Supplementary data for the article:

Steen, J. D.; Stepanovic, S.; Parvizian, M.; De Boer, J. W.; Hage, R.; Chen, J.; Swart, M.; Gruden, M.; Browne, W. R. Lewis versus Brønsted Acid Activation of a Mn(IV) Catalyst for Alkene Oxidation. *Inorganic Chemistry* **2019**, *58* (21), 14924–14930. https://doi.org/10.1021/acs.inorgchem.9b02737

Supporting Information

Lewis vs Brønsted Acid Activation of a Mn(IV) Catalyst for Alkene Oxidation

Jorn D. Steen, Stepan Stepanovic, Mahsa Parvizian, Johannes W. de Boer, Ronald Hage, Juan Chen, Marcel Swart, Maja Gruden,* Wesley R. Browne*

Table of Contents

Additional spectroscopic and voltammetric data	2
Computational details	
The interaction of Sc (and other Lewis acids, Ca ²⁺ , Zn ²⁺) and H ⁺ with [Mn ₂	2(μ-0) ₃ (TMTACN) ₂] ²⁺
Calculation of ² H and ¹⁸ O isotopic shift	19
References	

Additional spectroscopic and voltammetric data

Figure S1 Consumption of H_2O_2 (magenta) with no observable styrene (blue) conversion by **1** (1 mM) in CH_3CN .

Figure S2 Comparison of kinetics of styrene conversion (blue) and H_2O_2 consumption (magenta) by **1** (1 mM) activated by either Al(OTf)₃ (2 eq.; filled), Y(OTf)₃ (2 eq.; empty), or Y(CF₃CO₂)₃ (2 eq.; cross) for a 17 h standing time.

Figure S3 Comparison of H_2O_2 consumption (magenta) and styrene conversion (blue) catalyzed by **1** (1 mM) upon activation by (a) Sc(OTf)₃ (2 mM) or (b) TfOH (6 mM) after the addition of a second equivalent of H_2O_2 at t = 100 min or t = 14 min, respectively. Standing time was 1 h.

Figure S4 (a) Experimental Raman spectra (λ_{exc} 355 nm) of **1** before (black) and after addition of Sc(OTf)₃ (3 eq.; green) and of ¹⁸O-**1** before (cyan) and after addition of Sc(OTf)₃ (3 eq.; pink). (b) Comparison of experimental and calculated Raman shifts of **1** and ¹⁸O-**1** with and without protonation.

Figure S5 Raman spectrum (λ_{exc} 457 nm) of **1** before (gray) and after (green) addition of Sc(OTf)₃ (2 eq.)

Figure S6 Comparison of solid state Raman spectra (λ_{exc} 785 nm) of **1** (black) and ¹⁸O-**1** (cyan). In the table the Δ [¹⁸O] are depicted for both the experimental and the calculated symmetric Mn-O-Mn vibrational modes, which are in good agreement. There is a minor contribution from incompletely isotopically labelled **1** present in the sample manifested in the weak band at 687 cm⁻¹.

Figure S7 (a) UV/Vis absorption spectroscopy of **1** in CH₃CN before (black) and after addition of Sc(OTf)₃ (2 eq.; green), Al(OTf)₃ (2 eq.; yellow), Y(OTf)₃ (2 eq.; cyan), or Y(CF₃CO₂)₃ (2 eq.; orange) with the inset showing the increase in absorbance of the band at 500 nm for the addition of each Lewis acid triflate. (b) UV/Vis absorption spectroscopy of **1** in CH₃CN before (black) and after addition of TfOH (6 eq.; blue), CF₃CO₂H (6 eq.; pink), or H₂SO₄ (240 eq.; gold) with the inset showing the increase in absorbance of the band at 500 nm for the addition of each Brønsted acid. After the addition of H₂SO₄ a red solid precipitates, most likely the sulfate salt of **1**, which causes an increase in absorbance at 500 nm due to scattering after approximately 10 s. (c) Raman spectra (λ_{exc} 355 nm) of **1** in CH₃CN before (black) and after addition of Sc(OTf)₃ (2 eq.; green), Al(OTf)₃ (2 eq.; cyan), or Y(CF₃CO₂)₃ (2 eq.; orange). (d) Raman spectra (λ_{exc} 355 nm) of **1** in CH₃CN before (black) and after addition of TfOH (6 eq.; blue), or CF₃CO₂H (6 eq.; pink). For a Raman spectrum of **1** after the addition of H₂SO₄ see Figure S155.

Figure S8 (a) Raman spectra (λ_{exc} 355 nm) of **1** in CH₃CN after addition of Sc(OTf)₃ (2 eq.; green) and after subsequent additions of 2 µl (magenta) and 4 µl (dark magenta) of water. Total volume 1.5 ml. (b) UV/Vis absorption spectroscopy of **1** (black) in CH₃CN after addition of Sc(OTf)₃ (2 eq.; green) and after subsequent additions of 2 µl (magenta solid), 4 µl (magenta dotted), 6 µl (magenta dashed), and 8 µl (dark magenta) of water. Total volume 1.5 ml. (c) Raman spectra (λ_{exc} 355 nm) of **1** in CH₃CN before (black) and after addition of Sc(OTf)₃ (2 eq.; green) and subsequently H₂¹⁸O (147 eq.; magenta).

Figure S9 Calculated structures of (a) **1**, (b) H**1**⁺, and (c) Sc(OTf)₂-**1**, with (d) the frequencies in cm⁻¹ of the corresponding symmetrical and asymmetrical Mn-O-Mn vibrational modes of each structure.

Figure S10 Cyclic voltammograms of **1** (black) in 0.1 M TBAPF₆ in CH_3CN after addition of Sc(OTf)₃ (3 eq.; green) and after subsequent addition of H₂O (110 eq.; magenta).

Figure S11 Cyclic voltammograms of **1** without (black) and with (cyan) excess CH_3CO_2H in 0.1 M TBAPF₆ in CH_3CN .

Figure S12 Cyclic voltammograms of **1** (black) after the addition of water and waiting for approximately 30 min after the addition of either TfOH (9 eq.; blue) or $Sc(OTf)_3$ (3 eq.; green). In both cases a species forms with a redox potential of around 0.60 V vs SCE.

Figure S13 Expansion of CVs of **1** (from Figure S12) with TfOH (9 eq.; blue) and Sc(OTf)₃ (3 eq.; green) after the addition of water and waiting for approximately 30 min after the addition (multiplied by a factor for comparison).

Figure S14 Cyclic voltammograms of $[Mn^{III}_2(\mu-0)(\mu-OAc)_2(tmtacn)_2]^{2+}$ (1 mM) without (black) and with (cyan) excess CH_3CO_2H in 0.1 M TBAPF₆ in CH_3CN .

Figure S15 Raman spectra (λ_{exc} 355 nm) of **1** in CH₃CN before (black) and after addition of H₂SO₄ (480 eq.; gold, solid) or D₂SO₄ (480 eq.; gold, dashed).

Figure S16 Comparison of kinetics of styrene conversion (blue) and H_2O_2 consumption (magenta) by **1** (1 mM) activated by either TfOH (6 eq.; filled) or CF_3CO_2H (6 eq.; empty) for a 10 min standing time.

Figure S18 FTIR spectra of the white precipitate formed during oxidation of styrene catalyzed by **1** with Sc(OTf)₃ (2 eq.) in acetonitrile (black) compared to Na(OAc) (yellow), Mn(OAc)₂ (green), and Sc(OAc)₃·xH₂O (orange).

Figure S19 No styrene conversion (blue) nor H_2O_2 consumption (magenta) by a solution of (a) $Sc(OTf)_3$ (2 mM) or (b) tmtacn (1 mM) with $Sc(OTf)_3$ (2 mM) in CH_3CN .

Figure S20 Consumption of H_2O_2 (magenta) and conversion of styrene (blue) by **1** (1 mM) activated by either (a) Sc(OTf)₃ (2 mM) with a 35 s standing time, (b) Sc(OTf)₃ (2 mM) with a 10 min standing time, or (c) Al(OTf)₃ (2 mM) with a 10 min standing time.

Figure S21 Comparison of kinetics of styrene conversion (blue) and H_2O_2 consumption (magenta) by **1** (1 mM) activated by either (a) Y(OTF)₃ (2 mM) with a 10 min standing time, (b) Y(CF₃CO₂)₃ (2 mM) with a 10 min standing time, (c) NaOTf (6 mM) with a 10 min standing time, or (d) NaOTf (6 mM) with a 17 h standing time.

Figure S22 Comparison of kinetics of styrene conversion (blue) and H_2O_2 consumption (magenta) by **1** (1 mM) activated by either (a) TfOH (6 mM) with a 35 s standing time, (b) CF_3CO_2H (6 mM) with a 17 h standing time, (c) H_2SO_4 (6 mM) with a 10 min standing time, (d) H_2SO_4 (6 mM) with a 17 h standing time, (e) CH_3CO_2H (6 mM) with a 10 min standing time, or (f) CH_3CO_2H (6 mM) with a 17 h standing time.

