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Abstract

On the distribution of genetic variation in ecological communities

by 

Isaac Overcast

Advisor: Michael J. Hickerson, Ph.D.

Biodiversity  in  ecological  communities  is  structured  hierarchically  across  spatial  and

temporal scales. Many open questions remain as to how this structure accumulates. For example,

what are the relative contributions of dispersal versus in situ speciation? Or, how important are

stochastic  drift  versus  deterministic  processes?  Up  to  this  point,  these  questions  have  been

investigated  by  isolated  disciplines  (e.g.  macroecology,  comparative  phylogeography,

macroevolution) using tools and data that tend to focus on only one axis of community scale data

(e.g. phylogenies, relative abundances, and/or trait  information).  Yet we know that there are

feedbacks among processes that respond on short, medium, and long time scales (local changes of

abundance, accumulation of population genetic variation, and speciation processes, respectively).

Therefore,  the  focus  of  my work  is:  first,  to  develop  a  model  of  the  distribution of  genetic

variation in ecological communities; second, to construct a multi-scale model of the accumulation

of biodiversity in ecological communities that jointly models three axes of data that respond on

ecological,  population  genetic,  and  phylogenetic  timescales;  and  third,  to  incorporate  abiotic

variables  with  community-scale  genetic  data  in  a  machine  learning  framework  to  make

predictions about the distribution of genetic variation across the landscape. First, I will present a

modelling  approach  that  involves  merging  Hubbell's  neutral  theory  with  neutral  population

genetic theory to construct a joint model of species abundance and genetic diversity. This model

simulates joint distributions of abundance and genetic variation assuming both ecological and
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population  genetic  neutrality,  and  captures  both  equilibrium  and  non-equilibrium  dynamics.

These simulations can be used for a variety of applications, including estimating the shape of the

abundance distribution using only a sample of community-scale genetic data. Next, I will present

a  model  that  extends the double neutral  model  to  incorporate non-neutral  processes  (such as

ecological interactions) and to introduce a speciation process. The goal of this work is to fully

integrate abundance and trait data with phylogenies and population genetic data into a unified

framework  with  the  aim  of  testing  community  assembly  models  and  estimating  ecological

parameters using observed community data. One result of this work is the finding that genetic

diversity  is  distributed  more  uniformly  in  ecological  communities  than  abundance.  Another

critical insight is that community-scale genetic data provide a record of community history on a

population-genetic  timescale,  which  can  complement  ecological  information  obtained  from

sampled abundance data, and deep time community history recorded in phylogenies. Finally, I

will  describe a machine learning framework that integrates community-scale genetic data and

abiotic variables (climatic/environmental) to make predictions about genetic diversity across the

landscape. I demonstrate this method using densely sampled abundances and community-scale

sequence  data  collected  from 10 decapod crustacean  communities  distributed  throughout  the

Coral  Triangle.  The  observed  distributions  of  abundance  and  genetic  diversity  in  these

communities largely agree with model predictions, in that abundance distributions demonstrated

higher dominance. The machine learning inference procedure identified mean annual sea surface

temperature and proximity of the sampling site to deep water as key factors contributing to the

shape and magnitude of  community-scale  genetic diversity.  As community-scale genetic data

becomes  easier  to  cost-effectively  obtain,  this  only  increases  the  importance  of  hierarchical

models of biodiversity accumulation that account for feedbacks across timescales to make the

most accurate inference about community history from this data. 
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Chapter 1: An integrated model of population genetics and community ecology

Introduction

The  species  abundance  distribution  (SAD)  is  a  classic  summary  of  the  structure  of

ecological  communities (McGill  et al.  2007), which is  gaining increasing interest  in areas of

applied  ecology  and  biodiversity  management  (Matthews  &  Whittaker  2015),  community

assembly (Fattorini et al. 2016), and biogeography in general (Matthews et al. 2017). However,

unbiased comparative species abundance data is often challenging to obtain, a problem that is

recognised to be particularly acute for invertebrates (Cardoso et al. 2011). Standardised sampling

protocols can be implemented to improve comparability within studies (e.g. Emerson et al. 2017),

but these do not account for idiosyncratic phenological or microhabitat differences among species

that  may  affect  sampling  probability,  potentially  skewing  estimates  of  relative  abundance.

