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Abstract 

Sodium-glucose co-transporter-2 inhibitors (SGLT2i) are a relatively newer class of anti-

hyperglycemic medications that reduce blood glucose by inhibition of renal glucose re-uptake, 

thereby increasing urinary glucose excretion. Although glycosuria is the primary mechanism 

of action of these agents, there is some evidence suggesting they can reduce insulin resistance 

and induce peripheral insulin sensitivity. Identifying the molecular mechanisms by which these 

medications improve glucose homeostasis can help us to develop newer forms of SGLT2i with 

lesser side effects. We have reviewed the molecular mechanisms and signaling pathways by 

which SGLT2i therapy improve insulin sensitivity and ameliorates insulin resistance.  

Keywords: Sodium-glucose co-transporter-2 inhibitors, Insulin Sensitivity, Insulin Resistance, 

Diabetes Mellitus, Oxidative Stress, Inflammatory Response.    
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Introduction  

The global prevalence of diabetes mellitus (DM) is rising rapidly [1]. This chronic disorder 

results in the development of various debilitating complications as well as deaths worldwide 

[2]. Chronic hyperglycemia seen in DM can induce various pathophysiologic pathways 

involved in tissue dysfunction such as oxidative stress, inflammation, apoptosis, fibrosis, 

hyperexpression of growth factors and hemodynamic variations [3]. Various medications have 

been developed to normalize hyperglycemia and thereby preventing diabetic complications [4, 

5].  

Sodium-glucose co-transporter-2 inhibitors (SGLT2i) are a newly developed class of agents 

that reduce hyperglycemia in DM by inhibition of renal glucose re-uptake and thereby 

increasing the excretion of glucose in the urine [5, 6]. These agents act primarily by inducing 

glycosuria but there is some evidence that they can also induce insulin sensitivity in peripheral 

tissues [7, 8]. SGLT2i is also associated with some side effects in patients with DM [9-14]. In 

this review, we have discussed various molecular pathways involved in the modulation of 

insulin sensitivity by SGLT2i.     

Type 2 diabetes (T2DM) is the most prevalent type of diabetes which account for about 90-

95% of patients with diabetes and is linked mainly to inadequate response to insulin (decreased 

insulin sensitivity) and insulin resistance in the peripheral tissues [15-17]. T2DM is a disorder 

of glucose homeostasis. Glucose is the most abundant monosaccharide in circulation and the 

preferred substrate for many types of cells in the human body [18, 19]. This carbohydrate exists 

mainly as a polysaccharide in starch and then converted by catabolic and enzymatic processes 

to a hexose monosaccharide  [18, 19]. This monosaccharide is a hydrophilic molecule with a 

molecular weight of 180.156 g/mol,  which is too large to pass easily across the cell membrane, 

thereby needing a specific carrier [19]. Glucose has two major ways for entering into the cells: 
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(1) via active mechanism by SGLTs and (2) via specific carriers (independent of sodium) [19]. 

The function of SGLTs is the sections below [20]. Glucose carriers (GLUT) are a family of 

proteins that provide bidirectional facilitated glucose transport across the cellular plasma 

membrane [19, 21]. These carriers work without consuming energy and are based on the 

glucose concentration gradient across the cell membrane. There are at least 14 known GLUT 

members in human [19, 22]. However, GLUT-1, GLUT-2, GLUT-3 and GLUT-4 are more 

critical in glucose homeostasis [19]. While GLUT-1 and GLUT-3 are widely expressed, high-

affinity and low-capacity transporters, GLUT-2 is high-affinity and low capacity which is 

expressed in pancreatic beta cells, liver and basolateral side of intestinal and renal tubular cells 

[19].  

Glucose is phosphorylated to glucose-6-phosphate within the beta cells by glucokinase enzyme 

[23]. This enzyme acts as "glucose sensor" which controls the rate of glucose entering into the 

islets and in turn controls the rate of insulin secretion [23]. ATP (adenosine triphosphate) 

synthesis by G6P in beta cells raises the ATP to ADP (adenosine diphosphate) ratio which in 

turns closes ATP-sensitive K+ channels (sensitive to sulfonylureas), depolarizes beta cell 

membrane and increases intracellular calcium concentration by opening the voltage-dependent 

Ca2+ channels in beta cells [23]. Rising the levels of intracellular Ca2+ stimulates the exocytosis 

of secretory granules containing insulin/proinsulin from the beta cells into the circulation [23].              

Insulin  signal transduction  

Insulin signal transduction (IST) or insulin signaling pathway is initiated by  insulin binding to 

the α-subunit of specific receptors known as insulin receptors (IRs), a member of 

transmembrane tyrosine kinases composed of α and β  subunits, which are activated by insulin 

as well as IGF1 1 and 2 [24]. This binding induces structural changes in the β  subunit by 

prompting auto-phosphorylation in tyrosine residues followed by downstream events such as 

                                                           
1 Insulin-like growth factor  
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recruitment of different adaptor proteins i.e. insulin receptor substrates (IRSs), Shc2 protein, 

and APS protein3 [19, 25]. These processes provide an appropriate binding site for the IRS-14 

[25]. Several types of insulin-dependent kinases such as ERK1/25, atypical PKC6, S6K17, 

SIK28, AKT, mTOR9, and ROCK110 and other types of  kinases including AMPK11 and 

GSK312 can phosphorylate IRSs to activate them [25, 26]. Activated IRS-1 links to PI3K13 and 

activates it and catalyzes the conversion of PIP2
14 to PIP3

15 [27]. PIP3 itself is a potent activator 

for PKB (protein kinase B also known as Akt), which in turn, facilitates glucose entering into 

the cells by localization of GLUT-4 and inhibits glycogen synthase kinase leading to more 

glycogen synthesis [27, 28]. The insulin sensitivity can be modulated in all these steps of 

insulin signal transduction pathways [29-31].  

