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The unique properties of zinc oxide nanoparticles (ZnO-NPs) produced using plant extract make them
attractive for use in medical as well as industrial applications, and it is necessary to develop environ-
mentally friendly methods for their synthesis. This can be accomplished by replacing the traditional
chemical compounds for the reduction of the zinc ions to ZnO-NPs during synthesis with natural plant
extracts. Here, the biosynthesis of ZnO-NPs using Punica granatum (P. granatum) fruit peels extract was
investigated as the reducing and stabilizing agent. The P. granatum/ZnO-NPs with spherical and hexag-
onal shapes were biosynthesized at different annealing temperatures. The X-ray diffraction analysis
confirmed the synthesis of highly pure ZnO-NPs with increasing crystallinity in higher annealing tem-
peratures. The ZnO-NPs displayed characteristic absorption peaks between 370 and 378 nm in the UV
—vis spectra. Transmission electron microscopy (TEM) imaging showed the formation of mostly spher-
ical and hexagonal-shaped ZnO-NPs in the mean size of 32.98 nm and 81.84 nm at 600 °C and 700°C
respectively. According to FTIR spectrum, strong absorption bands in the range of 462—487 cm~! cor-
responding to Zn—0 bond stretching can be seen. Antibacterial activities of P. granatum/ZnO-NPs against
Escherichia coli (E. coli) and Enterococcus faecalis (E. faecalis) were investigated and compared. Results
obtained show that smaller-sized P. granatum/ZnO-NPs are more effective in inhibiting growth of both
bacteria. In addition, cytotoxicity assays were performed for P. granatum/ZnO-NPs against human colon
normal and cancerous cells. P. granatum/ZnO-NPs exhibited similar killing activities of both cell lines at
the concentration of >31.25 pg/mL. The biosynthesized ZnO-NPs could offer potential applications in bio-
medical field.

© 2019 Published by Elsevier B.V.

1. Introduction

zinc, copper, iron, titanium, etc., by various physical and chemical
methods [3]. Even though synthesis of nanoparticles can be carried

The field of nanotechnology has been constantly growing as re-
searchers explore more about novel materials in nanoscale level [1].
Nanotechnology provides the platform for construction of novel
nanostructures, understanding their novel properties, and learning
how to make use of them in different field of applications [2].
Nanoparticles are generally synthesized in the range of 1-100 nm
and can be produced from many metal compounds like silver, gold,
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out by any method, green synthesis has gained prominence in recent
years [4]. Compared to traditional chemical or physical methods,
green synthesis method in synthesizing nanoparticles offers many
advantages, such as requires mild reaction conditions, uses less toxic
chemicals, is inexpensive and ecofriendly [5]. The green synthesis
method utilizes a variety of biological agents, including plant ex-
tracts, fruit extracts, microbes, and others [6].

Zinc oxide (ZnO) is a semiconductor with a large band gap of
about 3.37 eV [7] and high exciton binding energy (60 meV) [8]. It is
a multifunctional compound with unique optic, luminescent,
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electronic and optoelectronic properties [8]. Numerous methods
including precipitation technique [9], microwave decomposition
[10], hydrothermal process [11], wet chemical method [12] and sol-
gel method [13] have been adopted to produce ZnO nanoparticles
(NPs) with different morphologies and characteristics. Studies have
reported the production of ZnO-NPs in different forms like flower-
shaped [14], spherical [15], cubic [16], rice-shaped [10] and nano-
rods [17]. ZnO-NPs synthesis from diverse resources such as Zizi-
phus nummularia leaf extract [5], starch [18], gum tragacanth [13],
Catharanthus roseus leaf extract [19], honey [7], brown microalga
[20] and seaweed [21] have been described previously. The prop-
erties of ZnO-NPs have been investigated in a wide range of tar-
geted applications including electrical property [22], antibacterial
activity [23], antifungal activity [14], catalytic activity [15] and
cosmetic industry [21].