Genetic  sequence data retains  a record of population size  changes through time (Griffiths  &

Tavaré 1994; Drummond et al. 2005), yet this axis of information has rarely been exploited by

community ecologists (Vellend 2005; Laroche  et al.  2015), and never at the scale of the full

community.  Therefore,  a  model  linking  abundance  and  effective  population  size  at  the

community scale could enable a new way to characterize abundance distributions indirectly from

genetic  data  alone.  Such rapid  and cost  effective estimation  of  SADs could  greatly  enhance

understanding of the structure of ecological communities, with potential to aid in the design of

conservation strategies, and to improve forecasts of changes in aggregate population dynamics in

the context of global climate change.

The accumulation of sequence data for non-model organisms from over two decades of

comparative phylogeographic studies (Avise, Bowen, & Ayala, 2016) large-scale DNA barcoding

initiatives  (Bucklin,  Steinke,  & Blanco-Bercial,  2011;  Schoch et  al.,  2012),  and  forthcoming

community-scale  genome-wide  data  (Coissac,  Hollingsworth,  Lavergne,  &  Taberlet,  2016;
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Garrick  et  al.,  2015),  presents  us  with  an  exciting  opportunity  for  linking  abundances  and

aggregate population genetic data . However, what is lacking is a flexible joint model that links

existing models in comparative phylogeography (Carstens, Gruenstaeudl, & Reid, 2016; Huang,

Takebayashi, Qi, & Hickerson, 2011; Jordan D. Satler & Carstens, 2016, 2017; Xue & Hickerson,

2017) with existing biogeographic models of community assembly (Etienne & Haegeman, 2011;

Rosindell  &  Harmon,  2013;  Rosindell,  Harmon,  &  Etienne,  2015;  Rosindell,  Hubbell,  He,

Harmon, & Etienne, 2012).

Despite the potential of comparative phylogeography to leverage the power of aggregated

demographic  histories  to  answer  fundamental  questions  about  community  assembly  and

macroecology (Avise et al. 1987; Hickerson et al. 2010; Avise et al. 2016), such approaches have

generally  neglected  the  growing  body  of  theory  from  community  ecology  that  seeks  to

accommodate  the  relative  importance  of  deterministic  (Tilman 2004;  Maire  et  al.  2012)  and

stochastic processes (MacArthur & Wilson 1963; Hubbell 2001; Rosindell et al. 2012) governing

the assembly of  communities.  For  instance,  comparative phylogeographic  approaches that  do

incorporate community assembly have tended to focus on general models of shared demographic

histories (Burbrink et al., 2016; Satler & Carstens, 2017; Stone et al., 2012), rather than models

that are explicitly parameterized from ecological community assembly theory (but see Bunnefeld

et al. 2018).

Ecological theory has been fundamental for understanding processes underlying spatial

patterns of biodiversity as typically quantified by regional SADs and species area relationships

(McGill  et al. 2007; Matthews & Whittaker 2014). However, ecological models of community

assembly  tend  to  view communities  as  static  pools  with  an  ahistorical  focus  on  equilibrium

expectations  (Weiher  et  al.  2011).  Although  there  have  been  efforts  to  incorporate  non-

2

https://paperpile.com/c/tzL4ls/6xwQm+DC5VM+pHpLu
https://paperpile.com/c/tzL4ls/IIzuQ+jH2Wj+g5Vyk+Dfk2p
https://paperpile.com/c/tzL4ls/IIzuQ+jH2Wj+g5Vyk+Dfk2p
https://paperpile.com/c/tzL4ls/IIzuQ+jH2Wj+g5Vyk+Dfk2p
https://paperpile.com/c/tzL4ls/o9xrJ+v0VX8+MKTKm+pHpLu+Xiej2
https://paperpile.com/c/tzL4ls/o9xrJ+v0VX8+MKTKm+pHpLu+Xiej2
https://paperpile.com/c/tzL4ls/o9xrJ+v0VX8+MKTKm+pHpLu+Xiej2
https://paperpile.com/c/tzL4ls/Daz0G+9nLaD
https://paperpile.com/c/tzL4ls/Daz0G+9nLaD


equilibrium history in models of community assembly (Clark & McLachlan 2003), as well as a

long tradition of incorporating phylogenetic information (Webb et al. 2002; Pearse  et al. 2014)

that also accommodates non-equilibrium historical dynamics (Pigot & Etienne 2015; Manceau et

al. 2015), there has only been limited, yet promising, effort in considering intraspecific genetic

polymorphism within  a  dynamic  non-equilibrium assembly  framework  (Vellend  et  al.  2014;