SGLT2 Inhibitors  

Sodium-glucose co-transporters (SGLT) are two distinct forms of active cotransporters (as type 

1 and 2) that mainly localized in the brush border of S2 and S3 segments of proximal renal 

tubules (as well as in intestines) which reabsorb the filtrated urinary glucose and to prevent 

glucose excretion [32]. SGLT2 inhibitors (SGLT2i) are a class of medications which 

specifically inhibit these active carriers and thereby induce urinary glucose excretion leading 

to lower levels of glycemia in patients with diabetes [5]. This potent oral glucose lowering 

                                                           
2 SHC-transforming  
3 adapter protein with a PH and SH2 domain  
4 insulin receptor substrate type 1  
5 extracellular signal‐regulated kinase 1/2  
6 protein kinase C 
7 Ribosomal protein S6 kinase beta-1  
8 serine/threonine-protein kinase 2 
9 mammalian target of rapamycin  
10 Rho-associated protein kinase 1  
11 AMP-activated protein kinase  
12 Glycogen synthase kinase 3  
13 phosphoinositide 3-kinase 
14 Phosphatidylinositol 4,5-bisphosphate  
15 Phosphatidylinositol 3,4,5-trisphosphate  
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agents work entirely independent of insulin and are dependent on blood glucose levels so that 

they have a lower risk of hypoglycemia [33].  

 

Since the discovery of phlorizin as the first SGLT2i in the early of 1980s, several forms of 

these agents have introduced which all reduce the blood glucose below the threshold of tubular 

transporter for glucose reabsorption [9, 33-35]. However, in addition to its anti-hyperglycemic 

effects through glycosuria, they may provide other beneficial effects such as suppression of 

gluconeogenesis, improving insulin sensitivity in peripheral tissues, increasing glucagon 

response and stimulation of insulin secretion from the beta cells of pancreatic islets [8, 36-38]. 

Canagliflozin, dapagliflozin, and empagliflozin are the known forms of this class of 

antidiabetic drugs [39]. The side effects of  SGLT2i include dehydration, dizziness, 

hypotension and genito-urinary infections [39].   

GLT2i and iinsulin sensitivity 

Emerging evidence indicates that SGLT2 inhibition can interfere with various steps of IST and 

modulate insulin sensitivity in peripheral tissues [7, 8, 36]. In the following sections, we present 

the main involved molecular mechanisms (Table 1).  

1. Inhibition of glucose toxicity 

SGLT2i promotes excretion of glucose through urine, thereby lowering blood glucose and 

glucotoxicity [9]. Chronic hyperglycemia results in glucotoxicity as seen in the diabetic milieu 

[40-42]. This toxic milieu negatively affects beta-cell function and is closely related to insulin 

resistance [43]. On the other hand, strong evidence suggests that SGLT2i-induced glycosuria 

potentially improves glucotoxicity [44].  
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Mervoric et al. in 2014 has shown that SGLT2 inhibition by dapagliflozin reduces glucotoxicity 

and thereby improves glycemic control in the diabetic milieu [7]. Two weeks of dapagliflozin 

therapy in men with diabetes improved glucotoxicity by lowering the fasting blood glucose and 

increasing tissue sensitivity to insulin [7]. These anti-glucotoxicity effects of SGLT2i are 

reversible after treatment cessation [7]. List and coworkers in 2011 provided further evidence 

suggesting that SGLT2i therapy induces insulin sensitivity, beta-cell activity and morphology 

preservation via ameliorating the glucotoxicity [43]. Kern and colleagues emphasized this 

finding in 2016, where they found that SGLT2i therapy in diabetic mice improved insulin 

signaling, leading to better glucose homeostasis [8]. These reports suggest that attenuation of 

toxic effects of glucose by SGLT2i is one of the main molecular pathways in which they can 

improve insulin sensitivity [7, 8, 43].     

   

2. Caloric disposition and weight loss  

Caloric disposition is an established effect of SGLT2i therapy since they promote urinary 

glucose excretion [45]. Caloric disposition can translate to weight loss as well as a reduction 

in the circulating lipids [45-47]. It has been demonstrated that SGLT2i therapy can reduce body 

weight in patients with diabetes [48]. On the other hand, it has been well confirmed that lower 

mass of adipose tissue and lower levels of circulating lipids are correlated to an increase in 

insulin sensitivity [49]. The role of inflammatory responses in insulin resistance is completely 

verified and patients with diabetes have relatively higher levels of circulatory inflammatory 

mediators [50, 51]. The central part of these inflammatory responses is mediated by adipocytes 

and their related active mediators, known as adipokines [50]. These active biologic adipocyte-

derived cytokines have prominent roles in insulin resistance [52]. There are strong animal and 

human evidence indicating that high-fat diet and obesity are one of the main underlying causes 
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of insulin resistance and the onset of DM [53, 54] which SGLT2i therapy can potentially 

reverse [55]. For example, Shamansurova et al. in 2016, on a diabetic mouse, demonstrated 

that depletion of adipose tissue improved insulin sensitivity by improving locomotor activity 

and basal metabolism. Furthermore, increasing adiponectin which is another form of 

adipocytokines, is associated with insulin sensitivity [56]. Since lesser adipocytes can 

potentially improve insulin sensitivity, weight loss is strongly recommended in patients with 

T2DM [56].   

