
Computer-Assisted
Language Comparison in
Practice
Tutorials on Computational
Approaches to the History and
Diversity of Languages

Contributions from 2018

Edited by Johann-Mattis List and Tiago

Tresoldi

Jena, Max-Planck Institute for the Science of
Human History

Contents

Introduction (Johann-Mattis List) 3
Extracting translation data from the Wiktionary project (Tiago

Tresoldi) . 4
Extracting sublists from a wordlist with LingPy and Concepticon

(Johann-Mattis List) . 8
Cooking with CLICS (Johann-Mattis List) 14
Representing structural data in CLDF (Johann-Mattis List) 18
A fast implementation of the Consonant ClassMatchingmethod for

automatic cognate detection in LingPy (Johann-Mattis List) . . 22
Enhancing morphological annotation for internal langauge

comparison (Nathanael E. Schweikhard) 29
Inferring consonant clusters from CLICS data with LingPy (Johann-

Mattis List) . 42
From Fieldwork to Trees 1: Data preparation (Gereon A. Kaiping) . . 50
Semantic promiscuity as a factor of productivity in word formation

(Nathanael E. Schweikhard) 56
From Fieldwork to Trees 2: Cognate coding (Gereon A. Kaiping) . . . 65
Merging datasets with LingPy and the CLDF curation framework

(Johann-Mattis List) . 73

2

Computer-Assisted Language Comparison in Practice

Introduction

By comparing the languages of theworld, we gain invaluable insights into hu-
manprehistory, predating the appearance ofwritten records by thousands of
years. The traditional methods for language comparison are based on man-
ual data inspection. Withmoreandmoredata available, they reach their prac-
tical limits. Computer applications, however, are not capable of replacing
experts’ experience and intuition. In a situation where computers cannot re-
place experts and experts do not have enough time to analyse the massive
amounts of data, a new framework, neither completely computer-driven, nor
ignorant of the help computers provide, becomes urgent.

The weblog Computer-Assisted Language Comparison in Practice, published
on the Hypotheses platform for scientific blogging, offers tutorials and
discussion notes on computer-assisted approaches to the history and
diversity of languages. A substantial part of its content is contributed as
part of the ERC Starting Grant “Computer-Assisted Language Comparison”
(CALC, 715618), funded by the European Research Council. But on the long
run, we want to make this blog a platform for everybody willing to share
ideas on small or big problems involving data preparation and analysis in
computer-assisted or computer-based approaches to language comparison.

This document summarizes all contributions from 2018. If you want to cite
them, please follow the instructions at the end of each contribution. I ex-
pressmy gratitude to all contributors, who helped tomake this an interesting
collection of tutorials, algorithms, and initial theories related to the fields of
computer-assisted language comparison.

Johann-Mattis List (Jena, November 2019)

3

Computer-Assisted Language Comparison in Practice

Extracting translation data from theWiktionary
project

Tiago Tresoldi (11/06/2018)

Categories: Dataset

Tags: cross-linguistic data formats, lexical data, Wiktionary

Wiktionary is a project for creating a multilingual, web-based free dictionary
of all words in all languages. Like its sister project Wikipedia , since its in-
ception it has been subject to criticism both in terms of its lexicographic ap-
proaches and in terms of reliability, content, procedures, and community op-
eration (see Lepore 2006, Fuertes-Olivera 2009, Meyer 2012). Faults have also
been pointed in terms of its structurewhich is confusing for newcomers, with
parallel and unaligned information shared among the various language dic-
tionaries, and differences in accuracy and depth among languages. Notwith-
standing, data fromWiktionary is routinely employed with successful results
in natural language processing and, occasionally, in linguistic research (see
Otte 2011, Schlippe 2012, Medero 2009, Li 2012), as it constitutes, by far, the
largest free multilingual lexical source.

The Wikimedia Foundation, the organization managing the project, releases
automatically generated “ dumps ” of the data for free and anonymous
download. However, such files cannot be used in linguistic research without
a pre-processing (“parsing”) stage, as they constitute more a backup than a
data release: in essence, they are XML files which enclose the textual infor-
mation of the dictionary articles (pages potentially holding information for
more than oneword andmore than one language), which are encoded in the

4

https://wiktionary.org
https://wikipedia.org
https://dumps.wikimedia.org/

Computer-Assisted Language Comparison in Practice

MediaWiki markup syntax (a context-sensitive language that is notoriously
difficult to parse). Data extraction is further complicated by the fact that
the rendered HTML pages include information computed by functions of
general and linguistic scope only available inside an environment running
the Wiktionary server, as well as by Wiktionary collaborators not always
following the project’s guidelines and specifications. Many projects have
started to tackle such problems and the difficulties in reusing the data,
including a brand new initiative by Wikidata.

As such, no standard method for extracting Wiktionary information exists,
with mostly project-specific solutions. An investigation of parsing tools
on GitHub revealed that two main approaches are used: parsing the XML
files and manipulating the entire textual fields, or parsing the individually
renderedHTML pages (fetched either from a local server or over the Internet).
We decided to test a simpler approach of parsing the dumps as regular text
files, reading them line by line while building an internal structured version
of the information, processing lines with regular expression or simple string
searching methods. The first experiment, whose results are here presented,
involved extracting the parallel translations for English words found in the
English Wiktionary.

The data, based on the dump of 2018-06-01, includes 2,169,063 different en-
tries from the translation of 149,530 English words and expressions in 2,358
languages (withmuch variation in vocabulary size among languages: 931 lan-
guages have only one entry and German, the largest language after English,
has 97,091 entries). Data is offered in a tabular textual format, and all en-
tries include (a) a unique ID, (b) a concept ID referring to the source English
word, (c) a description string with the English source and a short definition
(such as “ dictionary/publication that explains the meanings of an ordered
list of words “), (d) a language ID from the Glottolog catalog , (e) the text of
the translation as given in the Wiktionary, and (f) an extra field holding com-

5

https://www.mediawiki.org/wiki/Markup_spec
https://www.wikidata.org/wiki/Wikidata:Lexicographical_data
http://glottolog.org

Computer-Assisted Language Comparison in Practice

plementary information, when available (such as phonetic transcription of
the text, noun gender, etc.). Data is also offer in a set of files (tabular tex-
tual files, bibtex sources, and JSONmetadata) following the Cross-Linguistic
Data Formats (CLDF) , a specification designed to allow the exchange of cross-
linguistic data. The code for data extraction is available on GitHub and the
data is available on Zenodo as “ Parallel Translations from the English Wik-
tionary” (DOI: 10.5281/zenodo.1286991). Many thanks to Johann-Mattis List
and to Christoph Rzymski for their help with this work.

References

Fuertes-Olivera, Pedro A. (2009). “The function theory of lexicography and electronic dictio-

naries: Wiktionary as a prototype of collective free multiple-language internet dictionary”.

In H. Bergenholtz, S. Nielsen, and S. Tarp (eds), Lexicography at a Crossroads: Dictionaries

and Encyclopedias Today, Lexicographical Tools Tomorrow. Linguistic Insights: Studies in Lan-

guage and Communication 90, 99–134. Bern: Peter Lang.

Lepore, Jill (2006). “Noah’s Mark”. In: New Yorker , November 6 2006 Issue.

Li, Shen; Graça, Joao V.; Taskar, Ben (2012). “Wiki-ly supervised part-of-speech tagging”

(PDF). Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language

Processing and Computational Natural Language Learning. Jeju Island, Korea: Association

for Computational Linguistics. pp. 1389–1398.

Medero, Julie; Ostendorf, Mari (2009). “Analysis of vocabulary difficulty using wiktionary”

(PDF). Proc. SLaTE Workshop.

Meyer, ChristianM.; Gurevych, Iryna (2012). “Wiktionary: A new rival for expert-built lexicons?

Exploring the possibilities of collaborative lexicography”. In Granger, Sylviane; Paquot, Mag-

ali, Electronic Lexicography. Oxford: Oxford University Press.

Otte, Pim; Tyers, Francis M. (2011). “Rapid rule-based machine translation between Dutch

6

http://cldf.clld.org
http://cldf.clld.org
https://github.com/tresoldi/wiktionary_parser
https://zenodo.org/record/1286991
https://zenodo.org/record/1286991

Computer-Assisted Language Comparison in Practice

and Afrikaans” (PDF). In Forcada, Mikel L.; Depraetere, Heidi; Vandeghinste, Vincent. 16th An-

nual Conferenceof the EuropeanAssociationofMachine Translation, EAMT11. Leuven, Belgium.

pp. 153–160.

Schlippe, Tim; Ochs, Sebastian; Schultz, Tanja (2012). “Grapheme-to-phonememodel gener-

ation for Indo-European languages” (PDF). Acoustics, Speech and Signal Processing (ICASSP).

Kyoto, Japan. pp. 4801–4804.

Cite this article as: Tiago Tresoldi, “Extracting translation data from the
Wiktionary project,” in Computer-Assisted Language Comparison in Prac-
tice, 11/06/2018, https://calc.hypotheses.org/32.

7

https://calc.hypotheses.org/32

Computer-Assisted Language Comparison in Practice

Exporting sublists from awordlist with LingPy
and Concepticon

Johann-Mattis List (16/07/2018)

Categories: Code

Tags: code example, concept list, Concepticon, LingPy, sublist, Swadesh list

When dealing with linguistic datasets, we may often want to export only a
small part of our data, for example, only vocabulary in a certain range, such
as the Swadesh list of 200 itemsor the list of 35 itemsby Yakhontov (originally
published in Starostin 1991 . Thanks to the pyconcepticon API and LingPy’s
built-in export functions for wordlists, this task can be done just in a few lines
of code, as we will see below. If you prefer to see the raw code instead of the
step-by-step explanation below, you can find a GitHub Gist here.

In order to get started, I work with a dataset that was originally published
along with a paper by Kolipakam et al. (2018). This dataset can be down-
loaded from the supplemental material accompanying the paper, and the
important file is a zip-folder called SI_robustness_cognate_coding.zip, from
which you have to extract the file DravLex.tsv . I take this dataset, since it is
published, it is easy to get a copy of the data, and the data has been already
linked to Concepticon, although not officially in Version 1.1, but you can al-
ready receive the data from our GitHub repository, where the concept list is
labelled Kolipakam-2018-100, following our Concepticon naming convention,
which takes the first author, the year of the publication, and the number of
items in order to create a stable identifier for a concept list.

8

http://concepticon.clld.org/contributions/Swadesh-1952-200
http://concepticon.clld.org/contributions/Yakhontov-1991-35
http://bibliography.lingpy.org?key=Starostin1991
https://gist.github.com/LinguList/7804cb127e74a9263b4eab9c5af4bc6f
http://bibliography.lingpy.org?key=Kolipakam2018
http://rsos.royalsocietypublishing.org/highwire/filestream/18890/field_highwire_adjunct_files/3/rsos171504supp4.zip
https://github.com/clld/concepticon-data
https://github.com/clld/concepticon-data/blob/master/concepticondata/conceptlists/Kolipakam-2018-100.tsv

Computer-Assisted Language Comparison in Practice

To get started, you need to make sure that you have the pyconcepticon
API installed in its most recent version. You should find all important in-
structions for this on the GitHub repository of the Concepticon project (see
clld/concepticon-data). You also need to have LingPy installed in its current
2.6 version (ideally also make sure to take the most recent version from
our GitHub repository: lingpy/lingpy). Equipped with this information and
the dataset, open a terminal in the folder in which you have placed the file
DravLex.tsv , and start by loading LingPy and the pyconcepticon API.

1 [IN]: from pyconcepticon.api import Concepticon
2 [IN]: from lingpy import *

This is of course easy, but now we will process the concept list of Kolipakam
et al. and try to extract those items which we can also find in the very short
list of 35 items by Yakhontov. In order to do so, you need to understand how
Concepticon stores data in the Python API, and this may be somewhat con-
fusing at the first sight, since the class hierarchy is created in such a way that
it directly reflects the online version of the Concepticon andmakes extensive
use of dictionaries (more precisely OrderedDict). But let’s start step by step,
and first, we simply load the API:

1 [IN]: CNC = Concepticon()

And nowwe load the concept lists by Yakhontov and Kolipakam:

1 [IN]: yakhontov = CNC.conceptlists['Yakhontov-1991-35']
2 [IN]: kolipakam = CNC.conceptlists['Kolipakam-2018-100']

What is important here is the structure of the Conceptlist objects that we
just loaded. They all have an attribute concepts , which is itself a dictionary
with the identifier of a given concept as key, and a Concept object as value.

9

https://github.com/clld/concepticon-data
https://github.com/lingpy/lingpy

Computer-Assisted Language Comparison in Practice

The Concept object itself has again different attributes, and the most impor-
tant attributes for us are the concepticon_id and the english entry. We
need the english attribute of the data by Kolipakam et al. to determine the
Concepticon identifiers in the dataset, since the dataset itself does not offi-
cially link thedata toConcepticon. Weuse theConcepticon identifiers to com-
parewhich of the concept sets in the Dravidian data also occur in Yakhontov’s
list. We start by slightly modifying our two lists (yakhontov and kolipakam)
first, and then extract a sublist with English glosses from them:

1 [IN]: yakhontov = [c.concepticon_id for c in yakhontov.
concepts.values()]

2 [IN]: kolipakam = [(c.concepticon_id, c.english) for c in
kolipakam.concepts.values()] sublist = [english for

english, concepticon_id in kolipakam if concepticon_id
in yakhontov]

3 [IN]: print('Overlap shows {0} items in common.'.format(
len(sublist)))

4 [OUT]: Overlap shows 31 items in common.

