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12 ABSTRACT: The interaction between natural occurring inhibitors and targeted membrane proteins could be an alternative
13 medicinal strategy for the treatment of metabolic syndrome, notably, obesity. In this study, we identified malabaricones A−C
14 and E (1−4) isolated from the fruits of Myristica cinnamomea King as natural inhibitors for sphingomyelin synthase (SMS), a
15 membrane protein responsible for sphingolipid biosynthesis. Having the most promising inhibition, oral administration of
16 compound 3 exhibited multiple efficacies in reducing weight gain, improving glucose tolerance, and reducing hepatic steatosis in
17 high fat diet-induced obesity mice models. Liver lipid analysis revealed a crucial link between the SMS activities of compound 3
18 and its lipid metabolism in vitro and in vivo. The nontoxic nature of compound 3 makes it a suitable candidate in search of drugs
19 which can be employed in the treatment and prevention of obesity.
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21Worldwide prevalence of obesity has increased substan-
22 tially over the past 40 years and continues to cause
23 metabolic syndrome, which is associated with dyslipidaemia,
24 insulin resistance, cardiovascular diseases, and type 2 diabetes
25 mellitus (T2DM).1−3 These intersecting risks are controlled by
26 a critical and complex metabolic pathway which involves the
27 membrane protein. Having said that, the membrane protein
28 could be the initial key in enhancing the understanding of
29 pharmacology for common metabolic related diseases, notably,
30 obesity. The membrane protein regulates cell communication
31 with its surroundings which is activated by a wide variety of
32 physiological and environmental stimuli including peptides,
33 proteins, small organic molecules, and even ions.4−6 About
34 more than 50% of all known low molecular drugs bind to the
35 membrane protein.7,8 Thus, discovering an enzyme inhibitor
36 will be a direct approach in developing low molecular drugs.
37 This study of ours focuses on the sphingomyelin synthase
38 (SMS) membrane protein family which consists of two

39isozymes, SMS1 and SMS2.9,10 Both SMS 1 and 2 catalyze
40ceramide and phosphatidylcholine (PC) as substrates to
41produce sphingomyelin (SM) and diacylglycerol (DAG).11,12

42The SMSs modulate SM and other sphingolipids levels,
43thereby regulating membrane fluidity, ceramide-dependent
44apoptosis, lipid metabolism, and signal transduction.13−16 The
45increasing levels of SM and DAG produced by the SMSs will
46lead to obesity and insulin resistance.17,18 SMS knockout mice
47are resistant to Alzheimer’s disease, tumorigenesis, diet-
48induced obesity, and T2DM and are also know to exhibit
49decreased levels of plasma inflammatory cytokines.19,20,15,21

50Therefore, the inhibition of the SMSs enzymes by natural
51occurring substrates would be an ideal therapeutic approach
52for metabolic syndrome.
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53 Very recently, the inhibitory activity of gingkolic acid from
54 the leaves of Gingko biloba was reported by our group.22

55 Though, gingkolic acid has been proven to be an effective
56 inhibitor with equal inhibiting potentials (IC50 = 1.5 μM)
57 against both enzymes, studies have revealed that gingkolic acid
58 is toxic, thus making it an unsuitable candidate for the further
59 development of it as a drug.23,24 With regard to this, in the
60 present work, we report the isolation of malabaricones A−C
61 and E (1−4) as the first naturally occurring SMS inhibitor
62 from edible plants in an effort to display a safe alternative with
63 lesser side effects.25 Additionally, we performed a diet-induced
64 obesity test with malabaricone C (3) that showed significant
65 prevention of high fat diet-induced fatty liver.
66 Preliminary screening of the ethyl acetate extract from the
67 fruits of M. cinnamomea showed potential inhibitory activity
68 against SMS1 (13 μg/mL) and SMS2 (10 μg/mL),
69 respectively. Therefore, the bioassay-guided fractionation of
70 the extract resulted in the isolation of malabaricones A−C and

f1 71 E (1−4) as the active compounds (Figure 1).26,27

72 Subsequently, compounds 1−4 were subjected to SMS
73 inhibition assay by lysate-based assay of SMS1- or SMS2-
74 expressed SMS1/2 double knockout mouse fibroblasts. Each of
75 the compounds showed relatively moderate inhibition
76 activities compared with that of previously synthesized

t1 77 inhibitors (Table 1).22 A closer look at the structures of

78 compounds 1−4 provided further insight as to how the
79 activities of these compounds might have been influenced by
80 the chemical groups in their respective structures (Figure 1).
81 The SMS inhibiting potentials of compounds 1−3 could have
82 enhanced with the increase in the number of hydroxyl groups
83 in their ring b. The lower SMS inhibiting potentials of
84 compound 4 upon comparison to compound 2 may have
85 resulted from the additional hydroxyl group in its ring a.

