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Abstract—It is important to observe the statistical character-
istics of global flows, which are defined as series of packets
between networks, for the management and operation of the
Internet. However, because the Internet is a diverse and large-
scale system organized by multiple distributed authorities, it
is not practical (sometimes impossible) to directly measure the
precise statistical characteristics of global flows. In this paper, we
consider the problem of estimating the traffic rate of every un-
observable global flow between corresponding origin-destination
(OD) pair (hereafter referred to as “individual-flows”) based on
the measured data of aggregated traffic rates of individual flows
(hereafter referred to as “aggregated-flows”), which can be easily
measured at certain links (e.g., router interfaces) in a network.
In order to solve the OD traffic matrix estimation problem,
the prior method uses an inverse function mapping from the
probability distributions of the traffic rate of aggregated-flows to
those of individual-flows. However, because this inverse function
method is executed recursively, the accuracy of estimation is
heavily affected by the initial values of recursion and variation of
the measurement data. In order to solve this issue and improve
estimation accuracy, we propose a method based on a resampling
of measurement data to obtain a set of solution candidates for OD
traffic matrix estimation. The results of performance evaluations
using a real traffic trace demonstrate that the proposed method
achieves better estimation accuracy than the prior method.

I. INTRODUCTION

Communication infrastructure has become the foundation
for various socioeconomic activities and plays an important
role as a lifeline for supporting the daily lives of people.
Therefore, the influence of network failures on people has
increased significantly. In order to avoid large-scale and long-
term network failures, it is important to develop technology
to accurately view the state of network utilization. However,
the Internet is a diverse and large-scale system operated and
managed by multiple distributed authorities, meaning it is
not easy to directly measure the state of network utilization.
Therefore, it is necessary to estimate the state of network
utilization, which is difficult (sometimes impossible) to mea-
sure directly because of issues regarding the independence of
network operation and management.

Network tomography is a technology addressing this is-
sue [1]. In this paper, we focus on a network tomography
method for estimating the unobservable traffic rate of every
individual-flow between corresponding OD pairs (hereafter

referred to as an OD traffic matrix or ODTM) based on
a measurement of the aggregated traffic rate of individual-
flows. The rate of aggregated-flow can be easily measured at
some certain links (e.g., router interfaces) in a network. This
is a more cost-effective method for network operation and
management compared to the method of directly measuring
the traffic rate of every individual-flow by investigating the
source and destination IP addresses of individual packets
passing through a router. Therefore, improving the accuracy
of ODTM estimation is extremely important not only for
network operation and management in normal situations, but
also in emergency situations, such as the detection of network
failures and identification of the causes of network failures.
Although a hybrid approach was also proposed to utilize both
direct monitoring of the traffic rates of individual-flows and
indirect monitoring of those of the aggregated-flows [2], our
present paper focuses on the approach that does not use the
information about the traffic rates of individual-flows.

For ODTM estimation, the validity of the assumptions
of the probabilistic model expressing the statistical state of
individual-flow rates, which are difficult to directly measure,
heavily affects estimation accuracy. For example, Cao et al.
used a model assuming that each individual-flow rate follows
an independent normal distribution [3]. Zhang et al. used a
model that assumes a certain proportional relationship between
aggregated-flow rate and individual-flow rate [4]. However, it
is known that when these assumptions do not hold, estimation
accuracy decreases considerably.

Tsuru et al. proposed a ODTM estimation method called
the inverse function method by using a discrete probabilistic
model with high degree of freedom [5]. This method calculates
an inverse function mapping from the probability distributions
of the rate of aggregated-flows to those of individual-flows.
This method has been shown to be feasible under the assump-
tions that the probability distributions of the rate of individual-
flows are independent of each other and the probability that
an individual-flow rate becomes zero is positive. As long
as these assumptions hold, the inverse function method can
uniquely identify the probability distributions of the rate of
individual-flows according to the measurement data of the rate
of aggregated-flows. However, because the inverse function



method is executed recursively and the degree of freedom of
the discrete probabilistic model used in this method is very
high, the accuracy of estimation is heavily influenced by the
initial values of recursion and variation of the measurement
data.

