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Abstract: The concept of precision medicine has been around for many years and recent advances 9 

in high-throughput sequencing techniques are enabling this to become reality. Within the field of 10 
breast cancer, a number of signatures have been developed to molecularly sub-classify tumours.  11 

Notable examples recently approved by National Institute for Health and Care Excellence in the 12 
UK to guide treatment decisions for ER+ HER2- patients include Prosigna test, EndoPredict and 13 
Oncotype DX. However, a population of still unmet need are those with Triple Negative Breast 14 
Cancer (TNBC). Accounting for 15-20% of patients, this population has comparatively poor 15 
prognosis and as yet no targeted treatment options. Studies have shown that some patients with 16 

TNBC respond favourably to DNA damaging drugs (carboplatin) or agents which inhibit DNA 17 
damage response (PARP inhibitors). Known to be a heterogeneous population, there is a need to 18 
identify further TNBC patients who may benefit from these treatments. A number of signatures 19 
have been identified based on association with treatment response or specific genetic 20 

features/pathways however many of these were not restricted to TNBC patients and as of yet are 21 
not common practice in the clinic.  22 
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 24 

Introduction 25 

Breast cancer is the most common malignancy diagnosed in the UK, with over 55,000 new cases 26 
diagnosed each year[1]. Traditionally, tumours are classified according to the presence of oestrogen 27 
receptors (ER), progesterone receptors (PgR) (considered together as hormone receptor status) and 28 
human epidermal growth factor receptor 2 (HER2). Treatment beyond surgery, chemotherapy and 29 

radiotherapy is directed according to ER, PgR and HER2 status, with endocrine therapy or 30 
trastuzumab available for patients with hormone receptor positive and HER2 positive tumours 31 
respectively. 32 

Accounting for approximately 10-20% of breast cancer diagnoses, triple negative breast cancers 33 

(TNBC) are characterised by ER, PgR and HER2 negativity. These sub-classifications of breast cancer 34 
however mask further heterogeneity and classification beyond these well-established biomarkers 35 
can provide further information regarding prognosis for patients. A number of prognostic 36 
algorithms are available to predict patients’ risk of recurrence including Oncotype DX®, 37 
MammaPrint®, EndoPredict® and Prosigna®. Many of these assays can also help to inform 38 

chemotherapy decisions for patients but other than MammaPrint® are exclusively aimed at 39 
hormone receptor positive patients, with the picture for TNBC being less clear. A number of 40 
molecular subtypes within TNBC have been identified but as of yet there is no consensus on how 41 
these should be used to inform treatment choices for patients. Given the worse prognosis for these 42 
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patients, there is an outstanding need to identify targeted treatment options to improve the 43 

likelihood of therapeutic success in TNBC.  44 
In this review we aim to summarise the current knowledge about promising targeted therapy 45 

for TNBC and associated molecular signatures for treatment response. 46 

Molecular heterogeneity within Triple Negative Breast Cancer 47 

Intrinsic subtypes 48 

A number of attempts have been made to sub-classify breast cancer tumours to further explain 49 
the inherent heterogeneity (Table 1). One of the most renowned is the intrinsic subtypes first 50 
discussed in 2000 by Perou et al[2]. Using hierarchical clustering of gene expression data from DNA 51 
microarray, Perou et al identified a set of 496 genes, referred to as the “intrinsic gene subset”, which 52 

showed greater between than within sample variation. Using expression patterns of the intrinsic 53 
gene subset, it was shown that tumours could be classified into one of five intrinsic sub groups; 54 
Basal-like, HER2-enriched, Luminal A, Luminal B and Normal like[3]. In 2009, Parker et al refined 55 
the intrinsic gene subset to an optimal list of 50 genes. A final classification algorithm based on these 56 
50 genes, referred to as the PAM50 classifier, was established using nearest shrunken centroid 57 

methodology[4]. New samples are classified into an intrinsic subgroup based on the nearest centroid 58 
method.  59 

Table 1. Summary of breast cancer sub-classifications within TNBC. 60 

Subtype Key features 

Frequenc

y in early 

TNBC[5-

7] 

Anticipated 

chemotherapy-sensiti

vity 

Intrinsic 

subtypes 

Basal-like 

Gene expression 

similar to 

basal-epithelial cells. 

High expression of 

proliferation genes. 

High overlap with 

TNBC & enriched for 

BRCA mutations. 

39-54% High 

HER2-enriched 

High expression of 

HER2-regulated genes. 

Good overlap with 

ER-, HER2+ tumours. 

7-14% Intermediate 

Luminal A 

Gene expression 

similar to 

luminal-epithelial cells. 

High expression of 

ER-related genes. 

4-5% Low 

Luminal B 

Gene expression 

similar to 

luminal-epithelial cells. 