Laroche et al. 2015; McGaughran 2015) or within statistical models of  macro-ecology (Miraldo

et al.  2016;  Smith  et al.  2017;  Pelletier  & Carstens 2018). These efforts in bridging the gap

between  ecological  models  and  population  genetics  have  focused  on  characterizing  the

correlation  between  species  diversity  and  genetic  diversity  in  ecological  communities  (the

species-genetic diversity correlation';  Vellend 2005; Papadopoulou  et  al.  2011;  Vellend et  al.

2014, Laroche et al. 2015) while other efforts have looked at the relationships between adaptive

genetic diversity and community dynamics (Hughes  et al.  2008; Becks  et al.  2010; Schoener

2011).

Despite these important efforts to unify our understanding of ecological and evolutionary

dynamics, a community-scale model linking species abundances and genetic diversities under a

dynamic model of assembly has yet to be proposed. Here we describe, test, and demonstrate a

joint  inferential  framework that  bridges ecological  neutral  theory with population genetics  in

order to make joint predictions of community-wide distributions of species abundances, genetic

diversities, and genetic divergences under a (Papadopoulou et al., 2011; Vellend, 2005; Vellend

et  al.,  2014).  The  unified  framework  we  present  combines  a  forward-time  model  of  island

assembly with a backward-time coalescent model,  linking abundance and colonization history

with aggregated population genetic samples from multiple taxa.

First,  forward-time  community  assembly  simulations  are  performed  using  an

3
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island/mainland metacommunity model following Rosindell & Harmon (2013). The individual-

based neutral model of Rosindell & Harmon (2013) unifies MacArthur and Wilson’s equilibrium

theory  of  island  biogeography  (ETIB)  with  Hubbell's  unified  neutral  theory  of  biodiversity

(UNTB)  to  generate  time-dependent  non-equilibrium  and  equilibrium  predictions  of  local

richness and abundances (MacArthur & Wilson 1963; Hubbell 2001; Rosindell & Harmon 2013).

We use these predicted temporal changes in abundance distributions and colonization times to

parameterize a hierarchical  multi-species model  to simulate a sample of aggregate population

genetic data backwards in time under the coalescent (Rosenberg & Nordborg, 2002). The former

allows for inference about the time series progression of community change while the later links

predicted changes in community population genetic data to this community assembly process.  

We use simulation experiments to validate the power and accuracy of our method using

an approximate Bayesian computation framework (ABC;  Beaumont, Zhang, & Balding, 2002;

Csilléry,  François,  &  Blum,  2012;  Lintusaari,  Gutmann,  Dutta,  Kaski,  &  Corander,  2017).

Subsequently,  we demonstrate an application of our method to a sample of community wide

mitochondrial  DNA  sequence  data  and  corresponding  densely  sampled  abundance  estimates

obtained from an assemblage of 57 spider species from the island of Réunion  (Emerson et al.,

2017). Using only the sequence data, we accurately estimate the Shannon’s Index summary of the

the observed SAD, and additionally obtain  an estimate of the fraction of equilibrium obtained by

the  community.  The  joint  model,  implemented  in  Python,  and  all  ipython  notebooks  for

reproducing  simulations  and  analysis  are  freely  available  on  GitHub:

https://github.com/isaacovercast/gimmeSAD.