In order to avoid such difficulties and improve estimation
accuracy, we propose a method based on the resampling of
measurement data. Specifically, we generate a large number
of replicated measurement data through repeated resampling
of the measurement data of aggregated-flows and generate
various probabilistic models for individual-flows by apply-
ing the inverse function method using these replicated data.
The generated probabilistic models provide a set of solution
candidates for the ODTM estimation problem, which are
expected to be distributed around the true solution. We then
reconstruct the probability distribution of aggregated-flows
from the estimation result and evaluate the consistency of the
reconstructed aggregated-flows with the observed aggregated-
flows.

The remainder of this paper is organized as follows. Section
II reviews the prior inverse function method and its issues.
Section III describes the proposed method and presents an
evaluation using a real traffic trace. Section IV is the conclu-
sion of this paper.

II. INVERSE FUNCTION METHOD

A. Principle

We consider the simple network model shown in Fig. 1,
where three individual-flows pass through routers 1 and 2. The
individual flows from network A to C, A to B, and B to C are
labeled as 0, 1, and 2, respectively. In the following, based on
this simple network model, we will explain the principle of
the inverse function method, which is a method for estimating
the probability distributions of every individual-flow rate based
on N samples measured at each router. Although this paper
focuses on this simple network model, the inverse function
method can be applied to more general path-topologies [5].
Here, the flow rate is defined as the number of passed packets
(or bytes) within a unit measurement period. It has an integer
value in the range of {0, 1, . . . , M}.

Let Xi, (i = 0, 1, 2) be the discrete random variable for
the rate of individual-flow i within a unit measurement period
and Yj , (j = 1, 2) be the discrete random variable for the
rate of aggregated-flow j within a unit measurement period.
Then, we have

Yj = X0 +Xj , (j = 1, 2).

Additionally, we define Y12 as

Y12 = max{Y1, Y2}.

The probability distributions of Xi, (i = 0, 1, 2), Yj , (j =

1, 2) and Y12 are defined as

PXi(m) = Pr{Xi = m},
FXi(m) = Pr{Xi ≤ m},
FYj (m) = Pr{Yj ≤ m},
FY12(m) = Pr{Y12 ≤ m},

where m = 0, 1, . . . , M . If we assume that Xi, (i = 0, 1, 2)
are independent of each other, then we can define the relation-
ship between the probability distributions of individual-flows
(unobservable) and those of aggregated-flows (observable) as
follows:

FYj (m) =
m∑

k=0

PXj (m− k)FXj (k), (1)

FY12(m) =
m∑

k=0

PX0(m− k)FX1(k)FX2(k). (2)

If we assume that PXi(0) > 0, (i = 0, 1, 2) are satisfied, then
FY1(0) > 0, FY2(0) > 0, FY12(0) > 0 are also satisfied based
on the assumption of independence among Xi, (i = 0, 1, 2).
In this case, Eqs. (1) and (2) have the inverse functions and
PX0 , PX1 , PX2 can be calculated from FY1 , FY2 , FY12

recursively as follows [5]: This is why this method is called
the inverse function method.
If m = 0

PX0(0) =
FY1(0)FY2(0)

FY12(0)
,

PX1(0) =
FY12(0)

FY2(0)
,

PX2(0) =
FY12(0)

FY1(0)
.