We can now load the DravLex.tsv file and output it in such a way that only
a subset of concepts is selected which occur in our sublist. For this, we use
the output-method of the Wordlist class in LingPy, but in contrast to the
normal output procedure, we specify a subset and a condition. Since the con-
dition is evaluated internally in form of Python code passed to LingPy, this
looks a bit ugly, as we define a dictionary that specifies columns that occur in
the wordlist, and these columns’ content is then checked against the Python
code that we pass as string, but it is the fastest way to accomplish this task in
LingPy:

1 [IN]: wl = Wordlist('DravLex.tsv') wl.output('tsv',
filename='DravLex-sublist', subset=True, rows={"concept
": "in "+str(sublist)})

10

Computer-Assisted Language Comparison in Practice

That’s all we have to do. In order to verify that we really exported only a part
of the wordlist, we can reload it and count its basic parameters (number of
languages, concepts, and words):

1 [IN]: wl2 = Wordlist('DravLex-sublist.tsv')
2 [IN]: print('{0}:{1} languages, {2}:{3} concepts, and

{4}:{5} words'.format(wl.width, wl2.width, wl.height,
wl2.height, len(wl), len(wl2)))

3 [OUT]: 20:20 languages, 100:31 concepts, and 2114:660
words

Another way to achieve this goal which has the advantage of allowing you to
circumvent to write the data to file and reload it is to create a new wordlist
object from the original wordlist object. In order to do so, we create a dictio-
nary with integers as key where the key 0 reflects the header of the wordlist
object and the keys link to values that are a list, just as we know it from the
normal wordlist objects.

1 [IN]: D = {0: [c for c in wl.columns]}

We can fill this now still empty dictionary by iterating over all entries in our
original wordlist and checking whether the concepts occur in our sublist:

1 [IN]: for idx, concept in wl.iter_rows('concept'):
if concept in sublist:...... D[idx] = [

entry for entry in wl[idx]]

This dictionary can then directly be passed to the Wordlist class and loaded
in the same way in which we would load a normal wordlist.

1 [IN]: wl2 = Wordlist(D)

11

Computer-Assisted Language Comparison in Practice

We can again quickly verify that this yields the same expected output.
1 [IN]: print('{0}:{1} languages, {2}:{3} concepts, and

{4}:{5} words'.format(wl.width, wl2.width, wl.height,
wl2.height, len(wl), len(wl2)))

2 [OUT]: 20:20 languages, 100:31 concepts, and 2114:660
words

Which of the methods to use depends on personal preferences and also the
task at hand. It may be preferable to load a sublist on the fly and manipu-
late it further in LingPy, and it may be useful to save it to file, which is faster
with our subset option in LingPy’s output function for wordlists. When play-
ing a bit with the conditions, many more things can be done in order to ma-
nipulate wordlist objects within Python, without having to manipulate them
manually, or bywritingwordlist content to other datatypes in order to handle
them with additional libraries, like, for example, Pandas. The only problem
is, at least inmy experience, that it seems to be difficult for users to grasp the
major concepts behind this practice in LingPy, as they have been developed
long before tools like Pandas were commonways ofmanipulating arrays and
tabular data.

References

Kolipakam, V., F. Jordan, M. Dunn, S. Greenhill, R. Bouckaert, R. Gray, and A. Verkerk (2018):

A Bayesian phylogenetic study of the Dravidian language family. Royal Society Open Science

5.171504. 1-17.

Starostin, S. (1991): Altajskaja problema i proischo\vzdenije japonskogo jazyka [The Altaic

problem and the origin of the Japanese language]. Nauka: Moscow.

12

Computer-Assisted Language Comparison in Practice

Cite this article as: Johann-Mattis List, “Exporting Sublists from a
Wordlist with LingPy and Concepticon,” in Computer-Assisted Language
Comparison in Practice, 16/07/2018, https://calc.hypotheses.org/58.

13

https://calc.hypotheses.org/58

Computer-Assisted Language Comparison in Practice

Cooking with CLICS

Johann-Mattis List (08/08/2018)

Categories: Code, Dataset

Tags: CLICS, colexification network, Concepticon, example

Robert Forkel just published a very nice cookbook example for our CLICS
database (List et al. 2018f , http://clics.clld.org), where you can find out how
to manipulate the data further, apart from just installing it and running it to
replicate our analyses.

This cookbook tells you how the underlying SQLITE database is structured
and how you can, after installing CLICS and the respective packages, access
the data to conduct studies of your own.

As a little example ofwhat you candowith the newCLICSAPI, letme illustrate
in this post, howwe can use the old CLICS data (underlying the version 1.0 by
List et al. 2014 , http://clics.lingpy.org), available from here , in the new
application, specifically the standalone that we provide.

In order to get started,webeginby installing thepyclics API. For this, I assume
that Python3 is installed in a recent version on our system, along with pip
the command for downloading and installing new packages, and the version-
control system git .

In order to install the pyclics API, simply type the following in your terminal:
1 $ git clone https://github.com/clics/clics2
2 $ cd clics2
3 $ pip install -e .

14

https://github.com/xrotwang/
https://github.com/clics/clics2/tree/master/cookbook
http://bibliography.lingpy.org?key=List2018f
http://clics.clld.org
https://github.com/clics/clics2
http://bibliography.lingpy.org?key=List2014f
http://clics.lingpy.org
https://github.com/clics/clics1
https://github.com/clics/clics2

Computer-Assisted Language Comparison in Practice

Now, you can install the old CLICS data underlying version 1.0.

1 $ pip install -e git+https://github.com/clics/clics1.
git@v1.1#egg=lexibank_clics1

In addition, you need to install pyglottolog and pyconcepticon , but not
with pip , but rather as local clones (as you need to know where they are in-
stalled. So we recommend to install both packages by opening your terminal
in your preferred folder (ideally the one where you installed pyclics).

1 $ cd ..
2 $ git clone https://github.com/clld/concepticon-data
3 $ cd concepticon-data
4 $ pip install -e .
5 $ cd ..
6 $ git clone https://github.com/clld/glottolog
7 $ pip install -e .
8 $ cd ..

Now you can load the data into your personal CLICS database by simply typ-
ing:

1 $ clics load ./concepticon-data ./glottolog

In order to calculate the colexification network, just type:

1 $ clics -t 2 colexification

In order to create a standalone application for the data which you can put on
a server or browse (when using Firefox as webbrowser) even locally, type:

1 $ clics -t 2 communities
2 $ clics -t 3 subgraph

15

Computer-Assisted Language Comparison in Practice

You will find the application in the path clics2/app/ . Just click on the file
index.html and open it, and you can see an interface that reminds of the old
“look-and-feel” of CLICS.

Figure 0.1: Local CLICS application

If youwant to have a closer look at the networkwithout following all the code
examples above, you can also directly access it at http://calc.digling.org/cli
cs1 , where we have uploaded the version that we created ourselves in order
to test this example.

References

List, J.-M., T. Mayer, A. Terhalle, and M. Urban (eds.) (2014): CLICS: Database of Cross-

Linguistic Colexifications. Version 1.0. Forschungszentrum Deutscher Sprachatlas: Marburg.

http://www.webcitation.org/6ccEMrZYM

List, J.-M., S. Greenhill, C. Anderson, T. Mayer, T. Tresoldi, and R. Forkel (eds.) (2018): CLICS:

Database of Cross-Linguistic Colexifications. Max Planck Institute for the Science of Human

History: Jena.

16

http://calc.digling.org/clics1
http://calc.digling.org/clics1

Computer-Assisted Language Comparison in Practice

Cite this article as: Johann-Mattis List, “Cooking with CLICS,” in
Computer-Assisted Language Comparison in Practice, 08/08/2018, https:
//calc.hypotheses.org/384.

17

https://calc.hypotheses.org/384
https://calc.hypotheses.org/384

Computer-Assisted Language Comparison in Practice

Representing structural data in CLDF

Johann-Mattis List (03/09/2018)

Categories: Code, Dataset

Tags: CLDF, cross-linguistic data formats, Python, structural dataset

The Cross-Linguistic Data Formats initiative (CLDF, https://cldf.clld.org ,
Forkel et al. 2018) has helped a lot in preparing the CLICS² database of cross-
linguistic colexifications (https://clics.lingpy.org , List et al. 2018), since
linking our data to Concepticon (https://concepticon.clld.or g, List et al.
2016) and Glottolog (https://glottolog.org , Hammarström et al. 2018) has
provided incredible help in merging the different datasets into a big compar-
ative dataset.

CLDF, however, is not restricted to lexical data, but can also be successfully
used to store structural data, although— due to the nature of structural data
— it is muchmore difficult to compare different datasets.

In a recent publication by Szeto et al. 2018 the authors use structural data
to compare different Chinese dialect varieties typologically. The data itself is
provided in thepaper, but unfortunately, theauthorsdonot share it in formof
text files, but list it in tables in the original publication. They also do not share
theNEXUS file they created in order to analyze thedatawith theNeighbor-net
algorithm (Bryant and Moulton 2004) implemented by the SplitsTree soft-
ware package (Huson 1998).

Thanks to the help of David Morrison, who extracted the presence-absence
matrix from the table in the original paper, I was now able to convert their
data to the CLDF format for structural datasets. The data is available via

18

https://cldf.clld.org
http://bibliography.lingpy.org?key=Forkel2018
https://clics.lingpy.org
http://bibliography.lingpy.org?key=List2018e
https://concepticon.clld.or
http://bibliography.lingpy.org?key=List2016xxx
http://bibliography.lingpy.org?key=List2016xxx
https://glottolog.org
http://bibliography.lingpy.org?key=Hammarstroem2018
http://bibliography.lingpy.org?key=Szeto2018
http://bibliography.lingpy.org?key=Bryant2004
http://bibliography.lingpy.org?key=Huson1998

Computer-Assisted Language Comparison in Practice

GitHub at cldf-datasets/szetosinitic. The folder contains both the “raw” data
that I used (a KML-file with the dialect locations submitted as supplement
to the paper, as well as the feature matrix extracted by David Morrison, and
the parameter description as typed off by myself), as well as the CLDF data,
and a script that converts the raw data into CLDF. In addition, I have added
a script that converts the data to a NEXUS file that can be directly read into
SplitsTree. Robert Forkel furthermore added automatic tests that will be
carried out if users propose changes to the GitHub repository by making a
pull request.

In order to test the code for these different conversions, you can simply clone
(=download) the data with git:

1 $ git clone https://github.com/cldf-datasets/szetosinitic

Afterwards, you should install the dependencies, as listed in the file pip-
requirements.txt (make sure you use Python3 for this task, as Python2 is
not supported):

1 $ pip install -r pip-requirements.txt

Once this is done, you can test the conversion of the raw data into the CLDF
data by typing:

1 $ python chinese.py

Thiswon’t give you any visual feedback, but it will in fact recreate all the CLDF
data in the folder cldf , and it was the way I created the CLDF data in a first
instance.

19

https://github.com/cldf-datasets/szetosinitic

Computer-Assisted Language Comparison in Practice

To receive the NEXUS file, just type:

1 $ python nexus.py

Thiswill read the CLDFdata that you just created andwrite it in NEXUS format
ot the file chinese.nex .

To illustrate that one can use this basic procedure for more than just one
dataset, I added an older and smaller dataset published by Norman (2003)
which I happened to have typed off quite some time before. This dataset
can be found on GitHub at cldf-datasets/normansinitic and you can follow
exactly the same steps in order to convert this data as well into NEXUS
format.

In the future, I hope we can provide more functionality in the CLDF package
itself, so that people could use the cldf command that is installed as well if
you install the pycldf package, to convert a dataset from CLDF to different
formats needed for computations. However, given the diversity of formats,
with very different flavors of NEXUSbeing requiredbydifferent software pack-
ages, we should better wait a bit until we have extracted the most important
use cases that can be encountered.

References

Bryant, D. and V. Moulton (2004): Neighbor-Net . An agglomerative method for the con-

struction of phylogenetic networks. Molecular Biology and Evolution 21.2. 255-265.

Forkel, R., J.-M. List, S. Greenhill, C. Rzymski, S. Bank, M. Cysouw, H. Hammarström, M.

Haspelmath, G. Kaiping, and R. Gray (forthcoming): Cross-Linguistic Data Formats,

advancing data sharing and re-use in comparative linguistics. Scientific Data.

20

http://bibliography.lingpy.org?key=Normal2003
https://github.com/cldf-datasets/normansinitic

Computer-Assisted Language Comparison in Practice

Hammarström, H., R. Forkel, and M. Haspelmath (2018): Glottolog. Version 3.3. Max Planck

Institute for Evolutionary Anthropology: Leipzig.

Huson, D. (1998): SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics

14.1. 68-73.

List, J.-M., M. Cysouw, and R. Forkel (2016): Concepticon. A resource for the linking of con-

cept lists. In: Proceedings of the Tenth International ConferenceonLanguageResources

and Evaluation . 2393-2400.

List, J.-M., S. Greenhill, C. Anderson, T. Mayer, T. Tresoldi, and R. Forkel (2018): CLICS². An

improved database of cross-linguistic colexifications assembling lexical data with help

of cross-linguistic data formats. Linguistic Typology 22.2. 277-306.