Expression of 

ER-related genes low 

compared to Luminal 

A tumours. 

4-7% Low 
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Claudin-low 

High expression of 

epithelial-to-mesenchy

mal transition markers 

and low expression of 

claudins 3, 4 and 7. 

Lower proliferation 

compared to Basal-like. 

25-39% Intermediate 

 Normal like 
Similar expression to 

normal breast tissue. 
1% Low 

TNBC subtypes 

Basal-like 1 

High expression of 

genes related to cell 

cycle, DNA damage 

response and 

proliferation. 

32-36% High 

Basal-like 2 

Increased expression of 

growth factor signaling 

related genes. 

18-24% Intermediate 

Mesenchymal 

Increased expression of 

genes related to cell 

motility, differentiation 

and growth. Absence 

of immune cells. 

24-25% Intermediate 

Luminal AR 

Enrichment of 

pathways which are 

hormonally driven but 

typically hormone 

receptor negative. 

High expression of 

AR-related genes.   

14-22% Low 

Baylor 

Luminal AR 

High expression of 

oestrogen regulated 

genes but typically 

negative by ER 

staining. 

15-33% Low 

Mesenchymal 

High expression of 

genes from the 

following pathways: 

cell-cycle, mismatch 

repair & DNA damage. 

17-28% Intermediate 

Basal-like Immune 

Suppressed 

Low expression of 

immune-related 

pathway genes. 

29-31% High 

Basal-like Immune 

Activated 

High expression of 

immune-related 

pathway genes. 

25-30% High 

The intrinsic subtypes were observed to be highly associated with ER and HER2 status with the 61 
majority of triple negative tumours being classed as Basal-like[8, 9]. Despite these associations, the 62 
intrinsic subtypes have been shown to be independent predictors of relapse free survival and 63 
neoadjuvant chemotherapy response in untreated and treated patients respectively[4]. Given the 64 

majority of TNBC patients are classified as Basal-like, tremendous efforts have been made to 65 
molecularly dissect further the TNBC/non Basal-like tumours as well as to identify drug targets for 66 
Basal-like tumours. 67 

More recently, an additional intrinsic subtype termed Claudin-low was discovered, 68 
characterised by high expression of epithelial-to-mesenchymal transition markers and low 69 

expression of claudins 3, 4 and 7 [5, 10]. Gene expression profiles of Claudin-low tumours is similar 70 
to that of Basal-like tumours, with a key difference being lower expression of genes associated with 71 
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proliferation[5]. Similar to the Basal-like subtype, Claudin-low tumours are most prevalently 72 

observed in TNBC but have slightly improved prognosis, although this does not reach statistical 73 
significance. Compared to the other intrinsic subtypes, response rates to anthracyclines/taxanes in 74 
Claudin-low tumours is lower than that of Basal-like tumours but still higher than Luminal A and 75 
Luminal B[5]. 76 

In 2011, Lehmann et al used cluster analysis of gene expression profiles to identify 6 genetic 77 
subtypes within triple negative breast cancer; Basal-like 1 and 2, Immunomodulatory, 78 
Mesenchymal, Mesenchymal Stem-like and Luminal Androgen Receptor subtypes[11]. Similar to the 79 
intrinsic breast cancer subtypes, relapse free survival was significantly different between TNBC 80 
subtypes (p=0.008) however distant metastasis free survival was not (p=0.218) suggesting the relapse 81 

free survival difference is driven by a difference in local recurrence rates. Using TNBC cell lines, 82 
Lehmann et al showed differential response rates between cell lines to different treatments. 83 
However, results were not always consistent for cell-lines representing a single subtype. For 84 
example, the BRCA1 mutant cell line demonstrated a sensitivity to poly ADP ribose polymerase 85 

(PARP) inhibitors which was not found for all other cell-lines representing the Basal-like subtypes. 86 

They did however identify a difference in response rates to neoadjuvant taxanes in a meta-analysis 87 
of 2 studies, with preferential response rates in the Basal-1 and Basal-2 subtypes. In 2013, Masuda et 88 
al also showed an association between pathological complete response rates and the Lehmann 89 
subtypes for 130 patients treated neo-adjuvantly with taxanes and/or anthracyclines[12]. Confirming 90 

the results shown by Lehmann’s group, the best response rates were seen in patients classified as 91 
Basal-1[12]. These results highlight the potential to target neoadjuvant treatment with taxanes to 92 
those triple negative tumours classed as Basal-like.  93 