If m ≥ 1

PX0(m) =
−b(m)−

√
b(m)2 − 4ac(m)

2a
,

a =
PX1(0)PX2(0)

PX0(0)
,

b(m) =
FY12(0)− PX1(0)B2(m)− PX2(0)B1(m)

PX0(0)
,

c(m) =
B1(m)B2(m)

PX0(0)
− C(m),

Bj(m) = FYj (m)−
m−1∑
k=1

PX0(m− k)FXj (k), (j = 1, 2),

C(m) = FY12(m)−
m−1∑
k=1

PX0(m− k)FX1(k)FX2(k),

PX1(m) =
−PX1(0)PX0(m) +B1(m)

PX0(0)
− FX1(m− 1),

PX2(m) =
−PX2(0)PX0(m) +B2(m)

PX0
(0)

− FX2(m− 1).

By using the probability distributions identified by the
inverse function method, we can calculate various statistics,
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Fig. 1. Network Topology

such as the expected value and variance of individual-flows
Xi, (i = 0, 1, 2). In this paper, we consider the problem of
estimating the expected values of individual flows.

B. Minimum Effective Flow Rate
In the formulation of the inverse function method, it is

assumed that PX0(0) > 0, PX1(0) > 0, and PX2(0) > 0 (i.e.,
FY1(0) > 0, FY2(0) > 0, and FY12(0) > 0) hold. However,
these assumptions do not hold in general. One way to avoid
this problem is to introduce a minimum effective flow rate that
is defined by the observed minimum flow rate and estimate the
incremental quantity from the minimum effective flow rate [6].
In this paper, we consider a method based on this concept,
which is described below.

Let yj,n be the measurement sample of aggregated-flows
Yj , (j = 1, 2) at time stamp n, where n = 1, 2, . . . , N
and Sj = {yj,1, yj,2, . . . , yj,N} be the set of measurement
samples. Then, the empirical distribution derived from Sj can
be expressed as

F̂Yj (m) =
1

N

N∑
n=1

I(yj,n ≤ m), (j = 1, 2) (3)

F̂Y12(m) =
1

N

N∑
n=1

I(y12,n ≤ m), (4)

where y12,n = max{y1,n, y2,n} and I(·) represent the indi-
cator function that is equal to 1 when the logical statement
inside the parenthesis is true and equal to 0, otherwise. Now,
if F̂Yj (0) > 0, (j = 1, 2), and F̂Y12(0) > 0 hold, we can
implement the inverse function method by replacing FYj (m)

in Eq. (1) with F̂Yj (m) and FY12(m) in Eq. (2) with F̂Y12(m).
If the above assumptions do not hold, we estimate the

incremental quantity from the minimum effective rate. We
define the incremental quantity of the measured aggregated-
flow y′j,n based on the minimum flow rate as

y′j,n = yj,n − yj,min, (j = 1, 2),

where yj,min is the minimum effective rate defined as

yj,min = min
n=1,2,...,N

yj,n, (j = 1, 2).

Then, we define y′12,n as

y′12,n = max{y′1,n, y′2,n}.

Note that the minimum value in {y′12,1, . . . , y′12,N}, which is
defined by

y′12,min = min
n=1,2,...,N

y′12,n,
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does not necessarily become 0. Therefore, we define y′′j,n and
y′′12,n as

y′′j,n = max{y′j,n − y′12,min, 0}, (j = 1, 2)

y′′12,n = y′12,n − y′12,min.

The empirical distribution derived from the adjusted
data set of measurement samples, written as S′′

j =
{y′′j,1, y′′j,2, . . . , y′′j,N}, is defined as

F̂Y ′′
j
(m) =

1

N

N∑
n=1

I(y′′j,n ≤ m), (j = 1, 2)

F̂Y ′′
12
(m) =

1

N

N∑
n=1

I(y′′12,n ≤ m),

which satisfies F̂Yj (0) > 0 and F̂Y12(0) > 0. Therefore,
we can implement the inverse function method by replacing
FYj (m) in Eq. (1) with F̂Y ′′

j
(m) and FY12(m) in Eq. (2)

with F̂Y ′′
12
(m). The expected value of Xi derived from the

probability distribution of the individual-flow resulting from
the above method is represented by µ̂′′

i .
In this study, considering that the above process was applied

to the original measurement data of the aggregated-flow rate,
we estimated the expected value of the individual flow i, µ̂i

as

µ̂i = µ̂′′
i + αi, i = 0, 1, 2,

where

α0 =
α1 + α2

2
, αj =

y′′j,min + y′′12,min

2
, (j = 1, 2).

