Supplementary material for the article:

Stefanović, I. S.; Špírková, M.; Poreba, R.; Steinhart, M.; Ostojić, S.; Tešević, V.; Pergal, M. V. Study of the Properties of Urethane-Siloxane Copolymers Based on Poly(Propylene Oxide)-b-Poly(Dimethylsiloxane)-b-Poly(Propylene Oxide) Soft Segments. *Industrial and Engineering Chemistry Research* **2016**, *55* (14), 3960–3973. https://doi.org/10.1021/acs.iecr.5b04975

Study of the Properties of Urethane-Siloxane Copolymers based on Poly(propylene oxide)-b-poly(dimethylsiloxane)-b-poly(propylene oxide)
Soft Segments

Ivan S. Stefanović, ** Milena Špírková, * Rafał Poręba, * Miloš Steinhart, * Sanja Ostojić, * Vele Tešević and Marija V. Pergal*

^aInstitute of Chemistry, Technology and Metallurgy (ICTM) - Center of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia

^bInstitute of Macromolecular Chemistry AS CR, v.v.i. (IMC), Heyrovsky Sq. 2, 16206 Prague 6, Czech Republic

^cInstitute of General and Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia

^dFaculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia

^{*}Corresponding author. E-mail: <u>ivanstefanovic.com8@gmail.com</u>

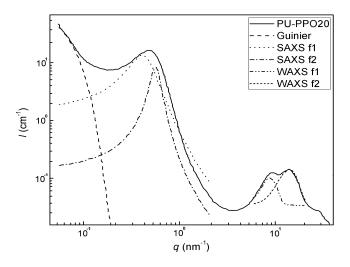


Figure S1. Example of fitting of the peaks

It have been possible to fit five functions: Guinier, two Lorentz in SAXS and two Gauss in WAXS regions. An example fit is in the Figure S1 and relevant parameters and values, their meaning and behavior with increasing hard segment content are in the following tables (Table S1 and Table S2).

Table S1. SAXS and WAXS results of the PURs

Sample	Ю	Rg	A1	C1	T1	A2	C2	T2	RS	H1	P1	HW1	Н2	P2	HW2	RW	H1/2
PU- PPO10	65.8	28.9	7.92	0.35	0.14	8.22	0.53	0.11	8.2	0.0689	8.42	1.25	0.156	13.0	3.66	3.48	0.44
PU- PPO20	62.9	29.6	11.1	0.37	0.14	7.00	0.52	0.08	6.9	0.0716	8.53	1.42	0.115	13.7	2.79	0.74	0.62
PU- PPO40	65.2	32.0	20.2	0.43	0.09	2.93	0.58	0.10	3.2	0.0490	8.51	1.11	0.127	14.0	2.74	1.51	0.39
PU- PPO50	53.2	27.7	23.6	0.37	0.09	5.42	0.55	0.08	10.2	0.0419	8.40	1.13	0.123	14.0	2.81	1.85	0.34
PU- PPO60	89.0	30.4	20.7	0.37	0.09	4.26	0.53	0.10	3.5	0.0311	8.41	0.92	0.127	14.2	2.73	2.96	0.24

Table S2. The parameters, their meaning and behavior with increasing hard segment content in the PURs

The	The meaning	The behavior with increasing hard					
parameters	The meaning	segment content					
IO	Zero intensity	unclear					
Rq	Radius of gyration	unclear					
A1	Amplitude of the 1st SAXS peak	clearly grows					
C1	Position of the 1st SAXS peak	roughly same $D \sim 17 \text{ nm}$					
T1	Thickness of the 1st SAXS peak	roughly same					
A2	Amplitude of the 2nd SAXS peak	slightly decreases					
C2	Position of the 2nd SAXS peak	roughly same $D \sim 11 \text{ nm}$					
T2	Thickness of the 2nd SAXS peak	roughly same					
RS	Quality of the SAXS fit						
H1	Amplitude of the 1st WAXS peak	clearly decreases					
P1	Position of the 1st WAXS peak	roughly same $D \sim 0.74 \text{ nm}$					
HW1	Thickness of the 1st WAXS peak	sharpen					
H2	Amplitude of the 2nd WAXS peak	roughly same					
P2	Position of the 2nd WAXS peak	slightly increases $D \sim 0.44\text{-}0.48~\text{nm}$					
HW2	Thickness of the 2nd WAXS peak	roughly same					
RS	Quality of the WAXS fit						