Lehmann et al further refined the 6 subtypes to 4, dropping the Immunomodulatory and 94 
Mesenchymal Stem-like subtypes after identifying that these subtypes had a large number of 95 

infiltrating lymphocytes or mesenchymal cells[6]. Using the refined subtypes, initially no significant 96 
differences in complete response rates to neoadjuvant chemotherapy were seen (regimens contained 97 
a taxane and/or anthracycline, results were consistent across regimens). A combined analysis of 4 98 
datasets however showed that Basal-like 1 tumours had a significantly higher response rate 99 
compared to the other subtypes. Similar results were also found in a recent study by Echavarria et 100 

al[13] in which RNA sequencing data from FFPE samples was available for 94 patients treated with 101 
neoadjuvant carboplatin and docetaxel. Pathological complete response rates were significantly 102 
associated with the refined Lehmann subtypes (p=0.027) with the highest rate seen in Basal-1 103 
patients with 65.6%; followed by 47.4% in Basal-2, 34.8% in Mesenchymal and 21.4% in Luminal AR 104 

[13]. 105 
An eighty gene signature was published by Burstein et al in 2015, classifying TNBC patients 106 

into 1 of 4 subtypes; Luminal-AR (LAR), Mesenchymal (MES), Basal-like Immune-Suppressed 107 
(BLIS) and Basal-like Immune-Activated (BLIA) referred to as the Baylor subtypes[7]. The subtypes 108 
showed significantly different disease free and disease specific survival with the worst and best 109 

prognoses observed for patients classified as Basal-like Immune Suppressed and Basal-like Immune 110 
Active respectively. Substantial overlap with the intrinsic subtypes was observed with the BLIS and 111 
BLIA subgroups containing only Basal-like tumours whereas the LAR subgroup was a mix of 112 
Luminal A, Luminal B and HER2-enriched. MES encompassed the remaining Basal-like tumours 113 
and included the Normal-like samples. Some concordance with the original Lehmann TNBC 6 114 

subtypes was also observed, with good overlap of the LAR subtypes according to both 115 
classifications as well as the mesenchymal groups. Basal-like 1 and Basal-like 2 were both split 116 
between BLIA and BLIS indicating that the signatures are picking out different features within 117 
Basal-like tumours.  118 

A number of studies have been carried out to provide insight regarding racial disparity 119 

between subtypes. The Carolina Breast Cancer Study Phase III is a population-based study, within 120 
which the PAM50 algorithm was successfully applied to 980 white or African American breast 121 
cancer patients. Results showed that Basal-like tumours were more prevalent in African American 122 
women compared to white women[14], this held true across age groups (<50 vs 50). On the other 123 
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hand, in the same study, Luminal A tumours were observed less frequently in African American 124 

women[14]. Jiang et al looked at TNBC subtypes within a cohort of 360 Chinese women; compared 125 
to African American and Caucasian TNBC subsets from TCGA, the Chinese cohort had a 126 
significantly higher rate of Luminal AR tumours (p<0.05)[15].  127 

The disparities between these different breast cancer subtypes despite the generally good 128 

overlap serves to highlight the complexities of the heterogeneity within TNBC. Although all three 129 
subtypes provide prognostic information for patients, further work is required in order to be able to 130 
personalise therapy for TNBC patients. 131 

Androgen receptor expression 132 

Androgen receptor (AR) has been shown to be expressed in 12-55% of patients with triple 133 

negative breast cancer, although rates vary by study[16]. Prognosis of AR positive tumours within 134 
TNBC appears conflicting; studies have shown lower chemotherapy response rates in AR expressing 135 
tumours, likely due to the lower Ki67 rate in these tumours[17]. On the other hand, AR expression 136 
has also been associated with overall improved prognosis, as summarised by Gerratana et al [17], 137 
although chemotherapy use in the studies is not reported.   138 

Although previously only considered relevant for Luminal Androgen Receptor (LAR) subtypes 139 
which are largely characterised by AR expression, studies have shown that AR is also expressed in 140 
non-LAR subtypes[18]. Studies in breast cancer cell lines showed reduced proliferation and 141 
increased apoptosis in non-LAR lines when treated with the androgen antagonist enzalutamide, 142 

even when AR expression was low[16]. A clinical study of enzalutamide in patients with 143 
metastatic/locally advanced triple negative, AR positive (AR staining >0%) breast cancer has also 144 
reported promising results. A clinical benefit rate of 33% was observed at 16 weeks in the evaluable 145 
population [19], therefore meeting the criteria for further study; other trials are ongoing. 146 

TNBC tumours expressing AR have also been shown to be highly enriched for PIK3CA kinase 147 

mutations both in cell lines [11] and patient samples[20]. Following on from this finding, Lehmann et 148 
al went on to show that PI3K inhibitors combined with AR targeting had an additive effect when 149 
applied in AR positive TNBC cell lines[20]. These results seem promising however pairing this 150 
treatment approach with AR status is yet to be confirmed by testing within a clinical trial. 151 