Methods

Forward-time model -  Forward time simulations of community assembly follow the

4
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spatially implicit neutral model of  (Rosindell & Harmon, 2013) that unifies the ETIB with the

UNTB  whereby abundance distributions, and immigration and extinction rates proceed under a

birth/death/colonization process in the biogeographical context of a focal local community and a

regional  source  pool  (metacommunity).  In  this  model  the  carrying  capacity  (K)  of  the  local

community consists of the sum of population sizes of all species on the island. This value is fixed,

of finite size, and constantly saturated. The colonization rate is modeled as a single parameter (c)

that  specifies the probability  of  a colonization event.  Colonizing species are sampled from a

metacommunity composed of species with abundances that are logseries distributed, and which is

static  with  respect  to  the  timescale  of  local  assembly.  At  each  time-step  one  individual  is

randomly sampled for removal from the local community. With probability 1 - c, this individual

is replaced by the offspring of a randomly sampled individual from the local community. With

probability  c,  the  individual  is  replaced  by  a  randomly  sampled  member  of  the  mainland

metacommunity, where the probability of sampling from any given species is weighted by the

relative metacommunity abundance (Ameta; Table 1.1).

Each time interval in the forward time simulation model can be described by a vector of

T i
j= {τ1

j , ... , τSlocal

j } times since colonization (in generations) for each of the  Slocal species in the

local  community  as  well  as  a  jointly  associated  vector  of Ai
j = { A1

j , ..., ASlocal

j }  local  island

abundances across the same Slocal species in the local community.  With respect to any particular

time interval, the jth element for the ith local species in T i
j and Ai

jdenotes time since the original

colonization of the ith species from the meta-community. Therefore, Ai
j = { Ai

τ i−0, ... , A i
τ i−τ i} and

T i
j = {τ i

τ i−0 ,... , τ i
τ i− τ i} such that  j = τ i−0 at the final time interval declines going back in time at

5
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previous time intervals until τ i−τ i. As the simulations progress forward in time,  the species that

go locally extinct become omitted sequentially through time, and the count of post-colonization

migration events are accumulated per species in the vector M= {m1 ,... mSlocal
} (Table 1.1). Two

emergent parameters (model response variables) are then c' (effective colonization rate) and †

(effective extinction rate) which are defined as the realized number of colonization and extinction

events per generation, respectively (Table 1.2).

Scaling forward time model to backward time coalescent model - For the i-th island

species that is extant at a particular time interval with an abundance of A j
i , there exists the history

of  changes  in  abundance  over  time  since  colonization  τ j
i ,  from  a  source  species  in  the

metacommunity. To relate raw sample-based abundances with the effective population sizes that

parameterize  the  backwards  time  coalescent  process  of  the  gene  tree  lineages,  we  make  the

assumption of a random spatial distribution of individuals that is predicted to lead to a simple

scaling relationship whereby the sample-based and regional-based abundance distributions have

the  same  functional  form  (Green  &  Plotkin  2007).  To  approximate  this  expectation,  we

incorporate a rescaling that is based on the assumption that the observed abundances from direct

sampling  are  proportional  to  actual  abundances  and  current  effective  population  sizes.  

To this end we rescale the time-dependent abundance of each species ( Ai
j) into a time-

dependent effective population size (N i
j) using the scaling factor σ such that  A j

i σ=N i
j whereby

the numbers of individuals per species over time ( Ai
j) is scaled to the number of demes of size σ

over time per species. Across all species sampled genetically at a time interval, this yields time

dependent vectors (N i
j) of the effective population sizes for the  i  = {1, …,  Slocal} species, the

6



associated times since colonization in  units  of  generations  T i
j= {τ1

j , ... , τSlocal

j },  and temporally

static effective population size vectors for the corresponding source metacommunity species (

Nmeta
❑

). Under this assumption, each island species consists of a metapopulation of  σ  demes of

size Ai
j with strong migration conditions that reduce to the temporally dynamic predictions of   a

panmictic  effective population of  size  A j
i σ .  Under  this  assumption of  a metapopulation with

strong migration conditions, the “collecting phase” is predicted to dominate the entire history of

ancestry thereby approaching the standard panmictic coalescent expectations of a time dependent

effective population size ( A j
i σ=N i

j) as the number of demes become large (Wakeley & Aliacar

2001; Wakeley 2001; Wakeley 2004). Importantly, This rescaling is based on the assumption that

the observed abundances from direct sampling are proportional to actual abundances and current

effective population sizes.

