
TCP/NC performance in bi-directional loss
environments

著者 Nguyen Viet Ha, Tsuru Masato
journal or
publication title

2019 International Conference on Electronics,
Information, and Communication (ICEIC)

year 2019-05-06
URL http://hdl.handle.net/10228/00007453

doi: info:doi/10.23919/ELINFOCOM.2019.8706367

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kyutacar : Kyushu Institute of Technology Academic Repository

https://core.ac.uk/display/270065508?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TCP/NC performance in bi-directional loss
environments

Nguyen Viet Ha
Kyushu Institute of Technology

Fukuoka, Japan
nguyen.viet-ha503@mail.kyutech.jp

Masato Tsuru
Kyushu Institute of Technology

Fukuoka, Japan
tsuru@cse.kyutech.ac.jp

Abstract—Transmission Control Protocol with Network
Coding (TCP/NC) is studied to improve the goodput performance
of the standard TCP in lossy networks (e.g., wireless networks).
TCP/NC uses additional sub-layer called Network Coding layer
below TCP layer to handle packet losses without sensed by TCP
layer. Basically, n+k combination packets combined from n
original packets are sent by the source. When the sink receives
enough n combination packets, the sink can calculate n original
packet even though k’ packets are lost where k’ is less than or
equal to k. Most versions of TCP/NC consider the loss in only the
direction of sending data; however, the loss in the reverse
direction, i.e., the direction of sending an acknowledgment,
affects seriously to goodput performance, especially in TCP/NC
with an automatic estimation of Network Coding parameters (n
and k) case. In this paper, we propose a new scheme for the bi-
directional loss issue. The result of our simulation on ns-3
(Network Simulation 3) shows that the proposed scheme can
work well when loss happens in both directions compared to the
TCP NewReno and our previously proposed, TCP/NC with Loss
Rate and Loss Burstiness Estimation (TCP/NCwLRLBE).

Keywords—TCP/NC; TCP; Network Coding; Bi-directional
loss; lossy networks; ns-3.

I. INTRODUCTION

Transmission Control Protocol (TCP) is currently used for
reliable transmission in many applications due to its advantages
on connection-oriented and congestion control features.
However, the transmission performance of TCP is seriously
degraded by packet loss through the lossy networks (e.g.,
wireless networks). It is also because of the TCP’s congestion
control. In this feature, a packet loss is considered as a
congestion signal; hence, TCP will decrease the sending rate by
decreasing the congestion window (CWND) when detecting a
packet loss. The packet loss is caused not only by network
congestion but also a channel. The CWND should be kept
stable to overcome the temporary bad condition of the channel.
But TCP decreases the CWND mistakenly affecting to
transmission performance seriously. To overcome this issue,
some TCP variants have been proposed, e.g., TCP Westwood+
[1]. Another promising approach is combining Network
Coding with TCP (called TCP with Network Coding -
TCP/NC) [2] which has more benefits than using only the TCP.

TCP/NC introduces a new NC sub-layer sandwiching
between TCP and Internet layer shown as Fig. 1. Basically, NC
sub-layer receives n TCP segments, combines them to m
combination packets (referred to as encoding) with m>n. It is

supposed that k’ combination packets are lost through a lossy
channel. If k’ is less than or equal k which equal subtraction of
m and n, the sink is expected to recover the remaining
combination packets to all original segments (referred to as
decoding). While NC can apply on wide range area, we focus
only one its advantage on a high degree of packet loss
robustness. And we focus on applying NC only at end-devices,
not at the intermediate nodes due to the limitation of this paper
scope.

The network conditions change over time in the practical,
especially wireless networks; thus, using the constant NC
parameters (n and m) is not a good solution. Some variants of
TCP/NC have been proposed to automatically adjust the NC
parameters when the channel condition changes such as Self-
Adaptive NC-TCP (SANC-TCP) [3], Adaptive NC (ANC) [4],
Dynamic Coding (DynCod) [5], and TCP/NC with Loss Rate
and Loss Burstiness Estimation (TCP/NCwLRLBE) [6].
However, most methods need to receive all acknowledgment
(ACK) packets to estimate the correct channel conditions (link
loss rate and loss burstiness) to determine the correct NC
parameters. For example, in our previous study with
TCP/NCwLRLBE, we use the Packet Identification (Pid) in the
sending combination packet and Pid-Echo-Reply in the ACK
packet to help the source estimate the channel conditions and
adjust NC parameters. However, the practical channels are
always a bi-direction loss environment; thus, these above
methods cannot work well in the real. In this paper, we propose
a new scheme which can help the sink notify to the source the
status not only of the currently received packet but also of the
previously received or lost packets. Consequently, the source
can estimate correctly all the necessary values even though
some ACK packets are lost.