Tumour Infiltrating lymphocytes 152 

A number of studies have examined the prognostic value of tumour infiltrating lymphocytes 153 
(TILs) in triple negative breast cancer. Across these studies, stromal TILs have been shown to be 154 
associated with outcomes in patients treated with adjuvant or neo-adjuvant chemotherapy [21-25]. 155 
These studies consistently showed that higher rates of stromal TILs were independently predictive 156 

of improved pathological complete response, disease free survival, and overall survival regardless 157 
of whether they are considered as continuous or categorised variables. Many of these studies did not 158 
specifically evaluate the effect in different chemotherapy regimens, however Loi et al showed that 159 
there was no significant interaction between stromal TILs and inclusion of taxanes (patients received 160 
either anthracyclines or anthracyclines plus a taxane)[22]. This suggests that stromal TILs may be 161 

predictive of general chemo-sensitivity in triple negative breast cancer.  162 
More recently, TILs have also been looked at in early stage TNBC patients who did not receive 163 

systemic therapy. A pooled analysis of 4 cohorts showed that the level of stromal TILs at diagnosis 164 
was prognostic in these patients when looking at invasive disease free survival, distant disease free 165 
survival and overall survival[26] with better outcomes observed in those with higher levels of TILs. 166 

The study found that stromal TILs were associated with higher grade but not with other 167 
clinicopathological factors, therefore the prognostic effects were shown to be independent of other 168 
prognostic factors. Combined with the evidence from the earlier studies, stromal TILs look to be an 169 
ideal marker for identifying patients with good prognosis regardless of whether or not systemic 170 
therapy is used. Therefore, stromal TILs levels may identify a subset of patients in whom 171 

chemotherapy could be avoided without compromising outcomes. 172 
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Promising targeted therapy for TNBC 173 

PARP inhibitors 174 

PARP inhibitors have been studied as an approach to cancer treatment for several years. As 175 
summarised by Plummer, the first PARP inhibitor was given as a chemo-potentiator in combination 176 
with chemotherapeutic agents in 2003[27]. Since then, increased understanding of the mechanisms 177 

of action of PARP inhibitors and the different forms of DNA repair, has led to the approach of using 178 
them as a single agent in patients with deficient homologous recombination repair pathways.  179 

The rationale behind their use is the concept of synthetic lethality. PARP1 and PARP2 enzymes 180 
are involved in the DNA repair of single strand breaks. By impairing PARP1 and 2 via use of an 181 
inhibitor, the accumulation of single strand breaks can lead to double strand breaks. In the absence 182 
of functioning homologous recombination repair, such as in the presence of a BRCA1/2 mutation, 183 

these double strand breaks cannot be fixed efficiently which results in cell death[28]. 184 
Since their first use in the early 2000s, PARP inhibitors have more recently been shown to be an 185 

effective maintenance therapy in women with newly diagnosed advanced ovarian cancer with a 186 
germline or somatic BRCA1/2 mutation[29]. They have also been shown to be effective in women 187 

with HER2 negative advanced/metastatic breast cancer with an inherited BRCA1/2 mutation [30, 31] 188 

and have recently been approved by the US Food and Drug Administration (FDA) for use in this 189 
setting. Recent interim results from the PROfound study suggest these effects also hold true in 190 
prostate cancer patients with alterations in a number of homologous recombination repair genes 191 
beyond BRCA1/2[32]. This was a randomised phase III trial comparing the PARP inhibitor olaparib 192 

with physician’s choice of enzalutamide or abiraterone in men with metastatic castrate-resistant 193 
prostate cancer with an alteration in one of 15 genes involved in homologous recombination repair. 194 
An impressive hazard ratio of 0.49 (0.38 to 0.63) in favour of olaparib was seen for the primary 195 
endpoint of radiographic progression free survival [32]. 196 

Platinum agents 197 

Platinum agents such as carboplatin and cisplatin are used in cancer treatment due to their 198 
ability to cause DNA double stranded breaks through the formation of DNA inter-strand 199 
cross-links[33, 34]. Several phase II and III studies have shown that the addition of platinum agents 200 
in the neoadjuvant setting can improve response rates in women with triple negative breast cancer 201 

[35-38]. The BrighTNess and GeparSixto studies went on to look at response rates according to 202 
germline BRCA mutation status and found no significant interactions between BRCA mutation 203 
status and treatment group [36, 38]. Further to this, although no significant interaction was detected, 204 
a difference in response rates was observed in GeparSixto but this was in fact driven by improved 205 

response rates in the BRCA wildtype patients, with patients with a BRCA mutation achieving good 206 
response rates regardless of the treatment group assigned. In the advanced setting however, the 207 
TNT trial showed the opposite, with no benefit of carboplatin over docetaxel in the overall triple 208 
negative breast cancer population but a significantly improved response rate for carboplatin 209 
compared to docetaxel when analysis was restricted to those with a germline BRCA1/2 mutation 210 