Computational details

All Density Functional Theory (DFT) calculations were performed with the Amsterdam Density Functional (ADF) program (ADF 20016.01).^{1,2} MOs were expanded in an uncontracted set of Slater type orbitals (STOs) of triple-zeta quality containing diffuse functions (TZ2P)³ and two sets of polarization functions with all electrons treated explicitly. An auxiliary set of s, p, d, f, and g STOs were used to fit the molecular density and to represent the Coulomb and exchange potentials accurately for each SCF cycle.

Geometries were optimized until the maximum gradient component was less than 10⁻³ a.u. (default value is 10⁻³ a.u.). All calculations were performed using the BP86 Density Functional Approximation (DFA), proven to be good for structural data and thermodynamics.⁴⁻⁶ For all calculations, the Becke grid^{7,8} of good quality was used. COSMO9-11 dielectric continuum model was used for implicit treatment of the environment (with methanol as a solvent).^{12,13} Scalar relativistic corrections have been included self-consistently by using the zeroth-order regular approximation (ZORA).¹⁴⁻¹⁶ Since calculations showed that manganese dimer is antiferromagnetically coupled S_A= 3/2 and S_B= 3/2 state, in order to obtain the geometry we have utilized brokensymmetry^{17,18} (BS) calculations. Nature of stationary points were confirmed by calculating analytical Hessians, and the obtained Hessians have been further utilized for the isotopic shift calculations. In this approach, implemented in ADF program,²1 the rotations and translations are not projected out of the Hessian prior to the normal mode analysis and normal modes that belong to the original and the isotopically shifted frequencies are identified based on their overlap. We analyzed binding of H⁺ and both neutral and positive Lewis acid(LA) fragment, i.e. Ca(OTf)₂/Ca(OTf)⁺, Zn(OTf)₂/Zn(OTf)⁺ and Sc(OTf)₃/Sc(OTf)₂⁺ in order to attempt to treat all microscopic possibilities for catalytic activation.

The interaction of Sc (and other Lewis acids, Ca²⁺, Zn²⁺) and H⁺ with [Mn₂(μ -O)₃(TMTACN)₂]²⁺

Binding of H⁺ and both neutral and positive Lewis acid(LA) fragments, i.e. $Ca(OTf)_2/Ca(OTf)^+, Zn(OTf)_2/Zn(OTf)^+$ and $Sc(OTf)_3/Sc(OTf)_2^+$ were examined to treat all microscopic possibilities for catalytic activation. Table S1 shows that the most pronounced effect on the structure can be observed with scandium LA fragments. Table S2 indicates a substantial effect of the LAs on the redox properties of the complex. Although LA coordination reduces both the HOMO and LUMO energies, the effect on LUMO properties and energetics is most relevant. Binding of the Lewis acid lowers the energy of the LUMO orbitals (Table 2) with H⁺ and Sc³⁺ showing the most pronounced effect. Furthermore, although Mn-O dissociation is not observed, there are significant distortions and bond elongations, most pronounced by the Sc based LAs. The interaction of the Lewis acid with **1** is, as expected, mostly ionic (which is inferred by the contribution of LAs to the dimer MOs), however, the covalent contribution is increasing in the following order: Ca²⁺ < Zn²⁺ < Sc³⁺ < H⁺, and it is non negligible except for Ca²⁺.

Table S1. Mn-Mn and Mn-O bond lengths in initial complex and after coordination of appropriate LA.

		Mn-Mn	Mn-O	Mn-O	Mn-O-LA
Initial complex	[Mn ₂ (µ-O) ₃ (TMTACN) ₂] ²⁺	2.22	1.79	1.79	1.79
	H+	2.28	1.78	1.78	1.94
	Ca(OTf)2	2.32	1.82	1.82	1.91
	Ca(OTf)+	2.33	1.82	1.83	1.92
Additive	Zn(OTf) ₂	2.35	1.82	1.82	1.93
	Zn(OTf)+	2.38	1.82	1.82	1.95
	Sc(OTf) ₃	2.39	1.82	1.82	2.02
	Sc(OTf)2+	2.40	1.82	1.82	2.02

Table S2. HOMO and LUMO energies and the contribution of the appropriate LA.

		НОМО	%LA	LUMO	%LA
Initial complex	[Mn2(μ- Ο)3(TMTACN)2] ²⁺	-5.625	-	-4.796	-
	H+	-6.948	-	-6.411	-
	Ca(OTf)2	-7.341	-	-5.038	-
	Ca(OTf)+	-7.530	-	-5.222	-
Additive	Zn(OTf)2	-7.443	-	-5.189	1.08
	Zn(OTf)+	-7.761	-	-5.555	2.36
	Sc(OTf) ₃	-7.830	-	-5.689	2.41
	Sc(OTf) ₂ +	-8.063	-	-6.027	7.03

Calculation of $^2\mathrm{H}$ and $^{18}\mathrm{O}$ isotopic shift

Isotopic (² H) Shift calculation						
Atom	Orig. Freq	Shifted Freq	shift	overlap		
17	170.4	166.6	-3.8	1		
28	252.4	249.7	-2.6	1		
31	267.8	266.3	-1.6	0.9		
35	293.2	289.2	-4	0.9		
37	320.8	308.5	-12.2	0.8		
38	320.8	318.1	-2.7	1		
39	326.2	325	-1.1	0.9		
42	339.6	335.9	-3.8	0.9		
43	347.8	343.3	-4.5	1		
60	518.5	512.7	-5.9	1		
61	528.3	523.8	-4.5	1		
62	561	562.8	1.9	0.9		
68	661.4	662.5	1.1	1		
70	710	551.3	-158.7	0.7		
74	724.5	722.1	-2.4	0.9		
77	792.7	594.5	-198.3	0.9		
216	3604.6	2623.3	-981.4	1		

Table S3. Frequency shifts produced by the isotope labelling for $([Mn_2(\mu-0)_2(\mu-0^2H)(TMTACN)_2]^{2+})$

Full listing showing unchanged bands also.

Isotopic (² H) Shift calculation						
Atom	Orig.	Shifted Freq	shift	overlap		
	Freq					
1	-20.3	-20.3	0.0	1.0		
2	-17.2	-17.2	0.0	1.0		
3	-15.5	-15.5	0.0	1.0		
4	-0.8	-0.8	0.0	1.0		
5	0.0	0.0	0.0	1.0		
6	0.8	0.8	0.0	1.0		
7	15.3	15.3	0.0	1.0		
8	65.8	65.8	-0.1	1.0		
9	81.2	81.2	-0.1	1.0		
10	94.7	94.7	0.0	1.0		
11	97.6	97.5	-0.1	1.0		
12	131.7	131.7	0.0	1.0		
13	148.6	147.9	-0.7	1.0		

14	152.8	152.7	-0.1	1.0
15	153.4	153.3	-0.1	1.0
16	158.8	158.7	0.0	1.0
17	170.4	166.6	-3.8	1.0
18	196.5	196.5	0.0	1.0
19	208.4	208.4	0.0	1.0
20	211.1	211.0	0.0	1.0
21	212.5	212.4	0.0	1.0
22	212.5	212.5	0.0	1.0
23	231.5	231.4	0.0	1.0
24	236.9	236.7	-0.2	1.0
25	246.6	246.2	-0.3	1.0
26	247.2	247.2	0.0	1.0
27	251.5	250.6	-0.9	1.0
28	252.4	249.7	-2.6	1.0
29	264.8	264.3	-0.5	0.9