Xu et al. in 2018 demonstrated that "visceral fat lowering" effect of SGLT2i can markedly 

improve the insulin sensitivity by ameliorating the lipotoxicity [57]. They reported that SGLT2i 

therapy in patients with diabetes could attenuate insulin resistance by lowering the rate of 

adipocyte-induced inflammatory responses by regulating energy homeostasis and a reduction 

in lipotoxicity-induced insulin resistance [57]. Empagliflozin (SGLT2i) increases insulin 

sensitivity by ameliorating inflammatory processes and visceral fat lowering via an M2 

macrophage polarization-dependent mechanism in white adipose tissue (WAT) of diabetic 

mice. Also, it promoted browning adipose tissue led to increased energy expenditure and 

thermogenesis[58]. Xu and colleagues provided evidence for the effects of SGLT2i on WAT 

browning and fat utilization induced by activating M2 macrophage. Thus, they concluded that 

empagliflozin has beneficial effects on obesity-related inflammation and insulin resistance.  

[57]. In a clinical trial with 38 diabetic patients, SGLT2i therapy by canagliflozin significantly 

improved insulin resistance by a reduction in body weight as well as lowering visceral and 

ectopic fatty tissues in Japanese patients with T2DM [59]. Furthermore, Singh and coworkers 

in 2019 provided the same evidence about Indian patients with T2DM suggesting that visceral 

fat lowering effect of SGLT2i therapy potentially improves insulin sensitivity [60]. Okamoto 

et al. in 2016 found that dapagliflozin improved adipocyte function which increased 

adiponectin in obese patients with T2DM [61]. Matsumura and coworkers in 2017 also reported 
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that canagliflozin increased adiponectin-induced glucose homeostasis in patients with T2DM 

[62]. Tobita et al in 2017 demonstrated that canagliflozin therapy in patients with T2DM 

improved glucose metabolism by reducing visceral fat resulting in metabolic improvement 

[63]. Garvey et al. in 2018 provided more evidence implying that canagliflozin improved 

glucose homeostasis by improving lipid metabolism and leptin level in patients with diabetes 

[64]. This evidence strongly suggests that SGLT2i therapy can increase insulin sensitivity and 

improve glucose homeostasis at least partly via lowering adipocytes number, fatty tissues and 

plasma lipids [57, 59, 60].       

3. Attenuating the inflammatory responses  

Inflammatory responses are potent upstream events in the pathophysiology of DM, 

contributing to insulin resistance and lowering insulin sensitivity in the peripheral tissues [52]. 

Patients with diabetes have higher levels of inflammatory mediators, including active cytokines 

in the blood, which potentially impair IST, thereby reducing insulin sensitivity [52]. 

Inflammation hypothesis states that inflammation is strongly involved in the pathophysiology 

of DM [65, 66]. There is growing evidence that SGLT2i can inhibit or decline inflammatory 

processes and prevent the expression of inflammatory mediators [67, 68]. It has been suggested 

that SGLT2 inhibitors can suppress inflammatory responses via both direct (impact on the 

immune system) and indirect molecular pathways via at least 5 different molecular mechanisms 

such as modulation of the renin-angiotensin system (RAS), altering hemodynamic changes, 

reduction in obesity‐induced inflammation, modulation of immune system function and 

readjustment of the redox state in tissue leading to a lower rate of inflammatory responses [57, 

69-74]. Since lower inflammatory response can be translated to a reduced impairment in IST 

and lower risk for insulin resistance, we concluded that anti-inflammatory properties of 

SGLT2i could be exploited to design novel therapeutic approaches for patients with diabetes.  
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4. Improvement in beta-cell function  

Majority of patients with T2DM have some impairment in pancreatic beta-cell function [75, 

76]. They have dysfunctional islets with suboptimal response to stimuli and thereby, inadequate 

insulin release [76]. The number of functional beta cells is also reduced due to 

pathophysiological mechanisms such as oxidative damage, fibrosis and inflammation leading 

to higher rates of apoptotic processes [76, 77]. Improving beta cells function is one of the main 

targets in patients with diabetes to normalize hyperglycemia [78, 79]. Although one may 

conclude that SGLT-2i can only increase insulin action, there direct evidences suggesting 

SGLT2 inhibition increases insulin sensitivity by improving islet cell function in diabetic 

milieu [55, 80-82]. This action could be possibly through improvement in beta cell-mediated 

insulin dependent glucose homeostasis.    

Jurczak et al. in 2013 demonstrated that SGLT2 deletion in animals with diabetes improves 

glucose homeostasis and enhances insulin sensitivity by preserving the beta cells function in a 

diabetic milieu [55]. They have observed a 60% increase in beta cell mass and lower levels of 

apoptotic death leading to more functional pancreatic islets in SGLT2 knockout diabetic mice 

[55]. Kaneto and colleagues in 2017 observed that SGLT2i therapy protects beta cells against 

glucose toxicity and β-cell lipotoxicity as well as improves islet cell function leading to 

increased insulin sensitivity [80]. SGLT2 inhibitory agents can preserve islet function by 

attenuating the pathophysiologic pathways and deleterious molecular mechanisms [80]. They 

can suppress glucotoxicity, lipotoxicity, inflammatory processes, fibrotic processes and 

oxidative damages leading to lower rates of beta cell death and more functional mass of islets 

thereby improving insulin sensitivity and glucose homeostasis [79-81, 83]. Cheng et al. in 2016 

surveyed the potential beneficial effects of empagliflozin and found that it improved glucose 

homeostasis by preserving the beta-cell function probably via suppressing the glucotoxicity-
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induced oxidative stress-dependent beta-cell death and by increasing regeneration of pancreatic 

islet cells in diabetic mice [83]. Also, Asahara et al. in 2019 suggested that SGLT2i re-adjust 

glucose homeostasis by preserving beta cells function [81].  

