally, some existing works on NN queries and GNN queries

are summarized as TPQs, GTPQs and SGTPQs make use of NN and GNN queries. The

upcoming sections are organized as: Section 2.2 discusses some of the existing work on

query processing in spatial network databases, several nearest neighbor query processing

strategies are discussed in Section 2.3, Section 2.4 discusses existing works on group near-

est neighbor queries, and in Section 2.5, some of the approaches on group and trip planning

queries will be discussed.

2.2 Query Processing In Spatial Network Databases

Papadias et al. [23] propose an index structure and the algorithms for several types of

spatial queries including nearest neighbors using the spatial network distance. According

to the authors, previous works on SNDB are based on Euclidean spaces only. The au-

thors use a hard disk-based network representation to process spatial queries that use two

frameworks: Euclidean restriction and network expansion. To process nearest neighbor

queries the authors propose two algorithms, Incremental Euclidean Restriction (IER), and

Incremental Network Expansion (INE).

The authors apply IER in high-dimensional similarity retrieval. In IER, first the k Eu-

clidean NNs are obtained using an R-tree [13] and are sorted in ascending order of their

network distance to a query point. dEmax is set to be the distance of the k-th point from the

query point. All subsequent NNs are retrieved incrementally until a larger Euclidean dis-

tance is found. The IER algorihm computes redundant network distances and to overcome

this problem the authors propose INE. The INE algorithm examines entities according to

the order in which they are encountered.

The authors compare the I/O access and CPU cost, as a function of | S | / | N | (i.e. the

ratio of entity to segment cardinality) and observe that with the increase of the cardinality

the performance of IER improves. For nearest neighbor queries the authors observe that

7

2.3. NEAREST NEIGHBOR QUERY STRATEGIES

INE is more efficient and robust when network distance computation is high where IER

gives a better performance in dense network where the nodes lie very compact.

2.3 Nearest Neighbor Query Strategies

Chang and Kim [6] present a materialization-based k-NN query processing algorithm

(called OMK) for k-NN queries in an SNDB. According to the authors, the existing ap-

proaches are only considered in Euclidean space. The architecture proposed by the authors

deals with storing and indexing spatial network data, POIs, and moving objects.

First, the authors design a spatial network file organization for the maintenance of nodes

and edges and use a node-node matrix file for storing network distances. They also use an

edge information file to store the information of the edges and to maintain the POIs lying

on an edge. The authors use R-tree [13] indexing for edges and specific POIs lying on

the edges. For fast access the information for a specific POI they also use a B+ tree [4]

indexing.

The authors compare the performance of their proposed OMK algorithm with INE [23].

They observe that the performance of OMK improves with the increase of the value of k.

The authors also observe that for k=1 the performance of OMK is nearly same as INE and

for k=100 OMK performs 1.5 times faster than INE.

Lee et al. [18] present a general framework named ROAD (Route Overlay and Associ-

ation Directory) to evaluate Location-Dependent Spatial Queries (LDSQs) that search for

spatial objects in a road network. According to the authors, the existing Euclidean distance-

based approaches are not applicable for estimating distances in a road network.

They design a framework to address network traversal and object access. The authors

use a dynamic object mapping mechanism and search space pruning technique on road

networks which can be efficiently used in an NN search over a large-scale network. The

authors claim their contributions as:

i. Present a system framework for efficient processing of LDSQs,

8

2.3. NEAREST NEIGHBOR QUERY STRATEGIES

ii. Develop a Rnet (regional sub-networks) hierarchy to reduce index overhead,

iii. Develop an efficient algorithm for nearest neighbor queries,

iv. Develop a maintenance scheme to handle network and object change.

The authors observe that their proposed algorithms significantly minimize I/O cost and

search time. They also state that the proposed approach outperforms existing Euclidean

distance-based approaches and network expansion-based approaches.

Abeywickrama et al.[1] present a memory-resident method to efficiently process k-NN

query on road networks. According to the authors, the existing approaches propose disk-

based indexes. However, they are only evaluated and compared in main memory. To over-

come this limitation, the authors provide their following contributions including:

i. Optimisation of five (IER [23], INE [23], Distance Browsing (DisBrw) [25], ROAD

[18] and G-tree [36]) open-sourced algorithms,

ii. Suggestions on main-memory implementations.

The authors compared the performance of the algorithms considering the parameters k, den-

sity, network size and object distance and observed that the G-tree generally outperforms

INE, DisBrw and ROAD where IER significantly outperforms every competitor in all.

Chen et al. [8] propose query homogeneity to process k-NN queries in a road network.

The authors propose a new query framework named Spatial query by Homogeneity Identi-

fication (SHI) to reduce waiting time. The SHI framework combines query processing and

queue processing to improve performance.

Sun et al. [32] present a distance pre-computation technique to solve k-NN query pro-

cessing over moving objects in road networks. The proposed pre-computation approach

by the authors utilizes an off-line road network computation and on-line query processing

to simplify the computation. According to the authors the proposed pre-computation ap-

proach shows excellent performance with good precision. In future, the authors propose to

9

2.3. NEAREST NEIGHBOR QUERY STRATEGIES

conduct a comparative study between their pre-computation based approach and Voronoi

diagram-based approach [17].

Mouratidis et al. [20] study the problem of monitoring continuous NN in a road net-

work. According to the authors, previous approaches are limited to snapshot queries over

static data that utilize the Euclidean distance metric. The authors propose two strate-

gies, namely Incremental Monitoring Algorithm (IMA) and Group Monitoring Algorithm

(GMA). The first strategy updates the current NN sets and the second strategy deals with

processing time reduction.

The authors use sub-networks of the San Francisco road system to evaluate IMA and

GMA and compare their algorithms against the overhaul method (OVH) [20]. For CPU time

versus object and query cardinality, GMA outperforms both IMA and OVH, with IMA in

second place in all cases. In the case of CPU time versus query agility (the percentage of

query performed per timestamp) and speed GMA again outperforms as before. The authors

observe that for Gaussian queries GMA works best while IMA works best for uniform

queries.

Kolahdouzan and Shahabi [17] propose two ideas for addressing Continuous k-Nearest

Neighbor queries (C-kNN) queries in a SNDB namely:

• Intersection Examination (IE)

• Upper Bound Algorithm (UBA)

According to the authors, existing works to process C-kNN queries are limited to the Eu-

clidean distance metric. To overcome this limitation, the authors propose a Voronoi-based

Network Nearest Neighbor (VN3) approach based on the Network Voronoi Diagram (NVD)

[16] concept to address k-NN queries in SNDBs.

The authors consider a set of limited number of points called generator points (i.e.

POIs), in the Euclidean plane and associate all locations on the plane to their closest gen-

erator(s). A Voronoi diagram is the set of Voronoi Polygons (VP) associated with all the

10

2.3. NEAREST NEIGHBOR QUERY STRATEGIES

generators, where each VP is the region formed by the set of locations assigned to each

generator. The purpose of the region formed for each generator (i.e., the VP) is partitioning

a large network into small regions so that distances can be pre-computed both within and

across the regions. The Voronoi polygon provides a safe region for the point in the VP. In

other words, if a query point remains in the VP, the point in the VP is guaranteed to be the

nearest neighbour.

An NVD is a specialized Voronoi diagram defined for spatial networks. According to

the authors, in an NVD the locations of the objects are restricted to those lying on the edges

of the graph, with the distance between objects being the spatial network distance rather

than Euclidean distance. According to the authors, the VN3 algorithm consists of the major

components:

i. Solution space pre-calculation,

ii. Index structure utilization,

iii. Pre-computation of the network distances between the border points of NVP.

The proposed IE approach by the authors finds the k-NNs of the intersections on the

path. To achieve a better performance the authors propose the UBA approach which only

computes the k-NN for a subset of the nodes of the path.

The authors use real-world data set for their experimental evaluation. They observe that

for query response time, UBA outperforms IE. While for sparse points of interest and small

values of k, UBA outperforms IE. When UBA performs the computation of k-NN queries

only for a subset of the nodes of the path it shows a better query processing time.

Gao and Zheng [12] present a Continuous Obstructed Nearest Neighbor (CONN) search,

which deals with the impact of obstacles for determining the distance between two objects

in two-dimensional space. According to the authors previous work on spatial queries ignore

obstruction. They propose the Incremental Obstacle Retrieval (IOR) algorithm to retrieve

11

2.4. AGGREGATE NEAREST NEIGHBOR QUERIES

objects in ascending order of their minimal distances. The authors claim the five following

contributions:

i. CONN search formalization,

ii. Introduction of control point concept,

iii. Solving quadratic inequalities for split point formation,

iv. Efficient algorithm development to facilitate COk-NN retrieval.

According to the authors both the dataset and the obstacle set is indexed by an R-tree

[13]. For each data point, the authors perform the following tasks:

i. Find obstacles that might affect the obstructed distances,

ii. Identify the control points,

iii. Evaluate the impact on the current result list.

The authors measure the performance of the algorithms on both synthetic and real-

world datasets. The authors observe the performance of the COk-NN algorithm for the

effect of the ratio of | P | / | O | (Where P is data set and O is obstacle set) first decreases

then increases between the range of 0.1 to 10. When the authors vary buffer size (% of

the tree size) between 1% to 32% of each R-tree [13] size, the authors observe that the I/O

performance improves.

2.4 Aggregate Nearest Neighbor Queries

One type of nearest neighbor query in a spatial network is an Aggregate Nearest Neigh-

bor (ANN) query [22]. ANN queries, also known as Group Nearest Neighbor (GNN)

queries, apply an aggregate function to optimize the travelling routes for multiple users.

An ANN query retrieves the data point with the minimized aggregate function (e.g. dis-

tance) with respect to a set of query points [22]. Papadias et al. [21] introduce the concept

12

2.4. AGGREGATE NEAREST NEIGHBOR QUERIES

of GNN queries as a novel form of NN search. The authors define a GNN query as: for two

sets of points P and Q, a GNN query retrieves the point of P such that the sum of cost to all

points in Q is minimized [21].

Papadias et al. [21] study the problem of GNN queries and for memory-resident queries.

The authors propose three algorithms :

i. Multiple query method (MQM),

ii. Single point method (SPM),

iii. Minimum bounding method (MBM).

The MQM strategy performs an incremental nearest neighbor search for each point in Q

and combines the results. The SPM method processes GNN queries by a single traversal to

avoid multiple access to the same node, which according to the authors is a problem with

the MQM method. The proposed MBM method also performs a single query like SPM

but it computes a minimum bounding rectangle of the query point instead of centroid. For

disk-resident queries the authors propose:

i. Group Closest Pair method (GCP),

ii. File-Multiple Query method (F-MQM), and

iii. File-Multiple Bounding method (F-MBM).

The proposed GCP method considers query points Q that are indexed by an R-tree [13].

The proposed F-MQM and F-MBM method do not require any indexing on query points.

The authors compare the MQM, SPM and MBM strategies for main-memory queries

and observe that MQM is the worst method as the cost increases fast with query cardinality,

and that MBM is the most efficient method. For the disk-resident approaches, the authors

observe that GCP gives the worst performance. The authors also observe that F-MBM

shows the best performance among all three algorithms but in the case of query dataset

partitioned in a small number of groups F-MQM is more preferable than F-MBM.

13

2.4. AGGREGATE NEAREST NEIGHBOR QUERIES

Yiu et al. [34] propose three algorithms to address ANN queries in a road network:

• Incremental Euclidean Restriction (IER),

• Threshold Algorithm (TA),

• Concurrent Expansion (CE).

They consider alternative aggregate functions and techniques that utilize Euclidean dis-

tance bounds, spatial access methods, and network distance materialization structure. The

proposed IER algorithm by the authors apply two optimization methods to overcome two

problems:

i. Minimize the shortest path computation,

ii. Redundant visit to the same edges.

In TA, the network node with the minimum aggregate distance from a set of query points is

found by concurrent incremental expansion of the network and performing a top-k aggre-

gate query processing technique [10]. The CE algorithm works similar to TA but it avoids

shortest path computations.

Through experimental analysis the authors observe that for different aggregate functions

IER has the best overall performance, with the lowest number of page accesses in compar-

ison with other methods. The authors also observe that the effect on the number of page

accesses for IER is linear to the network size, where TA and CE show a super linear cost

with respect to network density. When the edge weights are proportional to their lengths,

the authors observe that IER is the best algorithm.

Safar [24] addresses the problem of Group k-Nearest Neighbors (Gk-NN) queries in

SNDBs. According to the author, previous works on Gk-NN queries consider Euclidean

distance rather than network distance. The author proposes an approach that uses Network

Voronoi Diagram (NVD) properties with a progressive incremental network expansion and

the spatial network distance to determine the inner network distances.