[39]. These contradictory results suggest that further exploration of the biology driving tumour 211 
response is required in order to identify the group of patients most likely to derive benefit from 212 
platinum-based chemotherapy. 213 

PARP inhibitors and platinum agents have to date largely been focussed on patients with a 214 
BRCA1/2 mutation. It is however hypothesised that a larger group of patients without BRCA1/2 215 

mutations but with other homologous recombination repair deficiencies could also benefit from 216 
these treatment approaches. Several groups are working on molecular biomarkers to identify these 217 
patients as outlined later in this review.  218 

CDK4/6 inhibitors 219 
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Cyclin-dependent kinase (CDK) 4/6 inhibitors work by interrupting the cell-cycle to reduce 220 

proliferation of cancer cells. To date, three CDK4/6 inhibitors (palbociclib, ribociclib and 221 
abemaciclib) have been approved by the FDA for use in patients with advanced/metastatic 222 
oestrogen positive, HER2 negative breast cancer following a number of successful trials in this 223 
disease setting [40]. Previously, triple negative breast cancers were not thought to be a good 224 

candidate for treatment with CDK4/6 inhibitors due to approximately 20% of these tumours lacking 225 
functional Retinoblastoma-like protein (Rb) [41]. Pre-clinical data however has indicated the 226 
potential for sensitive subtypes of TNBC; in particular, a study by Asghar et al showed that the LAR 227 
subtype of TNBC was CDK4/6 inhibitor sensitive in vitro and in vivo [42]. Other TNBC tumours 228 
with high RB expression, androgen receptor positivity or associated clinical characteristics are also 229 

considered potential candidates [43] and some pre-clinical research suggests a benefit of 230 
combination treatment including CDK4/6 inhibition [41]. A number of phase I or II studies of 231 
CDK4/6 inhibitors are ongoing within subsets of TNBC patients and results are awaited.  232 

Immunotherapy 233 

This year, the FDA gave approval for the combination of atezolizumab (a PD-L1 targeting 234 

immunotherapy drug) with chemotherapy in triple negative breast cancer. The approval came 235 
following the phase III IMpassion130 trial which showed an improvement in progression free 236 
survival following the addition of atezolizumab to neoadjuvant nab-paclitaxel in untreated 237 
metastatic TNBC, with a hazard ratio of 0.80 (95% confidence interval: 0.69 to 0.92)[44]. When 238 

restricted to the subgroup of patients with PD-L1 positivity, the benefit of adding atezolizumab was 239 
observed to be even more pronounced with a hazard ratio 0.62 (95% confidence interval: 0.49 to 240 
0.78). Interim analysis of overall survival did not show a statistically significant difference between 241 
treatment groups overall, but Kaplan Meier analysis suggested a longer median overall survival in 242 
those with PD-L1 positive tumours. 243 

Interim results of the Keynote173 trial were also presented last year. These showed that high 244 
stromal TILs and PD-L1 were associated with improved pathological complete response and 245 
objective response rates in primary TNBC which had been treated with the immunotherapy 246 
pembrolizumab and neoadjuvant chemotherapy[45]. No comparison was made to a regimen 247 
excluding the immunotherapy, but combined with the results from IMpassion130 suggest that 248 

immunotherapies in TNBC could be effective in patients with PD-L1 positive tumours. The benefit 249 
of immunotherapies in patients without this marker however is more uncertain at present.  250 

High mutational burden has also been suggested as a potential indicator of immunotherapy 251 
sensitivity. Recent results from one cohort of the TAPUR study showed 37% disease control rate in 252 

patients with metastatic breast cancer with high tumour mutational burden treated with 253 
pembrolizumab[46]. Further evidence however is required to support the ability of this potential 254 
biomarker to direct treatment. 255 

A number of other immunotherapy trials in TNBC are ongoing which will provide further 256 
insight, however many of these are in unselected patients (Table 2) and there is still a need for 257 

identification of robust biomarkers to predict benefit of immunotherapy.  258 

Table 2. Selection of ongoing trials of pembrolizumab or atezolizumab in TNBC (source: 259 
ClinicalTrials.gov). 260 

Setting 
ClinicalTrials.

gov identifier 
Study name Treatment  

Planned/ 

final 

sample 

size 

Status 

Adjuvant NCT03036488 KEYNOTE-522 

Pembrolizumab 

+ chemotherapy 

vs placebo + 

chemotherapy 

1174 

Open no 

longer 

recruiting 
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NCT02954874 

Pembrolizumab in 

Treating Patients 

with Triple 

Negative Breast 

Cancer 

Pembrolizumab 

vs. observation 
1000 Recruiting 

NCT03498716 IMpassion030 

Atezolizumab + 

chemotherapy 

vs. 