Fig. 1. Network coding sub-layer

The remainder of this paper is organized as follows. Sect. 2
introduces the overview of TCP/NC. Sect. 3 explains the detail
of the proposed scheme. Simulation evaluation is presented in
Sect. 4 and conclusion is given in Sect. 5.

II. TCP/NC OVERVIEW

A. Network coding in protocol stack

TCP/NC introduces a new NC sub-layer putting between
TCP and network layer shown in Fig. 1. This sub-layer handles
the incoming and outgoing packets from TCP and network
layer, respectively. The key is this sub-layer works
transparently with other layers; thus, TCP/NC can simply apply
to any current devices. If NC sub-layer can recover all packet
losses, TCP layer is unaware of the loss events occurring.
Besides, NC sub-layer will return ACK packet with ACK
number determining based on the degree of freedom and the
seen/unseen definition [2] not based on the decoded or received
packet. The CWND is maintained even though the combination
packets have not decoded yet (will be decoded later). Thus, the
transmission performance is stable through lossy channels.

B. Coding process

TCP/NC allows the source to send m combination packets
(C) created from n original packets (p) with m≥n using Eq. (1)
where α is the coefficient. If the number of lost combinations is
less than k=m-n, the sink can recover all the original packets
using the received combinations without retransmission except
for the case of the linearly dependent combinations. TCP/NC
using a sliding method to combine the original packets into a
combination packet with the number of combined packets in
one combination packet (referred to as sliding window) is k+1.
Besides, α is selected randomly; thus, the coding algorithm is
also called Random Linear Network Coding (RLNC [7]). All
the computation is implemented in a Galois field (e.g., in a
GF(28)). All operators are expressed to “exclusive or” (XOR)
and lookup table; hence, the complexity of computation is
small to apply to the real system.

(1)

C. TCP functionality

As mentioned, TCP/NC is proposed to work transparently
to other layers. And the TCP functionalities have been studied
and worked stably in a long history. TCP/NC should take all
these advantages. Two most important mechanisms are
retransmission and congestion control. If the number of packet

losses is larger than the recovery capacity of NC sub-layer, the
source needs to retransmit the necessary packets. In this case,
the NC sub-layer returns some duplicate ACK number equaling
the oldest unseen packet. The retransmission will be started
normally based on the original Triple-Duplicate-ACKs or TCP
timeout. Increasing or decreasing the CWND is also controlled
by TCP layers, not NC sub-layer.

III. PROPOSED SCHEME

The proposed scheme is introduced based on the previous
study in [6] (TCP/NCwLRLBE). TCP/NCwLRLBE can
automatically estimate the channel conditions (e.g., link loss
rate, loss burstiness) and then it adjusts the NC parameters.
Basically, the proposed scheme works as TCP/NCwLRLBE,
but it does not decide the estimated value immediately. It will
update the estimated values over time based on the previous
information stored in each ACK packets. Therefore, the
proposed scheme can estimate the correct channel conditions
even though some ACKs are lost.

A. NC header and NC-ACK header

The NC header and NC-ACK header are retained from
TCP/NCwLRLBE shown in Fig. 2 and described in Table. I.
The content of the header fields is not scoped in this paper. The
detail explanation is discussed in [5][8]. In this paper, we only
focus on Pid, Pid Echo-Reply, and a new field added in NC-
ACK header, “Packet loss Sequence.” Pid are the continuous

Fig. 2. NC header (above) and NC-ACK header (below)

TABLE I. HEADER FIELDS DESCRIPTION

Field name Description

SrcPort The source port number

DestPort The destination port number

Pid The packet identity

Pkt status
The packet status. Using for the returning ACK
process

Base
The sequence number (SN) of the oldest packet in
the NC buffer of the source. Using for buffer
management at the sink

N
The number of the original packet in the combination
packet

SN1 The SN of the first original packet

SNn Equal to the SN of the nth packet subtract to SN1

Sizen The payload size of nth packet

αn The nth NC coefficient

Pid Echo-Reply The packet identity echo reply

R The redundancy flag

D The dependence flag

Reserve Reserved for the future use

SN of the
dependence pkt

The SN of the dependence packet at the sink. Using
to notify the source to retransmit this packet

Packet loss
Sequence

Store the status of the 32 previous packets start from
the newest received packet having the Pid equal the
Pid Echo-Reply.

numbers assigned sequentially for every sending combination
packets. Pid Echo-Reply is used in ACK packet to turn the
acknowledgment from the sink to the source. It is set to the
value of the Pid of the recently received combination packet.
Based on the Pid Echo-Reply, the source can know which
packet is received and which packet is lost.