Norman, J. (2003): TheChinesedialects . Phonology . In: Thurgood, G. andR. LaPolla (eds.):

The Sino-Tibetan languages. Routledge: London and New York. 72-83.

Szeto, P., U. Ansaldo, and S. Matthews (2018): Typological variation across Mandarin di-

alects: An areal perspective with a quantitative approach. Linguistic Typology 22.2. 233-

275.

Cite this article as: Johann-Mattis List, “Representing Structural
Data in CLDF,” in Computer-Assisted Language Comparison in Practice,
03/09/2018, https://calc.hypotheses.org/445.

21

https://calc.hypotheses.org/445

Computer-Assisted Language Comparison in Practice

A fast implementation of the Consonant Class
Matchingmethod for automatic cognate detection
in LingPy

Johann-Mattis List (01/10/2018)

Categories: Code

Tags: cognatedetection, consonant classmatchingmethod, implementation,
LexStat, LingPy, sound classes

LingPy’s LexStat class for cognate detection confuses those who want to ap-
ply it, since the name of the Python class is the same as the name of one of
the methods the class provides, but the class can be used for other types of
cognate detection as well. I recommend all users of LingPy that they give a
read to our most recent tutorial on LingPy’s cognate detection method (List
et al. 2018), since the three most important methods are discussed there in
detail, namely the edit distance method for cognate detection, which makes
use of the simple, normalized edit distance, the SCA method, based on the
Sound-Class-BasedAlignment algorithm (List 2014), and the LexStatmethod
(ibid.). Applying thesemethods in LingPy is fairly simple and described in de-
tail in our aforementioned tutorial. But LingPy offers an additional method
for cognate detection that has the advantage of being extremely fast and thus
especially suitable for exploratory data analysis of very large datasets. This
method is called turchin in LingPy, named after the first author of a paper
presenting the method (Turchin et al. 2010), but the method itself, which
Turchinetal. name“ConsonantClassMatching”method, goesoriginallyback

22

http://bibliography.lingpy.org?key=List2018d
http://bibliography.lingpy.org?key=List2018d
http://bibliography.lingpy.org?key=List2014d
http://bibliography.lingpy.org?key=Turchin2010

Computer-Assisted Language Comparison in Practice

to Dolgopolsky (1964)), and has long since been implemented as a part of the
STARLING software package (http://starling.rinet.ru/program.php).

Themethod is fairly simple. For a givenwordlist with a certain number of con-
cepts translated into a certain number of languages, all words are converted
to consonant classes, following either Dolgopolsky’s original proposal (Dol-
gopolsky 1964) or later modifications (Kassian et al. 2015). After conversion,
only the first two consonants of each word are compared, and the basic rule
is that if twowordsmatch in their first two consonant classes, they should be
considered as cognate. Attentive readersmay now immediately ask: What do
youdo ifwordsdon’t havea consonant? Tohandle cases like this, themethod
has two specific additional rules to convert a word to its first two consonant
classes. The first rule says that words starting with a vowel will be treated as
if they started with a glottal stop and thus assigned the consonant class “H”.
The second rule, which is not often mentioned in the literature, is that, if a
word consists of only one vowel, the second consonant will also be rendered
as a “H”.

Whether this is a good ideaor not, is in fact not important. Previous tests have
shown that themethod in general does not yield toomany false positives, but
insteadmaymissmany good cognates (List et al. 2017). Thatmeans that the
method is rather conservative , at least as long as it is applied to words within
the same concept slot. Evenmore important than its conservative behaviour
(as linguists we always prefer false negatives over false positives), however,
is that the method is extremely fast, and its complexity is linear: the amount
of time we need to cluster words into cognate sets with the Consonant Class
Matchingmethod is directly proportional to the number of words in our sam-
ple. The reason for this is that the cognate-match criterionof theCCMmethod
is transitive: if word A has the same consonant classes as word B, andword C
has the same consonant classes as word B, word C must also have the same
consonant classes as word A.

23

http://bibliography.lingpy.org?key=Dolgopolsky1964
http://starling.rinet.ru/program.php?lan=en
http://bibliography.lingpy.org?key=Kassian2015b
http://bibliography.lingpy.org?key=List2017c

Computer-Assisted Language Comparison in Practice

Wecanalso say: thecriterionbywhichwepartitionacoupleofwords intocog-
nate sets is just their consonant classes themselves. The consonant classes
can be directly used as the labels for the resulting clusters, since the criterion
of cognate set assignment is identity in those classes. As a result, we can com-
pute the clusters by simply computing the consonant classes per word in our
data, which explains why the complexity is linear.

The problem with the turchinmethod in the LexStat class of LingPy is that
the implementation isnot linear in termsof complexity, since it internallyuses
a distance matrix for all word pairs in a slot in which words that are cognate
according to the CCM criterion are given the distance 0 and the other words
aregiven thedistance 1. Thisdistancematrix is thenanalysedwith theUPGMA
algorithm (Sokal and Michener 1958) or one of the other luster approaches
offeredbyLingPy. While thiswill still be fast, since theclusters arealwayswell-
balanced, the methodmay easily break if you try to identify cognates across,
say, 1000 languages with 200 concepts for each of them. This is not only due
to thematrix-implementation in LingPy (which is not neededandwas created
in a time when I did not see that the CCM method has a linear solution), but
also due to the complex operations and conversions that are done whenever
you load a dataset into LingPy’s LexStat class.

Writing a workaround is in fact very easy, and presenting this workaround is
exactly what I want to do in this blogpost. My hope is that wemanage to add
this to the next official release of LingPy so that users can profit from the very
fast computation of cognate sets for large dataset, without having to wait for
hours until the normal LexStat approaches yield (at times disappointing) re-
sults. In the following, Iwill illustrate in a step-by-stepguidehowcognate sets
can be inferred with a linear implementation of the CCMmethod.

To get started, we import the LingPy library.

24

http://bibliography.lingpy.org?key=Sokal1958

Computer-Assisted Language Comparison in Practice

1 from lingpy import *

We then loadourwordlist, which canbeanywordlist in LingPyorCLDF format
(Forkel et al. 2018). I will be lazy in this test and simply import the data from
Kessler (2001) , which is available from LingPy’s test suite.

1 from lingpy.tests.util import test_data
2 wl = Wordlist(test_data('KSL.qlc'))

We then make a function that converts a given tokenized sound sequence to
its first two consonant classes, following the criteria mentioned above.

1 def to_ccm(tokens):
2 cv = tokens2class(tokens, 'cv')
3 cl = tokens2class(tokens, 'dolgo')
4 dolgo = ''
5 if cv[0] == 'V':
6 dolgo += 'H'
7 else:
8 dolgo += cl[0]
9 for c, v in zip(cv[1:], cl[1:]):
10 if c == 'C':
11 dolgo += v
12 if len(dolgo) == 1:
13 dolgo += 'H'
14 return dolgo[:2]

Nowwe just addanewcolumn toourwordlist, but insteadof addingonly con-
sonant classes, we add the concepts as well, since wewant tomake sure that
cognates are only assigned inside a given concept slot. For this, we use the
Wordlist.add_entries method, which can combine the information given
in two andmore columns and add it to a new column (but this application is
a bit tricky and needs some practice if one wants to use it correctly).

25

http://bibliography.lingpy.org?key=Forkel2018a
http://bibliography.lingpy.org?key=Kessler2001

Computer-Assisted Language Comparison in Practice
1 wl.add_entries(
2 'cog',
3 'tokens,concept',
4 lambda x, y : x[y[1]]+'-'+to_ccm(x[y[0]]))

Having calculated a new column that contains the name of the concept for
each word plus its sound classes, we can conveniently use the Wordlist.
renumber function in LingPy to convert the data in this column to integers.
Note that we use the override keyword, since the original data already con-
tains cognate sets in a column called cogid .

1 wl.renumber('cog', override=True)

Toseewhetherwesucceded, let us at the same timecomputea little tree from
the data. Don’t be scared: since Kessler’s data contains unrelated languages,
andwe use a very crude algorithm for cognate detection, the result will show
a tree for the languages, even if there is no evidence for their relatedness.

1 wl.calculate('tree', ref='cogid')

Last not least, we print the tree in Ascii-Art on the terminal:

1 print(wl.tree.asciiArt())

And the result will look like this:

26

Computer-Assisted Language Comparison in Practice
1 /-Navajo
2 /edge.0--|
3 | \-Turkish
4 -root----|
5 | /-Hawaiian
6 | |
7 \edge.4--| /-English
8 | /edge.1--|
9 | | \-German
10 \edge.3--|
11 | /-Albanian
12 \edge.2--|
13 \-French

Obviously, thismethodshouldnotbeused toavoid thatexperts codeor check
the cognates, but it may turn out to be very useful for studies that want to
quickly explore the signal in a certain dataset, and check whether it is worth-
while to compare a given set of languages further. In the future, I hope that
I will find time to add this implementation of the CCM method to the lingpy
package, to make it even easier for interested scholars to use it on their data.

References

Dolgopolsky, A. (1964): Gipoteza drevnejšego rodstva jazykovych semej Severnoj Evrazii s

verojatnostej točky zrenija [A probabilistic hypothesis concering the oldest relationships

among the language families of Northern Eurasia]. Voprosy Jazykoznanija 2. 53-63.

Forkel, R., J.-M. List, S. Greenhill, C. Rzymski, S. Bank, M. Cysouw, H. Hammarström,

M. Haspelmath, G. Kaiping, and R. Gray (forthcoming): Cross-Linguistic Data Formats,

advancing data sharing and re-use in comparative linguistics. Scientific Data. .

Kassian, A., M. Zhivlov, andG. Starostin (2015): Proto-Indo-European-Uralic comparison from

the probabilistic point of view. The Journal of Indo-European Studies 43.3-4. 301-347.

27

Computer-Assisted Language Comparison in Practice

Kessler, B. (2001): The significance of word lists . Statistical tests for investigating historical

connections between languages. CSLI Publications: Stanford.

List, J.-M. (2014): Sequence comparison in historical linguistics. Düsseldorf University Press:

Düsseldorf.

List, J.-M., S. Greenhill, and R. Gray (2017): The potential of automatic word comparison for

historical linguistics. PLOS ONE 12.1. 1-18.

List, J.-M. , M. Walworth, S. J. Greenhill, T. Tresoldi, and R. Forkel (2018): Sequence

comparison in computational historical linguistics. Journal of Language Evolution. 3 (2).

130-144.

Sokal, R. and C. Michener (1958): A statisticalmethod for evaluating systematic relationships.

University of Kansas Scientific Bulletin 28. 1409-1438. 2.3. 130-144.

Turchin, P., I. Peiros, and M. Gell-Mann (2010): Analyzing genetic connections between lan-

guages by matching consonant classes. Journal of Language Relationship 3. 117-126.

Cite this article as: Johann-Mattis List, “A fast implementation of
the Consonant Class Matching method for automatic cognate detec-
tion in LingPy,” in Computer-Assisted Language Comparison in Practice,
01/10/2018, https://calc.hypotheses.org/477.

28

https://calc.hypotheses.org/477

Computer-Assisted Language Comparison in Practice

Enhancingmorphological annotation for internal
language comparison

Nathanael E. Schweikhard (10/10/2018)

Categories: Annotation

Tags: EDICTOR, morphological annotation, standardization

In language comparison, there is a long history of using concept-based
wordlists to get insights into the degree of similarity between languages,
going back at least to Morris Swadesh (Swadesh 1950). For these purposes,
words from different languages that share the same meaning are compared,
either manually or with computational methods. The latter have the ad-
vantages of being both faster and more consistent. However, there are also
limits to what computer-basedmethods can detect for the time being.

One of the biggest problems in this context is that none of the currently avail-
able methods for automatic cognate detection can infer partial cognates di-
rectly if no information onmorpheme boundaries is provided by the user. As
a result, if morpheme boundaries aremissing andmorphological differences
are frequent in the data one wants to investigate, automatic cognate detec-
tion can be seriously hampered (List, Greenhill, and Gray 2017).

29

Computer-Assisted Language Comparison in Practice

-

Figure 0.2: Screenshots from EDICTOR (List 2017) contrasting automatic
sound alignment without and with morphological annotation.

For example, Latin sōl /soːl/ and French soleil /sɔlɛj/ (both “sun”) would be
consideredmore similar by analgorithm if it “knew” that the Frenchword can
beanalyzedas consistingof twomorphemes, and that it shouldonly consider
the first one, i. e. /sɔl/. It might also be the case that the same morphemes
appear as allomorphswithin a given language, e. g. due to vowel harmony or
umlaut, but currently there are no automatic methods to detect allomorphic
variation inside a language.

In order to tackle these problems one could either try to use existing meth-
ods for automatic morpheme boundary detection (Creutz and Lagus 2005)
to preprocess our linguistic datasets, or one could increase the information
that is made available to the algorithms in order to enable them to compare

30

Computer-Assisted Language Comparison in Practice

morphemes instead of full words (Hill and List 2017; List, Lopez, and Bapteste
2016).

Given that automatic morpheme detection does not yield reliable results at
themoment, especiallynot for smallwordlists as theyare typicallyused inhis-
torical linguistics,weare currently trying to formalize the secondapproachby
developing standards and examples for best practice to augment wordlists
with morphological information. In doing so, we do not only hope to opti-
mize our annotation frameworks in order to establish a workflow for future
annotations, but also to create example annotations for future tests of novel
methods for automatic morpheme detection.