While this rescaling assumes that the birth/death demographic changes in the number of

individuals over time are proportional to the changes in the number of demes over time with

strong migration, and that abundances are likewise proportional to effective population sizes even

though these relationships are known to be complex (Luikart et al. 2010; Palstra & Frasier 2012).

However,  how  σ  changes  the  timescale  of  both  forward  and backward  processes  is  not  not

determined in our model and therefore it is critical to determine if a chosen σvalue results in a

model that can generate the observed data. As a check, one should assess the ability of the model

to  generate  the  data  by  statistical  goodness  of  fit  tests  or  model  evaluation  (Gelman,  2003;

Lemaire,  Jay, Lee, Csilléry,  & Blum, 2016). Alternatively,  σcould be treated as an unknown

model and estimated given the data.

Given  the  parameters  of  the  backwards  time  model  (Tables  1.1  & 1.2),  we  use  the

7
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msPrime coalescent  simulator  program  (Kelleher,  Etheridge,  &  McVean,  2016) to  generate

genetic polymorphism data matching an arbitrary sampling regime of the island and/or mainland

species pair sample sizes (with respect to numbers of individuals sampled at a mtDNA locus of

length L). Instead of parameterizing the coalescent simulations of the ith species following the τ i
τ i

stochastic  changes  in  effective  population  sizes  since  colonization  according  to  N i
j =  {

N i
τ i−0 , ... ,N i

τ i−τ i}, we use  (N e )i,  the harmonic mean of each species’ effective population size

across all time steps indicated by the τ i
τ ielements within N i

j (Karlin 1968; Pollak 1983). One gene

genealogy is simulated for each sampled species pair corresponding to a 570bp segment of the

mitochondrial COI gene given an assumed invertebrate mitochondrial divergence rate (1.1% per

species per million years; e.g. (Brower, 1994).

Initial conditions - We implement two different starting conditions to simulate volcanic

versus continental island formation. Our initial conditions under the volcanic model deviate from

those of Rosindell & Harmon (2013), in that at time zero they assume that one initial colonizing

lineage consumes all available space in the community, thereby saturating  K. In our model we

select the most abundant species in the metacommunity and introduce one individual onto the

unpopulated island. This initial condition is both biologically more realistic, and also avoids the

assumption that volcanic island carrying capacity is saturated at time zero, which could generate

unrealistic quantities of genetic diversity in the initial colonizing lineage. Continental islands are

initially  populated  by  making  K independent  random  samples  from  the  metacommunity

proportional  to  their  relative  abundances.  Here  we  are  modelling  a  community  of  panmictic

species that are simultaneously and instantaneously isolated on the island at time zero. Because

we assume panmixia prior to isolation, the vector of colonization times (T i
0) are initially identical

8
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across the entire island community. Following subsequent local extinction and replacement by

new colonizing species, the vector of colonization times T i
j, becomes heterogeneous.

Quantifying equilibrium -  Equilibrium is commonly defined as the dynamic balance

between  colonization  and  extinction  rates  that  emerges  over  time,  eventually  leading  to  a

stationary distribution where the two rates are expected to be equal (MacArthur & Wilson, 1967).

However,  under  certain  conditions,  species  richness  and  abundances  may  fail  to  equilibrate

simultaneously, in which case the classic definition of equilibrium is insufficient (see Rosindell &

Harmon 2013). To address the need for a more robust concept we follow Rosindell & Harmon

(2013) in defining equilibrium as the point at which the starting conditions of the model are no

longer detectable in the state of the system. In addition to colonization/extinction rate balance,

this auxiliary definition guarantees that both richness and the SAD have reached their expected

equilibrium values.  Here  we  define  a  new term to  measure  the  fraction  of  this  equilibrium

obtained by the community and treat it as a model pseudo-parameter that can be estimated by

sampling the prior and posterior distribution, (Λ; Table 1.2). This quantity is defined as Λ = (

∑
i=1

K

E i /K , where K is the carrying capacity and E is the boolean vector of length K such that Ei

for  i  = {1, …,  K} indicates the colonization status of each individual in the local community.