14

2.5. TRIP PLANNING QUERIES

Sultana et al. [31] introduce the problem of Obstructed Group Nearest Neighbor (OGNN)

queries. Existing algorithms on GNN queries in Euclidean space and road networks ig-

nore the impact of obstacles like buildings and lakes to compute trip distances. To over-

come the existing limitation with obstacles the authors propose a novel approach called the

Multi Point Aggregate Obstructed Distance (MPAOD) computation technique to process

an OGNN query. The authors use geometric properties to prune search space. Through

experimental analysis using real and synthetic datasets the authors validate the efficiency of

their proposed approach.

2.5 Trip Planning Queries

An Optimal Sequenced Route (OSR) query [29] (i.e. Sequenced Trip Planning Query

(STPQ)) is defined as a route for a single user which starts from a given source location

and passes through a sequence of locations in such a way that the total trip distance is

minimized. Each location, or Point of Interest (POI) is associated with a type of location,

or a Category of Interest (COI).

In this section, work on Sequenced Group Trip Planning Queries (SGTPQs) [2] is also

presented. SGTPQs [2] are an extension of STPQs [29] where the goal is to find the routes

for multiple group members starting from their respective source locations (possibly dis-

tinct) to their respective destination locations (possibly distinct) through an ordered se-

quence of POIs in such a way that the total trip distance is minimized.

This section is organized as follows: Section 2.5.1 discusses some of the existing works

on Trip Planning Queries, Section 2.5.2 discusses some of the existing works on Group Trip

Planning Queries and some of the existing approaches on Sequenced Group Trip Planning

Queries are discussed in Section 2.5.3.

15

2.5. TRIP PLANNING QUERIES

2.5.1 Trip Planning Queries

Li et al. [19] introduce the concept of a new type of query called Trip Planning Queries

(TPQ) in SDB. The authors claim their contributions are:

i. Introduction of algorithms with various approximation ratios in terms of total number

of categories and maximum category cardinality,

ii. Proposal of two approaches suitable for main memory evaluation,

iii. Various adaptations of the presented algorithms for practical scenarios using spatial

index structure and transportation graphs.

The authors present two greedy algorithms suitable for main memory evaluation with

tight approximation ratios and with respect to total number of categories:

i. Nearest Neighbor Algorithm (ANN) : In the proposed ANN algorithm a trip is formed

by iteratively finding the nearest neighbor of the previous vertex that was added to

the trip.

ii. Minimum Distance Algorithm (AMD): The proposed AMD algorithm by the authors

first selects a set of vertices (one vertex per category) in such a way that cost of each

vertex is minimum among all vertices belonging to the respective category. Then the

trip is formed by visiting the selected set of vertices in the nearest neighbor order.

The authors implement proposed TPQ algorithms for both Euclidean space and road

networks. For both ANN and AMD, when applied in Euclidean space the authors use R-tree

[13] indexing for the spatial dataset. The ANN algorithm for road networks uses a simple

extension of the Dijkstra algorithm [9] to locate the nearest neighbor and the R-tree [13] to

locate the nearest neighbor of the last stop of the trip. According to the authors for AMD,

the Dijkstra algorithm [9] cannot be applied directly to the road networks. According to

them, the Dijkstra algorithm does not necessarily minimize cost.

16

2.5. TRIP PLANNING QUERIES

The authors used both real-world datasets and synthetic datasets generated on real road

networks to perform their experiments. Experiments in synthetic road network datasets

shows that AMD gives a 20%-40% better trip result than ANN in terms of trip length. Ex-

periments in the Euclidean datasets shows that ANN achieves better performance than AMD

for higher densities.

Sharifzadeh and Shahabi [28] study the problem of Optimal Sequenced Route (OSR)

query in vector spaces. According to the authors, the classic shortest path algorithms like

Dijkstra [9] are impractical for real world scenarios because the graph is large. The authors

propose a light threshold-based iterative algorithm (LORD) and an extension of LORD

named R-LORD which uses an R-tree [13] to locate the threshold values more efficiently.

The authors compare the performance of LORD and R-LORD in terms of query response

time and I/O access and they observe that in both cases R-LORD is the superior one.

Sharifzadeh and Shahabi [29] also study the problem of Optimal Sequenced Route

(OSR) query using Voronoi Diagrams in both vector and metric spaces. According to the

authors, their previous approach [28] only focus on vector space. They propose a algo-

rithm named Voronoi-based Optimal Sequenced Route query (OSRV) which uses a pre-

computation approach to answer an OSR query. The authors compare the performance of

their proposed OSRV algorithm with their proposed R-LORD [28] approach in terms of

query response time and observe that OSRV always outperforms R-LORD. Additionally,

the authors compare the impact of the cardinality of the dataset on the efficiency of OSRV

and observe that again OSRV is a superior approach to R-LORD.

Chen et al. [7] propose a multi-rule partial sequenced route (MRPSR) query. According

to the authors the MRPSR query includes both the TPQ [19] and OSR [29] queries. The

authors prove that MRPSR is NP-hard and present three heuristic algorithms to provide

near-optimal solutions for an MRPSR query. The authors observe through simulations that

their proposed algorithms can answer a MRPSR query effectively and efficiently. Through

experimental evaluation the authors observe that the proposed algorithms perform remark-

17

2.5. TRIP PLANNING QUERIES

ably better in case of response time in comparison with LORD-based brute-force solution.

The authors also observe that the resulting route is slightly longer than the shortest route.

2.5.2 Group Trip Planning Queries

Hashem et al. [15] are the first to introduce the concept of a Group Trip Planning (GTP)

query. They also propose and evaluate algorithms for their proposed new type of query.

The authors define kGTP as: If a group queries for k sets of data points for a GTP then the

query is called a k group trip planning (kGTP) query.

To process kGTP queries the authors first consider a method that calculates a trip dis-

tance for every user in the group independently. This process continues to determine the

sets of data points that minimize the group travel distance. However, the authors find that

this strategy incurs a high computation cost as the same data points are accessed by multiple

users separately. To overcome this difficulty the authors propose two methods to process

kGTP planning queries:

i. Iterative Approach (IA),

ii. Hierarchical Approach (HA).

The IA algorithm makes use of the GNN [21] algorithm to determine the first GNN

from the starting points of the group members to the POI of the first COI. Then it finds

the nearest POI of the next COI from the first chosen POI. This continues similarly for all

the COIs in the trip sequence. Finally, a GNN is determined from the POI of the last COI

towards the destinations of the group members.

Once the initial solution is found, the IA algorithm then backtracks to find group trips

that are shorter than the initial one for all GNNs and the shortest route is reported. Ac-

cording to the authors, IA does not process an independent trip for every user but it still

requires accessing the same data multiple times. The HA method evaluates a kGTP query

in a single database traversal incurring less computational overhead. The authors conduct

an experimental evaluation considering both the IA and HA algorithms and observe the

18

2.5. TRIP PLANNING QUERIES

effect of group size, query area and data set size. The authors observe that HA performs

faster and requires less I/Os than IA.

Hashem et al. [14] study an improvement to their previously proposed GTP [15] strate-

gies and develop both optimal and approximation algorithms to process GTP queries for

Euclidean space and road networks. According to the authors GTP queries are computa-

tionally expensive because of multiple types of POIs and aggregate trip distance compu-

tation. The authors develop two new strategies based on the geometrical properties of the

ellipse to process kGTP queries:

i. Range based group trip planning (R-GTP)

ii. Incremental group trip planning (I-GTP)

According to the authors, as the hierarchical approach for group trip planning (GTP-

HA) approach is not easily adaptable for road networks they propose a naive approach (N-

GTP) to process group trip planning queries. Through experimental analysis the authors

show that the proposed strategy outperforms the GTP-HA [15] in the Euclidian space and

the N-GTP in road networks.

Samrose et al. [26] also study the problem of Group Optimal Sequenced Route (GOSR)

queries in road networks. According to the authors, the proposed GTP [15] algorithms in

Euclidean space incurs very high query processing overhead and the algorithm cannot be

extended to road networks. The authors utilize elliptical properties to refine POI search

space. According to the elliptical property, the distance between two foci of an ellipse via

a point outside the ellipse is greater or equal to the length of the major axis. That is why,

a POI outside the refined area cannot contribute to minimize the aggregate travel distance.

The authors define a kGOSR query as: a query returning k sets of data points for a GOSR

query. The authors propose two algorithms:

• Naive approach (kGOSR-NA) : The naive approach proposed by the authors does not

apply any pruning technique to select the POIs. They calculate the trip distances for

19

2.5. TRIP PLANNING QUERIES

all the POIs that are intended to be visited and finally the k smallest values for the

total trip length are returned.

• Elliptical Approach (kGOSR-EA): The elliptical approach proposed by the authors at

first calculate the geometric centroid of the source locations. Then it retrieves nearest

POI of C1 (i.e. First COI) with respect to the source centroid. Starting from C1 all the

NNs are retrieved incrementally with respect to the previous POI until Cm−1 (m = the

number of COIs intended to visit). Then k number of NNs from Cm is identified with

respect to the POI Pm−1. Finally, the kGOSR query returns the output containing k

sets of POIs that have the k smallest trip distances.

The authors observe through experimental analysis that kGOSR-EA outperforms kGOSR-

NA in terms of I/O and processing time.

2.5.3 Sequenced Group Trip Planning Queries

Ahmadi and Nascimento [2] also study the problem of Sequenced Group Trip Planning

Queries (SGTPQs) in Spatial databases. According to the authors, the Iterative Approach

(IA) [15] algorithm for SGTPQs lacks in optimal answer generation and computational

efficiency. To overcome the mentioned difficulties the authors propose:

i. A small modification to IA [15] to produce optimal solutions called Revised Iterative

Approach (RIA),

ii. Introduction of a new approach named Progressive Group Nearest Neighbor Explo-

ration (PGNE),

The RIA algorithm makes use of the GNN [21] query to return a POI which has the

smallest sum of distances to all users in the group. The location of the previously retrieved

POI multiplied by the group size is considered while retrieving POI from last COI.

To overcome the drawback of optimal route generation with higher processing time the

authors propose the PGNE algorithm which uses a mixed Breadth-Depth first search strat-

20

2.5. TRIP PLANNING QUERIES

egy. The PGNE approach is an iterative process which generates a set of Partial Group Trips

(PGTs) with length and corresponding Lower Bound (TDLB) of its group travel distance.

A PGT is the sum of the distances of POIs from sources to the last POI multiplied by the

group size.

A Lower bound for the group total travel distance is the sum of distance of calculated

PGT and distance from its last POI to the destinations of the group members. In each

iteration a PGT is stored in a MinHeap based on its TDLB . In each iteration the PGT

having smallest TDLB is fetched and two operations are applied:

i. Replacement Operation,

ii. Progressive Operation.

The Replacement Operation takes place by replacing the last POI in the PGT with another

POI (GNN towards source and destination centroid) from the same COI. The Progressive

Operation takes place by appending a POI (GNN from replaced POI in replacement op-

eration towards destination centroid) from next COI based on the predefined order of the

COIs.

The authors use both real and synthetic datasets to compare the results. The POIs are

indexed by an R* tree [5]. The parameters varied throughout the experiments are: number

of categories to be visited, the group size, and the query area. For varying group size and

query area the authors observe that PGNE retrieves a smaller number of POIs and performs

better than RIA.

The authors observe PGNE requires more POI retrievals but less response time than

RIA for varying number of categories. For synthetic datasets the authors observe that in

each case PGNE performs better than RIA. As a part of future work the authors propose to

work on avoiding pre-computation of the shortest path and time-dependent SGTPQs.

Ahmadi and Nascimento [3] propose additional strategies for SGTPQs. According to

the authors previous works on SGTPQs needs to inspect some POIs repeatedly which incurs

21

2.5. TRIP PLANNING QUERIES

redundant computation. To overcome the problem of redundant computation the authors

propose Iterative Backward Search (IBS) which is a depth-first search algorithm allowing

efficient reuse of previously computed optimal partial group trips.

According to the authors the IBS works by generating an initial trip by visiting nearest

POIs belonging to the succeeding unvisited COIs. The trip is then backtracked in every step

to generate a new shorter trip to the current best one. The authors claim that IBS differs

from IA [15] in three aspects:

i. While retrieving POIs from different COIs IBS considers the centroids of the source

and destination locations,

ii. To shrink the POIs search space IBS applies an efficient pruning strategy,

iii. To overcome redundant computational overhead of same POIs IBS considers a Suffix

Optimality Principle which saves a considerable amount of computation.