Merovci et al. in 2015 in a human clinical trial demonstrated that SGLT2i with dapagliflozin 

increased insulin sensitivity by an improvement of beta cells function in T2DM individuals 

[84]. Al Jobori et al. in 2018 reported that empagliflozin therapy for two weeks is associated 

with better beta-cell function in patients with diabetes [82]. They showed that empagliflozin 

therapy increased islets' glucose sensitivity during periods of hyperglycemic clamps which is 

a method for assessing the function of beta cells [82]. Moreover, Takahara and coworkers in 

2015 evaluated the islets function using disposition index and found that four weeks of 

treatment with ipragliflozin improved beta-cell function in patients with T2DM [85]. These 

strong experimental and human evidence firmly suggest that SGLT2i therapy improves beta 

cell function in a diabetic milieu [81-83, 85]. They demonstrated that SGLT2i therapy in 

diabetic milieu is a potential way for improvement of beta-cell function via several mechanisms 

leading to an increased number of functional beta-cells and thereby more ability to secrete 

insulin in response to circulating glucose [81-83, 85].                 

 

5. Reduction in oxidative stress  

Free radical generation is a common phenomenon in the biologic milieu which has important 

biologic functions such as cellular signaling in the physiologic range [86]. In high 

concentrations, free radical species produces oxidative stress which is one of the main and 

potent upstream events in various pathophysiologic states including DM [87]. Oxidative stress 

impairs IST significantly and reduces insulin sensitivity, thereby increasing insulin resistance 

leading to DM [88, 89]. It negatively affects peripheral insulin sensitivity and down-regulates 



12 
 

glucose transport system in insulin-dependent cells [88]. Alleviating the free radical production 

and normalizing its concentration near to the physiologic ranges is one of the main therapeutic 

targets in DM and preventing its complications [90, 91]. 

There is growing evidence that SGLT2i improve redox state in the diabetic milieu [92]. They 

can exert potent antioxidative properties by several molecular mechanisms including 

improvement in mitochondrial dysfunction [92, 93], regulating the RAS (renin-angiotensin 

system) activity [70, 94], attenuating inflammation-induced free radical generation [95, 96], 

lowering the AGEs (advanced glycation end products) and AGE/RAGE (receptors for 

advanced glycation end products) crosstalk [97, 98], down-regulating the pro-oxidant enzymes 

expression/activity as NADPH (Nicotinamide adenine dinucleotide phosphate) oxidase, eNOS 

(endothelial nitric oxide synthase) and xanthine oxidase [99, 100]. Based on this evidence, 

SGLT2 inhibition ameliorates oxidative stress and could improve insulin sensitivity by 

attenuating oxidative damages in the diabetic milieu [57, 101].               

  

 

Figure 1: possible pathways by which SGLT2i induce insulin sensitivity  
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Conclusion  

Sodium-glucose co-transporter inhibitors are a relatively new class of medications used in the 

management of diabetes for lowering blood glucose as well as reducing microvascular and 

macrovascular complications associated with it. Beyond the glycosuric effects, these agents 

have pleiotropic effects on glucose homeostasis (Table 1). While they are considered as potent 

glucose-lowering drugs, they can also improve insulin sensitivity and glucose homeostasis via 

several molecular pathways including reduction of glucotoxicity and lipotoxicity, improvement 

in beta cell function, reduction of oxidative damages and inflammatory processes as well as 

induction of caloric disposition and weight loss (Fig 1).  
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Table 1.  Main molecular mechanisms by which SGLT2i therapy increase insulin 
sensitivity (IST=insulin signal transduction)  

Molecular 
Mechanisms  Detailed Effects of SGLT2i  Ref.  

Inhibition of Glucose 
Toxicity 

Normalize hyperglycemia near to physiologic ranges 
leading to lowering rates of glucotoxicity and thereby 

increasing peripheral insulin sensitivity  
[7, 8, 43]  

Caloric Disposition and 
Weight Loss 

Induce caloric deposition by glycosuria leading to lesser 
adipocytes number as well as lesser adipocytokines and 

lipotoxicity thereby improving peripheral insulin 
sensitivity   

[57, 59, 60]  

Attenuating the 
Inflammatory Responses 

Induce peripheral insulin sensitivity by reduction of 
various inflammatory processes  

[58, 68, 70, 
102-106] 

Improvement in Beta 
Cell Function 

Improve beta cell mass/function by ameliorating the 
pathophysiological pathways involved in the islets cells' 

death  
[55, 79-85] 

Reducing the Oxidative 
Stress 

Reduce insulin resistance by attenuating the oxidative 
stress-dependent IST impairment  

[57, 70, 89, 94, 
97, 98, 101] 

 

  



15 
 

References  

1. Mayer-Davis, E.J., et al., Incidence trends of type 1 and type 2 diabetes among youths, 2002–
2012. New England Journal of Medicine, 2017. 376(15): p. 1419-1429. 

2. Huang, E.S., et al., Glycemic control, complications, and death in older diabetic patients: the 
diabetes and aging study. Diabetes care, 2011. 34(6): p. 1329-1336. 

3. Forbes, J.M. and M.E. Cooper, Mechanisms of diabetic complications. Physiological reviews, 
2013. 93(1): p. 137-188. 

4. Chen, Y., F.A. Sloan, and A.P. Yashkin, Adherence to diabetes guidelines for screening, 
physical activity and medication and onset of complications and death. Journal of Diabetes 
and its Complications, 2015. 29(8): p. 1228-1233. 

