Supplementary data for the article:

Cakić, N.; Verbić, T. Ž.; Jelić, R. M.; Platas-Iglesias, C.; Angelovski, G. Synthesis and Characterisation of Bismacrocyclic DO3A-Amide Derivatives - An Approach towards Metal-Responsive PARACEST Agents. *Dalton Transactions* **2016**, *45* (15), 6555–6565. <u>https://doi.org/10.1039/c5dt04625d</u> Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information

Synthesis and characterisation of bismacrocyclic DO3A-amide derivatives – an approach towards metal-responsive PARACEST agents

Nevenka Cakić,^a Tatjana Ž. Verbić,^b Ratomir M. Jelić,^c Carlos Platas-Iglesias,^d and Goran Angelovski^{a*}

^a MR Neuroimaging Agents
Max Planck Institute for Biological Cybernetics
Spemannstr. 41
72076 Tübingen, Germany
Phone: +49-7071601916
Fax: +49-7071601919
E-mail: goran.angelovski@tuebingen.mpg.de

^b Department of Analytical Chemistry
Faculty of Chemistry, University of Belgrade
Studentski trg 12-16, 11000 Belgrade, Serbia

^c Faculty of Medicinal Science
University of Kragujevac
S. Markovića 69
34000 Kragujevac, Serbia

^d Departamento de Química Fundamental Universidade da Coruña
Campus da Zapateira
Rúa da Fraga 10
15008 A Coruña, Spain

Figure S1. The luminescence emission spectra of Eu_2L^{1-3} (5 mM Eu^{3+}) in absence and presence of Ca^{2+} (1 equiv.) at pH 7.4 (HEPES).

Figure S2. The luminescence emission spectra of Eu_2L^{1-2} (5 mM Eu^{3+}) in H₂O at different pH values.

i realetor software.						
log <i>K</i> _a	L^1	L^2				
log <i>K</i> _{a1}	8.68	8.45				
$\log K_{a2}$	8.11	7.86				
$\log K_{a3}$	7.49	7.13				
$\log K_{a4}$	7.01	6.50				
$\log K_{a5}$	6.57	6.11				
logK _{a6}	6.05	5.50				
$\log K_{a7}$	4.66	3.68				
$\log K_{a8}$	4.24	3.25				
logK _{a9}	3.94	2.92				
$\log K_{a10}$	3.69	2.62				
$\log K_{a11}$	3.47	2.30				
log <i>K</i> _{a12}	3.28	1.89				
$\log K_{a13}$	3.09					
$\log K_{a14}$	2.90					
log <i>K</i> _{a15}	2.71					
log <i>K</i> _{a16}	2.50					
log <i>K</i> _{a17}	2.24					
log <i>K</i> _{a18}	1.86					

Table S1. Stepwise protonation constants for ligands L^1 and L^2 calculated using the ADMETPredictor software.¹

Table S2 . Protonation constants of Eu(III)–L ($L = L^1$	and L^2 complexes (charges in
reactions are omitted for simplicity); <i>I</i> =0.1	M (NaCl), <i>t</i> =25±1 °C.

~ • *	$\log \beta_{p,q,r} (\pm \sigma)^*$			
Species (p,q,r)	L^1	L^2		
[Eu ₂ (L)] (2, 0, 1)	19.13(5)	20.19(4)		
[Eu ₂ (HL)] (2, 1, 1)	27.85(9)	27.53(5)		
$[Eu_2(H_2L)](2, 2, 1)$	36.14(7)	32.73(4)		
[Eu ₂ (H ₃ L)] (2, 3, 1)	42.96(8)	37.16(7)		
[Eu ₂ (OH) ₂ L] (2, -2, 1)	1.15(4)	1.74(5)		
Reaction	$\log K^{\rm H}$			
$[\mathrm{Eu}_{2}\mathrm{L}] + \mathrm{H} \rightleftarrows [\mathrm{Eu}_{2}(\mathrm{HL})]$	8.72	7.34		
$[\mathrm{Eu}_2(\mathrm{HL})] + \mathrm{H} \rightleftarrows [\mathrm{Eu}_2(\mathrm{H}_2\mathrm{L})]$	8.29	5.20		
$[\mathrm{Eu}_2(\mathrm{H}_2\mathrm{L})] + \mathrm{H} \rightleftarrows [\mathrm{Eu}_2(\mathrm{H}_3\mathrm{L})]$	6.82	4.43		
$[\mathrm{Eu}_2(\mathrm{OH})_2\mathrm{L}] + 2\mathrm{H} \rightleftarrows [\mathrm{Eu}_2\mathrm{L}(\mathrm{H}_2\mathrm{O})_2]$	9.56	9.09		
	χ^2			
Statistics	12.88	13.15		
Statistics	S			
	0.70	1.08		

^{*}p, q, r and $\log \beta_{p,q,r}$ as defined in Eq. (1) and (2).