Our goal here is to explore the possibilities of integrating any kind ofmorpho-
logical structures, be they synchronic or diachronic, within a consistent anno-
tation framework. In the following, I want to give a short overview on some
new ideas we came up with during the last months.

Preliminaries of annotation

We established a standardizedway of how the data needs to be prepared and
formatted, following the standard input formats of LingPy (List, Greenhill,
and Forkel 2017) and EDICTOR (List 2017), which are largely compatible
with the format specifications laid out by the CLDF initiative (Forkel et al.
2018). This is necessary to guarantee the comparability of the results, the re-
usability of helper scripts, the integrabilitywith existing annotation solutions,
and machine-readability in general. The format specification requires that
the wordlists are turned into a spreadsheet saved as TSV-file with a header
rowandone row for eachwordform. The column containing this data is titled
FORM. For each other kind of information, a distinct column is used. It needs
to be made sure that each field contains only a single string of characters

31

Computer-Assisted Language Comparison in Practice

(including spaces if phrases occur among the data), and not multiple forms.
If the data with which one is working does not follow these requirements or
if other corrections to it are needed, they need to be adjusted accordingly.
The original data is always preserved in the column VALUE, so nothing is lost
(unless one excludes a given word form completely from the comparison).
Comments and notes explaining some specific aspects of the entries under
question are placed in the column NOTE.

The first column is called ID and contains a consecutive integer ID that needs
to be larger than zero. This is necessary in order to further refine the datawith
the help of EDICTOR (List 2017) and has the additional advantage of making
it easy to put the rows back into the original order if they were reordered.
Since several languages might be included in one file and we want to allow
for language-external comparison as well, the language of the data is speci-
fied in thecolumnDOCULECT (following the terminologyofGoodandCysouw
2013). Wordlists are typically created with the use of elicitation glosses and
those are included in a column given the header CONCEPT.

32

Computer-Assisted Language Comparison in Practice

ID DOCULECT CONCEPT VALUE FORM NOTE

147 Old High German the goat geiz geiz

148 Old High German the he-goat boc, buc boc

149 Old High German the kid zickîn zickîn

150 Old High German the horse (h)ros hros

151 Old High German the stallion hengist hengist wrongmeaning

152 Old High German the stallion reino correction

153 Old High German the mare meriha meriha

154 Old High German the foal or colt folo folo

155 Old High German the donkey esil esil

156 Old High German the mule mûl mûl

Table 1: Entries from the Old High German wordlist of the World Loanword
Database (Haspelmath 2009) prepared for further annotation.

Especially when using one’s own data it is highly recommended to also add a
column with the Concepticon-ID (List et al. 2018, see also https://conceptico
n.clld.org) corresponding to the elicitation gloss in order to make sure that
later comparison across different datasets will be facilitated.

Segmented IPA-transcriptions

After these preliminary preparations, the words are turned into sequences
of IPA-characters. This facilitates comparing languages since the original
spelling is often quite idiosyncratic and several computational analyses
which one might want to use the data for are only possible if it is provided
in IPA. In order to create IPA from orthographic sources, there are different
possibilities: One could convert all orthographic entries to their IPA version

33

https://concepticon.clld.org
https://concepticon.clld.org

Computer-Assisted Language Comparison in Practice

manually, one could try to extract the data from an available database
that lists phonetic transcriptions for orthographic entries (as many modern
dictionaries do), or one could write an orthography profile (see Moran and
Cysouw 2018, and for an introduction to how to create this kind of file see
this tutorial) and convert the data with help of the Python implementation
provided by the segments package.

Unfortunately, orthography profiles only work for very regular orthographies
like those used by field workers who for convenience transcribe languages
in alphabetic letters. For orthographies with a longer history, orthography
profiles often cannot be used, since the orthography does not contain full in-
formation on the pronunciation. For example, in German, vowel length is not
always marked by the spelling. Therefore for these kinds of spelling systems,
one of the other options or a combination thereof needs to be chosen.

The IPA-column is named TOKENS. This is the default name for it in EDICTOR.
Also, the individual sounds (all sounds that are judged as a sound unit by the
researcher, i.e., including affricates and diphthongs, depending on the lan-
guage under investigation) are separated by spaces.

Standardizing annotation practice

After all these previous (and at times tedious) steps of data preparation, we
can finally start to annotate the morphemes in our data by marking mor-
pheme borders with a plus sign. Here again this can either be donemanually
or by using some computer-assisted approach. If common morphemes
are known to the researcher, a very simple (but in our experience also
efficient) approach for marking at least a larger part of the morphemes semi-
automatically is to use search and replace functionalities (in combination
with regular expressions if needed). In this way, nearly all instances of, for

34

http://htmlpreview.github.io/?https://raw.githubusercontent.com/digling/calc-seminar/master/handouts/Session_6.html
https://github.com/cldf/segments

Computer-Assisted Language Comparison in Practice

example, the German prefix { ver } can be easily annotated by searching for ^f
ɛ r and replacing it with f ɛ r + (the ^ marks that it must be at the beginning
of a word). Afterwards it is necessary to go through the whole list manually
to check for erroneously segmented instances and add those morphemes
that have not been caught with the automatic procedure. The resulting
annotated data is left in the column TOKENS, but for the un-annotated IPA a
backup-column could be created and it is useful to add a column for notes.

ID DOCULECT CONCEPT FORM TOKENS

632 German rotten verfault f ɛ r + f a ʊ l + t

633 German rotten vermodert f ɛ r + m oː d ə r + t

634 German drink trinken t r ɪ ŋ k + ə n

635 German hunger Hunger h ʊ ŋ ə r

636 German famine Hungersnot h ʊ ŋ ə r + s + n oː t

637 German thirst Durst d ʊ r s t

638 German suck saugen z au g + ə n

639 German chew kauen k au + ə n

640 German swallow schlucken ʃ l ʊ k + ə n

641 German swallow verschlucken f ɛ r + ʃ l ʊ k + ə n

Table 2: Entries from the German wordlist of the Intercontinental Dictionary
Series (Key and Comrie 2015), in IPA with morpheme borders.

Once the data has been annotated in this way, we follow an idea proposed in
Hill and List (2017) by adding glosses to themorphemes. This helps us specif-
ically to disambiguate homophone morphemes which do not go back to the

35

Computer-Assisted Language Comparison in Practice

same ancestor, and, of course, this step can also be done at the same time
when correcting the initial morpheme boundaries. The glosses are added
into a column called MORPHEMES. The form is free: which words to use as
a gloss for a morpheme depends only on practicality, as long as the entry
does not have any spaces (as EDICTOR segments the MORPHEMES content
by spaces). What is important, however, is that identical morphemes across
different words are given the same gloss, and that those that are not identi-
cal are given different glosses. In our tests, we use English as our glossing
language and derive the morpheme gloss from the main meaning of each
givenword. Thus, German { nah } (“near”), for example, is glossed asNEAR. In
cases when there are more homonyms in the language investigated than in
English, we recommend to add _B, _C etc. to the glosses to distinguish them
consistently. In contrast to the very free form proposed in Hill and List (2017),
we havemade good experience in writing content morphemes in upper case
in order to mark them visually. Glosses for grammatical morphemes on the
other hand are written in lower case and start with an underscore. Thus, we
write _infinitive for the infinitive suffix in our German test data. This is based
onanew feature of the EDICTOR, bywhich allmorphemeglosses precededby
anunderscore are displayed in transparent and small font to furthermark the
different in status for grammatical and contentmorphemes. Additionally, the
underscore can be quickly added or deleted by right-clicking on amorpheme
in the interface.

Distinguishing content from grammatical forms is not always an easy task,
and at it is likely that scholars will disagree about individual decisions. To
base our annotations on a clear-cut criterion, we considered as content mor-
phemesonly those that appear also as freemorphemesor that are confixes (e.
g. Schwieger -, “-in-law”). But thedefinitionof a freemorphemeaswell as the
border betweena confix andanaffix is far fromclear and freemorphemes can
also be grammatical. Similarly, it is also not always clear where to put a mor-

36

Computer-Assisted Language Comparison in Practice

pheme border as definitions of what is amorpheme vary andmay depend on
the researchquestionor the informationavailable. Ideally, onewoulduse the
same criterion for glossing not only throughout the same, but also across dif-
ferent languages, but thismay prove to be difficult in practice since problems
with the definition might only be noticed during the course of annotation. In
order to reduce the amount of typing, a script can again be used to find and
annotate themost commonmorphemes. All data, however, will usually need
to be checked manually, since it is not possible to distinguish automatically
between homophonous and recurring morphemes.

Deeper levels of annotation

As mentioned above, not only morpheme borders but also allomorphs
should be included in the information provided to the computer. These non-
homophone cognates can be marked in the MORPHEMES column during the
previous step by giving them the same gloss names but differentiating them
with a number at their end. So { näh } in German näherkommen (“approach”)
is glossed in our examples in Table 3 below as NEAR2. In a further step, we
annotate the actual roots by adding a column that we call ROOTS and one
that we call ROOTIDS, where we no longer distinguish between NEAR and
NEAR2. Although this annotation may seem rather complex, it has the clear
advantage that it allows us to distinguish different kinds of word families
inside the same language, namely those where morphemes recur in the
same, and those where they recur in different forms (be it due to allophony
or internal sound change).

37

Computer-Assisted Language Comparison in Practice

ID DOCULECT CONCEPT FORM TOKENS MORPHEMES COGIDS ROOTS ROOTIDS

1239 German approach nahen n aː + ə n NEAR _infinitive 953 42 NEAR _infinitive 890 42

1240 German approach hingehen h ɪ n + g eː + ə n TO GO _infinitive 926 441 42 TO GO _infinitive 865 414 42

1241 German approach näherkommen n ɛː + ə r + k ɔ m + ə n NEAR2 _comp COME _infinitive 954 130 955 42 NEAR _comp COME _infinitive 890 128 891 42

1242 German approach sich nähern z ɪ x _ n ɛː + ə r + n ONESELF NEAR2 _comp _infinitive2 414 954 130 329 _reflexive NEAR _comp _infinitive 394 890 128 42

1243 German enter hineingehen h iː n + ai n + g eː + ə n TO IN GO _infinitive 926 389 441 42 TO IN GO _infinitive 865 371 414 42

1244 German enter eintreten ai n + t r eː t + ə n IN TREAD _infinitive 389 933 42 IN TREAD _infinitive 371 872 42

1245 German enter hereinkommen h ɛ r + ai n + k ɔ m + ə n FROM IN COME _infinitive 939 389 940 42 FROM IN COME _infinitive 878 371 152 42

1246 German carry (bear) tragen t r aː g + ə n CARRY _infinitive 956 42 CARRY _infinitive 436 42

1247 German carry (bear) schleppen ʃ l ɛ p + ə n CARRY_B _infinitive 957 42 CARRY_B _infinitive 892 42

Table 3: Entries from the German wordlist of the Intercontinental Dictionary
Series (Key and Comrie 2015) with morphological glosses and root annota-
tion.

What we cannot do yet

Morphological annotation works with strings of characters and predefined
fields. This means that some types of information which one might want
to include are difficult to implement. For an etymological annotation in
which not only transparent morpheme borders are included, one will likely
encounter cases in which morpheme borders have become fuzzy due to
phonological mergers. An example would be the German word Messer
(/mɛsɐ/, “knife”) which in modern German is monomorphemic but goes
back to a compound (Old High Germanmezzi-sahs , latermezzi-rahs , literally
“food-knife”, see Watkins 1990: 295). For some languages, cases like these
can be found even when taking a synchronic perspective.

Additionally, it would be interesting to include information on the kinds of
sound changes that a morpheme or word underwent during its history. But
wehavenot decidedwhere to add this information, andhow to standardize it,
specifically also because it will be difficult to find a principled and standard-
izedway to do so across different languages. If therewas only one sound shift
per morpheme, it would be quite possible to develop a straightforward pro-
posal for annotation, but considering that morphemes are not limited in the

38

Computer-Assisted Language Comparison in Practice

amount of phonological changes they may accumulate, we find it difficult to
come up with a proposal at this stage of the research. However, since we an-
notate allomorphs consistently, we are already able to identify all allomorphs
of a given root in our data. Therefore, it will be easy to add information on
sound changes later, once we managed to find a useful representation for-
mat.

Finally, we could not (yet) find any systematic way to model analogical rela-
tions between words. Given the importance and frequency of analogy in ar-
guments in historical linguistics, wewill try to comeupwith proposals for this
in future versions of our annotation framework.

References

Creutz, M., and K. Lagus. 2005. “Unsupervised Morpheme Segmentation and Morphology

Induction fromText CorporaUsingMorfessor 1.0.” Publications in Computer and Information

Sciences 81. Helsinki: Helsinki University of Technology.

Forkel, Robert, Johann-Mattis List, Simon J. Greenhill, Christoph Rzymski, Sebastian Bank,

Michael Cysouw, Harald Hammarström, Martin Haspelmath, Gereon A. Kaiping, and Russell

D. Gray. 2018. “Cross-Linguistic Data Formats, Advancing Data Sharing and Re-Use in Com-

parative Linguistics.” Nature Scientific Data.

Good, Jeff, and Michael Cysouw. 2013. “Languoid, Doculect, Glossonym: Formalizing the

Notion of ‘Language’.” Journal of Language Documentation and Conservation 7: 331–59. http

s://scholarspace.manoa.hawaii.edu/handle/10125/4606.

Haspelmath, Martin, and Uri Tadmor, eds. 2009. WOLD. Leipzig: Max Planck Institute for

Evolutionary Anthropology. https://wold.clld.org/.