Presently, the problem of antimicrobial resistance (AMR) has
reached a critical level and is becoming a global concern. Emer-
gence of antibiotic-resistant microorganisms or ‘superbugs’ com-
plicates the treatment of bacterial infections, as superbugs restrict
the treatment options available to infected individuals. The anti-
bacterial potential of ZnO-NPs has been explored continuously by
scholars, in hope to combat bacterial infections, including those
caused by superbugs. ZnO-NPs have the ability to inhibit bacterial
growth and biofilm formation by inducing oxidative stress that can
irreversibly damage cell membrane, DNA as well as mitochondria
leading to apoptosis [24]. In 2016, Ghasemi and Jalal in their pub-
lication also investigated the synergistic effects of ZnO-NPs with
conventional antibiotics against resistant Acinetobacter baumannii
[25] and reported that the uptake of antibiotics into bacterial cell
increased with the addition of ZnO-NPs [25].

Besides its excellent antibacterial properties, ZnO-NPs have
been cited in several publications for having anticancer activities
[12,15]. ZnO-NPs kill cancerous cells with similar mechanism they
eradicate bacterial cells, which is the generation of reactive oxygen
species to induce apoptosis [26]. Selective toxicity of ZnO-NPs to-
wards a variety of normal and cancer cell lines have shown
intriguing results and the NPs can be developed for use in future
cancer therapy [27—29]. By understanding cytotoxicity of ZnO-NPs,
we can also determine its possible usage as antimicrobial agents.

Punica granatum fruit (P. granatum F.) or pomegranate has been
described as a power fruit, well known for its superior therapeutic
properties and health benefits to consumers [23]. P. granatum E
peel makes up about one third of the fruit and remains as a
byproduct after consumption. The usage of these agro-wastes from
fruits has acquired significant attention in recent years due to their
availability and cost-effectiveness [30]. P. granatum E. peel has been
well acknowledged for containing extraordinarily high number of
phenolic compounds as sources of natural antioxidants [31]. As
previously reported, some major phenolic compounds identified in
pomegranate peel include punicalagin, gallic acid, ellagic acid,
chlorogenic acid, caffeic acid, punicalin, apigenin, quercetin,
pelargonidin, cyanidin, granatin A and granatin B [31]. These
compounds are primarily concentrated in the peel portion of
P. granatum and have been proven to aid in green synthesis of a
wide range of different NPs [16,32,33].

The present research area defines the P. granatum F. peels extract
as reducing and stabilizing agents to biosynthesize ZnO-NPs using
green synthesis method. ZnO-NPs were successfully synthesized by
thermal decomposition in different annealing temperatures. The
aim of this work was to employ a simple method for novel
biosynthesis of ZnO-NPs and investigate their physicochemical
properties. Antibacterial activity of ZnO-NPs was carried out
against Gram-positive and Gram-negative bacteria. Cytotoxicity
assay of P. granatum/ZnO-NPs was investigated for the normal and
cancerous cells.

2. Experimental
2.1. Plant collection and materials

The P. granatum F. peels were obtained from “Green Farm” in
Fars province, city of Neyriz, Iran. Metal salt precursor of analytical
grade, zinc nitrate hexahydrate (Zn(NOs),;.6H,0, 98%) was pur-
chased from R&M Chemicals, United Kingdom. One Gram-positive
(Enterococcus faecalis — ATCC 33,186) and one Gram-negative
(Escherichia coli — MTCC 710,859) bacterial species were used in
the antibacterial study. Imipenem antibiotic was purchased from
GoldBio (USA). Sterile Mueller-Hinton agar and broth (Becton
Dickinson, USA) were used to culture the bacterial strains. 96-well
plates for antibacterial application were purchased from Nest
Biotech Co., Ltd, China. All aqueous solutions were prepared using
deionized (DI) water. Glassware used in this study were thoroughly
cleaned with DI water and dried before use.

2.2. Fruit peel extract preparation

Fresh P. granatum F. peels were washed thoroughly with tap
water to remove dirt and washed again with DI water before dried
in the oven at 45 °C. The dried peels were ground using an electric
blender into fine powder and stored at room temperature for
further use. To produce P. granatum F. peel extract, the peel powder
was extracted in DI water at 65 °C for 60 min in the ratio of 1:10.
The extract were then filtered using mesh to remove large particles
and further centrifuged at 10,000 rpm for 10 min to completely
eliminate leftover fine sediments. The P. granatum F. peel extract
was kept at 4 °C for future experiments.