Figure S3. Titration curves of the $\mathbf{Eu}_{2}\mathbf{L}^{1}$ and $[\mathbf{Eu}_{2}\mathbf{L}^{1}]$ -M (M = Ca²⁺, Mg²⁺ and Zn²⁺) systems with standard NaOH, *I*=0.1 M (NaCl), *t*=25±1 °C. $[\mathbf{Eu}_{2}\mathbf{L}^{1}]_{\text{total}} = 2.3185 \times 10^{-4}$ M, $[Ca^{2+}]_{\text{total}} = 2.5260 \times 10^{-4}$ M and $[Zn^{2+}]_{\text{total}} = 2.4057 \times 10^{-4}$ M. Full lines denote calculated curves.

Figure S4. Titration curves of the $\mathbf{Eu}_{2}\mathbf{L}^{2}$ complex and $[\mathbf{Eu}_{2}\mathbf{L}^{2}]$ -M (M = Ca²⁺, Mg²⁺ and Zn²⁺) systems with standard NaOH, *I*=0.1 M (NaCl) , *t*=25±1 °C. $[\mathbf{Eu}_{2}\mathbf{L}^{2}]_{\text{total}} = 4.4817 \times 10^{-4}$ M, $[\text{Mg}^{2+}]_{\text{total}} = 4.7970 \times 10^{-4}$ M and $[\text{Zn}^{2+}]_{\text{total}} = 4.5686 \times 10^{-4}$ M. Full lines denote calculated curves.

Figure S5. Distribution diagram of $Eu - L^2$ species at $[Eu]:[L^2]=2:1$ concentration ratio; total Eu³⁺ concentration 1.0 mM; I=0.1 M (NaCl), $t=25\pm1$ °C.

Total concentrations of Eu₂L (L= L^1 or L^2) and [Ca²⁺], [Mg²⁺] or [Zn²⁺] used in the potentiometric titration experiments:

- $\begin{array}{l} \textbf{Ca}^{2^{+}} \textbf{ binding to } \textbf{Eu}_2 \textbf{L}^1 \\ 1. \ [\text{Eu}_2 \text{L}^1] = 2.3185 \times 10^{-4} \text{ M } [\text{Ca}^{2^{+}}] = 2.3530 \times 10^{-4} \text{ M}; \\ 2. \ [\text{Eu}_2 \text{L}^1] = 2.2968 \times 10^{-4} \text{ M } [\text{Ca}^{2^{+}}] = 2.7972 \times 10^{-4} \text{ M}; \\ 3. \ [\text{Eu}_2 \text{L}^1] = 2.2650 \times 10^{-4} \text{ M } [\text{Ca}^{2^{+}}] = 3.4481 \times 10^{-4} \text{ M}. \end{array}$

 $\begin{array}{l} \textbf{Ca}^{2^{+}} \textbf{ binding to } \textbf{Eu}_{2}\textbf{L}^{2} \\ 1. \ [\text{Eu}_{2}\text{L}^{2}] = 4.4817 \times 10^{-4} \text{ M } [\text{Ca}^{2^{+}}] = 4.4686 \times 10^{-4} \text{ M}; \\ 2. \ [\text{Eu}_{2}\text{L}^{2}] = 4.4027 \times 10^{-4} \text{ M } [\text{Ca}^{2^{+}}] = 5.2678 \times 10^{-4} \text{ M}; \\ 3. \ [\text{Eu}_{2}\text{L}^{2}] = 4.2894 \times 10^{-4} \text{ M } [\text{Ca}^{2^{+}}] = 6.4152 \times 10^{-4} \text{ M}. \end{array}$

- $\begin{array}{l} \textbf{Mg}^{2+} \textbf{ binding to } \textbf{Eu}_2 \textbf{L}^1 \\ 1. \ [Eu_2 L^1] = 2.3185 \times 10^{-4} \ M \ [Mg^{2+}] = 2.5260 \times 10^{-4} \ M; \\ 2. \ [Eu_2 L^1] = 2.2968 \times 10^{-4} \ M \ [Mg^{2+}] = 3.0028 \times 10^{-4} \ M; \\ 3. \ [Eu_2 L^1] = 2.2650 \times 10^{-4} \ M \ [Mg^{2+}] = 3.7015 \times 10^{-4} \ M. \end{array}$

 $\begin{array}{l} \textbf{Mg}^{2^{+}} \textbf{ binding to } \textbf{Eu}_{2}\textbf{L}^{2} \\ 1. \ [\text{Eu}_{2}\text{L}^{2}] = 4.4817 \times 10^{-4} \text{ M} \ [\text{Mg}^{2^{+}}] = 4.7970 \times 10^{-4} \text{ M}; \\ 2. \ [\text{Eu}_{2}\text{L}^{2}] = 4.4027 \times 10^{-4} \text{ M} \ [\text{Mg}^{2^{+}}] = 5.6550 \times 10^{-4} \text{ M}; \\ 3. \ [\text{Eu}_{2}\text{L}^{2}] = 4.2894 \times 10^{-4} \text{ M} \ [\text{Mg}^{2^{+}}] = 6.8867 \times 10^{-4} \text{ M}. \end{array}$