5. Association, A.D., Standards of medical care in diabetes—2014. Diabetes care, 2014. 
37(Supplement 1): p. S14-S80. 

6. Yaribeygi, H., et al., A review of the anti‐inflammatory properties of antidiabetic agents 
providing protective effects against vascular complications in diabetes. Journal of cellular 
physiology, 2019. 234(6): p. 8286-8294. 

7. Merovci, A., et al., Dapagliflozin improves muscle insulin sensitivity but enhances 
endogenous glucose production. The Journal of clinical investigation, 2014. 124(2): p. 509-
514. 

8. Kern, M., et al., The SGLT2 inhibitor empagliflozin improves insulin sensitivity in db/db mice 
both as monotherapy and in combination with linagliptin. Metabolism, 2016. 65(2): p. 114-
123. 

9. Chao, E.C. and R.R. Henry, SGLT2 inhibition—a novel strategy for diabetes treatment. Nature 
reviews drug discovery, 2010. 9(7): p. 551. 

10. Fadini, G.P. and A. Avogaro, SGLT2 inhibitors and amputations in the US FDA Adverse Event 
Reporting System. The Lancet Diabetes & Endocrinology, 2017. 5(9): p. 680-681. 

11. Singh, M. and A. Kumar, Risks associated with SGLT2 inhibitors: an overview. Current drug 
safety, 2018. 13(2): p. 84-91. 

12. Scheen, A.J., Does lower limb amputation concern all SGLT2 inhibitors? Nature Reviews 
Endocrinology, 2018. 14(6): p. 326. 

13. Adimadhyam, S., et al., Risk of amputations associated with SGLT2 inhibitors compared to 
DPP‐4 inhibitors: A propensity‐matched cohort study. Diabetes, Obesity and Metabolism, 
2018. 20(12): p. 2792-2799. 

14. Filippas-Ntekouan, S., T.D. Filippatos, and M.S. Elisaf, SGLT2 inhibitors: are they safe? 
Postgraduate medicine, 2018. 130(1): p. 72-82. 

15. Association, A.D., Diagnosis and classification of diabetes mellitus. Diabetes care, 2014. 
37(Supplement 1): p. S81-S90. 

16. de Faria Maraschin, J., Classification of diabetes, in Diabetes. 2013, Springer. p. 12-19. 
17. O’Neal, K.S., J.L. Johnson, and R.L. Panak, Recognizing and appropriately treating latent 

autoimmune diabetes in adults. Diabetes Spectrum, 2016. 29(4): p. 249-252. 
18. Gailliot, M.T. and R.F. Baumeister, The physiology of willpower: Linking blood glucose to self‐

control, in Self‐Regulation and Self‐Control. 2018, Routledge. p. 137-180. 
19. Hall, J.E., Guyton and Hall textbook of medical physiology e‐Book. 2015: Elsevier Health 

Sciences. 
20. Katsiki, N., D. P Mikhailidis, and M. J Theodorakis, Sodium‐glucose cotransporter 2 inhibitors 

(SGLT2i): their role in cardiometabolic risk management. Current pharmaceutical design, 
2017. 23(10): p. 1522-1532. 

21. Chen, Y. and J. Lippincott-Schwartz, Selective visualization of GLUT4 storage vesicles and 
associated Rab proteins using IRAP‐pHluorin, in Rab GTPases. 2015, Springer. p. 173-179. 

22. Huang, S. and M.P. Czech, The GLUT4 glucose transporter. Cell metabolism, 2007. 5(4): p. 
237-252. 



16 
 

23. Rutter, G.A., et al., Pancreatic β‐cell identity, glucose sensing and the control of insulin 
secretion. Biochem J, 2015. 466(2): p. 203-218. 

24. Færch, K., et al., Insulin resistance is accompanied by increased fasting glucagon and delayed 
glucagon suppression in individuals with normal and impaired glucose regulation. Diabetes, 
2016: p. db160240. 

25. Kiselyov, V.V., et al., Harmonic oscillator model of the insulin and IGF1 receptors’ allosteric 
binding and activation. Molecular systems biology, 2009. 5(1): p. 243. 

26. Copps, K. and M. White, Regulation of insulin sensitivity by serine/threonine phosphorylation 
of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia, 2012. 55(10): p. 2565-
2582. 

27. Ho, C.K., G. Sriram, and K.M. Dipple, Insulin sensitivity predictions in individuals with obesity 
and type II diabetes mellitus using mathematical model of the insulin signal transduction 
pathway. Molecular genetics and metabolism, 2016. 119(3): p. 288-292. 

28. Koeppen, B.M. and B.A. Stanton, Berne and levy physiology e‐book. 2017: Elsevier Health 
Sciences. 

29. Wojtaszewski, J., et al., Insulin signaling and insulin sensitivity after exercise in human 
skeletal muscle. Diabetes, 2000. 49(3): p. 325-331. 

30. Pessin, J.E. and A.R. Saltiel, Signaling pathways in insulin action: molecular targets of insulin 
resistance. The Journal of clinical investigation, 2000. 106(2): p. 165-169. 

31. Chang, L., S.-H. Chiang, and A.R. Saltiel, Insulin signaling and the regulation of glucose 
transport. Molecular medicine, 2004. 10(7): p. 65. 

32. Rajasekeran, H., Y. Lytvyn, and D.Z. Cherney, Sodium–glucose cotransporter 2 inhibition and 
cardiovascular risk reduction in patients with type 2 diabetes: the emerging role of 
natriuresis. Kidney international, 2016. 89(3): p. 524-526. 