30	267.0	267.0	0.0	1.0	68	661.4	662.5	1.1	1.0
31	267.8	266.3	-1.6	0.9	69	691.1	691.8	0.7	1.0
32	274.0	273.9	-0.2	1.0	70	710.0	551.3	-158.7	0.7
33	275.4	275.2	-0.3	1.0	71	718.8	719.1	0.3	1.0
34	280.5	280.5	0.0	1.0	72	720.2	720.3	0.1	1.0
35	293.2	289.2	-4.0	0.9	73	721.1	721.0	-0.1	0.9
36	300.9	300.6	-0.3	1.0	74	724.5	722.1	-2.4	0.9
37	320.8	308.5	-12.2	0.8	75	769.0	769.1	0.1	1.0
38	320.8	318.1	-2.7	1.0	76	773.3	773.2	-0.1	1.0
39	326.2	325.0	-1.1	0.9	77	792.7	594.5	-198.3	0.9
40	328.7	328.1	-0.6	0.9	78	835.9	835.7	-0.3	1.0
41	328.8	328.1	-0.7	0.9	79	836.4	836.4	0.0	1.0
42	339.6	335.9	-3.8	0.9	80	872.8	872.8	0.0	1.0
43	347.8	343.3	-4.5	1.0	81	874.6	874.6	0.0	1.0
44	367.5	367.2	-0.3	1.0	82	875.9	875.8	0.0	1.0
45	398.0	398.0	0.0	1.0	83	877.2	877.2	0.0	1.0
46	401.3	401.3	-0.1	1.0	84	943.8	943.8	0.0	1.0
47	402.7	402.1	-0.5	1.0	85	945.5	945.4	-0.1	1.0
48	404.1	404.1	0.0	1.0	86	945.6	945.6	0.0	1.0
49	408.0	407.9	-0.1	1.0	87	946.9	946.9	0.0	1.0
50	409.1	409.0	-0.1	1.0	88	949.9	949.8	-0.1	1.0
51	437.0	437.0	0.0	1.0	89	950.8	950.8	0.0	1.0
52	438.6	438.1	-0.6	1.0	90	972.6	972.6	0.0	1.0
53	444.8	444.8	-0.1	1.0	91	973.5	973.5	0.0	1.0
54	447.7	447.5	-0.1	1.0	92	975.2	975.2	0.0	1.0
55	448.3	448.3	0.0	1.0	93	976.6	976.6	0.0	1.0
56	451.1	451.1	0.0	1.0	94	980.0	980.0	0.0	1.0
57	453.1	453.1	-0.1	1.0	95	981.4	981.4	0.0	1.0
58	486.6	486.5	0.0	1.0	96	1023.5	1023.5	0.0	1.0
59	496.0	496.0	0.0	1.0	97	1024.7	1024.7	0.0	1.0
60	518.5	512.7	-5.9	1.0	98	1025.7	1025.7	0.0	1.0
61	528.3	523.8	-4.5	1.0	99	1026.1	1026.1	0.0	1.0
62	561.0	562.8	1.9	0.9	100	1026.4	1026.4	0.0	1.0
63	561.9	561.6	-0.3	1.0	101	1028.6	1028.6	0.0	1.0
64	564.8	564.8	0.0	1.0	102	1033.8	1033.8	0.0	1.0
65	569.9	569.9	0.0	1.0	103	1034.8	1034.8	0.0	1.0
66	585.4	585.5	0.2	1.0	104	1090.5	1090.5	0.0	1.0
67	585.7	585.7	0.0	1.0	105	1094.8	1094.8	0.0	1.0

106	1095.1	1095.1	0.0	1.0	144	1394.3	1394.1	-0.1	1.0
107	1100.4	1100.4	0.0	1.0	145	1397.6	1397.6	0.0	1.0
108	1107.2	1107.2	0.0	1.0	146	1398.1	1398.1	0.0	1.0
109	1111.2	1111.2	0.0	1.0	147	1401.5	1401.5	0.0	1.0
110	1130.7	1130.7	0.0	1.0	148	1402.6	1402.6	0.0	1.0
111	1132.1	1132.1	0.0	1.0	149	1404.3	1404.3	0.0	1.0
112	1132.6	1132.6	0.0	1.0	150	1422.6	1422.6	0.0	1.0
113	1133.4	1133.4	0.0	1.0	151	1427.4	1427.4	0.0	1.0
114	1170.5	1170.5	0.0	1.0	152	1427.7	1427.7	0.0	1.0
115	1173.8	1173.8	0.0	1.0	153	1430.4	1430.4	0.0	1.0
116	1175.5	1175.5	0.0	1.0	154	1430.8	1430.7	0.0	1.0
117	1178.8	1178.8	0.0	1.0	155	1431.4	1431.4	0.0	1.0
118	1189.1	1189.1	0.0	1.0	156	1432.4	1432.4	0.0	1.0
119	1197.0	1197.0	0.0	1.0	157	1434.0	1434.0	0.0	1.0
120	1236.1	1236.1	0.0	1.0	158	1434.2	1434.2	-0.1	1.0
121	1236.6	1236.6	0.0	1.0	159	1434.7	1434.7	0.0	1.0
122	1238.0	1238.0	0.0	1.0	160	1435.5	1435.5	0.0	1.0
123	1238.5	1238.5	0.0	1.0	161	1436.6	1436.6	0.0	1.0
124	1256.7	1256.7	0.0	1.0	162	1439.2	1439.1	0.0	1.0
125	1256.9	1256.9	0.0	1.0	163	1439.9	1439.9	0.0	1.0
126	1271.5	1271.5	0.0	1.0	164	1441.4	1441.3	0.0	1.0
127	1271.9	1271.9	0.0	1.0	165	1443.0	1443.0	0.0	1.0
128	1272.5	1272.5	0.0	1.0	166	1443.2	1443.2	0.0	1.0
129	1273.0	1273.0	0.0	1.0	167	1448.7	1447.9	-0.8	1.0
130	1273.1	1273.1	0.0	1.0	168	1449.2	1449.2	0.0	1.0
131	1274.1	1274.1	0.0	1.0	169	1456.9	1456.8	-0.1	1.0
132	1324.3	1324.3	0.0	1.0	170	1457.8	1457.7	-0.2	1.0
133	1324.8	1324.7	0.0	1.0	171	1465.3	1465.3	0.0	1.0
134	1337.6	1337.6	0.0	1.0	172	1470.8	1470.8	0.0	1.0
135	1337.8	1337.8	0.0	1.0	173	1471.5	1471.5	0.0	1.0
136	1338.2	1338.2	0.0	1.0	174	2973.9	2973.9	0.0	1.0
137	1338.4	1338.4	0.0	1.0	175	2975.2	2975.3	0.1	1.0
138	1356.8	1356.8	0.0	1.0	176	2979.1	2979.1	0.0	1.0
139	1359.2	1359.2	0.0	1.0	177	2979.8	2979.8	0.0	1.0
140	1367.4	1367.4	0.0	1.0	178	2983.9	2983.9	0.0	1.0
141	1368.1	1368.1	0.0	1.0	179	2985.4	2985.4	0.0	1.0
142	1368.4	1368.4	0.0	1.0	180	2985.5	2985.5	0.0	1.0
143	1369.2	1369.2	0.0	1.0	181	2985.7	2985.7	0.0	1.0

182	2986.4	2986.4	0.0	1.0	200	3067.
183	2986.5	2986.5	0.0	1.0	201	3067.
184	2990.6	2990.6	0.0	1.0	202	3068.
185	2990.8	2990.8	0.0	1.0	203	3069.
186	3017.0	3017.0	0.0	1.0	204	3070.
187	3017.1	3017.1	0.0	1.0	205	3070.
188	3019.1	3019.1	0.0	1.0	206	3072.
189	3019.3	3019.3	0.0	1.0	207	3076.
190	3023.7	3023.7	0.0	1.0	208	3077.
191	3024.0	3024.0	0.0	1.0	209	3077.
192	3039.6	3039.6	0.0	1.0	210	3090.
193	3039.6	3039.6	0.0	1.0	211	3093.
194	3043.6	3043.6	0.0	1.0	212	3102.
195	3043.7	3043.7	0.0	1.0	213	3103.
196	3046.9	3046.9	0.0	1.0	214	3114.
197	3047.0	3047.0	0.0	1.0	215	3121.
198	3047.2	3047.1	0.0	1.0	216	3604.
199	3048.1	3048.2	0.1	1.0		

200	3067.4	3067.4	0.0	1.0
201	3067.5	3067.5	0.0	1.0
202	3068.3	3068.3	0.0	1.0
203	3069.8	3069.8	0.0	1.0
204	3070.0	3070.0	0.0	1.0
205	3070.2	3070.2	0.0	1.0
206	3072.8	3072.8	0.0	1.0
207	3076.6	3076.6	0.0	1.0
208	3077.5	3077.5	0.0	1.0
209	3077.6	3077.6	0.0	1.0
210	3090.6	3090.6	0.0	1.0
211	3093.8	3093.8	0.0	1.0
212	3102.4	3102.4	0.0	1.0
213	3103.8	3103.8	0.0	1.0
214	3114.7	3114.7	0.0	1.0
215	3121.3	3121.3	0.0	1.0
216	3604.6	2623.3	-981.4	1.0

isotopic (-H) shift calculation							
Atom	Orig. Freq	Shifted Freq	shift	overlap			
17	177.5	167.9	-9.6	1			
25	237.6	235.4	-2.2	0.9			
26	237.9	235.7	-2.2	1			
29	251.4	249.6	-1.7	1			
32	272.7	269.9	-2.8	0.9			
33	273.1	270.3	-2.8	0.8			
42	388	373.7	-14.3	0.9			
43	388.1	373.8	-14.3	0.9			
47	406.2	403.6	-2.6	1			
48	406.5	404	-2.5	1			
49	412.3	394.6	-17.7	0.9			
50	412.9	395	-17.8	0.9			
60	507.8	488	-19.8	1			
67	671.4	642.8	-28.5	1			
68	671.8	643.3	-28.5	1			
69	707	672.1	-34.9	1			

Table S4. Frequency shifts produced by the isotope labelling for $([Mn_2(\mu-0)_2(\mu^{-18}O)(TMTACN)_2]^{2+})$

Full listing showing unchanged bands also.