2.3. Synthesis of P. granatum/ZnO—NPs

A simple sol-gel and combustion method was used to synthesize
P. granatum/ZnO-NPs. Under vigorous stirring at 90 °C, zinc nitrate
hexahydrate (Zn(NOs3),;.6H,0) was added to P. granatum F. peel
extract in the ratio of 1:10. The solution was stirred until the
aqueous solvent is completely removed, leaving a gel-like product.
The product was then annealed at different temperatures (400 °C,
500°C, 600°C and 700°C) for 60 min until it turned into fine
powder form. The white coloured P. granatum/ZnO-NPs powder
were then stored in room temperature at about 25 °C for future
experiments.

2.4. Characterization methods and instrumentation

The successful production of P. granatum/ZnO-NPs was charac-
terized by the use of ultraviolet—visible (UV 1800, SHIMADZU)
spectroscopy (UV—vis) in the range of 300 nm—700 nm to observe
their absorption peaks. Clean quartz solution cells were used for
analysis of each sample. The sample of known concentration in
solution form and a blank sample of the solvent (DI water) were
used to carry out the experiments. Before placed into the UV—vis
chamber, all samples were homogenized in the quartz solution
cells. The same instrument was also used to obtain diffuse reflec-
tance spectra of P. granatum/ZnO-NPs samples. To evaluate the
structures of ZnO-NPs, X-ray diffraction (XRD, Philips, X'pert, Cu Ka)
at the small angle range of 20 (10 °—90°) was used. Transmission
electron microscopy (TEM) (model JEM-2100 F) was used to find
the electron diffraction pattern of P. granatum/ZnO-NPs and struc-
tural analysis of the NPs was performed using FESEM (model JSM
7600 F FESEM). FTIR spectrum was utilized to identify the func-
tional groups present in the biosynthesized NPs. In this study, po-
tassium bromide (KBr) method was used to prepare the tablet
containing ZnO-NPs while attenuated total reflection (ATR) method
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was adopted to observe absorption peaks in P. granatum F. peel
extract. The FTIR spectrum was set to run on the range of
400—4000cm~! using Series 100 FTIR 1650 spectrophotometer
(PerkinElmer, Waltham, MA, USA).

2.5. Antimicrobial susceptibility test

Antibacterial properties of P. granatum/ZnO-NPs samples were
evaluated using broth micro-dilution method based on Clinical and
Laboratory Standards Institute (CLSI) protocols. Single colony of
Gram-positive (E. faecalis) and Gram-negative (E. coli) bacteria was
isolated from Mueller-Hinton agar (MHA) plates and inoculated into
sterile fresh Mueller Hinton broth (MHB). The culture was grown
overnight (12—18 h) prior to the experiments. Next day, the bacterial
concentration was standardized to an optical density (OD) of 1.0 at
600 nm (approximately 8 x 108 CFU/mL) with MHB. Two-fold serial
dilutions of P. granatum/ZnO-NPs (S3 and S4) were prepared in 96-
well plates to give final test concentrations of 7, 15, 31, 62, 125, 250,
500 and 1000 pug/mL per well. 10 pL of bacterial suspension equivalent
to 8 x 108 CFU/mL of exponentially growing bacterial cells were
added to the wells. The plates were incubated at 35+ 2 °C for 18 h.
Following the overnight incubation, the plate was then read for the
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Fig. 1. Schematic diagram of interaction of Zn** ions with main compounds found in
P. granatum to produce ZnO-NPs.

o

absorbance using microplate reader (GloMax Discover Instrument,
Promega) to determine the minimum inhibitory concentrations that
prevented 50% growth of the isolates, MICsq values. Positive control,
imipenem antibiotic (1 pg/mL), and negative controls (blank, without
bacterial inoculum) were included in all experiments.