Through experimental evaluation using real-world and synthetic datasets the authors ob-

serve that IBS shows best response time in all cases for varying the parameters like: POI

density, query area, group size, number of COIs and POI distribution.

Tabassum et al. [33] introduce the concept of dynamic groups for Group Trip Plan-

ning(GTP) queries in Spatial Databases. Previous approaches of GTP queries are limited

to a fixed group size during the trip. To overcome this limitation the authors propose a new

concept named Dynamic Group Trip Planning (DGTP) queries where the group size can

change at any POI. That means any number of new or old members can join or leave the

group at any point of the trip which can be either predetermined or in real-time. The au-

thors propose efficient solutions to process DGTP queries in Euclidean space and through

experimental study compare their results with the naive [14] approach. The authors claim

that the experimental study shows that proposed strategy with dynamic groups outperforms

in query processing time and I/O access in comparison with naive approach.

22

2.5. TRIP PLANNING QUERIES

According to the authors, for every change of group members a straightforward ap-

plication of existing GTP algorithms in a DGTP query will obtain a very high processing

overhead as the same POIs will be retrieved multiple times which means repeated compu-

tations. The authors claim that the proposed approach to process DGTP queries can handle

both real time and predetermined change in group size at any part of the group trip.

The authors first implement the naive [14] approach using dymanic programming which

works in two phases:

i. Optimal answer computation by retrieving all POIs from database for initial trips,

ii. Updating existing optimal answer whenever there is a change in group size.

According to the authors, the implemented NaiveDGTP runs the dynamic programming

algorithm multiple times over the entire dataset that results in extensive I/O overhead and

processing time. The authors claim that this issue has been resolved by their proposed

FastDGTP approach which has two key improvements over the NaiveDGTP approach:

i. This approach utilizes the trip information of users to compute a pruning bound that

enables to search over a small data space instead of the entire one,

ii. POIs are stored in a cache so that the information can be re-used to overcome same

POIs retrieval again and again in the update phase.

The computation of initial optimal answer set is comprised of the following steps:

i. A heuristic answer computation for the DGTP query,

ii. Refining the search space using the computed heuristic answer and trip set T,

iii. A range query operation to retrieve all candidate POIs that lies inside the refined

search space,

iv. Dynamic programming algorithm is applied to compute optimal answer set from

computed candidate POIs set.

23

2.5. TRIP PLANNING QUERIES

The update phase to update the calculated optimal answer consists of the following

steps:

i. Trip set T and POI set PT is updated,

ii. Computation of new pruning bounds for the search region depending on updated trip

information and existing optimal answer,

iii. A range query execution to retrieve POIs that exist inside the new bound,

iv. Dynamic programming technique to compute the updated optimal answer set.

For experimental analysis the authors used real-world California road network data set

that contains 87635 POIs of 63 different categories. The California road network has 21048

nodes and 21693 edges. The authors also generated two types of synthetic data sets using

uniform and zipfian distribution for POIs. The authors carry out the experimental analysis

by varying four parameters:

• Total number of users, n

• Number of POI types, m

• The query area, A and

• The size of data set, ds.

The authors used 100 randomly generated DGTP queries and calculated the average pro-

cessing time and average I/O access for each experiment. The experimental analysis shows

that if any of the values of n, m, A and ds increases, the processing time also increases for

both real-world and synthetic data sets. The authors observe that the I/O of NaiveDGTP

approach is constant as it does not use any pruning bound. The authors claim that their ap-

proach is 99.74 % faster and requires 94 % less I/O in comparison with the naive approach.

Utilizing the elliptical properties the authors developed new pruning techniques to refine

the POIs search space. Their proposed dynamic programming techniques minimizes the

24

2.6. SUMMARY

travel distance for a dynamic group. In future the authors propose to work on handling the

dynamic change of POIs types in real time after the start of the group trip.

2.6 Summary

To process trip planning queries various research works have been undertaken. In this

chapter, we summarize some of the existing approaches on TPQs, GTPQs and SGTPQs

along with some of the existing works on NN and GNN queries as TPQs, GTPQs and

SGTPQs make use of NN and GNN queries.In the next chapter, we present our proposed

strategies to process DGTPQs (i.e. dynamic group trip planning queries).

25

Chapter 3

Dynamic Group Trip Planning

In this chapter we propose two approaches for processing DGTPQs. The first approach

is called the Dynamic Group Trip Planning (DGTP) approach and the second approach

is called the Modified-Dynamic Group Trip Planning (M-DGTP) approach. Before we

discuss the proposed strategies in detail, a description of problem statement and a sample

of road network is presented in Section 3.1.

The rest of the chapter is organized as follows: Section 3.2 presents a high level overview

of DGTP and M-DGTP approach, Section 3.3 discusses the DGTP approach and Section

3.4 discusses the M-DGTP approach. A running example for both the DGTP and M-DGTP

approaches is presented in Section 3.5.

3.1 Preliminaries

The Section 3.1.1 introduces the problem statement, terminologies, and symbols used

to explain DGTP and M-DGTP. A sample road network with its elements is presented in

Section 3.1.2.

3.1.1 Problem Statement

In Table 3.1, given a set of starting and corresponding destination (e.g. home locations)

of users (s and H, respectively), a sequence C of m COIs and a set of joining and leaving

locations (COIs) of x and y users (J and L, respectively), for a given set of s, H, C, J and L a

DGTP query returns a sequence of POIs P (where Pi is an instance of Ci) to be visited by the

26

3.1. PRELIMINARIES

Table 3.1: Meaning of symbols used in DGTP and M-DGTP

n Number of users in beginning

s = {s1,s2,s3,,sn}
Starting locations of users for current itera-
tion

H = {H1,H2,H3,,Hn}
Destination or home locations of users for
current iteration

m The number of COIs
C = {C1,C2,C3,,Cm} Sequence of COIs in intended order of visit
P = {P1,P2,P3,,Pm} A sequence of POIs corresponding to C
Pi An instance of Ci

x Number of members that want to join
y Number of members that want to leave
X = {s1,s2,s3,,sx} Joining locations of the x new users
Y = {H1,H2,H3,,Hx} Home locations of the x new users
J = {C1,C2,C3,,Cx} Joining COIs of new users
L = {C1,C2,C3,,Cy} Leaving COIs of users

S = {S1,S2,S3,,Sn}
Source locations of members for the next
COI

{(u1, v1), (u2, v2), (u3, v3),....,
(uk, vk)} Set of edges of the network

group members in such a way that the distance of the trip is minimized. Here, we express

the minimized distances using two terminology, namely: total distance and trip distance.

• Total distance: Total distance is the overall distance travelled by group members

starting from their source locations to their respective destination (e.g. home) loca-

tions. Mathematically, total distance can be expressed as:

Total distance = source distance+group distance+home distance (3.1)

– source distance = sum of the distances of all members from their respective start

locations to the COIs they want to join

27

3.1. PRELIMINARIES

– group distance = sum of partial group distances for trip through C, where,

Partial group distance = current group size at Pi×distance from Pi to Pi+1

(3.2)

– home distance = sum of the distances of all members from their last visited POIs

to their respective destination locations

• Trip distance: Trip distance is the distance travelled by the group members starting

from their source locations to the last POI they visit. Mathematically, trip distance

can be expressed as:

Trip distance = Total distance−home distance (3.3)

The starting and departing locations and COIs of the members are randomly located

for a trip. In some cases, the scenario can arise where the trip distance of members is

significantly shorter than the destination or home distance of the members. To keep

track of the original trip distance (from start to last visited Pi) with respect to total

distance travelled by the members we calculate the trip distance.

3.1.2 Sample Road Network

A road network contains the information on its nodes and edges. A node in a road net-

work contains information like Node ID, Longitude, and Latitude, while an edge contains

information like Edge ID, Start Node ID, End Node ID and Edge Length. In other words

an edge length is the cost to travel from one node to another associated with the edge. In a

road network a node can be connected with multiple nodes. Additionally, a road network

contains Point of Interests (POIs) information. A POI consists of information like Category

ID (i.e. COI), Longitude and Latitude.

Figure 3.3 is a sample of a road network segment merged with its POIs. The nodes and

edges show the ways to move within the network. The nodes are represented by circles

28

3.1. PRELIMINARIES

and marked with a Node ID. The edges are represented by straight lines connecting the

nodes. For example, in the following figure there is an edge between nodes 0 and 6 where,

the travel cost between these two nodes is 2. The colored rectangular boxes lying on the

edges represent the POIs. Each of the rectangular boxes belongs to a specific category.

Additionally, the rectangular boxes having same colour represent they belong to the same

category.

Figure 3.1: A sample road network with POIs

Similarly, to move from nodes 1 to 2 in the sample network the travel cost will be 4.

There are two different POIs (Red, Green) lying on the edge (the edge between nodes 1 and

2) belonging to two different categories. The travel cost from node 1 to the POI marked by

Red colour is 2 and the travel cost from node 1 to the POI marked by Green colour is 3.

The movement can be bidirectional. That means to move from nodes 2 to 1 the total cost

will be 4. The travel cost from node 2 to the Green POI can be calculated by subtracting

the travel cost of the corresponding POI (from node 1) from total cost. Therefore, the cost

29

3.2. OVERVIEW OF DGTP AND M-DGTP STRATEGY

to travel from node 2 to the Green POI is 1 (i.e. 4−3 = 1). Similarly, the travel cost from

node 2 to the Red POI is 2 (i.e. 4−2 = 2).

3.2 Overview of DGTP and M-DGTP Strategy

Before we discuss our proposed DGTP and M-DGTP approaches in detail, a high level

overview of both the approaches are discussed in this section. Figure 3.2 present a gener-

alized flow-diagram for both DGTP and M-DGTP approaches. The flow-diagram works as

follows:

i. Initial values of group size 1, Total distance and Trip distance is set to zero,

ii. Start and destination (e.g., home) locations (i.e. vertices) of the group members for

the current iteration are taken as input,

iii. The updated value of group size is calculated as: the sum of previous group size and

number of new joining member(s),

iv. The next desired COI that the current members want to visit is taken as input,

v. The POI (Pi) of the desired COI having minimum the aggregate distance from all the

source locations of current group members is determined. This POI location will be

considered as the one source location for the entire set of current group members for

the next POI (Pi+1) search,

vi. Checking for the departure of any group member(s):

(a) If any member(s) want to leave, the distance from their last POI (Pi) to their

home and their individual trip distance and individual total distance are calcu-

lated. Total distance, Trip distance and current group size are also calculated,

1In beginning, the group size=0 and this also happens when the trip is finished and everyone has departed
for home

30

3.2. OVERVIEW OF DGTP AND M-DGTP STRATEGY

Start

Input	start	and	home	vertices
of	members	want	to	join

Input	start	and	home
vertices

Input	COI

1.	Find	desired	POI	with	minimum	aggregate
distance	from	all	the	sources
2.	Input	the	POI	as	source	location	of	group	to
find	POI	of	next	COI

Member(s)	want
to	leave?

1.	Calculate	distance	from	last	POI	to	home
2.	Calculate	individual_trip_distance
3.	Calculate	individual_total_distance
4.	Total_distance	=	Total_distance	+		individual_total_distance
5.	Trip_distance	=		Trip_distance	+	individual_trip_distance
6.		group_size	=	group_size	-	Number	of	member(s)	left

Is	group_size=	0?

Output	Total_distance	
Output	Trip_distance
Output	sequence	of	POIs	for	all	COIs

End

Any	member	want
to	Join?

Yes

No

Yes

No

No

Yes

group_size=0
Total_distance=0
Trip_distance=0

group_size=group_size	+	Number	of	new	joining	member(s)

Figure 3.2: Generalized flow diagram for DGTP and M-DGTP

31

3.3. DYNAMIC GROUP TRIP PLANNING (DGTP) APPROACH

updated and stored for future use. The resulting group size is checked in step

viii below.

(b) If no member wants to leave from the current group location then step vii is

performed next,

vii. Checking for the addition of any new group member(s):

(a) If any new member(s) want to join, their start and home locations are taken as

input and the algorithm continues from step ii above,

(b) If no new member want to join then the algorithm continues from step iv above,

viii. Checking current group size:

(a) If the group size is equal to zero that means there is no members left in the group

and the algorithm continues from step ix below.

(b) If the group size is not equal to zero then the algorithm continues from step vii

above,

ix. The Trip distance and Total distance for the entire trip is calculated and the chosen

POIs sequence for the trip is returned as output.