Isotopic (² H) Shift calculation							
Atom	Orig. Freq	Shifted Freq	shift	overlap			
1	-12.1	-12.1	0.0	1.0			
2	-11.5	-11.4	0.0	1.0			
3	-11.4	-11.3	0.0	1.0			
4	0.0	0.0	0.0	1.0			
5	0.7	0.7	0.0	1.0			
6	2.7	2.7	0.0	1.0			
7	30.7	30.7	0.0	1.0			
8	76.7	76.4	-0.3	1.0			
9	77.5	77.3	-0.3	1.0			
10	99.0	98.9	-0.1	1.0			
11	99.4	99.2	-0.1	1.0			
12	133.2	133.2	0.0	1.0			
13	153.6	153.1	-0.5	1.0			

14	153.8	153.4	-0.5	1.0
15	157.9	157.8	-0.1	1.0
16	158.0	157.9	-0.1	1.0
17	177.5	167.9	-9.6	1.0
18	190.0	189.4	-0.6	1.0
19	210.1	209.6	-0.5	1.0
20	210.2	210.1	-0.1	1.0
21	210.4	209.9	-0.5	1.0
22	210.5	210.4	-0.1	1.0
23	226.9	226.9	0.0	1.0
24	237.5	237.4	-0.1	0.9
25	237.6	235.4	-2.2	0.9
26	237.9	235.7	-2.2	1.0
27	238.5	238.4	-0.1	1.0
28	241.8	241.7	-0.1	1.0
29	251.4	249.6	-1.7	1.0

30	268.7	268.7	0.0	1.0
31	270.5	270.6	0.1	0.8
32	272.7	269.9	-2.8	0.9
33	273.1	270.3	-2.8	0.8
34	274.1	273.6	-0.5	1.0
35	276.0	275.5	-0.5	1.0
36	281.3	281.3	-0.1	1.0
37	328.3	327.5	-0.8	1.0
38	328.6	327.8	-0.8	1.0
39	328.8	328.0	-0.8	1.0
40	329.0	328.3	-0.7	1.0
41	363.4	362.2	-1.1	1.0
42	388.0	373.7	-14.3	0.9
43	388.1	373.8	-14.3	0.9
44	398.7	399.5	0.8	0.9
45	398.8	398.6	-0.2	1.0
46	399.2	399.9	0.7	0.9
47	406.2	403.6	-2.6	1.0
48	406.5	404.0	-2.5	1.0
49	412.3	394.6	-17.7	0.9
50	412.9	395.0	-17.8	0.9
51	417.1	416.5	-0.6	1.0
52	431.6	431.6	0.0	1.0
53	445.0	444.8	-0.2	1.0
54	445.2	445.1	-0.2	1.0
55	445.4	445.4	-0.1	1.0
56	445.7	445.6	-0.1	1.0
57	451.1	450.2	-0.9	1.0
58	478.7	477.6	-1.1	1.0
59	492.6	492.0	-0.6	1.0
60	507.8	488.0	-19.8	1.0
61	563.3	563.3	0.0	1.0
62	563.4	563.4	0.0	1.0
63	563.4	562.7	-0.7	1.0
64	563.6	562.9	-0.7	1.0
65	587.0	586.9	-0.1	0.9

66	587.0	587.0	0.0	0.9	
67	671.4	642.8	-28.5	1.0	
68	671.8	643.3	-28.5	1.0	
69	707.0	672.1	-34.9	1.0	
70	724.9	724.9	0.0	1.0	
71	725.3	725.3	0.0	1.0	
72	727.2	726.7	-0.6	1.0	
73	727.6	727.0	-0.6	1.0	
74	770.0	769.8	-0.2	1.0	
75	775.9	775.6	-0.3	1.0	
76	839.6	839.6	0.0	1.0	
77	840.1	840.1	0.0	1.0	
78	878.9	878.9	0.0	1.0	
79	879.0	879.0	0.0	1.0	
80	880.2	880.2	0.0	1.0	
81	880.3	880.3	0.0	1.0	
82	957.5	957.5	0.0	1.0	
83	957.6	957.6	0.0	1.0	
84	958.6	958.6	0.0	1.0	
85	958.8	958.7	0.0	1.0	
86	959.5	959.5	0.0	1.0	
87	961.2	961.2	0.0	1.0	
88	980.9	980.9	0.0	1.0	
89	981.1	981.1	0.0	1.0	
90	982.3	982.3	0.0	1.0	
91	982.6	982.6	0.0	1.0	
92	984.9	984.8	0.0	1.0	
93	986.6	986.6	0.0	1.0	
94	1029.1	1029.1	0.0	1.0	
95	1029.7	1029.7	0.0	1.0	
96	1029.9	1029.9	0.0	1.0	
97	1030.4	1030.4	0.0	1.0	
98	1030.6	1030.6	0.0	1.0	
99	1032.6	1032.6	0.0	1.0	
100	1040.6	1040.6	0.0	1.0	
101	1041.0	1041.0	0.0	1.0	

102	1097.9	1097.9	0.0	1.0	138	1366.2	1366.2	0.0
103	1097.9	1097.9	0.0	1.0	139	1366.4	1366.4	0.0
104	1102.1	1102.1	0.0	1.0	140	1366.8	1366.8	0.0
105	1102.2	1102.2	0.0	1.0	141	1367.0	1367.0	0.0
106	1110.7	1110.7	0.0	1.0	142	1397.2	1397.2	0.0
107	1113.9	1113.9	0.0	1.0	143	1400.0	1400.0	0.0
108	1134.9	1134.9	0.0	1.0	144	1400.3	1400.3	0.0
109	1135.0	1135.0	0.0	1.0	145	1400.4	1400.4	0.0
110	1136.2	1136.2	0.0	1.0	146	1403.4	1403.4	0.0
111	1136.3	1136.3	0.0	1.0	147	1403.5	1403.5	0.0
112	1179.2	1179.2	0.0	1.0	148	1425.2	1425.2	0.0
113	1179.4	1179.4	0.0	1.0	149	1425.3	1425.3	0.0
114	1183.2	1183.2	0.0	1.0	150	1426.5	1426.5	0.0
115	1183.5	1183.5	0.0	1.0	151	1428.6	1428.6	0.0
116	1196.6	1196.6	0.0	1.0	152	1428.7	1428.7	0.0
117	1203.5	1203.5	0.0	1.0	153	1430.8	1430.8	0.0
118	1239.1	1239.1	0.0	1.0	154	1433.6	1433.6	0.0
119	1239.4	1239.4	0.0	1.0	155	1433.8	1433.8	0.0
120	1239.5	1239.5	0.0	1.0	156	1435.1	1435.0	0.0
121	1239.8	1239.8	0.0	1.0	157	1435.3	1435.3	0.0
122	1260.6	1260.6	0.0	1.0	158	1435.9	1435.9	0.0
123	1260.8	1260.8	0.0	1.0	159	1436.2	1436.2	0.0
124	1272.6	1272.6	0.0	1.0	160	1436.4	1436.4	0.0
125	1273.6	1273.6	0.0	1.0	161	1439.4	1439.4	0.0
126	1273.8	1273.8	0.0	1.0	162	1439.7	1439.7	0.0
127	1273.9	1273.9	0.0	1.0	163	1439.9	1439.9	0.0
128	1275.4	1275.4	0.0	1.0	164	1440.5	1440.5	0.0
129	1275.5	1275.4	0.0	1.0	165	1440.6	1440.6	0.0
130	1324.7	1324.7	0.0	1.0	166	1440.8	1440.8	0.0
131	1325.0	1325.0	0.0	1.0	167	1459.4	1459.4	0.0
132	1339.9	1339.9	0.0	1.0	168	1459.9	1459.9	0.0
133	1340.0	1340.0	0.0	1.0	169	1460.8	1460.8	0.0
134	1340.5	1340.5	0.0	1.0	170	1471.6	1471.6	0.0
135	1340.7	1340.7	0.0	1.0	171	1472.1	1472.1	0.0
136	1356.1	1356.1	0.0	1.0	172	2964.7	2964.7	0.0
137	1358.1	1358.1	0.0	1.0	173	2964.8	2964.8	0.0

1.0 1.0 1.0

1.0

1.0 1.0 1.0

1.0

1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0

1.0

1.0 1.0 1.0

1.0 1.0

1.0 1.0 1.0

1.0

1.0 1.0 1.0

1.0 1.0

1.0 1.0

1.0

1.0 1.0

174	2964.8	2964.8	0.0	1.0
175	2965.4	2965.4	0.0	1.0
176	2965.5	2965.5	0.0	1.0
177	2965.8	2965.8	0.0	1.0
178	2968.1	2968.1	0.0	1.0
179	2968.2	2968.2	0.0	1.0
180	2968.2	2968.2	0.0	1.0
181	2968.2	2968.2	0.0	1.0
182	2969.1	2969.1	0.0	1.0
183	2970.1	2970.1	0.0	1.0
184	3003.7	3003.7	0.0	1.0
185	3003.8	3003.8	0.0	1.0
186	3003.9	3003.9	0.0	1.0
187	3003.9	3003.9	0.0	1.0
188	3007.5	3007.5	0.0	1.0
189	3008.0	3008.0	0.0	1.0
190	3032.5	3032.5	0.0	1.0
191	3032.6	3032.6	0.0	1.0
192	3033.0	3033.0	0.0	1.0
193	3033.1	3033.1	0.0	1.0
194	3033.1	3033.1	0.0	1.0