2.6. Cytotoxicity assay

To determine the cellular killing effect of P. granatum/ZnO-NPs
samples, cell proliferation assay (Promega) was performed ac-
cording to the manufacturer's instruction with slight modification.
Approximately 5000 human colorectal cancer cell line (HCT116)
(ATCC CCL-247) and human normal colon cell (CCD112) (ATCC CRL-
1541) cells per well (100 uL/well) were seeded onto a 96-well plate
and incubated at 37 °C overnight in a 5% CO, humidified incubator.
Next day, 2-fold serially diluted ZnO-NPs (250, 125, 62.5, 31.25,
15.63, 7.81 and 0 pg/mL) (100 pL/well) were added into the wells
and the plate was incubated for 72 hat 37°C in the 5% CO; hu-
midified incubator. Then 20 pL MTS (3-(4, 5-Dimethylthiazol-2-yl)-
5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium)
reagent (Promega) per well was added into the plate and incubated
for additional 3 h at 37 °C in the 5% CO; incubator. Optical density
(OD) was then measured at 490 nm using a multimode microplate
reader (Tecan). The dose-response graph was plotted by calculating
the percentage of cell viability using Eq. (1). In addition, the
inhibitory concentrations causing 50% cell growth inhibition (ICsqg
values) were also reported. The images of cells treated with the NPs
were captured using an inverted microscope attached to a camera
system (IM3 Phase contrast, Optika, Italy).

% Viability = OD of sample well (mean)/OD of control

well (mean) X 100 1

3. Results and discussion

P. granatum F. peel extract contains an abundance of phyto-
chemical compounds that play important roles as reducing and
stabilizing agents for the successful yield of ZnO-NPs. Amongst all
these compounds, punicalagin and gallic acid make up about 73% of
P. granatum crude extract with a percentage of 41% and 32%
respectively [34]. Therefore, it is assumed that punicalagin and
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Fig. 2. The XRD of P. granatum/ZnO-NPs annealed in 400, 500, 600 and 700 °C (S1-S4),
respectively.
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Fig. 3. UV—vis spectra of P. granatum/ZnO-NPs annealed in 400, 500, 600 and 700 °C
(S1-S4), respectively.

gallic acid majorly contribute in the process of reducing Zn?* ions in
the aqueous solution to stable Zn atoms. The possible chemical
equations for synthesis of P. granatum/ZnO-NPs are shown in Egs.
(2) and (3). Fig. 1 illustrates a possible mechanism of interaction of
Zn** jons and the main compounds of P. granatum peel extract.
From this illustration, high amounts of negatively charged atoms
present in the key compounds donate their electrons and
contribute to the stabilization of positively charged Zn?* complex

ions. Next, thermal decomposition or annealing process in high
temperatures converts the Zn?* complex ions to nano-sized ZnO
atoms. In the following discussions, the samples will be referred to
as S1, S2, S3 and S4 for P. granatum/ZnO-NPs annealed at 400, 500,
600, and 700 °C respectively. The effects of annealing temperature
on the NPs production will be investigated and further discussed.

P. granatum + Hy0 1) + Zn*?— [P. granatum/Zn*? (2)
[P. granatum/Zn*?]

+ Oy —[P. granatum/ZnO — NPs] + CO (g) 3)

3.1. X-ray diffraction analysis

The biosynthesis of pure and crystalline P. granatum/ZnO-NPs
was confirmed using XRD analysis. Miller indices peaks from the
analysis are shown in Fig. 2 and can be indexed to hexagonal
wurtzite phase structure supported by JCDPS Cardno. 89—1397 data
[35]. No other peak related to any foreign compounds is observed in
all samples, indicating the P. granatum/ZnO-NPs are highly pure.
With increasing annealing temperature, a slight shift to the right on
all peaks can be observed. The diffraction peaks also become more
narrow and intense for S1 until S4. S4 showed most intense
diffraction peaks with 20 values of 32.00°, 34.66°, 36.48°, 47.77°,
56.76°, 63.06°, 66.53°, 68.13° and 69.27° corresponding to the
crystal planes of (100),(002),(101),(102),(110),(103),(200),
(1 12)and (2 0 1), respectively. This might be caused by
improvement in crystallinity for the P. granatum/ZnO-NPs when
annealed at higher temperature. High temperature supplies
enough kinetic energy for the ZnO atoms to migrate to their correct
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Fig. 4. TEM images of ZnO-NPs at 600 °C and 700 °C (S3—S4) with their respective particle size distribution histograms (a, b).
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lattice positions leading to re-crystallization process, reducing de-
fects [36].