Hill, Nathan W., and Johann-Mattis List. 2017. “Challenges of Annotation and Analysis in

Computer-Assisted Language Comparison: A Case Study on Burmish Languages.” Yearbook

39

https://scholarspace.manoa.hawaii.edu/handle/10125/4606
https://scholarspace.manoa.hawaii.edu/handle/10125/4606
https://wold.clld.org/

Computer-Assisted Language Comparison in Practice

of the Poznań Linguistic Meeting , no. 3: 47–76.

Key, Mary Ritchie, and Bernard Comrie, eds. 2015. IDS. Leipzig: Max Planck Institute for Evo-

lutionary Anthropology. https://ids.clld.org/.

List, Johann-Mattis, Michael Cysouw, Simon Greenhill, and Robert Forkel, eds. 2018. Concep-

ticon. Jena: Max Planck Institute for the Science of Human History. http://concepticon.clld

.org/.

List, Johann-Mattis. 2017. “A Web-Based Interactive Tool for Creating, Inspecting, Editing,

and Publishing Etymological Datasets.” In Proceedings of the 15th Conference of the European

Chapter of the Association for Computational Linguistics. System Demonstrations , 9–12. Va-

lencia: Association for Computational Linguistics. http://aclweb.org/anthology/E/E17/E17-

3003.pdf.

List, Johann-Mattis, Simon J. Greenhill, and Russell D. Gray. 2017. “The Potential of Auto-

matic Word Comparison for Historical Linguistics.” PLoS ONE , no. 1, 12 (January). Public

Library of Science: 1–18. doi: http://dx.doi.org/10.1371/journal.pone.0170046.

List, Johann-Mattis, Simon Greenhill, and Robert Forkel. 2017. “LingPy. A Python Library for

Quantitative Tasks in Historical Linguistics.” Jena: Max Planck Institute for the Science of

Human History. doi: https://doi.org/10.5281/zenodo.1065403.

List, Johann-Mattis, Philippe Lopez, and Eric Bapteste. 2016. “Using Sequence Similarity Net-

works to Identify Partial Cognates inMultilingualWordlists.” InProceedings of the Association

of Computational Linguistics 2016 , 2: Short Papers:599–605. Berlin: Association of Computa-

tional Linguistics. http://anthology.aclweb.org/p16-2097.

Moran, Steven, and Michael Cysouw. 2018. The Unicode Cookbook for Linguists: Managing

Writing Systems Using Orthography Profiles. Translation and Multilingual Natural Language

Processing 10. Berlin: Language Science Press.

Swadesh, Morris. 1950. “Salish Internal Relationships.” International Journal of American

Linguistics 16 (4): 157–67.

Watkins, Calvert. 1990. “Etymologies, Equations, and Comparanda: Types and Values, and

40

https://ids.clld.org/
http://concepticon.clld.org/
http://concepticon.clld.org/
http://aclweb.org/anthology/E/E17/E17-3003.pdf
http://aclweb.org/anthology/E/E17/E17-3003.pdf
https://doi.org/http://dx.doi.org/10.1371/journal.pone.0170046
https://doi.org/https://doi.org/10.5281/zenodo.1065403
http://anthology.aclweb.org/p16-2097

Computer-Assisted Language Comparison in Practice

Criteria for Judgment.” In Linguistic Change and Reconstruction Methodology , edited by

Philip Baldi, Part 1.45:289–303. Trends in Linguistics. Studies and Monographs. Berlin; New

York: Mouton de Gruyter.

Cite this article as: Nathanael E. Schweikhard, “Enhancing morpholog-
ical annotation for internal language comparison,” in Computer-Assisted
Language Comparison in Practice , 10/10/2018, https://calc.hypotheses.
org/570.

41

https://calc.hypotheses.org/570
https://calc.hypotheses.org/570

Computer-Assisted Language Comparison in Practice

Inferring consonant clusters from CLICS data with
LingPy

Johann-Mattis List (07/11/2018)

Categories: Code, Dataset

Tags: CLICS, consonant clusters, LingPy, prosody

LingPy (List et al. 2017)offersagreatdealof functions for stringmanipulation.
Although most of those functions are readily documented (see lingpy.org for
details), and the basic ideas have also been described inmydissertation (List
2014), it seems thatnotmanyusersareawareof theseadditionalpossibilities,
which the library offers.

In the following, Iwant to illustrate howwecanuse LingPy to learn something
about consonant clustersoccurring in thedataunderlying theCLICSdatabase
(List et al. 2018 , clics.clld.org). I have illustrated in an earlier post how one
can use the CLICS software API to cook one’s own CLICS application. I will
thus assume that you know how to install CLICS (following the instructions
on our GitHub page) and the data underlying it.

As a simple shortcut, you can install all required datasets by downloading the
data underlying this blog post from GitHub Gist and typing:

1 $ pip install -r pip-requirements.txt

Once you have done this, please follow the instructions at the CLICS website
mentioned above to prepare the CLICS datasets by converting them to CLDF.

42

http://bibliography.lingpy.org?key=List2017i
http://lingpy.org
http://bibliography.lingpy.org?key=List2014d
http://bibliography.lingpy.org?key=List2014d
http://bibliography.lingpy.org?key=List2018e
https://clics.clld.org
https://calc.hypotheses.org/date/2018/08
https://github.com/clics/clics2
https://gist.github.com/LinguList/1056960125ca79428b420257fa4b02eb

Computer-Assisted Language Comparison in Practice

Starting from this, and assuming that you have an actual version of LingPy
installed, I will now illustrate how you can extract all data that is readily seg-
mented (in the sense of Moran and Cysouw 2018), i.e., by using the space as
a segmentationmarker, and placing it between all sounds that do not consti-
tute a valid sound unit (see also List et al. 2018b). But additionally, we will
compute prosodic strings , an idea that I already discussed inmy dissertation
(List 2014), and which allows us to distinguish different kinds of consonant
in a string, based on whether they appear in an environment in which sonor-
ity increases or decreases. In this way, we can make our own cross-linguistic
collection of consonant clusters.

But let’s start by loading the releavant libraries.
1 from lingpy import *
2 from pyclics.api import Clics
3 from pyclics.models import Form
4 from tqdm import tqdm
5 from collections import defaultdict

To obtain quick access to all the data available in our clics.sqlite3
database, we need to modify the function in the CLICS API slightly, in such a
way that the code yields the segmented entries, not the ascified CLICS value
that we use for the computation of cross-linguistic colexifications. This is
achieved with help of the following function.

43

http://bibliography.lingpy.org?key=Moran2018
http://bibliography.lingpy.org?key=List2018d

Computer-Assisted Language Comparison in Practice
1 def iter_wordlists(db, varieties):
2 languages = {
3 (v.source, v.id
4): v for v in varieties}
5 for (dsid, vid), v in sorted(
6 languages.items()):
7 forms = [Form(*row) for row in db.fetchall("""
8 select
9 f.id, f.dataset_id, f.form, f.segments,
10 p.name, p.concepticon_id, p.concepticon_gloss,
11 p.ontological_category, p.semantic_field
12 from
13 formtable as f, parametertable as p
14 where
15 f.parameter_id = p.id
16 and f.dataset_id = p.dataset_id
17 and p.concepticon_id is not null
18 and f.language_id = ?
19 and f.dataset_id = ?
20 order by
21 f.dataset_id, f.language_id, p.concepticon_id
22 """, params=(vid, dsid))]
23 assert forms
24 yield v, forms

In the version of prosodic strings that we want to use for this application,
LingPy distinguishes four basic types of prosodic environment: vowels (V),
consonants in ascending sonority environment (C), consonants in descend-
ing sonority environment (c), and tones (T). To obtain only the consonant
clusters from a given sound sequence, we thus need a function that checks
if we are currently in consonant environment, returning all clusters from a
string. This is done with help of the following function.

44

Computer-Assisted Language Comparison in Practice
1 def get_clusters(tokens, prostring):
2 clusters = ['']
3 for t, c in zip(tokens, prostring):
4 if c == 'C':
5 if clusters[-1].startswith('<'):
6 clusters[-1] += ' '+t
7 else:
8 clusters += ['</ '+t]
9 elif c == 'c':
10 if clusters[-1].startswith('>'):
11 clusters[-1] += ' '+t
12 else:
13 clusters += ['>/ '+t]
14 else:
15 clusters += ['']
16 return [x for x in clusters if x]

This functionwillmark clusters in ascending environment by adding </ in the
beginning of the cluster, and descending environment by adding a >/ . One
could think ofmore elegant ways ofmarking or handling this, but for our pur-
pose, it is sufficient.

We can now start with the actual code. We start by defining different vari-
ables, namely: the CLICS object that allows us to get access to CLICS data,
a dictionary that will later be converted to a LingPy Wordlist, to allow for an
easywriting to file, and the clusters thatwe obtained fromanalyzing the data.

1 clics = Clics('.')
2 D, idx = {0: [
3 'doculect',
4 'concept',
5 'segments',
6 'cv'
7]}, 0
8 clusters = defaultdict(
9 lambda : defaultdict(int)

45

Computer-Assisted Language Comparison in Practice

We can now start to load all varieties in CLICS. Usually, I write a print state-
ment after this, since loading the data takes some time, and I prefer some
feedback.

1 varieties = clics.db.varieties
2 print('[i] loaded clics varieties')

Now,we can loopover thedata. Wedo thiswith helpof the tqdm function that
gives visual feedback, since this may take some time. The basic idea of this
loop is to retrieve the segments from the CLICS database, check if its valid (us-
ing try and except ValueError), and convert it to its prosodic string, using
the prosodic_string function provided by LingPy. In addition, we use the
get_clusters function to extract the different types of consonant clusters,
count them, and store them in our clusters variable.

46

Computer-Assisted Language Comparison in Practice
1 for v, forms in tqdm(
2 iter_wordlists(
3 clics.db,
4 varieties
5),
6 total=len(varieties)
7):
8 for form in forms:
9 idx += 1
10 clics_form = form.clics_form.strip()
11 if clics_form:
12 try:
13 tokens = clics_form.split()
14 prostring = prosodic_string(
15 tokens,
16 _output='CcV'
17)
18 D[idx] = [
19 v.gid,
20 form.concepticon_id,
21 clics_form,
22 prostring
23]
24 except ValueError:
25 pass
26
27 clrs = get_clusters(
28 tokens, prostring
29)
30 for clr in clrs:
31 clusters[clr, len(
32 clr.split())][v.gid.split('-')[-1]] += 1

Now, thatwehaveobtainedall thedata,we canwrite thedata to file. First, we
write a typical LingPy wordlist, which contains an additional column that we
call “CV”. The resulting file is a plain TSV file that can also be inspected with

47

Computer-Assisted Language Comparison in Practice

interfaces like EDICTOR (List 2017).
1 wl = Wordlist(D)
2 wl.output(
3 'tsv',
4 filename='cv-patterns',
5 ignore='all',
6 prettify=False
7)

Now, as a final step, wewrite the data in our clusters dictionary to file. Here,
we write a gain to a TSV file, but we do this “manually” by iterating over the
dictionary.

1 with open('cv-clusters.tsv', 'w') as f:
2 f.write('Cluster\tLength\tFrequency\n')
3 for (cluster, length), rest in sorted(
4 clusters.items(),
5 key=lambda x: len(x[1]),
6 reverse=True
7):
8 f.write('{0}\t{1}\t{2}\n'.format(
9 cluster, length, len(rest))
10)

Once this is done,wecandomany thingswith thedata. Wecan inspect theoc-
currence of certain clusters, see whether we find areal patterns, check, which
languages are richest in terms of consonant clusters, etc. I won’t discuss any
of these possibilities in detail here, as this post was simply written in order to
illustrate how easily we can extract the datawith help of tools like LingPy and
the CLICS API. So if you are interested in the actual results of this little study,
I suggest you test the code yourself and see what you get. For convenience, I
have uploaded the whole script to a GitHub Gist, which you can find here.

48

http://edictor.digling.org
http://bibliography.lingpy.org?key=List2017d
https://gist.github.com/LinguList/1056960125ca79428b420257fa4b02eb

Computer-Assisted Language Comparison in Practice

References

List, J.-M. (2014): Sequence comparison in historical linguistics. Düsseldorf University

Press: Düsseldorf.

List, J.-M. (2017): Aweb-based interactive tool for creating, inspecting, editing, and pub-

lishing etymological datasets. In: Proceedings of the 15th Conference of the European

Chapter of the Association for Computational Linguistics. System Demonstrations. 9-

12.

List, J.-M., S. Greenhill, andR. Forkel (2017): LingPy. APython library forquantitative tasks

in historical linguistics. Software Package. Version 2.6. Max Planck Institute for the Science

of Human History: Jena. http://lingpy.org.

List, J.-M., M. Walworth, S. Greenhill, T. Tresoldi, and R. Forkel (2018): Sequence comparison

in computational historical linguistics. Journal of Language Evolution 3.2. 130–144.

List, J.-M., S. Greenhill, C. Anderson, T. Mayer, T. Tresoldi, and R. Forkel (2018): CLICS². An

improved database of cross-linguistic colexifications assembling lexical data with help

of cross-linguistic data formats. Linguistic Typology 22.2. 277-306.

Moran, S. and M. Cysouw (2018): The Unicode Cookbook for Linguists: Managing writing

systems using orthography profiles. Language Science Press: Berlin.