86To determine the mode of action for major compounds 1−
873, cell lysate assay of the SMS inhibitory activity was carried
88out by using different substrate concentrations. The IC50 values
89of 2 to 3 μM for SMS1 and 1 to 3 μM for SMS2 were obtained
90in the presence of 5 and 10 μM of NDB-Ceramide. As a result,
91changes in substrate concentration did not significantly affect
92the IC50 values of compounds 1−3, thus suggesting that
93compounds 1−3 were noncompetitive inhibitors of both SMS
941 and 2 (Table S1). Cell counting kit-8 assay was used to
95evaluate the cytotoxic activity of compound 3 against wild-type
96mouse embryonic fibroblasts cells, MEF. 56−97% of the cells
97were viable after 3 h of treatment with compound 3 at
98concentration levels of 1−0.01 mM (Figure S1). Acute toxicity
99studies of compound 3 at the concentration of 500 mg/kg
100were previously conducted on mice liver and kidneys. The
101absent of inflammation, necrosis, and hemorrhaging in the
102respective organs further supported our findings.28

103Furthermore, in the current investigation, the SMS
104inhibition assay of compound 3 was carried out with live
105cells (cell-based assay) and the IC50 values were 13 μM and 11
106μM for SMS1 and SMS2 enzymes, respectively (Table S2).
107These results suggested that compound 3 could be a suitable
108candidate for further in vitro and in vivo studies based on its
109previously reported world drug index, Lipinski’s rules,
110nonmutagenicity, and noncarcinogenicity.29

111It has been reported that a high fat diet (HFD) activates the
112nuclear receptor PPAR-γ, which is responsible for the hyper-
113expression of CD36/FAT.15 The SMS2 enzyme facilitates
114CD36/FAT to take up the PPAR-γ ligands, which leads to the
115accumulation of triglycerides and lipid droplets, thus resulting
116in fatty liver formation. Since compound 3 exhibited SMS1 and
117SMS2 inhibitory activities, an oleic acid uptake analysis assay
118with hepatocytoma HepG2 cells was further conducted to
119examine the levels of intracellular triglycerides and free fatty
120acids. Compound 3 decreased the levels of intracellular
121triglycerides in a dose-dependent manner while it exhibited
122no significant changes in the free fatty acids levels as compared
123 f2to the control (Figures 2A−B). With the promising in vitro
124effects on oleic acid uptake, we performed a Nile red staining
125assay to examine the effect of compound 3 on lipid droplet
126formation in the HepG2 cells. Remarkably, compound 3 for
127the first time was found to significantly decrease lipid
128accumulation in a dose-dependent manner (Figures 2C−D).
129These data indicated that compound 3 was able to prevent
130cellular uptake by CD36/FAT in a dose dependent manner,
131which is in good agreement with the results of the previous in
132vivo effects of SMS2 knockout mice.15

133With regard to the in vitro results, the selected natural
134occurring inhibitor was further investigated using (C57BL/6J)
135mice which were fed with high-fat diet (HFD), normal chow
136diet (ND), and HFD supplemented with 0.1% of compound 3.
137The HFD + 3 mice were healthy and behaved normally over 2
138months with the exception of a noticeably leaner phenotype
139 f3(Figure 3A). Despite not having any statistically difference in
140the daily food intake between the HFD control and the HFD +
1413 group (Figure S2), the body weight of the HFD + 3 group
142was significantly lower than those of the controls starting from
14320 days of treatment with an inclusive weight loss of 42.7%
144(Figures 3B−C). In addition, an oral glucose tolerance test was
145performed after 8 weeks of the daily oral administration of the
146vehicle controls and HFD + 3. Treatment of mice with
147compound 3 also displayed a more significant improvement in

Figure 1. Bioassay-guided extraction of the fruits of M. cinnamomea
afforded four naturally occurring inhibitors for SMS inhibitory
activity.

Table 1. Inhibitory Activity of Sphingomyelin Synthase
(Lysate Based Assay)a

NBD − Ceramide (IC50, μM)

No. Compounds SMS 1 SMS 2

1 Malabaricone A 4 4
2 Malabaricone B 3.5 2.5
3 Malabaricone C 3 1.5
4 Malabaricone E 6 4.5

aIC50 values are the means of three separate determinations on SMS1
or SMS2 expressed SMS1/2 double knockout mouse fibroblast cell
lysate and were determined by more than four concentrations of each
inhibitor.
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148 the glucose tolerance than that of the vehicle-treated mice
149 (Figure 3D).
150 The liver plays a key role in lipid metabolism.30 Liver weight
151 reduction was observed for the HFD + 3 as compared to the

f4 152 HFD group (Figure 4A), but the liver of the HFD + 3 group
153 was noticeably redder, possibly implying a decreased fat