3.3 Dynamic Group Trip Planning (DGTP) Approach

In this section, our proposed first strategy called DGTP is discussed in detail. Section

3.3.1 presents the procedure of shortest distance and path computation, while the aggregate

distance calculation procedure is presented in Section 3.3.2 and Section 3.3.3 presents the

result computation procedure.

3.3.1 Step-1: Shortest Distance and Path Computation

Our intention is to find out the desired target location (POI P1) which is nearest from

current locations of all the members who are travelling the current moment in the trip. In

32

3.3. DYNAMIC GROUP TRIP PLANNING (DGTP) APPROACH

the road network, all the target locations (POIs) are located on edges {(u1, v1), (u2, v2), (u3,

v3),...., (uk, vk)}.

i. Using the Dijkstra algorithm [9], the shortest distances and paths from a specific

source location, say Si to all the vertices of the graph are calculated. At the end of

this step, we have the shortest distances from the source location to all the vertices.

ii. After that, using the calculated distances of each vertex from source Si, the distance to

each POI that belongs to the current COI is calculated as follows: if the distance from

source Si to vertex u of an edge (u, v) that is hosting a POI, say Pi is Distance[Si −→ u]

and the distance from u to Pi is Distance[u −→ Pi] then the distance from source Si

to Pi which we call Distance[Si −→ Pi] is calculated by adding two distances in the

following way and consequently the predecessor (previous vertex) of Pi is set to u.

Distance[Si −→ Pi] = Distance[Si −→ u] + Distance[u−→ Pi]

and, Predecessor[Pi] = u

iii. If the Pi is reachable through the other vertex v of the same edge (u, v) hosting the

POI and the distance from source Si to Pi through vertex v is less than the distance

through u then, the distance Distance[Si −→ Pi] is updated with this new minimal

distance calculated in the following way and consequently the predecessor of Pi is

reset to v.

Distance[Si −→ Pi] = Distance[Si −→ v] + Distance [v−→ Pi]

and, Predecessor[Pi] = v

For all group members {s1,s2,s3,,sn} visiting the same COI, the procedure mentioned

above is repeated to calculate the distances (d1,d2,d3,,dn) and predecessors from every

source locations to all the POIs (Pi) of the first COI (C1) intended to be visited by the group

members. Then, the calculated distances and the corresponding predecessors for all the

POIs of C1 are stored for future use.

33

3.3. DYNAMIC GROUP TRIP PLANNING (DGTP) APPROACH

At the beginning of the journey, the number of source locations is exactly the same (as

they are assumed to be distinct) as the number of members starting for the first COI C1 as

each member starts their journey from a location (Si). After reaching the chosen POI (P1)

for C1 all the current members are now considered virtually as a single-member and their

current location is considered as a single-source (Si) for the next desired COI.

3.3.2 Step-2: Aggregate Distance Calculation

Using the calculated distances from step-1, the aggregate distances (D1,D2,D3,,Dn)

for every Pi of the first COI (C1) are calculated in adding the distances from the source

locations of the group members in S to Pi. Finally, the minimum value from the aggre-

gate distances (D1,D2,D3,,Dn) is determined and the corresponding Pi for the minimum

value is chosen as the desired POI of C1.

Aggregate Dist[Pi] = Distance[S1 −→ Pi]+Distance[S2 −→ Pi]++Distance[Sn −→ Pi]

(3.4)

For all subsequent COIs the same procedure (i.e. step-1 and step-2) is used for deter-

mining onward travel. While searching for any COI after C1 the current starting location of

the current group members is considered as a single source location because as mentioned

earlier the group will be virtually considered as a single member. However, some additional

members may join the journey at any given time. Between any pair Ci and Ci+1 of COIs:

• If no new member wants to join to the trip, the next portion of the trip will proceed

by considering only one source location (S1) and the aggregate distance will be equal

to the minimum value of Distance[S1 −→ Pi]

• If x new members wish to join the trip at COI Ci then for each Pi, the aggregated

distances (D1,D2,D3,,Dn) can be calculated in the following way. The set of

34

3.3. DYNAMIC GROUP TRIP PLANNING (DGTP) APPROACH

starting locations for the x new members is X={s1,s2,s3,,sx}.

Aggregate Dist[Pi]=Distance[S1 −→ Pi]+Distance[s1 −→ Pi]+....+Distance[sx −→ Pi]

(3.5)

After calculation, the minimum value from the aggregate distances (D1,D2,D3,,Dn)

is determined and the corresponding Pi for the minimum value is chosen as desired POI of

Ci.

Since aggregate distance is calculated in this way in DGTP, all the source locations have

equal priority when the desired COI is chosen. The size of the existing group at that location

is not taken into account, which leads to a Pi being selected which is closer to the locations

of the existing group members. However, the total distance travelled by the group members

may not be the best in this approach. To overcome this, we propose a small modification in

aggregate distance calculation (in the M-DGTP approach) which will be discussed later in

this chapter.

3.3.3 Step-3: Final Trip Result Computation

The distance travelled by any individual member is calculated when the member com-

pletes their trip by visiting all of their intended Pi and wants to leave for home. When a

member wants to leave for home Hi from their respective last POI, say Pn, at any point in

the journey, the leaving distance of the member from Pn to Hi is calculated by using the

Dijkstra algorithm [9].

i. The distance travelled by the member during their entire trip is calculated by adding

distance from their start location (si) to last POI (Pn) they visited and the distance

from Pn to their respective home Hi.

Individual travel distance[i] = Distance[si −→ Pn] + Distance[Pn −→ Hi]

This calculated Individual travel distance may only include a subset of the POI set P

since the user can join the trip at any time.

35

3.4. MODIFIED DYNAMIC GROUP TRIP PLANNING (M-DGTP) APPROACH

ii. The distance travelled by the member from their start location (si) to their last visited

POI (Pn) is the Individual trip distance[i] of the member:

Individual trip distance[i] = Distance[si −→ Pn]

iii. When an individual member finishes their trip, the individual travel distance of the

member is added to the total travel distance. Similarly, the individual trip distance of

the member is added to trip distance.

Total Distance = Total Distance + Individual travel distance[i]

Trip Distance = Trip Distance + Individual trip distance[i]

For the rest of the journey all the remaining COIs are visited by following all the

steps from step-1 (Section 3.3.1) until the last POI Pm for all remaining group members

is reached.

Trip Completion Calculation

When all the COIs have been visited by the remaining group members, the leaving dis-

tances for all remaining group members are calculated by using the Dijkstra algorithm [9].

The cumulative Total Distance and Trip Distance is calculated and updated by following

the same procedure from the beginning of step-3 (i.e Section 3.3.3). The final value of To-

tal Distance is calculated which is the the total travel distance of the group at the end of the

trip.

At the end of the trip all information such as total distance, trip distance, the chosen list

of POIs for the m COIs (i.e P1,P2,P3,,Pm) and the travel paths for individual members

are retrieved and displayed.

3.4 Modified Dynamic Group Trip Planning (M-DGTP) Approach

To address the issue with DGTP mentioned above, the M-DGTP approach is proposed

which optimizes the travel route for the whole trip. The M-DGTP approach is only affected

36

3.4. MODIFIED DYNAMIC GROUP TRIP PLANNING (M-DGTP) APPROACH

when new members are added during the journey, which leads to a higher group travel

distance than necessary. If all the group members start at the beginning of the journey

and no new members want to join throughout the trip, then there is no effect on the travel

distance. Similarly, if all the group members start at the beginning and only leave during

or at the end of the trip (i.e. no new member joins) then there is also no effect on travel

distance.

The Step-1: Shortest Distance and Path Computation procedure and Step-3: Result

Computation of M-DGTP is exactly the same as the procedure described in Section 3.3.1

and Section 3.3.3 respectively. Please refer to these sections for more details.

The M-DGTP approach has a different procedure for aggregate distance calculation

which is discussed below.

3.4.1 Step-2: Aggregate Distance Calculation

Using the calculated distances from step-1, the aggregate distances (D1,D2,D3,,Dn)

for every Pi of first COI (C1) are calculated by adding the distances from the source lo-

cations of the group members (say, n source locations for n members) to Pi multiplied by

respective number of members at that source location. Finally, the minimum value from

the aggregate distances (D1,D2,D3,,Dn) is determined and the corresponding Pi for the

minimum value is chosen as the desired POI. If member count[Si] is the number of member

present at source Si then the equation can be expressed as:

Aggregate Dist[Pi] = Distance[S1 −→ Pi]×member count[S1]+Distance[S2 −→ Pi]

×member count[S2]++Distance[Sn −→ Pi]×member count[Sn] (3.6)

If no new member joins at this point, the Pi of the next Ci is determined by following the

same procedure. Otherwise:

• If x new members join the trip at Ci, then for each Pi, S1 is the location where the exist-

37

3.5. RUNNING EXAMPLE

ing group remains at present and member count[S1] is the number of group members

currently at S1, and X={s1,s2,s3,,sx} is the starting locations of the x members that

are joining the trip. The aggregated distances (D1,D2,D3,,Dn) can be calculated

by the following:

Aggregate Dist[Pi] = Distance[S1 −→ Pi]×member count[S1]+Distance[s1 −→ Pi]

×member count[s1]++Distance[sx −→ Pi]×member count[sx] (3.7)

After calculation, the minimum value from the aggregate distances (D1,D2,D3,,Dn) is

determined and the corresponding Pi for the minimum value is chosen as desired POI of Ci.

If the aggregate distance is calculated considering the actual number of members re-

maining in a source location, the source location where the maximum number of members

remain is given priority in choosing the desired COI over the locations of the other mem-

bers. This leads to a Pi being selected which is closest in terms of distance traversed which

results in minimizing the total travel distance of all the members.

3.5 Running Example

Assume four friends want to visit four COIs. The first and second friend want to visit

all the COIs. The third friend wants to leave after visiting the third COI and the fourth

friend wants to join at third COI. The following information represents the trip information

in detail:

Number of members in the beginning, n = 3

Set of start locations, s = {s1,s2,s3} is {10, 2, 7}

Set of home locations, H = {H1,H2,H3} is {298, 7, 3}

The number of COIs, m = 4

Sequence of COIs to be provided during the trip, C = {C1,C2,C3,C4} denoted by {Red,

Green, Blue, Pink} in Figure 3.3

38

3.5. RUNNING EXAMPLE

The number of members want to join, x = 1

Source, home and joining COI location {s4,H4,C3} of new member is {4, 265, Blue}

The number of members that want to leave before the end of the trip, y = 1

Source, home and leaving COI location {s3,H3,C3} of departing member is {7, 3, Blue}

In this section, we present an example of both DGTP and M-DGTP using the problem

scenario mentioned above. The example is explained using the sample road network of

Figure 3.3. The contents of the sample road network have been explained previously in

Section 3.1.2. For the sake of example demonstration, the sample road network figure from

Section 3.1.2 is placed again here.

Figure 3.3: A sample road network with POIs

At the beginning, three members with the set of starting vertices s={10, 2, 7} and the

set of home vertices H={298, 7, 3} respectively intend to visit one of the three POIs of

C1 which is represented by red coloured square boxes in Figure 3.3. Each POI Pi of C1 is

represented as Pi (ui, vi, di, wti) where, ui and vi is the start and end vertex of the hosting

39

3.5. RUNNING EXAMPLE

edge respectively and the distance from u to the POI is di and wti is the edge (ui, vi) length.

Using the same representation the POIs of C1 (red) can be represented as: P1 (1, 2, 2,

4), P2 (5, 8, 2, 3) and P3 (9, 10, 4, 11). Using the Dijkstra [9] algorithm the distances

from the starting location si to ui and vi for each Pi are calculated using the procedures

Distance[si −→ ui] + di and Distance[si −→ vi] + (wti - di) respectively and the minimum

distance between them is calculated.

Repeating the same procedure the distances of all three POIs of C1 are calculated from

the three starting vertices {10, 2, 7}. The aggregate distances for all Pi are calculated using

both the DGTP and M-DGTP approaches. From calculation of Table 3.2, it is seen that for

both DGTP and M-DGTP the minimum value of aggregate distance is 26 and POI P2 is

chosen for COI C1.