33. Chao, E.C., SGLT‐2 inhibitors: a new mechanism for glycemic control. Clinical Diabetes, 2014. 
32(1): p. 4-11. 

34. Makarova, E., et al., Acute anti‐hyperglycaemic effects of an unripe apple preparation 
containing phlorizin in healthy volunteers: a preliminary study. Journal of the Science of Food 
and Agriculture, 2015. 95(3): p. 560-568. 

35. Clar, C., J.A. Gill, and N. Waugh, Systematic review of SGLT2 receptor inhibitors in dual or 
triple therapy in type 2 diabetes. BMJ open, 2012. 2(5): p. e001007. 

36. Han, S., et al., Dapagliflozin, a selective SGLT2 inhibitor, improves glucose homeostasis in 
normal and diabetic rats. Diabetes, 2008. 57(6): p. 1723-1729. 

37. Wilding, J., et al., Dapagliflozin in patients with type 2 diabetes receiving high doses of 
insulin: efficacy and safety over 2 years. Diabetes, Obesity and Metabolism, 2014. 16(2): p. 
124-136. 

38. Ferrannini, E., et al., Metabolic response to sodium‐glucose cotransporter 2 inhibition in type 
2 diabetic patients. The Journal of clinical investigation, 2014. 124(2): p. 499-508. 

39. Reddy, R.M. and S.E. Inzucchi, SGLT2 inhibitors in the management of type 2 diabetes. 
Endocrine, 2016. 53(2): p. 364-372. 

40. Luo, X., et al., Hyperglycemic stress and carbon stress in diabetic glucotoxicity. Aging and 
disease, 2016. 7(1): p. 90. 

41. Campos, C., Chronic hyperglycemia and glucose toxicity: pathology and clinical sequelae. 
Postgraduate medicine, 2012. 124(6): p. 90-97. 

42. Lindmark, S., J. Burén, and J.W. Eriksson, Insulin resistance, endocrine function and 
adipokines in type 2 diabetes patients at different glycaemic levels: potential impact for 
glucotoxicity in vivo. Clinical Endocrinology, 2006. 65(3): p. 301-309. 

43. List, J.F. and J.M. Whaley, Glucose dynamics and mechanistic implications of SGLT2 inhibitors 
in animals and humans. Kidney International, 2011. 79: p. S20-S27. 



17 
 

44. Bertinat, R., F. Nualart, and A.J. Yáñez, SGLT2 inhibitors: glucotoxicity and tumorigenesis 
downstream the renal proximal tubule? Journal of cellular physiology, 2016. 231(8): p. 1635-
1637. 

45. Khat, D.Z. and M. Husain, Molecular mechanisms underlying the cardiovascular benefits of 
SGLT2i and GLP‐1RA. Current diabetes reports, 2018. 18(7): p. 45. 

46. Pinto, L.C., et al. Efficacy of SGLT2 inhibitors in glycemic control, weight loss and blood 
pressure reduction: a systematic review and meta‐analysis. in Diabetology & metabolic 
syndrome. 2015. BioMed Central. 

47. Cai, X., et al., Comparisons of weight changes between sodium‐glucose cotransporter 2 
inhibitors treatment and glucagon‐like peptide‐1 analogs treatment in type 2 diabetes 
patients: A meta‐analysis. Journal of diabetes investigation, 2017. 8(4): p. 510-517. 

48. Cai, X., et al., The Association Between the Dosage of SGLT2 Inhibitor and Weight Reduction 
in Type 2 Diabetes Patients: A Meta‐Analysis. Obesity, 2018. 26(1): p. 70-80. 

49. Clamp, L., et al., Enhanced insulin sensitivity in successful, long‐term weight loss maintainers 
compared with matched controls with no weight loss history. Nutrition & diabetes, 2017. 
7(6): p. e282. 

50. Chen, H., Cellular inflammatory responses: novel insights for obesity and insulin resistance. 
Pharmacological Research, 2006. 53(6): p. 469-477. 

51. Rehman, K. and M.S.H. Akash, Mechanisms of inflammatory responses and development of 
insulin resistance: how are they interlinked? Journal of biomedical science, 2016. 23(1): p. 87. 

52. Singer, G. and D.N. Granger, Inflammatory responses underlying the microvascular 
dysfunction associated with obesity and insulin resistance. Microcirculation, 2007. 14(4-5): p. 
375-387. 

53. Tan, P., et al., Impact of the prorenin/renin receptor on the development of obesity and 
associated cardiometabolic risk factors. Obesity, 2014. 22(10): p. 2201-2209. 

54. Kahn, S.E., R.L. Hull, and K.M. Utzschneider, Mechanisms linking obesity to insulin resistance 
and type 2 diabetes. Nature, 2006. 444(7121): p. 840. 

55. Jurczak, M.J., et al., SGLT2 deletion improves glucose homeostasis and preserves pancreatic 
β‐cell function. Diabetes, 2011. 60(3): p. 890-898. 

56. Shamansurova, Z., et al., Adipose tissue (P) RR regulates insulin sensitivity, fat mass and body 
weight. Molecular metabolism, 2016. 5(10): p. 959-969. 

57. Xu, L. and T. Ota, Emerging roles of SGLT2 inhibitors in obesity and insulin resistance: Focus 
on fat browning and macrophage polarization. Adipocyte, 2018. 7(2): p. 121-128. 

58. Xu, L., et al., SGLT2 inhibition by empagliflozin promotes fat utilization and browning and 
attenuates inflammation and insulin resistance by polarizing M2 macrophages in diet‐
induced obese mice. EBioMedicine, 2017. 20: p. 137-149. 