The Packet loss Sequence field includes thirty-two binary
number presenting to the status (received or lost) of recently
thirty-two continuous packets. With this field, the sink informs
to the source that not only the successfully receiving of the
combination packet having Pid but also the status of the thirty-
one previous packets. Therefore, the sink can receive all the
necessary information to estimate the channel condition even
though some ACK packets are lost.

Besides, NC header is used instead of the normal TCP
header. The size of the NC header is 20 bytes for the
combination containing one original packet. And five bytes is
added for each additional original packet. The maximum size
of NC header is 70 bytes for the k of 10. In NC-ACK header,
twelve bytes is added in the normal ACK packet. The total size
of NC-ACK header is 32 bytes including 20 bytes of the
normal ACK header. The additional overhead is negligible
compared to data payload (e.g., 536 bytes in the simulation of
this paper); thus, it does not affect the goodput performance.

B. Estimate the network condition

TCP/NCwLRLBE determines immediately the number of
packet losses and the loss burstiness size (number of
continuous packet losses) whenever receiving the ACK
packets. These values are accumulated over time until the
estimation process starts in every periodic 5 seconds
(configurable parameter). Therefore, losing some ACK packets
affects the estimation process of TCP/NCwLRLBE.
TCP/NCwLR-LBE increases the number of redundancy
packets mistakenly; hence the transmission performance is
degraded.

It is clear to see that calculating immediately channel
condition is unnecessary because the system must wait until the
estimation process starts. In our proposed scheme, the status of
all packets in one period (5 seconds) is stored and updated
whenever receiving the new ACK packet. Therefore, the source
has enough time to update the correct status of the packet to
estimate the correct channel conditions. The losing ACK
packet does not affect the transmission performance if the total
continuous loss in both directions (sending data packet and
receiving ACK packet) does not exceed thirty-two packets.

IV. SIMULATION RESULT

The simulation is accomplished by Network Simulator 3
(ns-3) [9] which is a discrete-event network simulator for

Internet systems. We compare the transmission performance
through goodput among the standard TCP NewReno, the
previous study TCP/NCwLRLBE (refer to as TCP/NC from
here), and our proposed scheme.

A. Simulation setup

The topology of the simulation consists of a backbone with
three tandemly arranged routers. One source and one sink are
on either side of the backbone shown in Fig. 3. All links have a
bandwidth of 1 Mbps and a propagation delay of 5 ms. The
buffer size of the links is set to 100 packets. The TCP protocol
type is NewReno. The payload size is 536 bytes. The minimum
TCP timeout is 1 second. And, the number of Delayed-ACK is
2. The loss channel is the random loss channel for both two
directions. The link loss rate is adjusted from zero to 0.2. The
simulations are run at least 20 times to obtain the average
value.

B. Goodput evaluation

1) Loss at one direction
In this simulation, we consider two cases. First, the loss

happens at the interface of Node 2 which connects to Node 1.
And second, the loss happens at the interface of Node 1 which
connects to Node 2.

In the first case, the goodput performance of TCP
NewReno is decreased when the link loss rate increases shown
in Fig. 4. The reason is the congestion control algorithm of
TCP mistakenly decreases the CWND whenever it sees the
packet loss. Meanwhile, the goodput performance of TCP/NC
and the proposed scheme are completely the same and better
than that of TCP NewReno.

In the second case, the goodput of TCP NewReno is
maintained in high goodput at 0.93 Mbps. The ACK packet
loss in TCP NewReno case is like the Delayed-ACK process;
thus, it does not affect the goodput performance. However, in
the TCP/NC case, the ACK packet loss makes the source
receive lack information to estimate the channel condition.
The source mistakenly recognizes the ACK packet loss as the
data packet loss; hence, it increases sending the unnecessary
redundancy packets causing the link bandwidth to be wasted.

Fig. 3. Simulation topology

Fig. 4. Goodput comparison in one direction loss only (data sending
direction or ACK receiving direction)

It means that the goodput performance is decreased.
Meanwhile, the proposed scheme can update the correct
estimation values using the set information of the previous
packet in each ACK packet. The correct the channel condition
is determined correctly. In this situation, no packet loss
happens; thus, the proposed scheme does not send any
redundancy packets. The goodput performance of the
proposed scheme is the same that of TCP NewReno.