C. Quantization of Unit Quantity for Estimation

Because the degree of freedom of the discrete probabilistic
model used in the inverse function method is O(M), it can
become very large depending on the maximum value of the
flow rate. Additionally, because the inverse function method is
executed recursively, its estimation accuracy is heavily affected
by the variation of the measurement data of aggregated-
flow rate used for estimation. Therefore, in this study, we
optimized the quantization width (i.e., the degree of freedom)
by considering the results presented in [6].



III. PROPOSED METHOD AND ITS PERFORMANCE
EVALUATION

A. Performance Improvement by Resampling

1) Proposed Method: In this paper, we propose a method
to improve the estimation accuracy of the inverse method
by evaluating the impact of variation in the measurement
data on the estimation results. The proposed method is based
on resampling measurement data. Specifically, we generate a
large number of replicated measurement data through repeated
resampling on measurement data from aggregated-flows. We
then generate various probabilistic models for individual-flows
by applying the inverse function method based on these
replicated data, where the degrees of freedom of the probabilis-
tic models are chosen randomly. These probabilistic models
provide a set of solution candidates for the ODTM estimation
problem, which are expected to be distributed around the true
solution. We then reconstruct the probability distributions of
aggregated-flows from the estimated probability distributions
of individual-flows. In addition, we evaluate the consistency
of the reconstructed probability distributions of aggregated-
flows with the observed (empirical) probability distributions
of aggregated-flows. The main concept behind the proposed
method is not to mitigate the impact of variation in the
measurement data, but to avoid the impact by evaluating the
expected estimation accuracy of solution candidates.

Let T̃ be a multiset of N samples that are randomly selected
with replacement from the set T = {1, 2, . . . , N}. In other
words, T̃ is a bootstrap sample set randomly selected from the
set T = {1, 2, . . . , N}. Therefore, S̃j = {yj,n | n ∈ T̃} is
a multiset of N samples randomly selected with replacement
from the original set of samples Sj = {yj,n | n ∈ T}, which
is the entire set of measurement data of aggregated-flows Yj ,
(j = 1, 2). Then, the empirical distribution derived from S̃j

can be calculated as

F̃Yj (m) =
1

N

∑
n∈T̃

I(yj,n ≤ m), (j = 1, 2) (5)

F̃Y12(m) =
1

N

∑
n∈T̃

I(y12,n ≤ m). (6)

Now, we get µ̃i, which is the expected value of the individual-
flows Xi, (i = 0, 1, 2) in terms of the aforementioned
empirical probability distribution of individual-flows derived
from the inverse function method discussed in Sec. II.

Because the true probability distributions of individual-flows
Xi, (i = 0, 1, 2) are unknown, it is impossible to evaluate the
validity of the estimator µ̃i directly. In other words, although
the relative error between µ∗

i (the expectation of Xi in terms
of the true probability distribution of the individual-flows) and
µ̃i can be defined as

e∗ =

√√√√ 2∑
i=0

(
µ∗
i − µ̃i

µ∗
i

)2

, (7)

it is impossible to evaluate e∗ in a real-world scenario because
µ∗
i are unknown. Therefore, we evaluate the validity of the
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estimator µ̃i based on relative error in terms of the aggregated-
flow rate, which is defined as

ê =

√√√√ 2∑
j=1

(
λ̂j − (µ̃0 + µ̃j)

λ̂j

)2

, (8)

where λ̂j is the sample mean of the measurement data Sj =
{yj,n|n ∈ T}, defined as

λ̂j =
1

N

∑
n∈T

yj,n,

and µ̃0 + µ̃j are the estimators of the rate of aggregated-flow
Yj .