59. Koike, Y., et al., Effect of canagliflozin on the overall clinical state including insulin resistance 
in Japanese patients with type 2 diabetes mellitus. Diabetes research and clinical practice, 
2019. 149: p. 140-146. 

60. Singh, A.K., et al., Evidence‐Based Consensus on Positioning of SGLT2i in Type 2 Diabetes 
Mellitus in Indians. Diabetes Therapy, 2019. 10(2): p. 393-428. 

61. Okamoto, A., et al., Changes in levels of biomarkers associated with adipocyte function and 
insulin and glucagon kinetics during treatment with dapagliflozin among obese type 2 
diabetes mellitus patients. Drugs in R&D, 2016. 16(3): p. 255-261. 

62. Matsumura, M., et al., Efficacy of additional canagliflozin administration to type 2 diabetes 
patients receiving insulin therapy: examination of diurnal glycemic patterns using continuous 
glucose monitoring (CGM). Diabetes Therapy, 2017. 8(4): p. 821-827. 

63. Tobita, H., et al., Effects of dapagliflozin on body composition and liver tests in patients with 
nonalcoholic steatohepatitis associated with type 2 diabetes mellitus: a prospective, open‐
label, uncontrolled study. Current Therapeutic Research, 2017. 87: p. 13-19. 



18 
 

64. Garvey, W.T., et al., Effects of canagliflozin versus glimepiride on adipokines and 
inflammatory biomarkers in type 2 diabetes. Metabolism, 2018. 85: p. 32-37. 

65. Dandona, P., A. Aljada, and A. Bandyopadhyay, Inflammation: the link between insulin 
resistance, obesity and diabetes. Trends in immunology, 2004. 25(1): p. 4-7. 

66. Navarro-González, J.F., et al., Inflammatory molecules and pathways in the pathogenesis of 
diabetic nephropathy. Nature Reviews Nephrology, 2011. 7(6): p. 327. 

67. Nasiri-Ansari, Ν., et al., Canagliflozin attenuates the progression of atherosclerosis and 
inflammation process in APOE knockout mice. Cardiovascular diabetology, 2018. 17(1): p. 
106. 

68. Bonnet, F. and A.J. Scheen, Effects of SGLT2 inhibitors on systemic and tissue low‐grade 
inflammation: The potential contribution to diabetes complications and cardiovascular 
disease. Diabetes & metabolism, 2018. 

69. Yaribeygi, H., et al., Sodium‐glucose cotransporter inhibitors and oxidative stress: An update. 
J Cell Physiol, 2019. 234(4): p. 3231-3237. 

70. Li, L., et al., Effect of a SGLT2 inhibitor on the systemic and intrarenal renin–angiotensin 
system in subtotally nephrectomized rats. Journal of pharmacological sciences, 2018. 137(2): 
p. 220-223. 

71. Bonora, B.M., et al., Effects of the SGLT2 inhibitor dapagliflozin on cardiac function evaluated 
by impedance cardiography in patients with type 2 diabetes. Secondary analysis of a 
randomized placebo‐controlled trial. Cardiovascular diabetology, 2019. 18(1): p. 106. 

72. Tahara, A., et al., Effects of SGLT2 selective inhibitor ipragliflozin on hyperglycemia, 
hyperlipidemia, hepatic steatosis, oxidative stress, inflammation, and obesity in type 2 
diabetic mice. European journal of pharmacology, 2013. 715(1-3): p. 246-255. 

73. Jigheh, Z.A., et al., Empagliflozin alleviates renal inflammation and oxidative stress in 
streptozotocin‐induced diabetic rats partly by repressing HMGB1‐TLR4 receptor axis. Iranian 
journal of basic medical sciences, 2019. 22(4): p. 384. 

74. Li, C., et al., SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and 
fibrosis in diabetic mice heart. Cardiovascular diabetology, 2019. 18(1): p. 15. 

75. Porte, D. and S.E. Kahn, beta‐cell dysfunction and failure in type 2 diabetes: potential 
mechanisms. Diabetes, 2001. 50(suppl 1): p. S160. 

76. Fu, Z., E. R Gilbert, and D. Liu, Regulation of insulin synthesis and secretion and pancreatic 
Beta‐cell dysfunction in diabetes. Current diabetes reviews, 2013. 9(1): p. 25-53. 

77. Cooksey, R.C., et al., Oxidative stress, β‐cell apoptosis, and decreased insulin secretory 
capacity in mouse models of hemochromatosis. Endocrinology, 2004. 145(11): p. 5305-5312. 

78. Weng, J., et al., Effect of intensive insulin therapy on β‐cell function and glycaemic control in 
patients with newly diagnosed type 2 diabetes: a multicentre randomised parallel‐group 
trial. The Lancet, 2008. 371(9626): p. 1753-1760. 

79. Omar, B., et al., Enhanced beta cell function and anti‐inflammatory effect after chronic 
treatment with the dipeptidyl peptidase‐4 inhibitor vildagliptin in an advanced‐aged diet‐
induced obesity mouse model. Diabetologia, 2013. 56(8): p. 1752-1760. 

80. Kaneto, H., et al., Beneficial effects of sodium–glucose cotransporter 2 inhibitors for 
preservation of pancreatic β‐cell function and reduction of insulin resistance: 钠‐葡萄糖共转

运体 2 抑制剂对保护胰腺 β 细胞功能以及降低胰岛素抵抗的有益影响. Journal of 
diabetes, 2017. 9(3): p. 219-225. 

81. Asahara, S.-i. and W. Ogawa, SGLT2 inhibitors and protection against pancreatic beta cell 
failure. 2019, Springer. 

82. Al Jobori, H., et al., Empagliflozin treatment is associated with improved β‐cell function in 
type 2 diabetes mellitus. The Journal of Clinical Endocrinology & Metabolism, 2018. 103(4): 
p. 1402-1407. 