Table 3.2: Shortest distance and aggregate distance calculation for C1

Start vertex Member count
Distance to P1
(1, 2, 2, 4)

Distance to P2
(5, 8, 2, 3)

Distance to P3
(9, 10, 4, 11)

10 1 20 10 7
2 1 2 12 19
7 1 10 4 11

Aggregate distance DGTP
20 + 2 + 10 =
32

10 + 12 + 4 =
26

7 + 19 + 11 =
37

Aggregate distance M-DGTP
20 × 1 + 2 ×
1+10×1= 32

10 × 1 + 12 ×
1+4×1 = 26

7 × 1 + 19 ×
1+11×1= 37

The same procedure will be repeated while searching the next COI (green) C2 consid-

ering the previously chosen P2 (5, 8 , 2, 3) of C1 as the only source location. From the

calculation in Table 3.3, it is seen that for DGTP and M-DGTP the minimum value aggre-

gate distances are 6 and 18 respectively for POI P2. So, P2 is chosen as the desired POI

for COI C2. The total and trip distances travelled by each members are also calculated and

preserved.

A new member joins at COI (blue) C3 having source and home vertices at 4 and 265

respectively. The previously chosen P2 (9, 10, 3, 11) of C2 which represents the existing

40

3.5. RUNNING EXAMPLE

Table 3.3: Shortest distance and aggregate distance calculation for C2

Source vertex Member count
Distance to P1
(1, 2, 3, 4)

Distance to P2
(9, 10, 3, 11)

(5, 8) 3 11 6
Aggregate distance DGTP 11 6

Aggregate distance M-DGTP 11×3 = 33 6×3 = 18

group, and 4 for the new member are the new source locations for C3. From the calculation

of Table 3.4, for the DGTP approach P1 will be chosen as the desired COI for C3 having

a minimum aggregate distance of 24. For M-DGTP P2 will be chosen for C3 having a

minimum aggregate distance of 32. So, after leaving C2 the travel paths for DGTP and M-

DGTP will be different. The distances and path travelled by the members is also calculated,

updated and preserved.

Table 3.4: Shortest distance and aggregate distance calculation for C3

Start vertex Member count
Distance to P1
(3, 4, 3, 4)

Distance to P2
(9, 10, 5, 11)

Distance to P3
(9, 10, 7, 11)

(9,10) 3 23 2 4
4 1 1 26 28

Aggregate distance DGTP 23+1 = 24 2+26 = 28 4+28 = 32

Aggregate distance M-DGTP
23 × 3 + 1 ×
1 = 70

2 × 3 + 26 ×
1 = 32

4 × 3 + 28 ×
1 = 40

After visiting C3 a member {s3,H3}, having start (s3) and home (H3) vertices 7 and

3 respectively, wants to leave. As the distances and paths for both DGTP and M-DGTP

change after C2 the distance travelled by the member to their home will be different for

both the DGTP and M-DGTP approaches.

For DGTP, the travel distance of {s3,H3} member from vertex 7 to POI P1 of C3 via the

chosen POIs for C1 and C2 is 4+6+23= 33 and the home distance from P1 (3,4,3,4) to ver-

tex 3 using the Dijkstra[9] algorithm is 3. Therefore, for the departing member individual

travel and total distances are 33 and 33+3 = 36 respectively.

For M-DGTP, the travel distance of third member from vertex 7 to POI P2 of C3 via the

chosen POIs for C1 and C2 is 4+6+2 = 12 and the distance from P2 (9,10,5,11) to vertex

41

3.5. RUNNING EXAMPLE

3 using the Dijkstra[9] algorithm is 22. Therefore, for the third member their individual

travel and total distances in M-DGTP approach are 33 and 12+22 = 34 respectively.

Table 3.5: DGTP: Shortest distance and aggregate distance calculation for C4

Start vertex Member count
Distance to P1
(2, 3, 1, 2)

Distance to P2
(7, 265, 2, 3)

Distance to
P3(9, 10, 2,
11)

(3,4) 3 4 19 22
Aggregate distance DGTP 4 19 22

The remaining three group members {s1,H1}, {s2,H2}, {s4,H4} will travel from C3 to

C4 denoted by pink colored square in Figure 3.3. From Table 3.5 for the DGTP approach,

the previously chosen P1 (3, 4, 3, 4) of C3 is considered as the new source for traveling to

C4. For C4, POI P1 (2, 3, 1, 2) is chosen as it has the minimum value for the aggregate

distance when using the DGTP approach and the value is 4. Like before, the distances and

path travelled by each member is also calculated, updated and preserved.

Table 3.6: M-DGTP: Shortest distance and aggregate distance calculation for C4

Start vertex Member count
Distance to P1

(2, 3, 1, 2)

Distance to P2

(7, 265, 2, 3)

Distance to P3

(9, 10, 2, 11)

(9,10) 3 21 14 3

Aggregate distance M-DGTP 21×3 = 63 14×3 = 42 3×3 = 9

From Table 3.6 for the M-DGTP approach, the previously chosen P2 (9,10,5,11) for C3

is considered as the new source for C4. For C4 the value of the minimum aggregate distance

is 9 which is found for P3. Therefore, P3 (9,10,2,11) is chosen as the desired POI for C4.

For M-DGTP, the distances and path travelled by each members is also calculated, updated

and preserved.

As C4 is chosen by the group to be the last intended COI, the remaining members

{s1,H1}, {s2,H2}, {s4,H4} leave for their respective homes. For the DGTP approach, using

the Dijkstra[9] algorithm, the home distances of the remaining members are calculated as

42

3.6. SUMMARY

Table 3.7: Result computation of DGTP approach

Start
vertex

Home
vertex

Sequence of Pi for
each Ci from start to
home

Distance from
source to last Ci

Distance
from last
Ci to
home

Individual
total
distance

10 298
10 −→ C1[P2] −→
C2[P2] −→ C3[P1] −→
C4[P1]−→ 298

10+6+23+4 =
43

17 60

2 7
2 −→ C1[P2] −→
C2[P2] −→ C3[P1] −→
C4[P1]−→ 7

12+6+23+4 =
45

13 58

7 3
7 −→ C1[P2] −→
C2[P2]−→C3[P1]−→ 3

4+6+23 = 33 3 36

4 265
4 −→ C3[P1] −→
C4[P1]−→ 265

1+4 = 5 16 21

DGTP approach Trip distance 43+45+33+5 = 126
DGTP approach Total distance 60+58+36+21 = 175

17,13 and 16 respectively. For the M-DGTP approach, the calculated home distances from

the last Ci is 7, 9, 12 respectively.

Table 3.7 shows the result computation for the DGTP approach. The value of the trip

distance is obtained by adding the distances from the source to the last Ci for each mem-

ber. The value of the individual total distance is obtained by adding the home distance to

individual trip distances for each member. The total and trip distance for the entire group is

obtained through summing the individual total and trip distances. For the DGTP approach,

the obtained value of the trip and total distances are 126 and 175 respectively.

Table 3.8 shows the result computation for the M-DGTP approach. Following the same

procedure as before the trip and total distances are calculated. For the M-DGTP approach,

the obtained value for the trip and total distances are 85 and 135 respectively. From the

result, the running example also shows that M-DGTP approach reduces the value of trip

and total distance in comparison to the DGTP approach.

43

3.6. SUMMARY

Table 3.8: Result computation of M-DGTP approach

Start
vertex

Home
vertex

Sequence of Pi for
each Ci from start to
home

Distance from
source to last Ci

Distance
from last
Ci to
home

Individual
total
distance

10 298
10 −→ C1[P2] −→
C2[P2] −→ C3[P2] −→
C4[P3]−→ 298

10+ 6+ 2+ 3 =
21

7 28

2 7
2 −→ C1[P2] −→
C2[P2] −→ C3[P2] −→
C4[P3]−→ 7

12+ 6+ 2+ 3 =
23

9 32

7 3
7 −→ C1[P2] −→
C2[P2]−→C3[P2]−→ 3

4+6+2 = 12 22 34

4 265
4 −→ C3[P2] −→
C4[P3]−→ 265

26+3 = 29 12 41

M-DGTP approach Trip distance 21+23+12+29 = 85
M-DGTP approach Total distance 28+32+34+41 = 135

3.6 Summary

In this chapter, procedures of our two proposed approaches: DGTP and M-DGTP are

discussed. A running example for both the strategies is also presented. The next chapter

presents the performance evaluation of our proposed strategies.

44

Chapter 4

Experiments and Evaluations

In this chapter we discuss the conducted experiments and the generated results from the

experiments. The performance of the proposed DGTP and M-DGTP algorithms is com-

pared with an adapted version of the NaiveDGTP algorithm that is recently proposed by

Tabassum et al. [33]. Extensive experiments have been carried out using the real-world

road network of California [19] 2.

This chapter is organized as follows: Section 4.1 presents a summary of the NaiveDGTP

algorithm and our adaptations to it. Section 4.2 presents the experimental setup used for

conducting experiments. Section 4.3 presents on the performance metrics considered for

comparison. Section 4.4 and Section 4.5 presents a review of the generated results for

static and dynamic groups respectively. Section 4.6 presents an overall discussion of all the

conducted experiments.

4.1 Adapted Naive Dynamic Programming Approach

The NaiveDGTP [33] algorithm was proposed for Euclidean Space whereas our pro-

posed DGTP algorithms has been implemented using the spatial network distance in a real

road network. Our proposed DGTP, M-DGTP and adapted N-DGTP are compared consid-

ering both static and dynamic group scenarios. The static group scenario assumes no group

members join or depart during the trip and the dynamic group scenario assumes group

members can join or depart at any point of the trip. Our proposed DGTP and M-DGTP

2https://www.cs.utah.edu/˜lifeifei/SpatialDataset.htm

45

4.1. ADAPTED NAIVE DYNAMIC PROGRAMMING APPROACH

approaches do not require to pre-specify the visiting COIs before the start of the trip. That

means the trip can be changed at any point of the trip.

For the sake of comparison, an adaptation of the NaiveDGTP algorithm which we call

N-DGTP has been implemented for a real road network. Like NaiveDGTP, the N-DGTP

algorithm uses dynamic programming. For a given pre-specified list of COIs and (start, end)

position of each person that starts the trip from the very beginning, the N-DGTP algorithm

is implemented as:

• Initial optimal trip computation:

i. Retrieval of all POIs of the COIs that the group intends to visit,

ii. The dynamic programming algorithm is applied to computing an initial optimal

trip. It works as follows:

(a) For COI C1, the partial aggregate distances are calculated as: the sum of

distances from all the locations of members who want to join at C1 to each

POI of C1 and distance(s) from all the POIs of P1 to all the destination of

member(s) who want to leave from C1. The calculated partial aggregate

distances are stored for future use.

(b) For all COIs after C1, the partial aggregate distances for all the POIs are

calculated as: the sum of the partial sums at Pi−1, the distances from Pi−1

to Pi multiplied by the number of users who continue the trip from Ci−1

to Ci, the distances from source to all POIs of Pi who join at Ci, and the

distance from all the POIs of Pi to destination who want to leave from Ci.

(c) The minimum total aggregate distance after processing the last COI is iden-

tified and the corresponding trip is the computed initial trip.

• Process path: The path is re-calculated if any trip change occur in real-time (i.e.

addition and departure of new group members). The path re-calculation is performed

as follows:

46

4.2. EXPERIMENTAL SETUP

i. The first POI on the path is visited,

ii. The starting point of existing group members is considered as the last POI they

visited,

iii. If there is any departure of group member(s) the distance to destination is cal-

culated,

iv. If there is any new arrival of additional group member(s) it is added to the the

set of group members,

v. The changes in the group is updated and remaining path is re-calculated using

the dynamic programming algorithm.

4.2 Experimental Setup

The proposed algorithm has been implemented using the C++ programming language.

All the experiments were carried out on a Intel R© Core
TM

2 Duo CPU E6750 with 2.66GHz

CPU and 1835 MB RAM which is powered by CentOs Linux 7 operating system. The

experimental settings that have been used to conduct the experiments are grouped into two

categories:

• Static group

• Dynamic group

Section 4.2.1 discuss the California [19] dataset that is used for conducting experiments.

Section 4.2.2 and Section 4.2.3 describe the setups that have been used for the static and

dynamic groups respectively.

4.2.1 Data Sets

Table 4.1 shows the metadata of the California [19] road network. As most of the POIs

lie on the edges of the network, there are many more POIs than vertices in the network.

For our experiments, the COIs having less than 1000 POIs have been utilized. There are 45

47

4.2. EXPERIMENTAL SETUP

COIs with this range of POIs, with a total of 10,948 POIs. Table 4.2 summarizes six of the

selected categories which have been used for experiments.