The crystallite sizes of S1—S4 can be calculated using the Debye-
Scherrer equation, which reveals a relationship between X-ray
diffraction peak broadening and crystallite size [37]. The Debye-
Scherrer equation is shown below in Eq. (4).

d= K2/B cos (4)

Based on Eq. (4), d is the average crystallite size of synthesized
P. granatum/ZnO-NPs, K is the Scherrer constant with a value from
0.9 to 1, A is the X-ray wavelength (0.154 nm), 3 is the line broad-
ening in radians, and 0 is the Bragg angle. Using Eq. (4), the esti-
mated mean crystallite sizes of ZnO-NPs in S1—S4 were calculated
to be 22.39, 30.08, 32.39 and 57.36nm respectively. Larger
P. granatum/ZnO-NPs are produced as annealing temperature in-
creases from 400 °C to 700 °C.

3.2. UV—visible (UV—vis) spectroscopy analysis

The production of P. granatum/ZnO-NPs was analysed and
confirmed by UV—vis spectroscopy in the range of 300—800 nm.
The UV—vis spectra displayed excitonic absorption peaks around
370nm—378 nm for S1 until S4. ZnO's characteristic absorption
peak can be detected due to the intrinsic band-gap as excited
electrons from its valence band travels to conduction band (O2p =>
Znsq) [13]. Based on Fig. 3, from S1 until S4, the peaks become
sharper and the wavelength value increases (red shift) as annealing

temperature increases due to increase of size of NPs, most probably
due to slight agglomeration.

3.3. Morphological studies

TEM imaging was carried out to observe the sizes and structural
morphologies of the ZnO-NPs. As shown in Fig. 4a, the shapes of the
ZnO-NPs are spherical with slight agglomeration for S3, while
hexagonal nanoparticles can also be observed for S4 in Fig. 4b. In
correlation with previous discussions of XRD and UV—vis results, it
can be witnessed that the sizes of S3 are smaller than that of S4.
Particle distribution histograms with normal curve for both sam-
ples are plotted and it shows that the average particle sizes of S3
and S4 are 32.98 + 8.63 and 81.84 + 24.50 nm, respectively. Based
on the particle distribution histogrames, it can be determined that
higher annealing temperature not only produces bigger nano-
particles but also inconsistent sizes of them. This can be proven by
the high standard deviation value of S4 compared to S3 as a wider
range of particle sizes can be seen and measured for S4.

FESEM imaging to observe the shapes of S3 and S4 were taken
and shown in Fig. 5. Surface topography of the nano-sized ZnO-NPs
showed spherical shapes of S3 and also hexagonal shapes for S4,
consistent with TEM observations. Meanwhile, NPs of spherical and
hexagonal shapes can be observed for S4. From comparison of both
images, it is evident that annealing ZnO-NPs at higher temperature
produces larger size of NPs, supporting results from XRD, UV—vis
and TEM analysis.
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3.4. Fourier transform infrared spectroscopy study

The presence of different functional groups in pomegranate peel
powder as well as ZnO-NPs before and after annealing process was
analysed with FTIR spectroscopy as shown in Fig. 6. Broad peaks can
be observed between 3400 cm™! and 3600 cm~! for all samples
corresponding to asymmetric and symmetric stretching of H—O—H
vibrations (Fig. 6a—f). For S1 until S4, the H-O—H peak slowly
disappears with increasing annealing temperatures (Fig. 6¢—f).
Peak at 3431 cm™ ! might also originate from bonded —NH and —OH
vibrations of —COOH groups found in the P. granatum peel powder
(Fig. 6a) [38]. The major absorption peaks found in P. granatum peel
powder can be observed between 1000cm~! and 1750 cm™!
(Fig. 6a). The peak at 1053 cm~! is related to C—O or C—N bond
stretching and —OH deformation of tertiary alcohols [39]. In addi-
tion, it is assumed that the peak at 1230 cm~! is due to C—O bond
stretching of C—O—C or C—O—H groups in P. granatum peel [39]. At
1430 cm™ !, the absorption peak displayed might be related to ar-
omatic —C=C— bond or N—H bending vibration. Peaks observed at
1631 cm~! and 1730 cm ™! possibly refer to C—=C stretching of aro-
matic rings, N—H vibration of amines and C=0 stretching of am-
ides and carboxylic groups [39].