chemotherapy 

2300 Recruiting 

Neoadjuvant 

NCT02620280 NeoTRIPaPDL1 

Atezolizumab + 

chemotherapy 

vs. 

chemotherapy 

278 

Open no 

longer 

recruiting 

NCT03639948 NeoPACT 
Pembrolizumab 

+ chemotherapy 
100 Recruiting 

NCT03281954 

Clinical Trial of 

Neoadjuvant 

Chemotherapy 

With Atezolizumab 

or Placebo in 

Patients With 

Triple-Negative 

Breast Cancer 

Followed After 

Surgery by 

Atezolizumab or 

Placebo 

Atezolizumab 

vs. placebo 
1520 Recruiting 

NCT02530489 

Nab-Paclitaxel 

and Atezolizumab 

Before Surgery in 

Treating Patients 

With Triple 

Negative Breast 

Cancer 

Atezolizumab + 

chemotherapy 
37 Recruiting 

Metastatic/ locally 

advanced 

NCT02819518 KEYNOTE-355 

Pembrolizumab 

+ chemotherapy 

vs placebo + 

chemotherapy 

882 

Open no 

longer 

recruiting 

NCT03121352 

Carboplatin, 

Nab-Paclitaxel 

and Pembrolizumab

 for 

Metastatic Triple-N

egative Breast 

Cancer 

Pembrolizumab 

+ chemotherapy 
30 

Open no 

longer 

recruiting 

NCT02555657 KEYNOTE-119 

Pembrolizumab 

vs.  

chemotherapy 

622 

Open no 

longer 

recruiting 

NCT02447003 KEYNOTE-086 Pembrolizumab 285 

Open no 

longer 

recruiting 

NCT03125902 IMpassion131 

Atezolizumab + 

chemotherapy 

vs. placebo + 

chemotherapy 

600 Recruiting 

NCT03371017 IMpassion132 
Atezolizumab 

vs. placebo 
350 Recruiting 
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NCT02734290 

Standard of Care 

Chemotherapy Plus 

Pembrolizumab for 

Breast Cancer 

Pembrolizumab 

+ chemotherapy 
88 Recruiting 

 
NCT03206203 

 

Carboplatin With or 

Without 

Atezolizumab in 

Treating Patients 

With Stage IV Triple 

Negative Breast 

Cancer 

 

Atezolizumab + 

chemotherapy 

vs. 

chemotherapy 

185 Recruiting 

Identification of molecular signatures for treatment response 261 

Homologous recombination deficiency (HRD) 262 

Beyond BRCA1/2 mutations, wider homologous recombination deficiency subgroups have been 263 

defined to identify a broader subgroup of patients who may benefit from specific treatment 264 
strategies. Loss of heterozygosity (LOH), telomeric allelic imbalance (TAI) and large-scale state 265 
transitions (LST) are independent measures of genomic instability each associated with BRCA 266 
mutational status[47-49]. Timms et al showed that a combined score generated by taking the mean of 267 
the scores was better at identifying samples with homologous recombination deficiency than the 268 

individual scores [50], this is referred to as the HRD score. Within triple negative breast cancer 269 
patients, an association between HRD score or HR deficiency (defined as HRD score 42 or a 270 
BRCA1/2 mutation) and pathological complete response to platinum agents has been observed [51]. 271 

However, a similar association between HR deficiency and response was also observed with 272 

anthracycline or taxane based neoadjuvant chemotherapy in a separate retrospective study [52]. 273 
Similar results were observed in the advanced setting [39] suggesting the HRD score is a prognostic 274 
marker within triple negative breast cancer patients and not predictive of response to a particular 275 
treatment. 276 

More recently developed, HRDetect is a mutational signature model developed using lasso 277 

logistic regression to identify patients with homologous recombination deficiency [53]. Developed to 278 
identify patients with a BRCA deficiency the model has 98.7% sensitivity and was able to identify a 279 
number of patients with deficiencies which had not previously been picked up, classifying a larger 280 
cohort of patients who could benefit from BRCA/homologous recombination deficient targeted 281 
treatment strategies.  282 

Earlier this year, Staaf et al published the results of applying the HRDetect signature to TNBC 283 
patients from the observational SCAN-B study in Sweden[54]. Of the 237 patients with evaluable 284 
samples, they found that 58.6% of TNBC patients had high HRDetect scores (defined as a score >0.7). 285 
HRDetect high tumours were enriched for Basal-like (PAM50 Basal-like and TNBCtype Basal-like 1) 286 

and Mesenchymal tumours. On the other hand, HRDetect low tumours were enriched for Luminal 287 
AR tumours and had more PAM50 non-Basal-like (mainly HER2 enriched and normal-like) tumours 288 
compared to the high tumours. Of the patients treated with standard of care adjuvant chemotherapy 289 
(regimens varied but fluorouracil, epirubicin and cyclophosphamide  taxane was common), those 290 
with high HRDetect were shown to have better outcomes as assessed by invasive disease free 291 

survival. This led the authors to conclude HRDetect high tumours to be more chemo-sensitive than 292 
patients with low HRDetect scores[54]. 293 