Zn²⁺ **binding to Eu₂L**¹: 1. $[Eu_2L^1]=2.3185 \times 10^{-4} \text{ M} [Zn^{2+}]=2.4057 \times 10^{-4} \text{ M};$ 2. $[Eu_2L^1]=2.2968 \times 10^{-4} \text{ M} [Zn^{2+}]=2.8598 \times 10^{-4} \text{ M};$ 3. $[Eu_2L^1]=2.2650 \times 10^{-4} \text{ M} [Zn^{2+}]=3.5253 \times 10^{-4} \text{ M}.$

Zn²⁺ binding to Eu₂L²: 1. $[Eu_2L^2]=4.4817\times10^{-4}$ M $[Zn^{2+}]=4.5686\times10^{-4}$ M; 2. $[Eu_2L^2]=4.4027\times10^{-4}$ M $[Zn^{2+}]=5.3857\times10^{-4}$ M; 3. $[Eu_2L^2]=4.2894\times10^{-4}$ M $[Zn^{2+}]=6.5588\times10^{-4}$ M.

	$\log eta_{p,q,r,m} (\pm \sigma)^*$					
	L ¹			L^2		
Species $(p,q,r,m)^*$	Ca ²⁺	Mg^{2+}	Zn^{2+}	Ca ²⁺	Mg^{2+}	Zn ²⁺
[Eu ₂ (L)M] (2, 0, 1, 1)	23.73(6)	23.21(4)	26.06(6)	24.43(3)	23.57(4)	25.78(6)
[Eu ₂ (HL)M] (2, 1, 1, 1)	32.53(8)	31.71(8)	34.53(3)	32.11(5)	31.65(6)	33.00(8)
[Eu ₂ (H ₂ L)M] (2, 2, 1, 1)	40.66(9)	39.76(7)	-	38.11(6)	37.21(8)	-
[Eu ₂ (H ₃ L)M] (2, 3, 1, 1)	-	-	-	42.64(8)	41.88(5)	-
Reaction	logKs					
$[Eu_2(L)] + M \rightleftharpoons [Eu_2(L)M]$	4.60	4.08	6.93	4.24	3.38	5.59
$[Eu_2(HL)] + M \rightleftharpoons [Eu_2(HL)M]$	4.68	3.86	6.68	4.58	4.12	5.47
$[\mathrm{Eu}_2(\mathrm{H}_2\mathrm{L})] + \mathrm{M} \rightleftarrows [\mathrm{Eu}_2(\mathrm{H}_2\mathrm{L})\mathrm{M}]$	4.52	3.62	-	5.38	4.48	-
$[Eu_2(H_3L)] + M \rightleftharpoons [Eu_2(H_3L)M]$	-	-	-	5.48	4.72	-
	χ^2					
Statistics	12.95	12.86	12.17	13.31	12.23	11.39
	S					
	1.07	0.73	0.77	1.07	1.15	0.95

Table S3. Stability constants of Eu(III)–L–M (L = L^1 or L^2 ; M = Ca²⁺, Mg²⁺ or Zn²⁺) complexes (charges in reactions are omitted for simplicity); I=0.1 M (NaCl), t=25±1 °C.

^{*}*p*, *q*, *r*, *m* and $\log \beta_{p,q,r,m}$ as defined in Eq. (3) and (4).

Figure S6. Distribution diagram of Eu–L¹–Mg species at [Eu]:[L¹]:[Mg]=2:1:1 concentration ratio; total Eu³⁺ concentration 0.5 mM; *I*=0.1 M (NaCl), *t*=25±1 °C.

Figure S7. Distribution diagram of Eu–L¹–Zn species at [Eu]:[L¹]:[Zn]=2:1:1 concentration ratio; total Eu³⁺ concentration 0.5 mM; *I*=0.1 M (NaCl), *t*=25±1 °C.

Figure S8. Distribution diagram of Eu–L²–Ca species at [Eu]:[L²]:[Zn]=2:1:1 concentration ratio; total Eu³⁺ concentration 1.0 mM; *I*=0.1 M (NaCl), *t*=25±1 °C.

Figure S9. Distribution diagram of Eu–L²–Mg species at [Eu]:[L²]:[Mg]=2:1:1 concentration ratio; total Eu³⁺ concentration 1.0 mM; *I*=0.1 M (NaCl), *t*=25±1 °C.

Figure S10. Distribution diagram of Eu–L²–Zn species at [Eu]:[L²]:[Zn]=2:1:1 concentration ratio; total Eu³⁺ concentration 1.0 mM; *I*=0.1 M (NaCl), *t*=25±1 °C.

References

1. ADMET Predictor, Simulations Plus, Inc., Lancaster, CA, USA, ver. 7.2, 2015.