Fig. 6b presents the FTIR spectra for dried gel of P. granatum/
Zn(NOs3)3.H,0 sample, the complex compound before annealing
process into pure P. granatum/ZnO-NPs. Medium strength peak can
be observed at 1049 cm™! corresponding to C—O bond stretching.
Strong peak at 1379 cm ™! may refer to C—N stretching amine due to
the presence of zinc nitrate metal precursor while the peak at
1627 cm~! corresponds to C=O0 stretching of functional groups
from P. granatum F. peel extract. For all ZnO-NPs samples, wide and
strong characteristic zinc oxide absorption bands with stretching
modes of Zn—0 appear around 460 cm™' to 490 cm™! (Fig. 6¢—f)
[36]. Wide peaks around 1000 cm~! and 1400 cm™~! are most likely
related to C=0 absorption bands due to atmospheric carbon di-
oxide (CO,) in the air [40,41].

3.5. Evaluation of antibacterial effects of P. granatum/ZnO-NPs

Line graph plotted as shown in Fig. 7 visualizes the antibacterial
activity of P. granatum/ZnO-NPs (S3 and S4) in a range of different
concentrations. After 18-h incubation of E. coli and E. faecalis with
the samples at 37 °C, absorbance readings were taken and con-
verted into percentage viability using Eq. (1) to measure the growth
of both bacteria. Fig. 7a shows a gradual decrease in E. coli growth as
concentration of S3 and S4 increases. Meanwhile, Fig. 7b demon-
strates the inhibition activity of S3 and S4 against E. faecalis. The
decrease in percentage viability of S4 against E. faecalis only occurs
after the sample concentration of 31 ug/mL (Fig. 7b). From these
results, the minimum inhibitory concentrations that prevents 50%
bacterial growth are measured as MICsg and listed in Table 1.

Both samples showed effective antibacterial activities against
two strains of bacteria; E. coli and E. faecalis. S3 showed better
antibacterial activities against both bacteria compared to S4 as
shown by its lower MICsq values. This might be related to the small
particle sizes of S3 that contribute to high amount of active surface

Table 1
Minimum inhibitory concentration inhibiting 50% bacterial growth (MICsg) of
P. granatum/ZnO-NPs samples against E. coli and E. faecalis.

P. granatum/ZnO-NPs MICs0 (pg/mL)

E. coli (Gram-negative) E. faecalis (Gram-positive)

S3 64.53 22.09
sS4 90.90 95.21

area accessible for antibacterial reactions to occur. On the other
hand, larger-sized S4 has reduced antibacterial efficacy owing to its
lower surface area per volume available to react with the bacterial
cells. From literature reviews, it has been agreed that particle size is
considered one of the main factors that affect the sensitivity of
bacteria towards nanomaterials [14]. Based on several research
papers, ZnO-NPs of particle sizes less than 37 nm were successfully
synthesized in temperatures lower than 500 °C [38]. MIC value for
these ZnO-NPs against E. coli and E. faecalis were reported to be
32 pg/mL and 16 ug/mL, respectively [42]. Smaller sizes of ZnO-NPs
produce lower MIC value as compared to bigger-sized ZnO-NPs.
The exact mechanism of ZnO-NPs killing of bacteria is still being
debated and explored, but there are a few proposed antibacterial
mechanisms usually discussed among scholars. It is suggested that
NPs directly interact with the bacterial cell wall or membrane by
releasing metal ions that disrupt the cell permeability, causing
damage to the first layer of defence [ 19]. Upon entry into the cells, the
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Fig. 8. Anticancer and cytotoxicity effects of pomegranate and P. granatum/ZnO-NPs
(S3, S4) on (a) colorectal cancer cells (HCT116) and (b) colon normal cells (CCD112)
after 72 h of treatment.

Table 2

Inhibitory concentration killing 50% cells (ICso) of pomegranate and P. granatum/
ZnO-NPs (S3, S4) against colorectal cancer cells (HCT116) and normal cell line
(CCD112).

P. granatum/ZnO-NPs ICs0 (png/mL)

HCT116 (colorectal

CCD112 (normal

cancer cells) colon cells)
Pomegranate 96.35 -
S3 28.89 22.12
S4 24.11 17.56
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NPs will affect the bacteria's biochemical processes by causing
damage to DNA and proteins denaturation [43]. This will finally
trigger apoptosis or cell death as the bacteria fails to replicate nor-
mally. It can also be noted that Gram-positive bacteria, E. faecalis is
more susceptible to S3 as lower concentration of S3 (22.09 ug/mL) is
needed to inhibit 50% E. faecalis growth compared to Gram-negative
bacteria, E. coli. This finding is similar to previous publications that
reported presence of an outer membrane in Gram-negative bacteria
might cause them to be more resistant to antimicrobials [44].