Further to this, when calculated in samples from the personalized oncogenomics project, 294 
another observational study, the model was shown to be associated with improved outcomes in 295 
advanced breast cancer patients treated with platinum agents [55]. It should however be noted that 296 

the sample size in this study was small and further analysis in a larger prospective study is required 297 
to confirm these results.  298 

 299 
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Mutational signature 300 

Substantial work has been carried out to characterise mutational signatures by whole genome 301 
and/or exome sequencing in cancer which reflect the different mutations which have occurred 302 
within a tumour. One particular mutational signature, referred to as signature 3, has been shown to 303 
be highly associated with the presence of BRCA1 and BRCA2 mutations[56, 57] in breast and other 304 

tumour types. It was noted however that a number of cases without BRCA1 or BRCA2 mutations 305 

also exhibited high levels of signature 3. This led Polak et al to explore the association of signature 3 306 
with the wider homologous recombination repair pathway. They identified associations of the 307 
signature with epi-genetic silencing of BRCA1 and mutation/methylation in other key genes from 308 
the homologous recombination pathway including PALB2 and RAD51C[58]. 309 

Mutational signature 3 was used in the development of the HRDetect signature however to our 310 
knowledge has not been tested alone for prognostic of predictive ability to date. Consequently, there 311 
is little evidence regarding prognosis or predictive ability of this signature within TNBC. 312 

Gene expression signatures 313 

Several gene expression signatures related to DNA damage response have also been developed 314 

in an attempt to identify sub-populations of patients likely to derive benefit from therapeutic 315 
approaches. A number of methodologies have been employed based on association of gene 316 
expression data with either biological features related to DNA damage response or DNA damaging 317 
treatment sensitivity.   318 

Two promising signatures for treatment response that have come out of these approaches are 319 
the PARPi7 and BRCA1ness signatures. The first was published in 2012 by Daemen et al[59] who 320 
identified a subset of genes for which transcriptional levels were associated with sensitivity to the 321 
PARP inhibitor olaparib across a number of breast cancer cell lines. From an initial list of 118 322 
candidate genes taken from different DNA repair pathways, 7 were taken forward into signature 323 

development and combined using the weighted voting algorithm to define the PARPi7 signature. 324 
When applied to unselected breast cancer patients who had not been treated with a PARP inhibitor, 325 
8-21% of patients were predicted to be PARP inhibitor sensitive based on the signature, identifying a 326 
substantial proportion of patients who may benefit from this treatment approach. Based on 327 
biological features rather than treatment sensitivity, the BRCA1like signature was developed to 328 

identify patients classed as BRCA1-like according to DNA copy number profiles[60]. Using diagonal 329 
linear discriminant analysis, 77 genes were identified which could classify samples between the 330 
BRCA1-like and non-BRCA1-like groups. In order to create a signature more utilisable in the clinic, 331 
the authors adapted the signature to be centroid based and a threshold was selected to give a high 332 

sensitivity of 96.7% and specificity of 73.1% in classifying patients. 333 
These two signatures were subsequently applied to the 72 patients randomised to veliparib and 334 

carboplatin arm and the 44 HER2-negative controls within the I-SPY 2 breast cancer trial. The 335 
interaction between each biomarker and treatment group was statistically significant even after 336 
adjustment for hormone receptor status (p-values of 0.001 and 0.02 for PARPi7 and BRCA1ness 337 

respectively)[61]. This supports the notion of these two signatures being predictive of PARP 338 
inhibition sensitivity although the authors acknowledge that veliparib and carboplatin were given in 339 
combination so it cannot be determined whether the signatures are predicting sensitivity to the 340 
combination or one of the individual agents. Results also require validation in a larger dataset as 341 
sample size for these subgroup analyses was small.  342 

Given the known association between the Fanconi anaemia/BRCA pathway with DNA damage 343 
repair deficiencies, Mulligan et al sought to develop a DNA damage repair deficiency (DDRD) assay 344 
based on the molecular characterisation of patients with Fanconi anaemia[62]. Using Affymetrix 345 
microarray they identified differentially expressed probesets between patients with Fanconi 346 
anaemia and a set of patient controls. A number of breast cancer samples (n = 107) enriched for 347 