83. Cheng, S.T.W., et al., The effects of empagliflozin, an SGLT2 inhibitor, on pancreatic β‐cell 
mass and glucose homeostasis in type 1 diabetes. PloS one, 2016. 11(1): p. e0147391. 



19 
 

84. Merovci, A., et al., Dapagliflozin lowers plasma glucose concentration and improves β‐cell 
function. The Journal of Clinical Endocrinology & Metabolism, 2015. 100(5): p. 1927-1932. 

85. Takahara, M., et al., Ameliorated pancreatic β cell dysfunction in type 2 diabetic patients 
treated with a sodium‐glucose cotransporter 2 inhibitor ipragliflozin. Endocrine journal, 
2015. 62(1): p. 77-86. 

86. Pryor, W., Free radicals in biology. Vol. 6. 2012: Elsevier. 
87. Rains, J.L. and S.K. Jain, Oxidative stress, insulin signaling, and diabetes. Free Radical Biology 

and Medicine, 2011. 50(5): p. 567-575. 
88. Tangvarasittichai, S., Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes 

mellitus. World journal of diabetes, 2015. 6(3): p. 456. 
89. Yaribeygi, H., S.L. Atkin, and A. Sahebkar, A review of the molecular mechanisms of 

hyperglycemia‐induced free radical generation leading to oxidative stress. Journal of cellular 
physiology, 2019. 234(2): p. 1300-1312. 

90. Yaribeygi, H., et al., Effects of atorvastatin on myocardial oxidative and nitrosative stress in 
diabetic rats. Comparative Clinical Pathology, 2018. 27(3): p. 691-697. 

91. Yaribeygi, H., et al., Antioxidative potential of antidiabetic agents: A possible protective 
mechanism against vascular complications in diabetic patients. Journal of cellular physiology, 
2019. 234(3): p. 2436-2446. 

92. Oelze, M., et al., The sodium‐glucose co‐transporter 2 inhibitor empagliflozin improves 
diabetes‐induced vascular dysfunction in the streptozotocin diabetes rat model by interfering 
with oxidative stress and glucotoxicity. PLoS One, 2014. 9(11): p. e112394. 

93. Sa-nguanmoo, P., et al., SGLT2‐inhibitor and DPP‐4 inhibitor improve brain function via 
attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in 
HFD‐induced obese rats. Toxicology and applied pharmacology, 2017. 333: p. 43-50. 

94. Shin, S.J., et al., Effect of sodium‐glucose co‐transporter 2 inhibitor, dapagliflozin, on renal 
renin‐angiotensin system in an animal model of type 2 diabetes. PLoS One, 2016. 11(11): p. 
e0165703. 

95. Ishibashi, Y., T. Matsui, and S. Yamagishi, Tofogliflozin, a highly selective inhibitor of SGLT2 
blocks proinflammatory and proapoptotic effects of glucose overload on proximal tubular 
cells partly by suppressing oxidative stress generation. Hormone and Metabolic Research, 
2016. 48(03): p. 191-195. 

96. Wang, X.X., et al., SGLT2 protein expression is increased in human diabetic nephropathy 
SGLT2 protein inhibition decreases renal lipid accumulation, inflammation, and the 
development of nephropathy in diabetic mice. Journal of Biological Chemistry, 2017. 292(13): 
p. 5335-5348. 

97. Merhi, Z., et al., Advanced glycation end products upregulate insulin receptor substrate‐1 
(IRS‐1) in granulosa cells. Fertility and Sterility, 2017. 108(3): p. e29. 

98. Vlassara, H. and M. Palace, Diabetes and advanced glycation endproducts. Journal of internal 
medicine, 2002. 251(2): p. 87-101. 

99. Kawanami, D., et al., SGLT2 inhibitors as a therapeutic option for diabetic nephropathy. 
International journal of molecular sciences, 2017. 18(5): p. 1083. 

100. Terami, N., et al., Long‐term treatment with the sodium glucose cotransporter 2 inhibitor, 
dapagliflozin, ameliorates glucose homeostasis and diabetic nephropathy in db/db mice. PloS 
one, 2014. 9(6): p. e100777. 

101. Osorio, H., et al., Sodium‐glucose cotransporter inhibition prevents oxidative stress in the 
kidney of diabetic rats. Oxidative medicine and cellular longevity, 2012. 2012. 

102. Yaribeygi, H., et al., Sodium–glucose cotransporter 2 inhibitors and inflammation in chronic 
kidney disease: Possible molecular pathways. Journal of cellular physiology, 2019. 234(1): p. 
223-230. 



20 
 

103. Vallon, V., et al., SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in 
proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. 
American Journal of Physiology-Renal Physiology, 2013. 306(2): p. F194-F204. 

104. Takenaka, T., T. Inoue, and Y. Watanabe, How the kidney hyperfiltrates in diabetes: From 
molecules to hemodynamics. World journal of diabetes, 2015. 6(4): p. 576. 

105. Jung, U. and M.-S. Choi, Obesity and its metabolic complications: the role of adipokines and 
the relationship between obesity, inflammation, insulin resistance, dyslipidemia and 
nonalcoholic fatty liver disease. International journal of molecular sciences, 2014. 15(4): p. 
6184-6223. 

106. Jafar, N., H. Edriss, and K. Nugent, The effect of short‐term hyperglycemia on the innate 
immune system. The American journal of the medical sciences, 2016. 351(2): p. 201-211. 

 

 

 