Table 4.1: California road network summary

Title Information
Network (Notation) California (CA)

Number of vertices / edges 21,048 / 21,693
Number of COIs 62
Number of POIs 87,635

Table 4.2: Categories used in experiment

Category POIs
Airport 928
Hospital 824
Tower 899

Bar 218
Trail 887

Cemetery 788

4.2.2 Static Group Experimental Setup

The static group scenario assumes no group members begin or depart during the trip (in

other words, they begin at the start of the trip and depart at the end). The evaluation for

static group has been considered by varying three parameters:

• Number of points in dataset,

• Number of COIs (i.e. trip size),

• Number of group members (i.e. Group size).

For each set of experiments, the value of one parameter is varied while fixing other

parameters to their default values. Table 4.3 summarizes the values used for each parameter

to conduct the experiments and their default values. For experiment, the number of points

are varied in a range from 20%-100% where 20% means first 20% of the number of vertices

48

4.2. EXPERIMENTAL SETUP

Table 4.3: Static group parameters

Parameter Range Default
Number of points 20%, 40%, 60%, 80%, 100% 20%
Number of COIs 2, 3, 4, 5 3

Group size 2, 4, 8, 16, 32 5

and associated information with them. The total number of vertices in the California [19]

dataset is 21,048. So, the first 20% of the number of points contain approximately 4,200

vertices. Similarly, 40% of the number of points contain approximately 8,400 vertices. In

Table 4.3 the 100% number of points means the complete California [19] dataset.

4.2.3 Dynamic Group Experimental Setup

The dynamic group scenario assumes that the group size is changing throughout a trip.

It is assumed that, the change in group size can occur by any one of the three incidents:

• Adding new participant to the trip,

• Having participants depart from the trip,

• Random addition and departure of group members.

The four scenarios used for evaluating the addition of new members during a trip as-

sumes that there are a total of 16 members in the group and the group members travel to five

different COIs. The four groups Group-1, Group-2, Group-3 and Group-4 present how the

participants are added in each trip (i.e. Group Trip-1, Group Trip-2, Group Trip-3, Group

Trip-4). For example, in Table 4.4 Group-1 presents the scenario of Group Trip-1 where,

the number of people join at COI1, COI2, COI3, COI4 and COI5 are 4, 4, 4, 4, and 0 re-

spectively. For Group-1, equal numbers of members are added to the first four COIs. For

Group-2, half of the total group members (i.e. 8) are added to the first COI and rest of the 8

members are equally added to the remaining four COIs. For Group-3, the number of people

added to each COIs are in descending order and for Group-4, the number of people added

to each COIs are in ascending order. In each case, we use 20% of our whole California [19]

49

4.2. EXPERIMENTAL SETUP

Table 4.4: Dynamic group parameters

COIs
Adding new participants

Dataset
Group-1 Group-2 Group-3 Group-4

COI1 4 8 6 1

20%
COI2 4 2 4 2
COI3 4 2 3 3
COI4 4 2 2 4
COI5 0 2 1 6

Table 4.5: Dynamic group parameters

COIs
Having participants depart

Dataset
Group-1 Group-2 Group-3 Group-4

COI1 0 2 6 1

20%
COI2 4 2 4 2
COI3 4 2 3 3
COI4 4 2 2 4
COI5 4 8 1 6

dataset to run our experiments. Table 4.4 summarize how the group members are added

during the trip.

Similarly, four scenarios are used for evaluating the departure of participants from a

trip. They also assume that there are a total of 16 members in the group and the group

members travel to five different COIs. For Group-1, no member departs at first COI and

equal number of members depart from the remaining COIs. For Group-2, half of the total

group members equally depart from the first four COIs and remaining half of the group

members depart from the last COI. For Group-3, the number of people depart from each

COIs are in descending order and for Group-4, the number of people depart from each

COIs are in ascending order. Table 4.5 shows the combinations for the four group trips and

summarizes how the group members depart during the trip.

The four scenarios used for evaluating random addition and departure of group members

also assumes that there are a total of 16 members starting the trip. The group members

travel to five different COIs and at the end of the trip the group size also remains at 16. For

50

4.3. PERFORMANCE METRICS

Table 4.6: Dynamic group parameters

COIs
Addition and departure of participants

Dataset
Group-1 Group-2 Group-3 Group-4

Leave after COI1 4 8 3 5

20%

Join at COI2 4 4 6 1
Leave after COI2 4 0 3 5

Join at COI3 4 4 4 5
Leave after COI3 4 8 4 5

Join at COI4 4 4 3 5
Leave after COI4 4 0 6 1

Join at COI5 4 4 3 5

Group-1, equal numbers of members join and depart at each COIs. For Group-2, Group-3

and Group-4 the number of members join or leave at each COIs are chosen randomly. Table

4.6 summarizes how the group members are added and departed during the trips.

4.3 Performance Metrics

The proposed three strategies: Dynamic Group Trip Planning (DGTP), Modified Dy-

namic Group Trip Planning (M-DGTP) and Naive Dynamic Group Trip Planning (N-DGTP)

are compared in terms of three performance metrics:

• Total distance: The total distance is the sum of the distances for each members,

starting from a source location passing at least one POI from each COIs to their

respective destination locations.

• Trip distance: The trip distance is calculated by deducting the home distance from

total distance. Where, Home distance is the sum of distances of each group member

from the last visited POI to their respective destination locations.

Trip distance = Total distance - Home distance

As the starting and departing locations and COIs of the members are randomly

located for a trip, a scenario can arise where the trip distance of members is signifi-

cantly shorter than the destination or home distance of the members. This is why to

51

4.4. STATIC GROUP RESULTS

keep the track of the original trip distance (from start to last visited Pi) with respect

to total distance travelled by the members we calculate the trip distance.

• Processing time: The processing time is measured in seconds and is the time re-

quired to generate the trip result for the group.

4.4 Static Group Results

The performance of DGTP, M-DGTP and N-DGTP on static group is compared in terms

of total distance, trip distance and processing time. The effect of number of points, number

of COIs and group size is observed. Section 4.4.1 discusses the effect of number of POIs

in dataset, Section 4.4.2 discusses the effect of number of COIs, and effect of group size is

discussed in Section 4.4.3.

4.4.1 Effect of Number of Points in Dataset

Table 4.7 presents the comparison of the DGTP, M-DGTP and N-DGTP approaches

in terms of processing time (in sec.) for a varying number of POIs in dataset. Here, the

number of POIs are expressed as a percentage of number of vertices in the California [19]

road network. All three approaches incur higher processing times with the increase of the

number of POIs in dataset, as expected. The experimental results also illustrate that the

processing time of DGTP and M-DGTP is almost the same, whereas N-DGTP shows the

worst processing time. In each case, it is observed that DGTP and M-DGTP is 26, 78, 208,

249 and 221 times faster than N-DGTP in respect to the increase of number of POIs.

Table 4.7: Processing time in sec.

Number of Points DGTP M-DGTP N-DGTP
20% 0.08 0.08 2.11
40% 0.18 0.18 14.036
60% 0.288 0.286 59.648
80% 0.37 0.368 91.708

100% 0.476 0.474 105.33

52

4.4. STATIC GROUP RESULTS

0

5

10

15

20

25

30

35

40

45

50

20% 40% 60% 80% 100%

To
ta

l D
is

ta
n

ce

Number of Points in Dataset

DGTP M-DGTP N-DGTP

Figure 4.1: Effect of number of POIs on average total distances

This is because, the DGTP and M-DGTP approaches do not re-calculate the trip, when

compared to a trip (or partial trip) that needs to be processed for N-DGTP to generate the

resultant trip. The N-DGTP approach based on dynamic programming requires a signifi-

cantly larger number of shortest path computation and partial trip re-calculations with the

increase of the number of POIs.

Figure 4.1 shows the effect of the number of POIs on total distance. The results show

that DGTP and M-DGTP have exactly the same total distance for each group of varying

POIs. This is because, M-DGTP only differs from DGTP in terms of the calculation of ag-

gregate distance for varying addition and departure of group members (discussed in Section

3.4.1). As stated earlier, the static groups considers the situation where all group members

start together at the beginning and there is no new addition or departure of group members

during the trip. Therefore, the distance is same for both DGTP and M-DGTP approaches.

Figure 4.1 also illustrates that, in each case N-DGTP shows a smaller total distance

which is expected as the N-DGTP approach is based on dynamic programming and sup-

53

4.4. STATIC GROUP RESULTS

0

5

10

15

20

25

20% 40% 60% 80% 100%

Tr
ip

 D
is

ta
n

ce

Number of Points in Dataset

DGTP M-DGTP N-DGTP

Figure 4.2: Effect of number of POIs on average trip distances

posed to generate the optimal trip result. However, from the experimental results it is seen

that DGTP and M-DGTP still being greedy approaches generates on average only an 8%

longer trip than N-DGTP in terms of total distance.

Figure 4.2 shows the effect of number of POIs on trip distance and again for the same

reason mentioned above both DGTP and M-DGTP shows the exactly same trip distances

regardless of the number of POIs. Also N-DGTP generates a shorter trip results than both

DGTP and M-DGTP. In case of 100% points in dataset N-DGTP shows an exception gen-

erating a little longer trip than both DGTP and M-DGTP approaches. The reason behind

this may be: as the DGTP and M-DGTP approaches do not incorporate home or destination

distances to optimise the route, there might be the situation where the home distances of the

group members for DGTP and M-DGTP approaches is larger than the trip distance. The

trip length generated by DGTP and M-DGTP still being greedy approaches is on average

of only 8% longer than those generated by N-DGTP.

54

4.4. STATIC GROUP RESULTS

4.4.2 Effect of Number of COIs

In this section a discussion on the effect of number of COIs on processing time, total

distance and trip distance is presented. Table 4.8 presents the results of DGTP, M-DGTP

and N-DGTP in terms of processing time. Again, as expected all the approaches show an

increase in processing time with the increase of the number of COIs. In case of N-DGTP,

where number of COIs increases from 3 to 4 the required processing time is a little bit

smaller in case of 4 COIs than 3 COIs. The reason behind this is as the COIs are randomly

selected, there remains possibility of selecting four COIs which has comparatively less

number of POIs. Less number of POIs means less search space and less computation time

required.

Table 4.8: Processing time in sec.

Number of COIs DGTP M-DGTP N-DGTP
2-COIs 0.0620 0.0620 4.4280
3-COIs 0.0800 0.0800 9.7620
4-COIs 0.1000 0.1020 9.6480
5-COIs 0.1200 0.1200 13.2180

The DGTP and M-DGTP comes out ahead of N-DGTP showing 71, 122, 94 and 110

times faster processing than N-DGTP for increasing number of COIs respectively. This is

because with the increase of the number of COIs the number of times that a partial trip

needs to be re-calculated for N-DGTP also increases which results in a very expensive

computational overhead. Again, DGTP and M-DGTP significantly outperforms N-DGTP

in terms of processing time because both of the approaches do not require any partial trip

re-calculation.

Figure 4.3 illustrates the effect of the number of COIs on total distance. Again, for the

static groups, DGTP and M-DGTP generate the same total distances whereas, N-DGTP

generates smaller total distances than both DGTP and M-DGTP. For the lower COIs the

total distances generated for DGTP, N-DGTP and M-DGTP are almost the same. With the

increase in number of COIs DGTP and M-DGTP still being greedy approaches generate

55

4.4. STATIC GROUP RESULTS

0.0000

5.0000

10.0000

15.0000

20.0000

25.0000

30.0000

2-COIs 3-COIs 4-COIs 5-COIs

To
ta

l D
is

ta
n

ce

Number of COIs

DGTP M-DGTP N-DGTP

Figure 4.3: Effect of number of COIs on average total distances

0.0000

2.0000

4.0000

6.0000

8.0000

10.0000

12.0000

14.0000

16.0000

2-COIs 3-COIs 4-COIs 5-COIs

Tr
ip

 D
is

ta
n

ce

Number of COIs

DGTP M-DGTP N-DGTP

Figure 4.4: Effect of number of COIs on average trip distances

56

4.4. STATIC GROUP RESULTS

on an average of 15% longer trip result than N-DGTP in terms of total distance. Figure

4.4 shows the effect of the number of COIs on trip distances. Similar to earlier, due to

optimality N-DGTP generates smaller trip distances than DGTP and M-DGTP. Both DGTP

and M-DGTP still being greedy approaches generates an average of 20% longer trip result

than N-DGTP in terms of trip distances where the generated maximum and minimum values

of longer trip results are 39% and 6% respectively.

4.4.3 Effect of Group Size

Table 4.9 shows that processing time of all three approaches: DGTP, M-DGTP and N-

DGTP increases with the increase of the group size. This is expected because the increase

of group size will result in a larger number of shortest path computations which leads to

higher processing time.