In the proposed method, we generate a large number of
replicated measurement data of aggregated-flows, S̃j , through
repeated resampling of the measurement data of aggregated-
flows, Sj , and apply the above method to each replica. We then
evaluate the validity of the estimation based on the relative
error defined by Eq. (8) and select the estimator µ̃i whose
evaluation results with respect to ê are the best as the ultimate
estimator.

2) Results of Evaluation: We evaluated the proposed
method by using a real traffic trace captured at the campus
network of the Kyushu Institute of Technology, Japan. The
real traffic trace of the aggregated-flows Y1 and Y2 used for
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evaluation was captured over 30,000 seconds. An example
time series from the real traffic trace used in this paper is
presented in Fig. 2. For evaluation, the proposed method was
applied to time series data from intervals of 5,000 consecutive
seconds, which constitute evaluation units (i.e., N = 5000).
The intervals were shifted by 2,500 seconds. In other words,
the real traffic trace for 5,000 seconds of aggregated-flow rate
Yj , j = 1, 2 in the time intervals b = 0, 1, . . . , 10, denoted
S
(b)
j = {yj,n+2500b | n ∈ T}, was evaluated by the proposed

method. Regarding the units of estimation for implementing
the inverse function method, the quantization number (i.e.,
degree of freedom) q was randomly chosen between 20 and
80. Therefore, the quantization width was ⌊M/q⌋.

Figures 3, 4, and 5 present the results of estimation obtained
by the proposed method using the real traffic trace illustrated
in Fig. 2.

Figure 3 presents an example of the estimation results
obtained by the proposed method using the real traffic trace of
aggregated-flow within a time block S

(b)
j , (b = 3). The hori-

zontal axis denotes the relative error in terms of the individual-
flow rates e∗ and the vertical axis denotes the relative error in
terms of the aggregated-flow rate ê. In the proposed method,
we use replicas of the measurement data of the aggregated-
flow S

(b)
j that are obtained through repeated resampling of

S
(b)
j . This figure presents the results of resampling 150 times,

where each + mark in the figure corresponds to one replica
(i.e., the number of + marks is 150). From the figure, it can be
seen that the estimation error varies depending on the number
of replicas used in the proposed method. Additionally, we can
confirm the tendency that the relative error e∗ decreases as the
relative error ê decreases. Therefore, by using the estimation
result µ̃i, i = 0, 1, 2 when the relative error ê, which
can be calculated from the data of the aggregate flow rate,
is minimized, it is possible to reduce the true relative error
e∗, which cannot be calculated from the measurement data
of the aggregate flow rate. In fact, as shown in this figure,
the estimation results from the proposed method can decrease
relative error compared to the estimation results obtained by
the prior method, which uses the original measurement data

S
(b)
j for the implementation of the inverse function method

(i.e., the method without resampling).
Figure 4 presents the time series of relative errors e∗

for each time block from the proposed method (Proposed
Method 1) and prior method (Prior Method). Additionally, this
figure presents the marginal performance obtained when the
optimal solution could be selected (Marginal Performance) as
a reference. From the figure, one can see that the proposed
method generally achieved higher estimation accuracy than
the prior method, even in cases other than b = 3. However,
in the cases of b = 0, 1, 7, the prior method achieved higher
estimation accuracy than the proposed method. In order to
investigate this result in greater detail, as an example, a scatter
plot of the relative error e∗ in terms of the individual-flow
rate and the relative error ê in terms of the aggregated-flow
rate for the case of b = 0 is presented in Fig. 5. From this
figure, the correlation between the relative error in terms of
the individual-flow rate e∗ and the relative error in terms of
the aggregated-flow rate ê shows a similar tendency to that
in Fig. 3. However, one can see that the relative error e∗ for
the proposed method is larger than that for the prior method
when the relative error ê is minimized. This indicates that
the estimation error in terms of the individual-flow rate X0

and that in terms of the aggregated-flow rate Xj are canceled
because of the relationship between the aggregated-flow rate
and individual-flow rate Yj = X0 + Xj . In other words,
e∗ is not necessarily minimized when ê is minimized. This
phenomenon is caused by the fundamental indefiniteness in
the ODTM estimation problem. We propose a method that can
achieve high estimation accuracy in such cases in the following
section.