3.6. Cytotoxicity and anticancer effects of P granatum/ZnO-NPs

As shown in Fig. 8, the cytotoxicity effects of pomegranate peel
powder, S3 and S4 were investigated on CCD112 (normal colon cell
line) while anticancer effects were evaluated on HCT116 (colorectal
cancer cell line). Pomegranate showed selective toxicity towards
colon cancer cells (HCT116) and proved non-toxic to normal cell
(CCD112). Cancer cells treated with pomegranate peel powder
showed more than 50% decrease in viability (Fig. 8a) at the con-
centration of 250 pg/mL while normal cells retained their per-
centage viability (>55%) in all concentrations (Fig. 8b).

Meanwhile, P. granatum/ZnO-NPs (S3 and S4) exhibited cytotox-
icity against both cell lines as their concentration increased. In cancer
cells (Fig. 8a), about 60% killing by S3 was seen at 31.25 ug/mL while
approximately 70% killing was observed for S4 at the same concen-
tration. Similarly in normal cells (Fig. 8b), S4 showed slightly higher
killing activities (>80%) than S3 at the concentration of 31.25 pug/mL.

Normal HCT116

Pomegranate-treated HCT116

S3-treated HCT116

S4-treated HCT116

Overall, pomegranate showed selective anticancer effects to-
wards cancer cells while S4 demonstrated higher killing activities
than S3 against both cells. For all samples, inhibitory concentration
killing 50% cells (ICs9) were calculated and presented in Table 2.
This data is consistent with the microscopic examination as shown
in Fig. 9. Unfortunately, these findings suggest that the P. granatum/
ZnO-NPs tested are not selective enough to be used as anticancer
compound as they did not show specificity towards the cancerous
cells compared to the normal cells. Thus, further modifications of
the NPs are required to improve the NP's specificity.

Fig. 9 displays the microscopic images of normal and sample-
treated HCT116 and CCD112 cells for comparison. In the absence
of any compound, both cells are in healthy conditions, and are
neatly connected with a high concentration of cells in the cell lines
[45]. At the concentration of 31.25ug/mL, pomegranate-treated
HCT116 and CCD112 cells show no obvious changes in their struc-
tures and morphologies, as the cells remain attached to the wells. In
contrast, at the same concentration, S3 and S4-treated HCT116 and
CCD112 cells became detached and were dispersed in the wells.
This indicates cell deaths due to the cytotoxicity and anticancer
effects of P. granatum/ZnO-NPs against both cell lines.

4. Conclusions

In this work, P. granatum F. peel extract was successfully used to
produce ZnO-NPs by acting as reducing and stabilizing agents
during the synthesis process. Different annealing temperatures

Normal CCD112

Pomegranate-treated CCD112

S3-treated CCD112

S4-treated CCD112

Fig. 9. Microscopic images of untreated, pomegranate-treated, S3-treated and S4-treated (a) colorectal cancer cells, HCT116 and (b) normal colon cells, CCD112 at the sample

concentration of 31.25 ug/mL.
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between 400 "C to 700 "C were proven to have apparent effects on
purity, crystallinity and sizes of P. granatum/ZnO-NPs. In higher
annealing temperature, pure, highly crystalline and larger-sized
P. granatum/ZnO-NPs were yielded. These different physicochem-
ical properties dictate the effectiveness of the samples in antibac-
terial and anticancer applications. Comparative experiments were
done using S3 and S4 to analyze their antibacterial and anticancer
properties. Smaller-sized S3 of about 32.98 + 8.63 nm exhibited
better inhibition activities against Gram-negative bacteria (E. coli)
and Gram-positive bacteria (E. faecalis) growth. Meanwhile, larger-
sized S4 with a mean size of 81.84 + 24.50 nm was proved to have
slightly higher cytotoxicity against both colorectal cancer cells
(HCT116) and normal colon cells (CCD112) compared to S3. Further
compound modification of the NPs are suggested in order to
improve selectivity towards cancerous cells only.
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