195	3033.2	3033.2	0.0	1.0
196	3053.8	3053.8	0.0	1.0
197	3053.9	3053.9	0.0	1.0
198	3054.1	3054.1	0.0	1.0
199	3054.1	3054.1	0.0	1.0
200	3059.2	3059.2	0.0	1.0
201	3059.5	3059.5	0.0	1.0
202	3059.6	3059.6	0.0	1.0
203	3061.4	3061.4	0.0	1.0
204	3061.8	3061.8	0.0	1.0
205	3061.8	3061.8	0.0	1.0
206	3062.1	3062.1	0.0	1.0
207	3062.4	3062.4	0.0	1.0
208	3096.6	3096.6	0.0	1.0
209	3096.8	3096.8	0.0	1.0
210	3097.0	3097.0	0.0	1.0
211	3099.1	3099.1	0.0	1.0
212	3099.2	3099.2	0.0	1.0
213	3099.5	3099.5	0.0	1.0

Isotopic (² H) Shift calculation							
Atom	Orig. Freq	Shifted Freq	shift	overlap			
17	170.4	162.2	-8.2	1			
25	246.6	243.9	-2.7	1			
27	251.5	248.7	-2.8	1			
28	252.4	248.8	-3.5	1			
31	267.8	266.3	-1.6	0.9			
33	275.4	272.6	-2.8	1			
35	293.2	290.4	-2.8	1			
36	300.9	300	-1	1			
37	320.8	314.7	-6.1	0.9			
38	320.8	316.9	-4	1			
39	326.2	324	-2.2	0.9			
41	328.8	326.6	-2.2	0.9			
42	339.6	336.3	-3.4	1			
43	347.8	341.4	-6.4	1			
44	367.5	356.3	-11.3	1			
52	438.6	420.7	-18	0.9			
55	448.3	447.2	-1.1	0.9			
60	518.5	495.1	-23.5	0.7			
61	528.3	507.6	-20.8	1			
68	661.4	633.5	-27.9	1			
69	691.1	660.2	-30.9	1			
70	710	704.7	-5.3	1			
74	724.5	723.3	-1.2	1			
77	792.7	789.2	-3.5	1			
216	3604.6	3593	-11.7	1			

Table S5. Frequency shifts produced by the isotope labelling for $[Mn_2(\mu^{-18}O)_2(\mu^{-18}OH)(TMTACN)_2]^{2+1}$

Full listing showing unchanged bands also.

Isotopic (² H) Shift calculation							
Atom	Orig.	Shifted	shift	overlap			
	Freq	Freq					
1	-20.3	-20.2	0.1	1.0			
2	-17.2	-17.2	0.0	1.0			
3	-15.5	-15.5	0.0	1.0			
4	-0.8	-0.8	0.0	1.0			
5	0.0	0.0	0.0	1.0			
6	0.8	0.8	0.0	1.0			

7	15.3	15.3	0.0	1.0
8	65.8	65.6	-0.2	1.0
9	81.2	80.9	-0.3	1.0
10	94.7	94.6	-0.1	1.0
11	97.6	97.5	-0.1	1.0
12	131.7	131.7	-0.1	1.0
13	148.6	147.8	-0.8	1.0
14	152.8	152.7	-0.1	1.0

15	153.4	152.9	-0.5	1.0	
16	158.8	158.6	-0.1	1.0	
17	170.4	162.2	-8.2	1.0	
18	196.5	196.2	-0.3	1.0	
19	208.4	208.3	0.0	1.0	
20	211.1	210.5	-0.5	1.0	
21	212.5	212.0	-0.4	1.0	
22	212.5	212.3	-0.2	1.0	
23	231.5	231.4	-0.1	1.0	
24	236.9	236.6	-0.3	1.0	
25	246.6	243.9	-2.7	1.0	
26	247.2	247.2	-0.1	1.0	
27	251.5	248.7	-2.8	1.0	
28	252.4	248.8	-3.5	1.0	
29	264.8	264.0	-0.9	0.9	
30	267.0	266.9	-0.1	1.0	
31	267.8	266.3	-1.6	0.9	
32	274.0	273.5	-0.5	1.0	
33	275.4	272.6	-2.8	1.0	
34	280.5	280.4	-0.1	1.0	
35	293.2	290.4	-2.8	1.0	
36	300.9	300.0	-1.0	1.0	
37	320.8	314.7	-6.1	0.9	
38	320.8	316.9	-4.0	1.0	
39	326.2	324.0	-2.2	0.9	
40	328.7	327.9	-0.8	1.0	
41	328.8	326.6	-2.2	0.9	
42	339.6	336.3	-3.4	1.0	
43	347.8	341.4	-6.4	1.0	
44	367.5	356.3	-11.3	1.0	
45	398.0	397.5	-0.5	1.0	
46	401.3	400.8	-0.5	1.0	
47	402.7	402.4	-0.2	1.0	
48	404.1	404.0	-0.1	1.0	
49	408.0	407.2	-0.8	0.9	
50	409.1	408.4	-0.7	0.9	

51	437.0	436.7	-0.3	1.0
52	438.6	420.7	-18.0	0.9
53	444.8	444.3	-0.5	1.0
54	447.7	447.6	-0.1	1.0
55	448.3	447.2	-1.1	0.9
56	451.1	450.7	-0.5	1.0
57	453.1	453.1	-0.1	1.0
58	486.6	486.0	-0.6	1.0
59	496.0	495.8	-0.2	0.7
60	518.5	495.1	-23.5	0.7
61	528.3	507.6	-20.8	1.0
62	561.0	560.2	-0.7	1.0
63	561.9	561.9	0.0	1.0
64	564.8	564.8	0.0	1.0
65	569.9	569.0	-0.9	1.0
66	585.4	585.2	-0.1	1.0
67	585.7	585.7	0.0	1.0
68	661.4	633.5	-27.9	1.0
69	691.1	660.2	-30.9	1.0
70	710.0	704.7	-5.3	1.0
71	718.8	718.7	0.0	1.0
72	720.2	720.2	0.0	1.0
73	721.1	720.7	-0.4	1.0
74	724.5	723.3	-1.2	1.0
75	769.0	768.9	-0.1	1.0
76	773.3	773.2	-0.1	1.0
77	792.7	789.2	-3.5	1.0
78	835.9	835.9	0.0	1.0
79	836.4	836.4	0.0	1.0
80	872.8	872.8	0.0	1.0
81	874.6	874.6	0.0	1.0
82	875.9	875.9	0.0	1.0
83	877.2	877.2	0.0	1.0
84	943.8	943.8	0.0	1.0
85	945.5	945.5	0.0	1.0
86	945.6	945.6	0.0	1.0