BRCA mutations were split into separate ER positive and negative datasets. Within each dataset, 348 
hierarchical clustering was applied and clusters representing the molecular processes associated 349 
with Fanconi anaemia were classed as DDRD positive, with remaining samples classified DDRD 350 
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negative. The classified ER positive and ER negative datasets were then re-combined and a 44-gene 351 

expression signature was identified to accurately classify samples as DDRD positive or negative. The 352 
authors went on to show that the signature could predict response to fluorouracil, Adriamycin and 353 
cyclophosphamide (FAC) chemotherapy in the neo-adjuvant setting and fluorouracil, 354 
epirubicin and cyclophosphamide (FEC) in the adjuvant. The signature could not however predict 355 

survival outcomes in an independent cohort of patients who did not receive cytotoxic 356 
chemotherapy. These results suggest the potential use of this signature to predict which patients 357 
may benefit from the addition of anthracycline based chemotherapy.  358 

The DDRD signature was subsequently successfully applied to 381 early TNBC patients treated 359 
with an adjuvant anthracycline containing regimen from the SWOG 9313 study. The signature was 360 

shown to be predictive of disease-free survival and overall survival, with high scores associated with 361 
improved outcomes independent of other prognostic factors[63]. The study also looked at stromal 362 
TILS density and found a positive correlation between this and the DDRD signature suggesting the 363 
potential for DDRD high tumours to be targeted with immune checkpoint inhibitors[63]. 364 

Adopting a slightly different approach based on chromosomal instability, Carter et al correlated 365 

10,151 genes with total functional aneuploidy across a number of pan-cancer datasets to develop the 366 
CIN70 signature[64]. A chromosomal instability score was calculated for each gene by summing the 367 
correlation rank of the gene across the datasets. The CIN70 signature is then composed of the top 70 368 
genes with the highest CIN score; a simpler version was also created using the top 25 genes only 369 

(CIN25). The authors showed that the CIN signatures could be used to predict clinical outcome 370 
across a number of datasets including breast cancer patients and furthermore provided additional 371 
prognostic information above tumour grade alone. The CIN70 signature was also explored within 372 
the I-SPY2 trial where no significant interaction between the signature and treatment group was 373 
observed (p=0.22 after adjustment for hormone receptor status)[61]. It therefore remains to be seen if 374 

high chromosomal instability, as determined by this signature, is targetable or simply prognostic 375 
across treatments as treatment specific data was not available in the original paper.  376 

 377 

Promise of Liquid biopsies in clinical management 378 

One emerging biomarker for prognosis is the evaluation of circulating tumour DNA (ctDNA). 379 

This is a non-invasive assessment method based on the detection of ctDNA which has been released 380 
from the tumour into the blood stream. Garcia-Murillas et al looked at the use of ctDNA measured in 381 
blood at a single post-operative timepoint or from serial sampling to predict outcomes in early breast 382 
cancer unselected for hormone receptor status[65]. Presence of ctDNA within both the single time 383 

point and serial sampling could predict relapse across tumour types including within TNBC patients 384 
(p=0.009 and 0.003)[65]. Sample size was small with just 11 and 13 TNBC patients with available 385 
samples for single time-point and serial sampling respectively, the results however are supported by 386 
other small studies restricted to TNBC patients with similar findings [66, 67] suggesting the potential 387 
for ctDNA as a biomarker for relapse. What is currently less clear is whether ctDNA detection can be 388 

used to direct treatment. One trial trying to provide insights for this this is the cTRACK-TN trial 389 
(NCT03145961). Patients are followed up with serial ctDNA screening after completion of primary 390 
treatment, with randomization between pembrolizumab and observation in those with ctDNA 391 
detected prior to 12 months. 392 

Conclusion 393 

Over the last 20 years, increased availability and improvements in molecular profiling has 394 
uncovered the vast molecular heterogeneity present within TNBC. Molecular subtypes based on 395 
gene expression profiles have been identified and shown to confer vastly different risk profiles 396 
which may help inform decisions regarding chemotherapy use.  397 

Standard treatment approaches in patients with TNBC was previously limited to surgery with 398 

chemotherapy and/or radiotherapy, with a distinct lack of available targeted therapies. Treatment 399 
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pathways however are now evolving with the recent approval of PARP inhibitors for patients with a 400 
BRCA1/2 mutation and ongoing research into the use of CDK4/6 inhibitors and immunotherapies.  401 

A number of signatures predicting treatment response have also been developed for TNBC 402 
patients with some showing promising results in retrospective analyses. Many of these however still 403 
require validation within prospective trials in order to be brought forward into the clinic. With the 404 

advent of multi-omics technologies, more advanced computational approaches are being applied to 405 
integrate such high-dimensional biological data with patient outcomes to derive robust genomic 406 
signatures to inform better clinical management and next generation clinical trial designs. 407 
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