B. Solution Filtering

1) Proposed Method: Figure 6 presents the relationship
between the selected solution candidate for b = 0 and the
true solution discussed in the previous section. The point
indicated by the circle (red) is the true value and the point
indicated by diamond (green) is the solution selected by the
proposed method from the previous section. Figure 7 presents
an enlarged view of the points surrounding the true value. The
straight line shown the figure indicates a region satisfying the
relationship µ∗

j + µ∗
0 = Xj +X0, (j = 1, 2). In the proposed

method from the previous section, because the point with the
smallest squared distance from the straight line was selected
as a solution, a point far from the true value was selected
even though there are many points surrounding the true value.
Therefore, we propose a method to remove such points from
the set of candidate solutions.

Let the set of estimation results obtained by performing re-
sampling l1 times be Ul1 = {(µ̃(j)

0 , µ̃
(j)
1 , µ̃

(j)
2 )| j = 1, · · · , l1}.

Then, we calculate the relative error ê for each element
in Ul1 . We expect that there is some correlation between
relative errors ê and e∗. Therefore, l2 elements are selected
in ascending order with respect to the relative error ê from
the elements in Ul1 . The set of selected elements is denoted
U ′
l2
(⊂ Uk1). In this manner, the points greatly deviating from
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the straight line (Fig. 6) are removed from the set of candidate
solutions.

The center of the distribution of elements in the set U ′
l2

is expected to be close to the true value, as shown in Fig.
7. Therefore, we filter the candidate solutions based on this
property. Here, let µ̃i,med be the median of the elements
in the set U ′

i,l2
= {µ̃i|(µ̃0, µ̃1, µ̃2) ∈ U ′

l2
} and µmed =

(µ̃0,med, µ̃1,med, µ̃2,med) be a vector composed of these medians.
Then, let U ′′

l3
(⊂ U ′

l2
) be the set of l3 elements that are selected

from U ′
l2

in ascending order with respect to the distance from
µmed. Finally, let the element in U ′′

l3
for which the relative

error ê is minimized be the final estimator.
2) Results of Evaluation: Figure 8 presents the time series

of relative errors e∗ for each time block from the above method
(Proposed Method 2), where l1 = 150, l2 = 50, l3 = 40. The
parameters values were determined through a trial and error
process. From this figure, one can see that the errors in the
time blocks of b = 0, 1 are smaller than those from the prior
method. Additionally, it can be seen that the error in the time
block of b = 7 is smaller than that of Proposed Method 1,
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although it is still inferior to the error of the prior method.

IV. CONCLUSIONS

The accuracy of ODTM estimation based on the inverse
function method is heavily affected by the variation of the
measurement data of the aggregated-flow rate. In this paper, we
proposed a method to improve the estimation accuracy of the
inverse function method by evaluating the impact of variation
in measurement data on estimation results. The proposed
method generates a large number of replicas through repeated
resampling of the measurement data of the aggregated-flows
and generates various probabilistic models for individual-flows
(i.e., solution candidates) by applying the inverse function
method using these replicated data. Additionally, by consid-
ering the characteristics of the solution candidates obtained
through repeated resampling, the solution candidates that are
considered to have low estimation accuracy are excluded from
the set of candidate solutions. As a result of evaluations using
a real traffic trace, we confirmed that the proposed method
achieves higher estimation accuracy than the prior method in
many cases.
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