88 949.9 949.9 0.0 1.0 89 950.8 950.8 0.0 1.0 90 972.6 972.6 0.0 1.0 91 973.5 973.5 0.0 1.0 92 975.2 975.2 0.0 1.0 93 976.6 976.6 0.0 1.0 94 980.0 980.0 0.0 1.0 95 981.4 981.4 0.0 1.0 96 1023.5 1023.5 0.0 1.0 97 1024.7 1024.7 0.0 1.0 98 1025.7 1.02 1.0 1.33 1324.8 0.0 100 1026.4 1.00 1.0 1.34 1.337.8 0.0 101 1026.6 1.02.6 1.0 1.34 1.337.8 1.337.8 103 1034.8 1034.8 0.0 1.0 1.34 1.356.8 1.356.8 0.0 <	87	946.9	946.9	0.0	1.0		123	1238.5	1238.5	0.0	
89 950.8 950.8 0.0 1.0 90 972.6 972.6 0.0 1.0 91 973.5 973.5 0.0 1.0 92 975.2 975.2 0.0 1.0 93 976.6 976.6 0.0 1.0 94 980.0 980.0 0.0 1.0 95 981.4 981.4 0.0 1.0 96 1023.5 1023.5 0.0 1.0 97 1024.7 1024.7 0.0 1.0 98 1025.7 1025.7 0.0 1.0 98 1025.7 1026.4 0.0 1.0 101 1026.4 1026.4 0.0 1.0 102 1033.8 1033.8 0.0 1.0 103 1034.8 1034.8 0.0 1.0 104 1095.1 0.0 1.0 1.3 1.356.8 1.366.8 107 1100.4 100.0<	88	949.9	949.9	0.0	1.0		124	1256.7	1256.7	0.0	
90 972.6 972.6 0.0 1.0 91 973.5 973.5 0.0 1.0 92 975.2 975.2 0.0 1.0 93 976.6 976.6 0.0 1.0 94 980.0 980.0 0.0 1.0 95 981.4 981.4 0.0 1.0 96 1023.5 1023.5 0.0 1.0 97 1024.7 1024.7 0.0 1.0 98 1025.7 1025.7 0.0 1.0 99 1026.1 1026.4 0.0 1.0 101 1026.4 1026.4 0.0 1.0 102 1033.8 1033.8 0.0 1.0 103 1034.8 1034.8 0.0 1.0 104 1095.1 1094.8 0.0 1.0 105 1094.8 1094.8 0.0 1.0 110 1130.7 1.00 1.0	89	950.8	950.8	0.0	1.0		125	1256.9	1256.9	0.0	
91 973.5 973.5 0.0 1.0 92 975.2 975.2 0.0 1.0 93 976.6 976.6 0.0 1.0 94 980.0 980.0 0.0 1.0 95 981.4 981.4 0.0 1.0 96 1023.5 1023.5 0.0 1.0 97 1024.7 1024.7 0.0 1.0 98 1025.7 1025.7 0.0 1.0 99 1026.1 1026.1 0.0 1.0 100 1026.4 1026.4 0.0 1.0 101 1028.6 102.4 0.0 1.0 102 1033.8 1033.8 0.0 1.0 103 1034.8 1034.8 0.0 1.0 104 1090.5 1090.5 0.0 1.0 104 1905.1 0.0 1.0 141 1368.1 1368.1 106 1095.1 109	90	972.6	972.6	0.0	1.0		126	1271.5	1271.5	0.0	
92 975.2 975.2 0.0 1.0 93 976.6 976.6 0.0 1.0 94 980.0 980.0 0.0 1.0 95 981.4 981.4 0.0 1.0 96 1023.5 1023.5 0.0 1.0 97 1024.7 1024.7 0.0 1.0 98 1025.7 1025.7 0.0 1.0 99 1026.1 1026.1 0.0 1.0 100 1026.4 1026.4 0.0 1.0 101 1028.6 1028.6 0.0 1.0 102 1033.8 1033.8 0.0 1.0 103 1034.8 1034.8 0.0 1.0 104 1090.5 1090.5 0.0 1.0 104 1095.1 0.0 1.0 141 1368.1 1368.4 0.0 107 1100.4 1100.4 0.0 1.0 144 1394.3 <	91	973.5	973.5	0.0	1.0		127	1271.9	1271.9	0.0	
93 976.6 976.6 0.0 1.0 94 980.0 980.0 0.0 1.0 95 981.4 981.4 0.0 1.0 96 1023.5 1023.5 0.0 1.0 97 1024.7 1024.7 0.0 1.0 98 1025.7 1025.7 0.0 1.0 99 1026.1 1026.1 0.0 1.0 100 1026.4 1026.4 0.0 1.0 101 1028.6 1028.6 0.0 1.0 102 1033.8 1033.8 0.0 1.0 104 1090.5 1090.5 0.0 1.0 105 1094.8 1095.1 0.0 1.0 104 1095.1 1095.1 0.0 1.0 104 130.7 1130.7 1.0 1.41 133.1 1334.3 1368.4 0.0 107 1100.4 10.0 1.0 <t< td=""><td>92</td><td>975.2</td><td>975.2</td><td>0.0</td><td>1.0</td><td></td><td>128</td><td>1272.5</td><td>1272.5</td><td>0.0</td><td></td></t<>	92	975.2	975.2	0.0	1.0		128	1272.5	1272.5	0.0	
94 980.0 980.0 0.0 1.0 95 981.4 981.4 0.0 1.0 96 1023.5 1023.5 0.0 1.0 97 1024.7 1024.7 0.0 1.0 98 1025.7 1025.7 0.0 1.0 99 1026.1 1026.1 0.0 1.0 100 1026.4 1026.4 0.0 1.0 101 1028.6 1028.6 0.0 1.0 102 1033.8 1033.8 0.0 1.0 103 1034.8 1034.8 0.0 1.0 104 1090.5 1090.5 0.0 1.0 105 1094.8 1094.8 0.0 1.0 104 1095.1 0.0 1.0 141 1368.1 1369.2 106 1095.1 10.0 1.0 142 1368.4 1.0 110 1130.7 110.0 1.0 1441 1369.2	93	976.6	976.6	0.0	1.0		129	1273.0	1273.0	0.0	
95 981.4 981.4 0.0 1.0 96 1023.5 1023.5 0.0 1.0 97 1024.7 1024.7 0.0 1.0 98 1025.7 1025.7 0.0 1.0 98 1025.7 1025.7 0.0 1.0 99 1026.1 1026.1 0.0 1.0 100 1026.4 1026.4 0.0 1.0 101 1028.6 1028.6 0.0 1.0 102 1033.8 1033.8 0.0 1.0 103 1034.8 1034.8 0.0 1.0 104 1090.5 1090.5 0.0 1.0 105 1094.8 1094.8 0.0 1.0 106 1095.1 1095.1 0.0 1.0 107 1100.4 1100.4 0.0 1.0 110 1130.7 1107.2 0.0 1.0 1111 1132.1 110.0 1.0	94	980.0	980.0	0.0	1.0		130	1273.1	1273.1	0.0	
96 1023.5 1023.5 0.0 1.0 97 1024.7 1024.7 0.0 1.0 98 1025.7 1025.7 0.0 1.0 99 1026.1 1026.4 0.0 1.0 100 1026.4 1026.4 0.0 1.0 101 1026.6 1026.6 0.0 1.0 102 1033.8 1033.8 0.0 1.0 103 1034.8 1034.8 0.0 1.0 104 1090.5 1095.5 0.0 1.0 105 1094.8 1094.8 0.0 1.0 106 1095.1 1005.1 0.0 1.0 107 1100.4 1107.2 0.0 1.0 108 1107.2 1107.2 0.0 1.0 110 1130.7 1130.7 0.0 1.0 111 1132.1 10.0 1.0 144 1394.3 1.0 1111 1132.4	95	981.4	981.4	0.0	1.0		131	1274.1	1274.1	0.0	
97 1024.7 1024.7 0.0 1.0 98 1025.7 1025.7 0.0 1.0 99 1026.1 1026.1 0.0 1.0 100 1026.4 1026.4 0.0 1.0 101 1028.6 1028.6 0.0 1.0 102 1033.8 1033.8 0.0 1.0 103 1034.8 1034.8 0.0 1.0 104 1090.5 1090.5 0.0 1.0 105 1094.8 1004.4 0.0 1.0 106 1095.1 1095.1 0.0 1.0 107 1100.4 1107.2 0.0 1.0 108 1107.2 1107.2 0.0 1.0 111 1132.1 1130.7 0.0 1.0 112 1132.6 1132.6 0.0 1.0 113 1133.4 1133.4 0.0 1.0 114 1170.5 0.0 1.0	96	1023.5	1023.5	0.0	1.0		132	1324.3	1324.3	0.0	
98 1025.7 1025.7 0.0 1.0 99 1026.1 1026.4 0.0 1.0 100 1026.4 1026.4 0.0 1.0 101 1028.6 1028.6 0.0 1.0 102 1033.8 1033.8 0.0 1.0 103 1034.8 1034.8 0.0 1.0 104 1090.5 1090.5 0.0 1.0 105 1094.8 1094.8 0.0 1.0 106 1095.1 1095.1 0.0 1.0 107 110.4 1100.4 0.0 1.0 108 1107.2 1107.2 0.0 1.0 111 1132.1 1107.2 0.0 1.0 112 1132.6 1132.6 0.0 1.0 113 1133.4 1133.4 0.0 1.0 114 1170.5 0.0 1.0 144 1394.3 0.0 1111 1132.1	97	1024.7	1024.7	0.0	1.0		133	1324.8	1324.8	0.0	
99 1026.1 1026.4 0.0 1.0 100 1026.4 1026.4 0.0 1.0 101 1028.6 1028.6 0.0 1.0 102 1033.8 1033.8 0.0 1.0 103 1034.8 1034.8 0.0 1.0 104 1090.5 1090.5 0.0 1.0 105 1094.8 1094.8 0.0 1.0 106 1095.1 1095.1 0.0 1.0 107 1100.4 1100.4 0.0 1.0 108 1177.2 1107.2 0.0 1.0 110 1130.7 1130.7 0.0 1.0 111 1132.1 1132.1 0.0 1.0 1111 1132.4 1132.6 0.0 1.0 1111 1132.6 1132.6 0.0 1.0 1111 1132.4 1132.6 0.0 1.0 113 1133.4 1133.4 0.	98	1025.7	1025.7	0.0	1.0		134	1337.6	1337.6	0.0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	99	1026.1	1026.1	0.0	1.0		135	1337.8	1337.8	0.0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	100	1026.4	1026.4	0.0	1.0		136	1338.2	1338.2	0.0	
102 1033.8 1033.8 0.0 1.0 103 1034.8 1034.8 0.0 1.0 104 1090.5 1090.5 0.0 1.0 105 1094.8 1094.8 0.0 1.0 106 1095.1 1095.1 0.0 1.0 107 1100.4 1100.4 0.0 1.0 108 1107.2 1107.2 0.0 1.0 109 111.2 1110.2 0.0 1.0 110 1130.7 1130.7 0.0 1.0 111 1132.1 0.0 1.0 144 1394.3 0.0 110 1130.7 1130.7 0.0 1.0 144 1394.3 0.0 111 1132.1 0.0 1.0 144 1394.3 0.0 111 1132.1 0.0 1.0 144 1398.1 1398.1 0.0 1111 1132.4 1132.6 0.0 1.0 144 <td>101</td> <td>1028.6</td> <td>1028.6</td> <td>0.0</td> <td>1.0</td> <td></td> <td>137</td> <td>1338.4</td> <td>1338.4</td> <td>0.0</td> <td></td>	101	1028.6	1028.6	0.0	1.0		137	1338.4	1338.4	0.0	