2) Loss at both directions
In this simulation, we consider the loss happens in both

directions at the connection between Node 1 and Node 2. We
keep the constant link loss rate of the sending data direction is
0.04 (Case 1) and 0.2 (Case 2) while adjusting the link loss
rate of the ACK receiving direction from zero to 0.2. The
results are shown in Fig. 5 and Fig. 6. In both cases, we can
see the advantage of the proposed scheme compared to TCP
NewReno and TCP/NC. The goodput performance of the
proposed scheme is kept stable even though the number of
loss degree increases. While the goodput performance of both
TCP NewReno and TCP/NC is decreased.

V. CONCLUSION

In this paper, we have proposed the scheme to let the sink
inform not only status (received or lost) of the latest packet but
also the status of thirty-one previous packets. It helps the
source know exactly the number of packet losses and the loss
burstiness even though some ACK packets are lost. The
simulation results on ns-3 have shown that the proposed
scheme outperforms other protocols such as TCP NewReno
and the recent variant of TCP/NC (TCP/NCwLRLBE) in bi-
directional loss environments which are common in most
practical channels.

In the future, we will improve the scheme to adapt more
heavy loss burstiness conditions where the number of
continuous packets in both directions may exceed thirty-two
packets. Instead of using a fixed length continuous packet
information, we will use the random packet information.
Another issue is to adapt unordered packet conditions which
also affect seriously to the goodput performance of the system.

ACKNOWLEDGMENT

The research results have been achieved by the “Resilient
Edge Cloud Designed Network (19304),” the Commissioned
Research of National Institute of Information and
Communications Technology (NICT), and by JSPS Grant-in-
Aid for Scientific Research (KAKENHI) Grant number
JP18H06467, Japan.

REFERENCES

[1] S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi, and R. Wang, "TCP
westwood: Bandwidth estimation for enhanced transport over wireless
links," in Proceedings of the 7th annual international conference on
Mobile computing and networking, Rome, Italy, pp. 287–297, Jul. 2001.

[2] J. K. Sundararajan, D. Shah, M. Medard, S. Jakubczak, M.
Mitzenmacher, and J. Barros, "Network coding meets TCP: Theory and
Implementation," Proceeding of the IEEE, vol. 99, no. 3, pp. 490–512,
Mar. 2011.

[3] S. Song, H. Li, K. Pan, J. Liu, and S Y R Li, “Self-adaptive TCP
Protocol Combined with Network Coding Scheme,” in Proceeding of the
6th Conference on Systems and Networks Communications (ICSNC),
Barcelona, Spain, pp. 20–25, Oct. 2011.

[4] C. Y. Cheng, and H. Y. Yi, “Adaptive Network Coding Scheme for TCP
over Wireless Sensor Networks,” Journal of Computers, Commu-
nications and Control, vol. 8, no. 6, pp. 800–811, Dec. 2013.

[5] T. V. Vu, N. Boukhatem, and T. M. T. Nguyen, “Dynamic Coding for
TCP Transmission Reliability in Multi-hop Wireless Networks,” in
Proceeding of the IEEE International Symposium on a World of
Wireless, Mobile and Multimedia Networks, Sydney, Australia, 6 pages,
Oct. 2014.

[6] N. V. Ha, K. Kumazoe, and M. Tsuru, “TCP Network Coding with
Adapting Parameters for bursty and time-varying loss,” IEICE
Transactions on Communications, vol. E101-B, no. 2, pp. 476–488, Feb.
2018.

[7] T. Ho, R. Koetter, M. Medard, D. Karger, and M. Effros, “The benefits
of coding over routing in a randomized setting,” in Proceeding of IEEE
International Symposium on Information Theory (ISIT), Yokohama,
Japan, pp. 442-447, Jun. 2003

[8] N. V. Ha, M. Tsuru, and K. Kumazoe, TCP Network Coding with
Enhanced Retransmission for heavy and bursty loss, IEICE Transactions
on Communications, vol. E100-B, no. 2, pp. 293–303, Feb. 2017.

[9] Network Simulator 3 (ns-3), “https://www.nsnam.org/,” accessed in Sep.
20th, 2018.

Fig. 6. Goodput comparison in the case that the link loss rate of data
sending direction is 0.1

Fig. 5. Goodput comparison in the case that the link loss rate of data
sending direction is 0.04