154content in the organ (Figure 4B). Previous study has shown
155that up-regulation of the hepatic lipid metabolism may
156contribute to the suppression of the liver fat and visceral fat
157accumulation.31 Examination of the histological analysis of the
158oil red O-stained sectioned of the liver showed the presence of
159numerous steatosis in the HFD control group as indicated by
160microscopy observation (Figure 4C). The HFD + 3 group on
161the other hand exhibited resistance in the development of liver
162steatosis and improved lipid metabolism. Steatosis controls the
163development of obesity along with metabolic syndrome related
164disorder.32 Consistent with the histochemical results, we found
165that HFD + 3 effectively reduced the hepatic TG levels (Figure
1664D). In addition, feeding the mice with HFD + 3 significantly
167reduced the levels of triglycerides (TG) and free fatty acids
168(FFAs) in the blood plasma (Figures 4E−F). In comparison
169with previous plasma free fatty acids in the SMS2 knockout
170mice in vivo, there is a possibility that the uptake of fatty acids
171into the liver tissues may not fully be prevented, which further
172explains the decrease of plasma free fatty acids upon feeding
173with HFD + 3. Finally, we assessed the synthesis of DAG and
174SM via liver tissue lysate assays to further confirm the in vivo
175SMS inhibitory activities by compound 3. Indeed, we have
176proved that, for the first time, compound 3 as a natural SMS
177inhibitor, has significantly reduced the synthesis of the DAG
178and SM in the liver (Figures 4G−H). Herein, we underlined
179the in vitro and in vivo efficacies of compound 3 in its
180inhibition of the SMS2 enzyme and its putative mechanism
181involving the prevention of obesity. Interestingly, we
182demonstrated that compound 3 results in body weight
183reduction, improves glucose tolerance, and lowers hepatic
184steatosis in vivo. Further studies on gene expression related to
185lipogenesis and gluconeogenesis are required to better
186understand the exact metabolism which is involved.

Figure 2. In vitro results of HepG2 cell analysis. Intracellular levels of
(A) triglycerides and (B) free fatty acid when treated with different
concentrations of compound 3 with oleic acid uptake. (C)
Representative images of Nile Red staining and DAPI staining. (D)
Oleic acid uptake analysis. Lipid droplets were stained with Nile Red
and the numbers of lipid droplets were counted using fluorescent
microscopy. Scale bar, 100 μm. Data are presented as the mean ±
standard error of the mean (SEM). Statistical analysis was done by
using t test: (*) P < 0.05, (**) P < 0.01, (***) P < 0.001, (****) P <
0.0005, ns = no significant difference versus the control.

Figure 3. In vivo results of compound 3 on body weight gain and
blood glucose levels. (A) Representatives images of the whole mice
body. (B−C) Body weight gain. (D) Oral glucose tolerance test.
Control: ND, normal chow diet and HFD, High fat diet. Test group:
HFD + 3, High fat diet with 0.1% of Malabaricone C. Data are
presented as mean ± standard error of the mean (SEM); N = 7−8
mice per group. t test: (*) P < 0.05, (**) P < 0.01, (***) P < 0.001,
(****) P < 0.0005, ns = no significant difference versus the control.
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187In summary, malabaricone C (3), an acylphenol isolated
188from the fruits of M. cinnamomea, has been identified as a lead
189natural sphingomyelin synthase inhibitor. Having the same
190mechanisms of action as the previously reported SMS
191knockout studies, malabaricone C was highly efficacious in
192preventing oleic acid uptake across the membrane, which in
193turn reduced lipid droplet formation in vitro.15 Malabaricone C
194was also found to be able to reduce body weight gain, improve
195glucose tolerance, and decrease lipid accumulation in the liver
196in vivo, thus making this the first report involving a plant
197derived SMS inhibitor against high fat diet-induced obesity. Its
198nontoxic nature makes malabaricone C a suitable candidate for
199its further development as a new drug or medicinal supplement
200to treat and prevent obesity.
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Figure 4. In vivo results of mice liver, lipid metabolism, and SMS
inhibitory activity. (A) Liver weight of the mice. (B) Representatives
images of liver gross appearance. (C) Representatives images of Oil
Red O staining (N = 3 mice per group). (D) Hepatic triglycerides.
(E) Plasma triglycerides. (F) Plasma free fatty acids. (G) Conversion
of NBD-Phosphocholine. (H) Conversion of NBD-Ceramide.
Measurements were taken from distinct samples. Scale bar, 100 μm.
Control: ND, normal chow diet, and HFD, high fat diet; Test group:

Figure 4. continued

HFD + 3, high fat diet with 0.1% of compound 3. Data are presented
as mean ± standard error of the mean (SEM); N = 7−8 mice per
group. t test: (*) P < 0.05, (**) P < 0.01, (***) P < 0.001, (****) P
< 0.0005, ns = no significant difference versus the control.
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240 SMS, sphingomyelin synthase; PC, phosphatidylcholine; SM,
241 sphingomyelin; DAG, diacylglycerol; ND, normal chow diet;
242 HFD, high fat diet; PPAR-γ, peroxisome proliferator-activated
243 receptor gamma; CD36, cluster of differentiation; FAT, fatty
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245 N-[6-[(7-nitro-2−1,3-benzoxadiazol-4-yl)amino]hexanoyl];
246 T2DM, type 2 diabetes mellitus; OGTT, oral glucose tolerance
247 test; DAPI, 4′,6-diamidino-2-phenylindole.
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