Cite this article as: Johann-Mattis List, “Inferring consonant clusters
from CLICS data with LingPy,” in Computer-Assisted Language Compari-
son in Practice, 07/11/2018, https://calc.hypotheses.org/998.

49

//lingpy.org”
https://calc.hypotheses.org/998

Computer-Assisted Language Comparison in Practice

From Fieldwork to Trees 1: Data preparation

Gereon A. Kaiping (14/11/2018)

Categories: Code

Tags: Austronesian Languages, code example, EDICTOR, lexical data, MS Ex-
cel, Python

A colleague of mine has recently returned from his fieldwork, where he col-
lected data on on the dialectal variation of the Alorese language of Alor and
Pantar in the East Nusa Tenggara province of Indonesia. He collected data on
13 Alorese varieties, includingword list data. One obvious step for comparing
the dialects is tomarkwhich forms are obviously cognate and thenuse a stan-
dard tree (or network) construction algorithm to display the shared signal in
the data. With standard tools and a bit of Python glue, this is an easy task. A
script for 3 steps can be found in my repository on github. In this first part, I
will describe how to get an Excel file into a format LingPy can deal with.

I was given a MS Excel file by my colleague. The file contains a single sheet
with 13 Alorese word lists in matrix format, the top left of it looking like the
following.

English Indonesian dul alk alb

1sg saya gɔ go go

2sg
(informal)

kamu mi mo mo

2sg (polite) Anda

50

https://glottolog.org/resource/languoid/id/alor1247
https://github.com/Anaphory/matrix_to_beastling/tree/master
https://github.com/Anaphory/matrix_to_beastling/blob/master/Wordlists.xlsx

Computer-Assisted Language Comparison in Practice

3sg dia no no no

1pl excl kami tite kame kame

1pl incl kita tite kame ite

2pl kalian punauŋ mi mi

3pl mereka feː fe fe

this ini h̃a a ha, kia hã

that itu te a kalːi kəte

here di sini ha a hã ha ɔnɔŋ

there di sana fei kalei felio fali kali

who? siapa hafa feiru fiaru

what? apa paru pai pai, paru

where? di mana naŋ ga ɔrɔ oro pai noŋ naŋga, ɔrɔ
naŋga,
naŋga afa

when? kapan ɛrɛ pira erepira ɛrə pira

how? bagaimana namo naŋga namonaŋga nəmga,
nəmən;ga

This is a very frequent shape of comparative word lists, so I hope the proce-
dure described in the following – and the script I will provide – will help with
other language or dialect comparison tasks.

A first thing to notice is that some cells contain a single form inwhat looks like
reasonably decent IPA, but other cells (cf. “what” in alb , which quite clearly
contains two forms, one sharedwithalkandonewithdul) contain synonyms,
which appear to be separated by , . In the past, I have seen people not be-

51

Computer-Assisted Language Comparison in Practice

ing very consistent about what separators they use, so I run a quick check by
searching in the Excel sheet: While the two gloss columns, English and In-
donesian , contain several different separators (, , ; , / , and also brackets),
the transcribed data looks good in this respect: There are no / in the actual
word list. The single; in thematrix, which is theone you can see inalb “how?”
above, looks like it was used as an ad-hoc separator to stop <ng> to become
/ŋ/ in a search-and-replace step I expect happened at some point. There are
only ahandful of instancesof brackets, and commas seemtoconsistently sep-
arate different forms.In order to work with this data in LingPy (List et al. 2018
) or in any program that supports the CLDF standard (Forkel et al. 2018), the
data needs to be converted into a long table format, where each row lists one
form, indexed by language and concept.

Unfortunately, the CLDF format has different default column headers from
LingPy/ edictor. All three support custom column headers, but CLDF makes
it very easy to use them (without any additional effort in all but the most re-
strictive use case, even) while I tend to find it quite a hassle to convince edic-
tor of custom column names, so we will use edictor’s defaults. That means
that we want column headers ID for the row IDs (which may not start at 0),
DOCULECT for the names of the varieties, CONCEPT for the gloss column, IPA
for the columncontaining the forms and TOKENS for the columnof segmented
forms. For metadata-free CLDF, the corresponding header names would be
ID , Language_ID , Concept_ID , Form , and Segments . We will create a file to
bridge between these two name sets later.

While reading all the forms, it makes sense to also segment them already,
because we need that to happen anyway for automatic cognate coding. For
segmenting IPA transcribed data, I will use Robert Forkel’s segments python
package in its default mode. Pavel Sofroniev’s ipatok might be an alterna-
tive. This is also the step where we could use pyclts to check the quality of
the transcription, but that would go beyond the scope of this example.

52

http://lingpy.org/
http://lingpy.org
https://zenodo.org/record/1252097
https://cldf.clld.org
http://edictor.digling.org

Computer-Assisted Language Comparison in Practice

Python has an Excel readermodule called xlrd . Using it, the core functional-
ity of the conversion script looks like this.

1 import csv
2 import xlrd
3 import segments
4
5 book = xlrd.open_workbook("Wordlists.xlsx")
6 sheet = book.sheet_by_index(0)
7
8 def cell(row, col):
9 return sheet.cell_value(row, col)
10
11 tokenizer = segments.Tokenizer()
12 def segment(word):
13 return tokenizer(word, ipa=True, separator=" _ ")
14
15 column_names = [cell(0, col)
16 for col in range(sheet.ncols)]
17
18 with open("wordlist.tsv", "w") as out:
19 write = csv.writer(out, dialect="excel-tab").writerow
20 write(["ID", "CONCEPT", "DOCULECT", "IPA", "TOKENS"])
21 i = 1
22 for row in range(1, sheet.nrows):
23 concept = cell(row, 0)
24 for col in range(2, sheet.ncols):
25 lect = cell(0, col)
26 for form in cell(row, col).split(","):
27 form = form.strip()
28 segments = segment(form)
29 write([i, concept, lect, form, segments])
30 i += 1

The output is the following TSV file which can be used eg. in edictor.

53

Computer-Assisted Language Comparison in Practice

In order to make this script re-useable, it is obviously useful to replace the
hard-coded assumptions (file paths, separators, number of gloss languages)
with command line arguments and such like. If we want to use LingPy for
cognate coding, we also have to skip empty forms like 7–9 above with an if
not form: continue . But the coreof the conversionare just the last 10-or-so
lines of this script, and then I havemy colleague’s language in a format ready
for further use, and how I use it will be content of a later post.

54

Computer-Assisted Language Comparison in Practice

Forms 4–6 fromwordlist.tsv in Edictor

References

List, Johann-Mattis & Greenhill, Simon J. & Forkel, Robert. 2018. LingPy. A Python Library

for Quantitative Tasks in Historical Linguistics. Version 2.6.3. Zenodo. doi: 10.5281/zen-

odo.1203193. https://zenodo.org/record/1203193#.W- xUdhBRfc8 (14 November,

2018).

Forkel, Robert & List, Johann-Mattis & Greenhill, Simon J. & Rzymski, Christoph & Bank, Se-

bastian & Cysouw, Michael & Hammarström, Harald &Haspelmath, Martin & Kaiping, Gereon

A. & Gray, Russell D. 2018. Cross-Linguistic Data Formats, advancing data sharing and re-use

in comparative linguistics. Scientific Data 5. 180205. doi: 10.1038/sdata.2018.205.

Cite this article as: Gereon A. Kaiping, “From Fieldwork to Trees 1:
Data preparation,” in Computer-Assisted Language Comparison in Prac-
tice, 14/11/2018, https://calc.hypotheses.org/803.

55

https://doi.org/10.5281/zenodo.1203193.
https://doi.org/10.5281/zenodo.1203193.
https://zenodo.org/record/1203193#.W-xUdhBRfc8
https://doi.org/10.1038/sdata.2018.205
https://calc.hypotheses.org/803

Computer-Assisted Language Comparison in Practice

Semantic promiscuity as a factor of productivity
in word formation

Nathanael E. Schweikhard (19/11/2018)

Categories: Terminology

Tags: productivity, promiscuity, word formation

The blog post introduces ideas discussed in our project about taking a closer
look at word formation from a semantic (or semasiological) point of view.
Since this so far underinvestigated approach to word formation processes
lacks proper terminology, a new term todenote the central researchquestion
of concept-based type-frequency is introduced and contrasted with related
established terminology.

Productivity in the context of word formation is a term of many definitions
(Bauer 2003:1). A not necessarily exhaustive list is provided by Gaeta and
Ricca (2015), based on Rainer (1987):

a. the number of words formed with a certain W[ord]F[ormation]R[ule];
b. the number of new words coined with a certain WFR in a given time span;
c. the possibility of coining new words with a certain WFR;
d. the probability of coining new words with a certain WFR;
e. thenumberofpossible (or generatableby rule)words formedwithacertain
WFR;
f. the relation between occurring and possible words formed with a certain
WFR.

Bauer (2003) mainly concerns himself with definitions c. to e., namely to
which degree a morphological pattern (i. e. what was above referred to as

56

Computer-Assisted Language Comparison in Practice

a word formation rule) is available to be used in creating newwords, not how
much it is actually used. According to him, this can be determined by looking
at the number of cases available for applying the pattern, the number of (ab-
solute or relative) constraints when applying the pattern, and the usefulness
of the word formations that it can create.

Yet in either case, and in all the definitions given, the focus lies on either the
output side of word formation or on the restrictions of a specific morphologi-
cal pattern. These restrictions may lie in the input (e. g. certain patterns only
being applied to the input of specific characteristics like for example a cer-
tain phonetic shape) but themeaning of the input itself has not been studied
much so far, although it is clear that word formation would not be possible
without it.

When investigating the semantics underlying word formation processes, the
general question from the perspective of the meaning of the input could be
stated as follows: Independent of any specific kind of word formation pattern,
are theremorphemes that appearmore commonly as bases of word formation
than others, and if so, what do they have in common? In contrast to classi-
cal research on word formation, which often investigates potential word for-
mations, this question can probably best be studied by investigating existing
word formation patterns, that is, by asking how often one morpheme occurs
in how many words (considering the whole lexicon of a given language, or a
certain section of it).

Shifting the focus from the forms to the concepts would also facilitate
cross-linguistic comparison, especially if one starts from basic con-
cepts, like the ones traditionally used in fieldwork and lexical studies
on historical language comparison (compare the Concepticon resource,
https://concepticon.clld.org, for an overview, List et al. 2016). Such research
would, of course, not assume that concepts are the same across languages,

57

https://concepticon.clld.org/

Computer-Assisted Language Comparison in Practice

but rather employ the idea of using comparative concepts in the sense of
Haspelmath (2010:668).

Given that – to my knowledge – a systematic investigation of the “seman-
tic productivity” of concepts across languages has not been carried out so
far, we can only speculate why – if at all – some words expressing specific
concepts would recur more frequently as the base of new words than others.
Provided that we can identify cross-linguistic trends, the Embodiment the-
ory, according to which language is shaped by our physical characteristics,
might provide an explanation. As one of the few studies devoted to the topic,
Geisler (2018) demonstrates for German that some of the morphemes denot-
ing concepts most deeply rooted in our early childhood experience (such as
“to stand” or “to fall”), seem to be used extremely frequently in derivation for
a large variety of meanings derived from the conceptual base.

Unfortunately, there does not seem to be a proper term forwhatwas referred
to as “semantic productivity” or “concept-based type-frequency“ above. Al-
though thephenomenonbywhich amorpheme reappears aspart ofword for-
mations due to its semantics has been sporadicallymentioned anddiscussed
before, noproper termhasmade it intohandbooksor glossaries of linguistics.
The one who comes closest to it is Blank (1997:21), who uses and slightly re-
defines the terms attraction and expansion (coined by Sperber 1923) in order
to develop a theory of semantic change:

Expansion and attraction are complementary processes: Expansion is a
semasiologic procedure: Here a word gains new meanings. Expansion
therefore can also play a role in the first-time denoting of an innovation.
Attraction on the other hand is primarily an onomasiologic procedure:
New denotions are created for one and the same concept. Secundarily
attraction of course also leads to semantic shift, namely in those words

58

Computer-Assisted Language Comparison in Practice

that are used for denoting the «attractive» concept. (Blank 1997: 21) a

aMy translation, original text: “Expansion und Attraktion sind komplementäre Prozesse: Bei der Expan-
sion handelt es sich um ein semasiologisches Verfahren: Hier erhält ein Wort neue Bedeutungen. Die
Expansion kann somit auch bei der Erstbenennung von Neuerungen eine wichtige Rolle spielen. Bei
der Attraktion hingegen handelt es sich primär um ein onomasiologisches Verfahren: Für ein und
denselben Sachverhalt werden neue Bezeichnungen geschaffen. Sekundär führt natürlich auch die
Attraktion zu Bedeutungswandel, nämlich bei den Wörtern, die zur Bezeichnung des «attraktiven»
Sachverhaltes herangezogen wurden.”

We can clearly see that Blank’s term expansion describes the process under-
lying the phenomenon for which we do not yet have a name. However, as
Blank states himself, expansion is based on a semasiological perspective: A
specific word is gaining a new meaning additionally to those it already had.
Yet the phenomenon we discussed so far focuses on an onomasiological ap-
proach that investigates how concepts contribute to semantic expansions of
the words denoting them. Furthermore, expansion refers to a concrete pro-
cess, situated in a specific language and time frame, whereas our starting
point was – among others – the question of whether and towhich degree uni-
versal tendencies couldbeencounteredwhencomparing the “expansivity” of
concepts across the world’s languages.