103 1034.8 1034.8 0.0 1.0 104 1090.5 1090.5 0.0 1.0 105 1094.8 1094.8 0.0 1.0 106 1095.1 1095.1 0.0 1.0 107 1100.4 11095.1 0.0 1.0 108 117.2 1107.2 0.0 1.0 109 111.2 1117.2 0.0 1.0 110 130.7 1130.7 0.0 1.0 111 1132.1 0.0 1.0 144 1394.3 0.0 110 1130.7 110.0 1.0 144 1397.6 1397.6 0.0 111 1132.1 0.0 1.0 144 1398.1 1398.1 0.0 111 1132.6 1132.6 0.0 1.0 144 1398.1 1401.5 0.0 114 1170.5 1170.5 0.0 1.0 144 1404.3 1404.3 0.0	102	1033.8	1033.8	0.0	1.0		138	1356.8	1356.8	0.0	
1041090.51090.50.01.01051094.81094.80.01.01061095.11095.10.01.01071100.41100.40.01.01081107.21107.20.01.0109111.21111.20.01.01101130.71130.70.01.01111132.11132.60.01.01121132.61132.60.01.01131133.41133.40.01.01141170.51170.50.01.01151173.81173.80.01.01161175.51175.50.01.01171178.81178.80.01.01181189.11.001.0119119.01197.00.01.01201236.11236.60.01.01211236.61236.60.01.01221238.01238.00.01.0	103	1034.8	1034.8	0.0	1.0		139	1359.2	1359.2	0.0	
105 1094.8 1094.8 0.0 1.0 106 1095.1 1095.1 0.0 1.0 107 1100.4 1100.4 0.0 1.0 108 1107.2 1107.2 0.0 1.0 109 111.2 1117.2 0.0 1.0 110 1130.7 1130.7 0.0 1.0 111 1132.1 1130.7 0.0 1.0 111 1132.1 1132.1 0.0 1.0 111 1132.4 1132.6 0.0 1.0 111 1132.4 1132.6 0.0 1.0 111 1133.4 1133.4 0.0 1.0 114 1170.5 1170.5 0.0 1.0 114 1175.5 1175.5 0.0 1.0 115 1173.8 1173.8 0.0 1.0 116 1175.5 1175.5 0.0 1.0 117 1178.8 1178.8 0.0 1.0 118 1189.1 0.0 1.0 119 1197.0 10.0 1.0 120 1236.1 1236.6 0.0 1.0 121 1238.0 1238.0 0.0 1.0 122 1238.0 1238.0 0.0 1.0	104	1090.5	1090.5	0.0	1.0		140	1367.4	1367.4	0.0	
1061095.11095.10.01.01071100.41100.40.01.01081107.21107.20.01.01091111.21111.20.01.01101130.71130.70.01.01111132.11132.10.01.01121132.61132.60.01.01131133.41133.40.01.01141170.51170.50.01.01151173.81173.80.01.01161175.51175.50.01.01171178.81178.80.01.01181189.11189.10.01.01191197.01197.00.01.01201236.11236.60.01.01211236.61236.60.01.01221238.01238.00.01.0	105	1094.8	1094.8	0.0	1.0		141	1368.1	1368.1	0.0	
1071100.41100.40.01.01081107.21107.20.01.01091111.21111.20.01.01101130.71130.70.01.01111132.11132.10.01.01121132.61132.60.01.01131133.41133.40.01.01141170.51170.50.01.01151173.81173.80.01.01161175.51175.50.01.01171178.81178.80.01.01181189.11.001.01191197.01197.00.01.01201236.11236.60.01.01211236.61236.60.01.01221238.01238.00.01.0	106	1095.1	1095.1	0.0	1.0		142	1368.4	1368.4	0.0	
1081107.21107.20.01.01091111.21111.20.01.01101130.71130.70.01.01111132.11132.10.01.01121132.61132.60.01.01131133.41133.40.01.01141170.51170.50.01.01151173.81173.80.01.01161175.51175.50.01.01171178.81178.80.01.01181189.11189.10.01.01191197.01197.00.01.01201236.11236.60.01.01211236.61236.60.01.01521431.41431.40.01541432.41443.40.01.01561432.41434.00.01211236.51236.60.01221238.01238.00.01241238.01238.00.01551434.21434.21581434.21434.21581434.21434.2	107	1100.4	1100.4	0.0	1.0		143	1369.2	1369.2	0.0	
1091111.21111.20.01.01101130.71130.70.01.01111132.11132.10.01.01121132.61132.60.01.01131133.41133.40.01.01141170.51170.50.01.01151173.81173.80.01.01161175.51175.50.01.01171178.81178.80.01.01181189.11189.10.01.01191197.01197.00.01.01201236.11236.60.01.01211236.61236.60.01.01221238.01238.00.01.0	108	1107.2	1107.2	0.0	1.0		144	1394.3	1394.3	0.0	
1101130.71130.70.01.01111132.11132.10.01.01121132.61132.60.01.01131133.41133.40.01.01141170.51170.50.01.01151173.81173.80.01.01161175.51175.50.01.01171178.81178.80.01.01181189.11189.10.01.01191197.01197.00.01.01201236.11236.60.01.01211238.01238.00.01.01581434.21434.20.0	109	1111.2	1111.2	0.0	1.0		145	1397.6	1397.6	0.0	
1111132.11132.10.01.01121132.61132.60.01.01131133.41133.40.01.01141170.51170.50.01.01151173.81173.80.01.01161175.51175.50.01.01171178.81178.80.01.01181189.11189.10.01.01191197.01197.00.01.01201236.11236.60.01.01211236.61236.60.01.01221238.01238.00.01.0	110	1130.7	1130.7	0.0	1.0		146	1398.1	1398.1	0.0	
1121132.61132.60.01.01131133.41133.40.01.01141170.51170.50.01.01151173.81173.80.01.01161175.51175.50.01.01171178.81178.80.01.01181189.10.01.01191197.01197.00.01211236.61236.60.01221238.01238.00.01.0	111	1132.1	1132.1	0.0	1.0		147	1401.5	1401.5	0.0	
1131133.41133.40.01.01141170.51170.50.01.01151173.81173.80.01.01161175.51175.50.01.01171178.81178.80.01.01181189.11189.10.01.01191197.01197.00.01.01201236.11236.60.01.01211236.61236.60.01.01221238.01238.00.01.0	112	1132.6	1132.6	0.0	1.0		148	1402.6	1402.6	0.0	
1141170.51170.50.01.01151173.81173.80.01.01161175.51175.50.01.01171178.81178.80.01.01181189.10.01.01191197.00.01.01201236.11236.60.01221238.01238.00.01.0	113	1133.4	1133.4	0.0	1.0		149	1404.3	1404.3	0.0	
1151173.81173.80.01.01161175.51175.50.01.01171178.81178.80.01.01181189.11189.10.01.01191197.01197.00.01.01201236.11236.60.01.01221238.01238.00.01.0	114	1170.5	1170.5	0.0	1.0		150	1422.6	1422.6	0.0	
1161175.51175.50.01.01171178.81178.80.01.01181189.11189.10.01.01191197.01197.00.01.01201236.11236.10.01.01211236.61236.60.01.01221238.01238.00.01.0	115	1173.8	1173.8	0.0	1.0		151	1427.4	1427.4	0.0	
117 1178.8 1178.8 0.0 1.0 118 1189.1 1189.1 0.0 1.0 119 1197.0 1197.0 0.0 1.0 120 1236.1 1236.1 0.0 1.0 121 1236.6 1236.6 0.0 1.0 122 1238.0 1238.0 0.0 1.0	116	1175.5	1175.5	0.0	1.0		152	1427.7	1427.7	0.0	
118 1189.1 1189.1 0.0 1.0 119 1197.0 1197.0 0.0 1.0 120 1236.1 1236.1 0.0 1.0 121 1236.6 1236.6 0.0 1.0 122 1238.0 1238.0 0.0 1.0	117	1178.8	1178.8	0.0	1.0		153	1430.4	1430.4	0.0	
119 1197.0 1197.0 0.0 1.0 120 1236.1 1236.1 0.0 1.0 121 1236.6 1236.6 0.0 1.0 122 1238.0 1238.0 0.0 1.0 155 1431.4 1431.4 0.0 156 1432.4 1432.4 0.0 157 1434.0 1434.0 0.0 158 1434.2 1434.2 0.0	118	1189.1	1189.1	0.0	1.0		154	1430.8	1430.8	0.0	
120 1236.1 1236.1 0.0 1.0 121 1236.6 1236.6 0.0 1.0 156 1432.4 1432.4 0.0 121 1236.6 1236.6 0.0 1.0 157 1434.0 1434.0 0.0 122 1238.0 1238.0 0.0 1.0 158 1434.2 1434.2 0.0	119	1197.0	1197.0	0.0	1.0		155	1431.4	1431.4	0.0	
121 1236.6 1236.6 0.0 1.0 157 1434.0 1434.0 0.0 122 1238.0 1238.0 0.0 1.0 158 1434.2 1434.2 0.0	120	1236.1	1236.1	0.0	1.0		156	1432.4	1432.4	0.0	
122 1238.0 1238.0 0.0 1.0 158 1434.2 1434.2 0.0	121	1236.6	1236.6	0.0	1.0	1	157	1434.0	1434.0	0.0	
	122	1238.0	1238.0	0.0	1.0		158	1434.2	1434.2	0.0	