Table 4.9: Processing time in sec.

Group size DGTP M-DGTP N-DGTP
2-members 0.0600 0.0600 6.0700
4-members 0.0760 0.0740 8.6980
8-members 0.1000 0.1040 11.9720

16-members 0.1600 0.1620 21.2100
32-members 0.2900 0.2960 41.2040

From the results, it is also observed that N-DGTP has the worst processing time which

is approximately 120 times slower than DGTP and M-DGTP both of which have almost the

same processing time. This is because N-DGTP computes too many shortest paths and trip

re-calculation operations than our proposed approaches.

Figure 4.5 shows the effect of group size on the three approaches and as expected with

the increase in group size the increase of total distances is an approximate multiple of

the number of participants. As explained earlier, for static group DGTP and M-DGTP

calculates the same total distances for all group trip combinations.

57

4.4. STATIC GROUP RESULTS

0.0000

20.0000

40.0000

60.0000

80.0000

100.0000

120.0000

140.0000

2-members 4-members 8-members 16-members 32-members

To
ta

l D
is

ta
n

ce

Group Size

DGTP M-DGTP N-DGTP

Figure 4.5: Effect of group size on average total distances

0.0000

10.0000

20.0000

30.0000

40.0000

50.0000

60.0000

70.0000

2-members 4-members 8-members 16-members 32-members

Tr
ip

 D
is

ta
n

ce

Group Size

DGTP M-DGTP N-DGTP

Figure 4.6: Effect of group size on average trip distances

58

4.5. DYNAMIC GROUP RESULTS

The results also show that, N-DGTP being an optimal approach generates an average

of only a 10% shorter trip than DGTP and M-DGTP where the maximum and minimum

values of shorter trips generated by N-DGTP approach are 18% and 2% respectively.

Figure 4.6 shows the effect of group size on trip distances and all three approaches

show an increase in trip distance with an increase of group size where trip distance is an

approximate multiple of the number of participants. It is also expected that N-DGTP gen-

erates shorter trip distances than our approaches as it is an optimal approach. But with

the increase of group size N-DGTP on average generates only 17% shorter trip than our

proposed approaches. The maximum and minimum values of shorter trips generated by

N-DGTP is 29% and 7% respectively.

4.5 Dynamic Group Results

This section also compares the performance of DGTP, M-DGTP and N-DGTP in terms

of total distance, trip distance and processing time. This time, however, the effect of adding

new participants, departing participants and random adding and departing participants on a

group trip is studied. Section 4.5.1 discusses the effect of adding new participants, Section

4.5.2 discuss the effect of departing participants from trip and Section 4.5.3 discusses the

effect of randomly adding and departing participants.

4.5.1 Effect of Adding New Participants

Table 4.10 presents the effect of adding new participants during a trip using DGTP,

M-DGTP and N-DGTP in terms of processing time. To study the effect of adding new

participants we consider four group combinations presented earlier in Table 4.4. From the

results, it is observed that adding new members to the trip in any combination has almost

no effect on processing time for DGTP and M-DGTP.

However, the processing time of N-DGTP varies significantly with different group com-

binations and on how many steps we are adding our new participants. This is because

59

4.5. DYNAMIC GROUP RESULTS

Table 4.10: Processing time in sec.

Groups DGTP M-DGTP N-DGTP
Group-1 0.1900 0.1900 14.8980
Group-2 0.1900 0.1900 27.2200
Group-3 0.1900 0.1900 21.4740
Group-4 0.1900 0.1900 10.1140

adding new participants will result in an increase in the search space which leads to more

shortest path computations and more trip re-calculation operations. Adding new members

to the trip will also increase the search space for DGTP and M-DGTP but this is where we

can see a significant difference in processing time with N-DGTP. Our proposed DGTP and

M-DGTP perform an average of 98 times faster in terms of processing time.

0.0000

20.0000

40.0000

60.0000

80.0000

100.0000

120.0000

140.0000

Group-1 Group-2 Group-3 Group-4

To
ta

l D
is

ta
n

ce

Adding New Participants to Groups

DGTP M-DGTP N-DGTP

Figure 4.7: Effect of adding new participants on total distance

Figure 4.7 illustrates the effect of adding new participants on the total distance for all the

approaches. For Group-1 and Group-4 M-DGTP generates a small longer trip result than

DGTP but for Group-2 and Group-3 M-DGTP generates much shorter route than DGTP.

60

4.5. DYNAMIC GROUP RESULTS

This is because, M-DGTP gives a better trip result for larger number of group member

additions on the beginning steps. For Group-2 and Group-3 more people are added to the

initial steps and this is why M-DGTP is able to optimize overall trip result for the group

trips. N-DGTP generates smaller trip results than both DGTP and M-DGTP because it is an

optimal method. M-DGTP stands in second position generating an average of 10% better

trip result than DGTP and it occurs specially when more people are added in the initial

COIs where the M-DGTP approach consider the actual group size.

0.0000

10.0000

20.0000

30.0000

40.0000

50.0000

60.0000

70.0000

80.0000

90.0000

100.0000

Group-1 Group-2 Group-3 Group-4

Tr
ip

 D
is

ta
n

ce

Adding New Participants to Groups

DGTP M-DGTP N-DGTP

Figure 4.8: Effect of adding new participants on trip distance

Figure 4.8 illustrates the effect of adding new participants on trip distances. The re-

sults show that M-DGTP outperforms DGTP for all group combinations by reducing trip

distances. N-DGTP generates the best trip result for all group combinations and M-DGTP

standing at second place in case of trip distances. For group-2 and group-3 the performance

of DGTP is worst because DGTP approach does not consider actual group size in case of

aggregate distance calculation (3.3.2). From the results, it is also observed that M-DGTP

produces an average of 30% better trip result than DGTP as the M-DGTP approach consid-

61

4.5. DYNAMIC GROUP RESULTS

ers actual group size in the case of aggregate distance calculation. Thus, it generates better

trip result than DGTP.

4.5.2 Effect of Having Participants Depart

Table 4.11 shows the effect of having participants depart on total distances for DGTP,

M-DGTP and N-DGTP. From the results, it is seen that DGTP shows a slightly better per-

formance than M-DGTP in terms of processing time and N-DGTP is significantly worse.

DGTP shows slightly better processing time because it performs fewer calculations calcu-

lations than M-DGTP. N-DGTP shows a very high processing time because it computes

a large number of shortest paths and trip re-calculation operations. It is seen that both

M-DGTP and N-DGTP performs an average of 90 times better than N-DGTP.

Table 4.11: Processing time in sec.

Groups DGTP M-DGTP N-DGTP
Group-1 0.1880 0.1900 13.3240
Group-2 0.1900 0.1900 19.8820
Group-3 0.1880 0.1900 14.0660
Group-4 0.1900 0.1880 20.1000

Figure 4.9 illustrates the effect of departing participants during the trip in terms of total

distance. Both DGTP and M-DGTP show exactly same total distances for all the group

combinations because no new members are added during the trip. In other words, only

departing participants during the whole trip has no effect on M-DGTP over DGTP. As we

have seen earlier, N-DGTP generates smaller trip results than both DGTP and M-DGTP and

our proposed DGTP and M-DGTP generates an average of 22% longer trip than N-DGTP

in terms of total distance.

Figure 4.10 shows the effect of departing participants on trip distances. As explained

before, both the DGTP and M-DGTP approaches generate same trip results and N-DGTP

generates smaller trip results than both the approaches.

62

4.5. DYNAMIC GROUP RESULTS

0.0000

20.0000

40.0000

60.0000

80.0000

100.0000

120.0000

Group-1 Group-2 Group-3 Group-4

To
ta

l D
is

ta
n

ce

Having Participants Depart from Groups

DGTP M-DGTP N-DGTP

Figure 4.9: Effect of having participants depart on total distance

0.0000

10.0000

20.0000

30.0000

40.0000

50.0000

60.0000

70.0000

Group-1 Group-2 Group-3 Group-4

Tr
ip

 D
is

ta
n

ce

Having Participants Depart from Groups

DGTP M-DGTP N-DGTP

Figure 4.10: Effect of having participants depart on trip distance

63

4.5. DYNAMIC GROUP RESULTS

N-DGTP generates smaller trip results than both DGTP and M-DGTP because it per-

forms a guided search. N-DGTP computes an initial trip first and the initial trip is re-

calculated if changes (i.e. during-trip additions and departures) are made. But this strategy,

proposed by Tabassum et al [33], is also a drawback for N-DGTP because all COIs must be

pre-specified. The order and type of the COIs cannot be changed during the trip. Both of

our proposed approaches, DGTP and M-DGTP do not require pre-specified COIs. From the

results, DGTP and M-DGTP generates an average of 31% longer trip results than N-DGTP

in terms of trip distance.

4.5.3 Effect of Addition and Departure of Participants

Table 4.12 shows the effect of addition and departure of participants on a trip on DGTP,

M-DGTP and N-DGTP in terms of processing time. From results, DGTP shows slightly

better processing time than M-DGTP because M-DGTP performs a few more operations

than DGTP. N-DGTP shows the worst processing time and it performs an average of 274

times slower than both DGTP and M-DGTP.

Table 4.12: Processing time in sec.

Groups DGTP M-DGTP N-DGTP
Group-1 0.3020 0.3060 62.1540
Group-2 0.3060 0.3080 67.7120
Group-3 0.3080 0.3100 116.7400
Group-4 0.3080 0.3100 91.4000

Figure 4.11 illustrates the effect of random addition and departure of participants on

DGTP, M-DGTP and N-DGTP in terms of total distance. From the results, M-DGTP shows

better trip results than DGTP in terms of total distance for all group combinations. N-DGTP

has the smallest trip results than others because it performs guided search as explained

before.

64

4.5. DYNAMIC GROUP RESULTS

0.0000

20.0000

40.0000

60.0000

80.0000

100.0000

120.0000

140.0000

160.0000

180.0000

200.0000

Group-1 Group-2 Group-3 Group-4

To
ta

l D
is

ta
n

ce

Adding and Departing Participants to Groups

DGTP M-DGTP N-DGTP

Figure 4.11: Effect of adding and departing participants on total distance

0.0000

20.0000

40.0000

60.0000

80.0000

100.0000

120.0000

140.0000

Group-1 Group-2 Group-3 Group-4

Tr
ip

 D
is

ta
n

ce

Adding and Departing Participants to Groups

DGTP M-DGTP N-DGTP

Figure 4.12: Effect of adding and departing participants on trip distance

65

4.6. DISCUSSION

From the results, it is also observed that DGTP generates on average 26% and M-DGTP

generates 19% longer trip results than N-DGTP in terms of total distance Which means M-

DGTP generates on average 7% better trip results than DGTP.

Figure 4.12 shows the effect of random addition and departure of participants on the all

three approaches in terms of trip distances. For all group combinations, M-DGTP shows

better trip results than DGTP. This is because M-DGTP choose shortest route prioritizing

the location of the group. So, with the increase of group add-depart transaction performance

of M-DGTP generating better trip result also increases. N-DGTP generates the smallest

trip in terms of trip distance. From the results, it is also observed that DGTP generates an

average of 45% and M-DGTP generates 23% longer trip results than N-DGTP in terms of

trip distances. So, M-DGTP generates an average of 22% better trip result than DGTP in

terms of trip distances.

4.6 Discussion

In this section, we discuss our conducted experiments and evaluations and discuss some

generalities. We conduct experiments for different experimental setup and for each setup

we conduct our experiments 5x times. In our experiments, rather than considering all the

COIs, we only consider the COIs having less than 1000 POIs. This is because, the N-DGTP

approach produces a very long running time which becomes worse as the number of POIs

increases. To overcome this for experimental purposes, we reduce the searching criteria by

considering COIs having less than 1000 POIs.

N-DGTP generates smaller trip results (i.e. trip and total distances) than both DGTP and

M-DGTP because it performs an optimal guided search. N-DGTP computes an initial trip

first and the initial trip is re-calculated if changes (i.e. during-trip additions and departures)

are made. But this strategy, proposed by Tabassum et al. [33], is also a drawback for N-

DGTP because all the COIs must be pre-specified and cannot be changed during the trip.

Although both DGTP and M-DGTP do not require pre-specified COIs. In addition, both

66

4.7. SUMMARY

generate only a slightly longer route than those generated by N-DGTP. In all cases, DGTP

and M-DGTP significantly outperforms N-DGTP in terms of processing time especially for

very high number of group transactions. This is because, N-DGTP must perform a very

high number of POI search operations and partial trip re-calculations, whereas both DGTP

and M-DGTP approaches do not require any partial trip re-calculation.