Both expansion and what we are referring to here form counterparts to
Blank’s term attraction. Attraction means that a concept attracts new words
or word formations denoting it. If, on the other hand, a word’s meaning
expands, it can be used to coin new words, which – in turn – would be
expected to denote “attractive” concepts.

To form a wide range of new words, words first need to expand their mean-
ing, which itself is also basedmainly on themeanings thewords already have.
While meaning expansion can happen to any word independent of its previ-
ous meanings, we here propose that some meanings might have a stronger
tendency to undergo this expansion.

After longer discussions in our project, during which we tested many differ-

59

Computer-Assisted Language Comparison in Practice

ent terms as candidates to denote that some morphemes may be more im-
portant for word formation due to their semantics, we decided to take inspi-
ration frommicrobiological terminology and use the term promiscuity. Inves-
tigating the promiscuity of concepts , be it cross-linguistically or within one
language, would thus entail that we investigate to what degree word forma-
tion is driven by the semantics of the words or morphemes being recycled to
form newwords.

But why “promiscuity”? In the natural sciences, the term promiscuity has
been used since at least the early 20th century – and more commonly since
the 1970s – as

[the] ability of a protein, organism, etc., to interact with a variety of
targets or in a non-specific manner; spec. the propensity of a plasmid,
pathogenic organism, etc., to infect many different hosts. (OED)

Given that biology and linguistics often share terminology and metaphors
(List et al. 2016a), we can also find examples in linguistics, where promiscuity
is used as a term, albeit it is less widespread and mainly used in a quite
restricted sense. Zwicky (1987:136), for example, speaks of “promiscuous
attachment” by which he means the “attachment to i[nflected]-forms of vir-
tually any syntactic category” (he also uses the term “promiscuity” in Zwicky
1986 and talks about the same concept without having a term for it in Zwicky
and Pullum 1983). Similarly, Haspelmath (2018:315) uses “promiscuous”
for bound forms that attach to more than one word class. In his definition,
promiscuous morphemes form thus a category between affixes and roots.

In a slightly different approach, Zólyomi et al. (2017:21) use “promiscuous” to
refer to themixing of cases, i. e. cases extending their usage to functions pre-
viously inhabited by other cases. However, they write this in the context of
second language learners and not of “normal” language change, and appar-
ently do not intend to use it as a technical term.

60

Computer-Assisted Language Comparison in Practice

What all these uses of the term have in common is that they talk about the
openness of something to connect to a variety of different kinds of other
things, a meaning that is clearly based on the term’s more colloquial usage.

The semantic promiscuity proposed here (called such to differentiate it from
themore syntactic or grammatical concept by Zwicky andHaspelmath) could
first be said to differ from that original meaning by being concerned with the
type-frequency of a morpheme in general, independent of its choice of word
formation pattern or, e. g., of the grammatical variety of other morphemes it
connects to.

However, while semantic promiscuity, unlike its grammatical counterpart, is
not referring to concepts being less restricted in the grammatical aspects of
the bases they can take, it nevertheless refers to something similar, namely
that morphemes denoting promiscuous concepts are less restricted regard-
ing the semantics of the morphemes they attach to in word formation and
the semantics of the new words formed thereby, either by being already pol-
ysemous themselves, or by being more open to develop polysemy, i. e. to
undergo semantic expansion.

61

Computer-Assisted Language Comparison in Practice

Figure 1: The concept “to fall”, denoted by German fallen , showing its high
promiscuity in a selection of thewide range ofmeanings derived from it. This
includes theexpansionofmeaningsof existingword formations, heremarked
by grouping together derivations sharing the same stem.

An example of how promiscuity and expansion interact can be seen in Fig-
ure 1 above. Having provided this preliminary description of what it is we are
talking (or want to talk) about, the next step will be to actually investigate it
cross-linguistically.

References

Bauer, Laurie. 2003. Morphological Productivity. Cambridge: Cambridge University Press.

62

Computer-Assisted Language Comparison in Practice

Blank, Andreas. 1997. Prinzipien des lexikalischen Bedeutungswandels am Beispiel der

romanischen Sprachen. Beihefte zur Zeitschrift für romanische Philologie 285. Tübingen:

Niemeyer.

Gaeta, Livio, and Davide Ricca. 2015. “Productivity.” In Word-Formation: An International

Handbook of the Languages of Europe , edited by Peter O. Müller, Ingeborg Ohnheiser, Su-

san Olsen, and Franz Rainer, 22:842–858. Handbücher zur Sprach- und Kommunikationswis-

senschaft 2. Berlin;New York: De Gruyter Mouton.

Geisler, Hans. 2018. “Sind Unsere Wörter von Sinnen? Überlegungen zu den sensomo-

torischen Grundlagen der Begriffsbildung.” In Worte über Wörter. Festschrift zu Ehren von

Elke Ronneberger-Sibold , edited by Kerstin Kazzazi, Karin Luttermann, Sabine Wahl, and

Thomas A. Fritz, 131–142. Tübingen: Stauffenburg.

Haspelmath, Martin. 2010. “Comparative Concepts and Descriptive Categories in Crosslin-

guistic Studies.” Language: A Jou rnal of the Linguistic Society of America , no. 86, 3: 663–

687.

List, Johann-Mattis, Michael Cysouw, Simon Greenhill, and Robert Forkel, eds. 2018. Concep-

ticon. Jena: Max Planck Institute for the Science of Human History. http://concepticon.clld

.org/.

List, Johann-Mattis, Michael Cysouw, and Robert Forkel. 2016. “Concepticon. A Resource

for the Linking of Concept Lists.” In Proceedings of the Tenth International Conference on Lan-

guage Resources and Evaluation , edited by Nicoletta Calzolari, Khalid Choukri, Thierry De-

clerck, Marko Grobelnik, Bente Maegaard, Joseph Mariani, Asuncion Moreno, Jan Odijk, and

Stelios Piperidis, 2393–2400. Portorož: European Language Resources Association.

List, Johann-Mattis, Jananan Sylvestre Pathmanathan, Philippe Lopez, and Eric Bapteste.

2016. “Unity andDisunity in Evolutionary Sciences: Process-Based AnalogiesOpenCommon

Research Avenues for Biology and Linguistics.” Biology Direct.

OED Online. July 2018. Oxford University Press. http://www.oed.com/view/Entry/152428?r

edirectedFrom=promiscuity (accessed November 16, 2018).

63

http://concepticon.clld.org/
http://concepticon.clld.org/
http://www.oed.com/view/Entry/152428?redirectedFrom=promiscuity
http://www.oed.com/view/Entry/152428?redirectedFrom=promiscuity

Computer-Assisted Language Comparison in Practice

Rainer, Franz. 1987. “Grammatik undWortbildung romanischer Sprachen.” In Produktivitäts-

begriffe in der Wortbildungslehre , edited by Wolf Dietrich, Hans-Martin Gauger, and Horst

Geckeler, 187–202. Tübingen: Narr.

Sperber, Hans. 1923. Einführung in die Bedeutungslehre. Bonn; Leipzig: Schroeder.

Zólyomi, Gábor, Szilvia Jáka-Sövegjártó, and Melinda Hagymássy. 2017. An Introduction to

the Grammar of Sumerian. Budapest: Eötvös University Press.

Zwicky, Arnold M. 1986. “Incorporating the Insight of Autolexical Syntax.” OSU Working Pa-

pers in Linguistics 32: 139–143.

Zwicky, Arnold M. 1987. “Suppressing the Zs.” Journal of Linguistics 23 (1): 133–148. http:

//www.jstor.org/stable/4175870 .

Zwicky, Arnold M., and Geoffrey K. Pullum. 1983. “Clitization vs. Inflection: English N’T.” Lan-

guage 59 (3): 502–513.

Cite this article as: Nathanael E. Schweikhard, “Semantic promiscuity
as a factor of productivity in word formation,” in Computer-Assisted Lan-
guage Comparison in Practice , 19/11/2018, https://calc.hypotheses.org/
1169.

64

http://www.jstor.org/stable/4175870
http://www.jstor.org/stable/4175870
https://calc.hypotheses.org/1169
https://calc.hypotheses.org/1169

Computer-Assisted Language Comparison in Practice

From Fieldwork to Trees 2: Cognate coding

Gereon A. Kaiping (27/11/2018)

Categories: Code, Dataset

Tags: Austronesian Languages, CLDF, code example, cognate detection,
cross-linguistic data formats, lexical data

In a previous post (Kaiping 2018), I described how to convert matrix-shape
word lists given in Excel into the long format LingPy and other software can
work with. My motivation for this was to provide my colleague Yunus Sulisty-
onowith a goodway to compare the lexiconof his Alorese [alor1247] dialects,
and to understand the relationship between them. In this post, the data is au-
tomatically cognate coded and converted into CLDF.

If we have a file like the following, we can easily use LingPy’s functionality to
get cognate classes.

65

https://calc.hypotheses.org/803
https://glottolog.org/resource/languoid/id/alor1247

Computer-Assisted Language Comparison in Practice

This whole file (wordlist.tsv) contains data on dialects of one language (at
least in simplified terms of the self-identification of the speakers, who refer to
all these varieties as “bahasa Alor” – how valid that categorization actually is
might be one outcome of his project) all transcribed by the same researcher,
so we should not expect a lot of problems from inconsistent transcription or
from cognates that cannot be recognized as such in the data.

Some word boundaries are marked, so we can make use of them as
morpheme boundaries and use partial cognate coding. For that, we use
LingPy’s Partial class, with LexStat (List 2012) for getting similarities and
infomap (Rosvall & Bergstrom 2008) as cluster method. Infomap, which
seems to be a very good baseline cluster method for cognate coding pur-
poses (List, Lopez & Bapteste 2016) is not listed in the current documentation
of the partial_clustermethod, but it is implemented. The fuzzy keyword
to the Alignments constructor below tells the alignment algorithm to align
the individual words (or, more generally, morphemes) of each form instead
of trying to align the forms globally. This tends to improve the resulting
alignments vastly.

66

Computer-Assisted Language Comparison in Practice
1 import lingpy
2 lex = lingpy.compare.partial.Partial(
3 "wordlist.tsv")
4
5 lex.get_scorer(runs=10000)
6
7 lex.partial_cluster(
8 method='lexstat',
9 threshold=0.55,
10 cluster_method="infomap",
11 ref='partialids',
12 verbose=True)
13
14 lex.get_scorer(runs=10000)
15 alm = lingpy.Alignments(lex, ref="partialids", fuzzy=True)
16 alm.align(method='progressive')
17 alm.output('tsv', filename='aligned',
18 ignore='all', prettify=False)

If all goes well, this generates a file aligned.tsv in the current directory
with the automatic partial cognate codes and alignments. (One way this
can go wrong is if we have not filtered out empty forms in the generation
of wordlist.tsv .) This is good for a one-shot run to get an overview over
the data (eg. with Edictor), but if we want to try out different thresholds
and cluster algorithms, it would be wise to cache the LexStat scorers (in
particular the bscorer , which is expensive to calculate) somewhere.

The easiest way to cache the scorer – although at the cost of a huge overhead,
because it also saves thewholeword list (and in this casealsoall itsmetadate)
– is by outputting the wordlist with scorer to a tsv file. If we want to have the
scorer cache in lexstats.tsv, we can replace the get_scorer line above by

67

Computer-Assisted Language Comparison in Practice
1 try:
2 scorers_etc = lingpy.compare.lexstat.LexStat(
3 "lexstats.tsv")
4 lex.scorer = scorers_etc.scorer
5 lex.cscorer = scorers_etc.cscorer
6 lex.bscorer = scorers_etc.bscorer
7 except OSError:
8 lex.get_scorer(runs=10000)
9 lex.output('tsv', filename='lexstats', ignore=[])

This reads the scorers from that file if it can, and computes them otherwise.
This allows us to change threshold and cluster method without having to re-
calculate the scorers every time.

The file generated by this script, aligned.tsv , is again a TSV file (although it
has minor issues in presence of line breaks and quotation marks in cells, be-
cause the QLC interface used by LingPy handles these things differently from
the standard python CSV module – luckily we do not have the Comments col-
umn in which people would be most likely to use these characters) and can
be read in Edictor.

Editing partial cognates in Edictor: The concept “God” in 13 varieties of
Alorese

(This screenshot also shows that the data is not entirely clean: The <A> in the
Helandohi formshould not be capitalized. For the gloss language Indonesian,

68

Computer-Assisted Language Comparison in Practice

which I have excluded here, this is forgivable, because it was not intended as
phonetic transcription; for the actual forms, this shows we might have other
transcription errors, too.) While the file works nicely with LingPy and Edictor,
tools that follow the CLDF standard (Forkel et al. 2018) – of which there are
notmany yet, but BEASTling (Maurits et al. 2017), which I want to show in the
following post, is one of them – will not be able to work with this file imme-
diately. However, the standard is flexible enough that we can transform this
TSV file into valid CLDF very easily. We just need to provide a JSONmetadata
file that describes the columns in this data set. Implicitly, we know exactly
which columns the TSV file contains and what they mean in CLDF terms, so
we can specify the metadata as follows.