1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0

159	1434.7	1434.7	0.0	1.0
160	1435.5	1435.5	0.0	1.0
161	1436.6	1436.6	0.0	1.0
162	1439.2	1439.2	0.0	1.0
163	1439.9	1439.9	0.0	1.0
164	1441.4	1441.3	0.0	1.0
165	1443.0	1443.0	0.0	1.0
166	1443.2	1443.2	0.0	1.0
167	1448.7	1448.7	0.0	1.0
168	1449.2	1449.2	0.0	1.0
169	1456.9	1456.9	0.0	1.0
170	1457.8	1457.8	0.0	1.0
171	1465.3	1465.3	0.0	1.0
172	1470.8	1470.8	0.0	1.0
173	1471.5	1471.5	0.0	1.0
174	2973.9	2973.9	0.0	1.0
175	2975.2	2975.2	0.0	1.0
176	2979.1	2979.1	0.0	1.0
177	2979.8	2979.8	0.0	1.0
178	2983.9	2983.9	0.0	1.0
179	2985.4	2985.4	0.0	1.0
180	2985.5	2985.5	0.0	1.0
181	2985.7	2985.7	0.0	1.0
182	2986.4	2986.4	0.0	1.0
183	2986.5	2986.5	0.0	1.0
184	2990.6	2990.6	0.0	1.0
185	2990.8	2990.8	0.0	1.0
186	3017.0	3017.0	0.0	1.0
187	3017.1	3017.1	0.0	1.0
188	3019.1	3019.1	0.0	1.0
189	3019.3	3019.3	0.0	1.0
190	3023.7	3023.7	0.0	1.0
191	3024.0	3024.0	0.0	1.0
192	3039.6	3039.6	0.0	1.0
193	3039.6	3039.6	0.0	1.0
194	3043.6	3043.6	0.0	1.0

195	3043.7	3043.7	0.0	1.0
196	3046.9	3046.9	0.0	1.0
197	3047.0	3047.0	0.0	1.0
198	3047.2	3047.2	0.0	1.0
199	3048.1	3048.1	0.0	1.0
200	3067.4	3067.4	0.0	1.0
201	3067.5	3067.5	0.0	1.0
202	3068.3	3068.3	0.0	1.0
203	3069.8	3069.8	0.0	1.0
204	3070.0	3070.0	0.0	1.0
205	3070.2	3070.2	0.0	1.0
206	3072.8	3072.8	0.0	1.0
207	3076.6	3076.6	0.0	1.0
208	3077.5	3077.5	0.0	1.0
209	3077.6	3077.6	0.0	1.0
210	3090.6	3090.6	0.0	1.0
211	3093.8	3093.8	0.0	1.0
212	3102.4	3102.4	0.0	1.0
213	3103.8	3103.8	0.0	1.0
214	3114.7	3114.7	0.0	1.0
215	3121.3	3121.3	0.0	1.0
216	3604.6	3593.0	-11.7	1.0

References

- (1) Baerends, E. J.; Autschbach, J.; Berces, A.; Bo, C.; Boerrigter, P. M.; Cavallo, L.; Chong, D. P.; Deng, L.; Dickson, R. M.; Ellis, D. E.; et al. ADF 20016.01. SCM: Amsterdam 2016.
- (2) te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T. Chemistry with ADF. *J. Comput. Chem.* **2001**, *22* (9), 931–967.
- (3) Van Lenthe, E.; Baerends, E. J. Optimized Slater-Type Basis Sets for the Elements 1–118. *J. Comput. Chem.* **2003**, *24* (9), 1142–1156. https://doi.org/10.1002/jcc.10255.
- (4) Becke, A. D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. *Phys. Rev. A* **1988**, *38* (6), 3098–3100.
- (5) Perdew, J. P. Density-Functional Approximation for the Correlation Energy of the Inhomogeneous Electron Gas. *Phys. Rev. B* **1986**, *33* (12), 8822–8824.
- (6) Vlahovic, F. Z.; Gruden, M.; Stepanovic, S.; Swart, M. Density Functional Approximations for Consistent Spin and Oxidation States of Oxoiron Complexes. https://doi.org/10.26434/chemrxiv.8969741.
- Becke, A. D. A Multicenter Numerical Integration Scheme for Polyatomic Molecules. J. Chem. Phys. 1988, 88 (4), 2547–2553. https://doi.org/doi.http://dx.doi.org/10.1063/1.454033.
- (8) Franchini, M.; Philipsen, P. H. T.; Visscher, L. The Becke Fuzzy Cells Integration Scheme in the Amsterdam Density Functional Program Suite. J. Comput. Chem. 2013, 34 (21), 1819–1827. https://doi.org/10.1002/jcc.23323.
- Klamt, A. Conductor-like Screening Model for Real Solvents: A New Approach to the Quantitative Calculation of Solvation Phenomena. J. Phys. Chem. 1995, 99 (7), 2224–2235. https://doi.org/10.1021/j100007a062.
- Klamt, A.; Jonas, V. Treatment of the Outlying Charge in Continuum Solvation Models. J. Chem. Phys. 1996, 105 (22), 9972–9981. https://doi.org/doi:http://dx.doi.org/10.1063/1.472829.
- (11) Klamt, A.; Schuurmann, G. COSMO: A New Approach to Dielectric Screening in Solvents with Explicit Expressions for the Screening Energy and Its Gradient. J. Chem. Soc. Perkin Trans. 2 1993, No. 5, 799– 805. https://doi.org/10.1039/P29930000799.
- (12) Pye, C. C.; Ziegler, T. An Implementation of the Conductor-like Screening Model of Solvation within the Amsterdam Density Functional Package. *Theor. Chem. Acc.* **1999**, *101* (6), 396–408. https://doi.org/10.1007/s002140050457.
- (13) Swart, M.; Rösler, E.; Bickelhaupt, F. M. Proton Affinities in Water of Maingroup-Element Hydrides Effects of Hydration and Methyl Substitution. *Eur. J. Inorg. Chem.* 2007, 2007 (23), 3646–3654. https://doi.org/10.1002/ejic.200700228.
- (14) Lenthe, E. van; Baerends, E. J.; Snijders, J. G. Relativistic Regular Two-component Hamiltonians. *J. Chem. Phys.* **1993**, *99* (6), 4597–4610. https://doi.org/doi:http://dx.doi.org/10.1063/1.466059.
- (15) van Lenthe, E.; Baerends, E. J.; Snijders, J. G. Relativistic Total Energy Using Regular Approximations. *J. Chem. Phys.* **1994**, *101* (11), 9783–9792. https://doi.org/doi:http://dx.doi.org/10.1063/1.467943.
- (16) van Lenthe, E.; Ehlers, A.; Baerends, E.-J. Geometry Optimizations in the Zero Order Regular Approximation for Relativistic Effects. J. Chem. Phys. 1999, 110 (18), 8943–8953. https://doi.org/doi:http://dx.doi.org/10.1063/1.478813.
- (17) Noodleman, L. Valence Bond Description of Antiferromagnetic Coupling in Transition Metal Dimers. *J. Chem. Phys.* **1981**, *74* (10), 5737–5743. https://doi.org/10.1063/1.440939.
- (18) Noodleman, L.; Baerends, E. J. Electronic Structure, Magnetic Properties, ESR, and Optical Spectra for 2-Iron Ferredoxin Models by LCAO-X.Alpha. Valence Bond Theory. J. Am. Chem. Soc. 1984, 106 (8), 2316– 2327. https://doi.org/10.1021/ja00320a017.