Both the DGTP and M-DGTP approaches produce exactly the same trip and total dis-

tance for the static group scenarios and the dynamic group scenarios where only partici-

pants depart. However, M-DGTP optimizes the route in the adding group members and

both addition and departure of group members scenarios. From the results, it is observed

that M-DGTP chooses significantly optimized trips when both the addition and departure

transactions are high in the trip.

When we compare our static group results with the dynamic group results for DGTP,

M-DGTP and N-DGTP, in almost every case the differences in the proposed (i.e. DGTP

and M-DGTP) vs adapted Tabassum et al. [33] (i.e. N-DGTP) is smaller in the static groups

than those found in the dynamic groups. The static group scenarios assume all the group

members start and depart at the same time, which means there is no group transaction

during the trip. On the other hand, the dynamic group scenario assumes any member(s)

can join at any point of the trip which means there is the occurrence of group transactions

during the trip. From the results, our proposed M-DGTP approach contributes significantly

by optimizing the route for dynamic groups when the group transactions are high than no

group transactions of static groups.

4.7 Summary

In this chapter, experiments and evaluations of our two proposed approaches: DGTP

and M-DGTP are discussed and compared with adapted N-DGTP approach which has been

recently proposed by Tabassum et al. [33]. The next chapter concludes the thesis with some

future research directions.

67

Chapter 5

Conclusion

5.1 Our Contribution

We propose two strategies to process SGTPQs in spatial databases. Both approaches

consider dynamic groups where, any member can leave or join at any POI of the trip. In

addition, both approaches do not require that the number and sequence of COIs be specified

in advance. The first proposed DGTP approach prioritizes all source locations equally to

find the desired POI without considering the current group size of the source locations. The

first approach optimally selects each POI that is closest with respect to the source locations.

Though the first approach selects the POIs that are closest to the respective source locations

the total and trip distance calculated from this approach may not be best.

The proposed M-DGTP approach prioritizes the location of the group over the new

member joining locations when selecting POIs of intended COIs to generate the resultant

trip. The main objective of M-DGTP approach is to reduce the total and trip distances.

From experimental results, it is found that for joining new group members in the middle

of the trip M-DGTP achieves on average of 10% and 30% better trip results than DGTP in

terms of total distance and trip distance respectively. In the case of random addition and

departure of group members during the trip, it is found from the results that M-DGTP

generates on average of 7% and 22% better trip results than DGTP in terms of total and trip

distnace respectively.

In the case of static group and the case where members only leave, M-DGTP has no

improvement over DGTP. This is because in a static group it is assumed that all the group

68

5.2. FUTURE WORK

members start at the same time and no new member joins or departs during the trip, which

means the group only moves from one POI to another. In the case of members only leaving

in between trips M-DGTP also has no effect over DGTP.

From experimental results, it is also found that when our proposed approaches are com-

pared with N-DGTP in terms of processing time in every case, our proposed approaches

significantly outperform N-DGTP. When our proposed approaches are compared with N-

DGTP in terms of total and trip distance it is found that N-DGTP generates the smallest trip

in all cases.

Though N-DGTP uses an optimal method and generates small trip results it is very

costly in terms of processing time, whereas our proposed approaches still being a greedy

method generates a small margin of longer trips than N-DGTP. In addition, N-DGTP re-

quires that the intended list of COIs that the members want to travel to be pre-determined

before the start of the trip, which means the COIs are static and can not be changed during

the trip.

5.2 Future Work

In our proposed strategies we find optimal POI locations for the group and for some

cases it is observed that the home distance (i.e. the distance from last visited POI to respec-

tive destination) is larger than the individual trip distance of the member. In the future, we

plan to work on optimizing this home distance to achieve a better overall trip result.

In [33] an optimized algorithm is also presented that uses elliptical properties to refine

the POI search region. In the future, we also plan to apply elliptical properties to our

proposed approaches and perform a comparison to the improved approach proposed in [33].

We also plan to work on reducing total and trip distances for both the approaches by

calculating an optimal start and departure point for the group. Calculating optimal meeting

and departure locations will help further to improve our existing results.

In our work, each POI exactly belongs to one COI. But, a POI may belong to multiple

69

5.2. FUTURE WORK

COIs depending on dataset. We plan to extend our approaches so that it works for the same

POI belonging multiple COIs.

In future, we also plan to extend our strategies in terms of time, which means the group

can visit all POIs in smallest possible time in such a way that the total and trip distances are

minimized.

70

Bibliography

[1] Tenindra Abeywickrama, Muhammad Aamir Cheema, and David Taniar. K-nearest
neighbors on road networks: a journey in experimentation and in-memory implemen-
tation. Proceedings of the VLDB Endowment, 9(6):492–503, 2016.

[2] Elham Ahmadi and Mario A Nascimento. A mixed breadth-depth first search strategy
for sequenced group trip planning queries. In 2015 16th IEEE International Confer-
ence on Mobile Data Management, volume 1, pages 24–33. IEEE, 2015.

[3] Elham Ahmadi and Mario A Nascimento. Ibs: An efficient stateful algorithm for op-
timal sequenced group trip planning queries. In 2017 18th IEEE International Con-
ference on Mobile Data Management (MDM), pages 212–221. IEEE, 2017.

[4] Rudolf Bayer and Edward McCreight. Organization and maintenance of large ordered
indexes. In Software pioneers, pages 245–262. Springer, 2002.

[5] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. The r*-
tree: an efficient and robust access method for points and rectangles. In Acm Sigmod
Record, volume 19, pages 322–331. ACM, 1990.

[6] Jae-Woo Chang and Yong-Ki Kim. Materialization-based range and k-nearest neigh-
bor query processing algorithms. In International Conference on Flexible Query An-
swering Systems, pages 65–74. Springer, 2006.

[7] Haiquan Chen, Wei-Shinn Ku, Min-Te Sun, and Roger Zimmermann. The multi-
rule partial sequenced route query. In Proceedings of the 16th ACM SIGSPATIAL
international conference on Advances in geographic information systems, pages 10:1–
10:10. ACM, 2008.

[8] Ying-Ju Chen, Kun-Ta Chuang, and Ming-Syan Chen. Spatial-temporal query homo-
geneity for knn object search on road networks. In Proceedings of the 22nd ACM in-
ternational conference on Information & Knowledge Management, pages 1019–1028.
ACM, 2013.

[9] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Intro-
duction to algorithms. MIT press, 2009.

[10] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms for
middleware. Journal of computer and system sciences, 66(4):614–656, 2003.

[11] Viviana E Ferraggine, Jorge H Doorn, and Laura C Rivero. Handbook of Research on
Innovations in Database Technologies and Applications: Current and Future Trends.
IGI Global, 2009.

71

BIBLIOGRAPHY

[12] Yunjun Gao and Baihua Zheng. Continuous obstructed nearest neighbor queries in
spatial databases. In Proceedings of the 2009 ACM SIGMOD International Confer-
ence on Management of data, pages 577–590. ACM, 2009.

[13] Antonin Guttman. R-trees: A dynamic index structure for spatial searching, vol-
ume 14. ACM, 1984.

[14] Tanzima Hashem, Sukarna Barua, Mohammed Eunus Ali, Lars Kulik, and Egemen
Tanin. Efficient computation of trips with friends and families. In Proceedings of the
24th ACM International on Conference on Information and Knowledge Management,
pages 931–940. ACM, 2015.

[15] Tanzima Hashem, Tahrima Hashem, Mohammed Eunus Ali, and Lars Kulik. Group
trip planning queries in spatial databases. In International Symposium on Spatial and
Temporal Databases, pages 259–276. Springer, 2013.

[16] Mohammad Kolahdouzan and Cyrus Shahabi. Voronoi-based k nearest neighbor
search for spatial network databases. In Proceedings of the Thirtieth international
conference on Very large data bases-Volume 30, pages 840–851. VLDB Endowment,
2004.

[17] Mohammad R Kolahdouzan and Cyrus Shahabi. Alternative solutions for continuous
k nearest neighbor queries in spatial network databases. GeoInformatica, 9(4):321–
341, 2005.

[18] Ken CK Lee, Wang-Chien Lee, and Baihua Zheng. Fast object search on road net-
works. In Proceedings of the 12th International Conference on Extending Database
Technology: Advances in Database Technology, pages 1018–1029. ACM, 2009.

[19] Feifei Li, Dihan Cheng, Marios Hadjieleftheriou, George Kollios, and Shang-Hua
Teng. On trip planning queries in spatial databases. In International symposium on
spatial and temporal databases, pages 273–290. Springer, 2005.

[20] Kyriakos Mouratidis, Man Lung Yiu, Dimitris Papadias, and Nikos Mamoulis. Con-
tinuous nearest neighbor monitoring in road networks. In Proceedings of the 32nd
international conference on Very large data bases, pages 43–54. VLDB Endowment,
2006.

[21] Dimitris Papadias, Qiongmao Shen, Yufei Tao, and Kyriakos Mouratidis. Group near-
est neighbor queries. In Proceedings. 20th International Conference on Data Engi-
neering, pages 301–312. IEEE, 2004.

[22] Dimitris Papadias, Yufei Tao, Kyriakos Mouratidis, and Chun Kit Hui. Aggregate
nearest neighbor queries in spatial databases. ACM Transactions on Database Systems
(TODS), 30(2):529–576, 2005.

[23] Dimitris Papadias, Jun Zhang, Nikos Mamoulis, and Yufei Tao. Query processing
in spatial network databases. In Proceedings of the 29th international conference on
Very large data bases-Volume 29, pages 802–813. VLDB Endowment, 2003.

72

BIBLIOGRAPHY

[24] Maytham Safar. Group k-nearest neighbors queries in spatial network databases. Jour-
nal of geographical systems, 10(4):407–416, 2008.

[25] Hanan Samet, Jagan Sankaranarayanan, and Houman Alborzi. Scalable network dis-
tance browsing in spatial databases. In Proceedings of the 2008 ACM SIGMOD inter-
national conference on Management of data, pages 43–54. ACM, 2008.

[26] Samiha Samrose, Tanzima Hashem, Sukarna Barua, Mohammed Eunus Ali, Moham-
mad Hafiz Uddin, and Md Iftekhar Mahmud. Efficient computation of group optimal
sequenced routes in road networks. In 2015 16th IEEE international conference on
mobile data management, volume 1, pages 122–127. IEEE, 2015.

[27] Jochen Schiller and Agnès Voisard. Location-Based Services. Elsevier, 2004.

[28] Mehdi Sharifzadeh, Mohammad Kolahdouzan, and Cyrus Shahabi. The optimal se-
quenced route query. The VLDB Journal—The International Journal on Very Large
Data Bases, 17(4):765–787, 2008.

[29] Mehdi Sharifzadeh and Cyrus Shahabi. Processing optimal sequenced route queries
using voronoi diagrams. GeoInformatica, 12(4):411–433, 2008.

[30] Shashi Shekhar and Sanjay Chawla. Spatial Databases: A Tour. Pearson, 2003.

[31] Nusrat Sultana, Tanzima Hashem, and Lars Kulik. Group nearest neighbor queries in
the presence of obstacles. In Proceedings of the 22nd ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, pages 481–484. ACM,
2014.

[32] Guang-Zhong Sun, Zhong Zhang, and Jing Yuan. An efficient pre-computation tech-
nique for approximation knn search in road networks. In Proceedings of the 2009 In-
ternational Workshop on Location Based Social Networks, pages 41–44. ACM, 2009.

[33] Anika Tabassum, Sukarna Barua, Tanzima Hashem, and Tasmin Chowdhury. Dy-
namic group trip planning queries in spatial databases. In Proceedings of the 29th
international conference on scientific and statistical database management, pages
38:1–38:6. ACM, 2017.

[34] Man Lung Yiu, Nikos Mamoulis, and Dimitris Papadias. Aggregate nearest neighbor
queries in road networks. IEEE Transactions on Knowledge and Data Engineering,
17(6):820–833, 2005.

[35] Jun Zhang, Nikos Mamoulis, Dimitris Papadias, and Yufei Tao. All-nearest-neighbors
queries in spatial databases. In Proceedings. 16th International Conference on Scien-
tific and Statistical Database Management, pages 297–306. IEEE, 2004.

[36] Ruicheng Zhong, Guoliang Li, Kian-Lee Tan, Lizhu Zhou, and Zhiguo Gong. G-tree:
An efficient and scalable index for spatial search on road networks. IEEE Transactions
on Knowledge and Data Engineering, 27(8):2175–2189, 2015.

73