69

Computer-Assisted Language Comparison in Practice
1 {
2 "@context": [
3 "http://www.w3.org/ns/csvw",
4 {
5 "@language": "en"
6 }
7],
8 "dc:conformsTo": "http://cldf.clld.org/v1.0/terms.rdf#

Wordlist",
9 "dc:creator": [
10],
11 "dc:identifier": "",
12 "special:contact": "",
13 "dialect": {
14 "commentPrefix": null
15 },
16 "tables": [
17 {
18 "dialect": {
19 "delimiter": "\t"
20 },
21 "dc:conformsTo": "http://cldf.clld.org/v1.0/

terms.rdf#FormTable",
22 "tableSchema": {
23 "columns": [
24 {
25 "datatype": "integer",
26 "propertyUrl": "http://cldf.clld.

org/v1.0/terms.rdf#id",
27 "required": true,
28 "name": "ID"
29 },
30 {
31 "datatype": "string",
32 "propertyUrl": "http://cldf.clld.

org/v1.0/terms.rdf#
parameterReference",

33 "required": true,
34 "name": "CONCEPT"
35 },
36 {
37 "datatype": "string",
38 "propertyUrl": "http://cldf.clld.

org/v1.0/terms.rdf#
languageReference",

39 "required": true,
40 "name": "DOCULECT"
41 },
42 {
43 "datatype": "string",
44 "propertyUrl": "http://cldf.clld.

org/v1.0/terms.rdf#form",
45 "required": false,
46 "name": "IPA"
47 },
48 {
49 "datatype": "string",
50 "propertyUrl": "http://cldf.clld.

org/v1.0/terms.rdf#segments",
51 "required": false,
52 "separator": " ",
53 "name": "TOKENS"
54 },
55 {
56 "datatype": "integer",
57 "required": false,
58 "separator": " ",
59 "name": "SONARS"
60 },
61 {
62 "datatype": "string",
63 "propertyUrl": "http://cldf.clld.

org/v1.0/terms.rdf#
prosodicStructure",

64 "required": false,
65 "name": "PROSTRINGS"
66 },
67 {
68 "datatype": "string",
69 "required": false,
70 "name": "CLASSES"
71 },
72 {
73 "datatype": "integer",
74 "required": false,
75 "name": "LANGID"
76 },
77 {
78 "datatype": "string",
79 "required": false,
80 "separator": " ",
81 "name": "NUMBERS"
82 },
83 {
84 "datatype": "boolean",
85 "required": false,
86 "name": "DUPLICATES"
87 },
88 {
89 "datatype": "integer",
90 "propertyUrl": "http://cldf.clld.

org/v1.0/terms.rdf#
cognatesetReference",

91 "required": false,
92 "separator": " ",
93 "name": "PARTIAL_IDS"
94 },
95 {
96 "datatype": "string",
97 "propertyUrl": "http://cldf.clld.

org/v1.0/terms.rdf#alignment",
98 "required": false,
99 "separator": " ",
100 "name": "ALIGNMENT"
101 }
102],
103 "primaryKey": [
104 "ID"
105]
106 },
107 "url": "aligned.tsv"
108 }
109]
110 }

70

Computer-Assisted Language Comparison in Practice

The source code, aswell as a file containing thegenericmetadata for adataset
like the above and, for reference, the specific metadata of Yunus’ dataset, are
available from Github.

References

Forkel, Robert & List, Johann-Mattis & Greenhill, Simon J. & Rzymski, Christoph & Bank, Se-

bastian & Cysouw, Michael & Hammarström, Harald &Haspelmath, Martin & Kaiping, Gereon

A. & Gray, Russell D. 2018. Cross-Linguistic Data Formats, advancing data sharing and re-use

in comparative linguistics. Scientific Data 5. 180205. doi: 10.1038/sdata.2018.205.

Kaiping, Gereon Alexander. From Fieldwork to Trees 1: Data preparation. 2018. Blogpost.

Computer-Assisted Language Comparison in Practice. https://calc.hypotheses.org/803 (15

November, 2018).

List, Johann-Mattis. 2012. LexStat: Automatic detection of cognates in multilingual

wordlists. Proceedings of the EACL 2012 Joint Workshop of LINGVIS & UNCLH (EACL

2012), 117–125. Stroudsburg, PA, USA: Association for Computational Linguistics.

http://dl.acm.org/citation.cfm?id=2388655.2388671 (12 August, 2015).

List, Johann-Mattis & Lopez, Philippe & Bapteste, Eric. 2016. Using sequence similarity net-

works to identify partial cognates in multilingual wordlists. Proceedings of the 54th Annual

Meeting of the Association for Computational Linguistics (Volume 2: Short Papers) , vol. 2, 599–

605.

Maurits, Luke & Forkel, Robert & Kaiping, Gereon A. & Atkinson, Quentin D. 2017. BEASTling:

A software tool for linguistic phylogenetics using BEAST 2. PLOS ONE 12(8). e0180908. doi:

10.1371/journal.pone.0180908.

Rosvall, Martin&Bergstrom, Carl T. 2008. Maps of randomwalks on complex networks reveal

community structure. Proceedings of the National Academy of Sciences 105(4). 1118–1123. doi:

10.1073/pnas.0706851105 .

71

https://github.com/Anaphory/matrix_to_beastling
https://doi.org/10.1038/sdata.2018.205
https://calc.hypotheses.org/803
http://dl.acm.org/citation.cfm?id=2388655.2388671
https://doi.org/10.1371/journal.pone.0180908
https://doi.org/10.1073/pnas.0706851105

Computer-Assisted Language Comparison in Practice

Cite this article as: Gereon A. Kaiping, “From Fieldwork to Trees 2:
Cognate coding,” in Computer-Assisted Language Comparison in Practice,
27/11/2018, https://calc.hypotheses.org/849.

72

https://calc.hypotheses.org/849

Computer-Assisted Language Comparison in Practice

Merging datasets with LingPy and the CLDF
curation framework

Johann-Mattis List (10/12/2018)

Categories: Code, Dataset

Tags: CLDF, Concepticon, EDICTOR, LingPy

Imagine you have two different datasets, both containing approximately the
same concepts, but slightly different numbers of columns and—more impor-
tantly — potentially identical identifiers in the first column. A bad idea for
merging these datasets would be to paste them in Excel or some other kind
of spreadsheet software, and then trying tomanually adjust all problems that
might occur during this process.

A better idea is to just use LingPy and our CLDF curation framework (which
was, for example, used when establishing the CLICS² database, see List et al.
2018), which is basically not much work, requiring just a few lines of code to
be written, but giving you also the possibility to re-use these code pieces on
similar tasks.

I want to illustrate how this can be done by showing for twodatasets (Chacon
2017 andChacon et al. forthcoming), which are both curatedwithin our CLDF
framework, howonecanmerge themwithLingPy. Beforewecanstart,wewill
install these two datasets via pip .

1 $ pip install -e git+https://github.com/lexibank/
chaconarawakan.git@v1.0.1#egg=lexibank_chaconarawakan

2 $ pip install -e git+https://github.com/lexibank/
chaconbaniwa.git@v1.0.0#egg=lexibank_chaconbaniwa

73

http://bibliography.lingpy.org?key=List2018f
http://bibliography.lingpy.org?key=List2018f
http://bibliography.lingpy.org?key=Chacon2017
http://bibliography.lingpy.org?key=Chacon2017

Computer-Assisted Language Comparison in Practice

In our Python script, we then load the two packages along with LingPy and
the pyconcepticon package.

1 from lingpy import *
2 from lexibank_chaconarawakan import Dataset as ds1
3 from lexibank_chaconbaniwa import Dataset as ds2
4 from pyconcepticon.api import Concepticon

Alongwith these packages, the LingPy packageswill also have been installed,
if it was not already present on your computer. Both datasets contain a raw
folder in which we find the original data as it was curated within the EDIC-
TOR/LingPy approach, that is: the data was originally analyzed with LingPy (
List et al. 2018) and thenmanually correctedwith EDICTOR (List 2017). So in-
stead of loading the datawith LingPy’s CLDF reader, we load it in its raw form,
for convenience.

1 wl1 = Wordlist(
2 ds1().raw.joinpath(
3 "arawakan_swadesh_100_edictor.tsv").as_posix())
4 wl2 = Wordlist(
5 ds2().raw.joinpath(
6 "Bruzzi_Granadillo.txt").as_posix())

The part of the data we want is the common Swadesh-list of 100 concepts (
Swadesh 1955). We load this list with help of the pyconcepticon API, pub-
lished as part with the Concepticon project (List et al. 2016).

1 swad = [
2 c.concepticon_id for c in Concepticon(
3).conceptlists['Swadesh-1955-100'].concepts.values

()]
4
5 concepts = {
6 wl2[idx, 'concept'] for idx in wl2 if wl2[
7 idx, 'concepticon_id'] in swad}

74

http://bibliography.lingpy.org?key=List2018i
http://bibliography.lingpy.org?key=List2017d
http://bibliography.lingpy.org?key=Swadesh1955
http://bibliography.lingpy.org?key=List2016a

Computer-Assisted Language Comparison in Practice

We now declare a dictionary in Python to store the data that we want to
then write to a LingPy-wordlist file (that can also be read in edictor). We
use the columns present in the first wordlist as our standard, and add two
more, one for the original index (called old_idx) and one for a combined
cognate-identifier (called cog).

1 D = {0: wl1.columns+['old_idx', 'cog']}

We now iterate over both wordlists and add the relevant entries to the dic-
tionary, making sure to separate the cognate-identifiers from each other by
assigning them to different sets (with help of the name of the datasets that
we add as part of the cognate-set identifier).

1 nidx = 1
2 for idx in wl1:
3 D[nidx] = [wl1[idx, h] for h in wl1.columns
4] + ['chaconarawakan-'+str(idx)]
5 D[nidx] += ['chaconarawakan-'+str(
6 wl1[idx, 'cogid'])]
7 nidx += 1
8 for idx in wl2:
9 D[nidx] = [wl2[idx, h] for h in wl1.columns
10] + ['chaconbaniwa-'+str(idx)]
11 D[nidx] += ['chaconbaniwa-'+str(
12 wl2[idx, 'cogid'])]
13 nidx += 1

All that’s left to do now is load the data in to a Wordlist object provided by
LingPy and write it to file (after a few operations).

1 wl = Wordlist(D)

75

Computer-Assisted Language Comparison in Practice

First, we renumber the cognates in the column cog in order tomake sure they
are numeric.

1 wl.renumber('cogx', 'cogid', override=True)

Then, we segment the so far non-segmented entries in the data: for
idx, ipa, segments in wl.iter_rows('ipa', 'segments'): if not
segments: wl[idx, 'segments'] = ipa2tokens(ipa)

Now, we write all entries to file that conform to a concept that is also present
in Swadesh’s list of 100 items.

1 wl.output(
2 'tsv',
3 filename='chacon-arawakan-baniwa',
4 subset=True,
5 cols=[
6 c for c in wl.columns if c not in [
7 'value_in_source']],
8 rows=dict(
9 concept = 'in '+str(concepts))
10)

This is essentially all. The data in file chacon-arawakan-baniwa.tsv can now
be analyzed with LingPy or also manually annotated with EDICTOR.

References

Chacon, T. (2017): Arawakan and Tukanoan contacts in Northwest Amazonia prehistory. PA-

PIA 27.2. 237-265..

List, J.-M., M. Cysouw, and R. Forkel (2016): Concepticon. A resource for the linking of con-

cept lists. In: Proceedings of the Tenth International Conference on Language Resources and

76

Computer-Assisted Language Comparison in Practice

Evaluation. 2393-2400.

List, J.-M. (2017): A web-based interactive tool for creating, inspecting, editing, and publish-

ing etymological datasets. In: Proceedings of the 15th Conference of the European Chapter

of the Association for Computational Linguistics. System Demonstrations. 9-12.

List, J.-M., S. Greenhill, C. Anderson, T. Mayer, T. Tresoldi, and R. Forkel (eds.) (2018): CLICS:

Database of Cross-Linguistic Colexifications. Max Planck Institute for the Science of Human

History: Jena. http://clics.clld.org/.

List, J.-M., S. Greenhill, T. Tresoldi, and R. Forkel (2018): LingPy. A Python library for quanti-

tative tasks in historical linguistics. Max Planck Institute for the Science of Human History:

Jena. http://lingpy.org.

Swadesh, M. (1955): Towards greater accuracy in lexicostatistic dating. International Journal

of American Linguistics 21.2. 121-137.

Cite this article as: Johann-Mattis List, “Merging datasets with LingPy
and the CLDF curation framework,” in Computer-Assisted Language Com-
parison in Practice, 10/12/2018, https://calc.hypotheses.org/1668.

77

//lingpy.org”
https://calc.hypotheses.org/1668

	Introduction (Johann-Mattis List)
	Extracting translation data from the Wiktionary project (Tiago Tresoldi)
	Extracting sublists from a wordlist with LingPy and Concepticon (Johann-Mattis List)
	Cooking with CLICS (Johann-Mattis List)
	Representing structural data in CLDF (Johann-Mattis List)
	A fast implementation of the Consonant Class Matching method for automatic cognate detection in LingPy (Johann-Mattis List)
	Enhancing morphological annotation for internal langauge comparison (Nathanael E. Schweikhard)
	Inferring consonant clusters from CLICS data with LingPy (Johann-Mattis List)
	From Fieldwork to Trees 1: Data preparation (Gereon A. Kaiping)
	Semantic promiscuity as a factor of productivity in word formation (Nathanael E. Schweikhard)
	From Fieldwork to Trees 2: Cognate coding (Gereon A. Kaiping)
	Merging datasets with LingPy and the CLDF curation framework (Johann-Mattis List)