When all individuals present in the local community are descended from a lineage that colonized

during the simulation then ∑
i=1

K

E i = K and Λ = 1. Our model of community assembly is inherently

stochastic,  so the amount of time for any given simulation to reach equilibrium is a random

variable  given  the  distribution  under  the  model.  For  each  forward  time  simulation  we  track
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elapsed time,  local  community composition (both abundances and richness),  and colonization

times for all local species. We are interested in equilibrium and non-equilibrium dynamics, so we

poll this information at regular intervals of arbitrary duration. 

Summary statistics -  At  each  time  interval  we  extract  the  simulated  sequences  and

calculate nucleotide diversity (π) within the local community for each sampled species given

Slocal (π i= {π1 ,...π n}). We then construct a one dimensional histogram (Υ ) of local community

genetic diversity such that:

 Slocal❑=∑
i=1

k

Υ i 

where  k is the number of bins (with  k=10 for all simulation and empirical analyses),  and bin

width  max(π i)/k.  We  term this  summary  of  local  community  diversity  the  one  dimensional

species genetic diversity distribution (1D-SGD).  Next, we calculate absolute divergence (Dxy;

(Masatoshi Nei, 1987) between each mainland-island sister pair (Dxy_i = {Dxy_1, … Dxy_n}). The

values of π i and Dxy_i are aggregated across all species-pairs sampled from the community within

each time-point and summarized as a k x k joint frequency histogram (X ) with equal-width bins

such that:

Slocal=∑
i , j=1

k

X i , j

The upper bound for each dimension of the histogram is fixed to the maximum values of π and

Dxy within a given simulation. We term this joint summary of community diversity/divergence as

the two dimensional species genetic diversity distribution (2D-SGD). Additionally, at each time

interval we record the rank abundance curve (RAC), the SAD, and Shannon's diversity index
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calculated for the community  (Boltzmann, 1872; Gorelick, 2006; Hill,  1973; Shannon, 1948).

Given an observed sample of Slocal species sampled from an empirical community, the simulated

summary statistics are filtered to match the observed sampling configuration. As an additional

method of comparison with the H' derived from the SAD, we also calculated the Shannon's index

derived for both the 1D-SGD (π), and distribution of D), and distribution of Dxy per sampling time point and notate this

as H'π), and distribution of D and H'Dxy respectively. 

Simulation study design - To characterize the joint temporal dynamics of the SAD and

2D-SGD under non-equilibrium and equilibrium community assembly, we simulated assembly

histories for both continental  and volcanic islands,  under a range of parameter values.  These

included varying local community sizes (K = 1000, 5000, 10000), colonization rates (c = 0.0001,

0.001, 0.01), and rate of post-colonization migration. We generated 10,000 replicated simulations

for each combination of origin type, local community size, and colonization rate, resulting in

180,000 total simulated community histories. All forward time simulations were run for twice the

mean time to turnover equilibrium (Λ) for the largest island with the smallest colonization rate

(5x109 generations). We then summarized the temporal changes in H', π), and distribution of D, Dxy, H'π), and distribution of D, and H'Dxy  by

calculating the mean and standard deviation of each of these metrics for each parameterization

across replicate sets of simulations at five values of Λ (0.1, 0.25, 0.5, 0.75, 1). For this initial set

of exploratory simulation experiments, we calculated H' on the entire set of species while π), and distribution of D, D xy,

H'π), and distribution of D,  and H'Dxy  were likewise calculated on this entire set of  Slocal species given samples of 10

individuals  per  species  in  the  local  community  and  associated  metacommunity  source

populations.

Bias and accuracy in estimating parameters - Next, we evaluated the suitability of H'

and the relative bin magnitudes of the SGD as summary statistics for parameter estimation using
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ABC  by  conducting  a  battery  of  leave-one-out  simulation  experiments  under  various  ABC

configurations  (Table  1.3).  We focus on evaluating accuracy and precision in  estimating the

following community-wide model parameters and pseudo-parameters: local community size (K),

parameterized colonization rate (c), fraction of equilibrium (Λ), realized colonization rate (c'),

extinction rate (†), and Shannon's diversity index (H'). We additionally explored estimation of

community-wide  parameters  given  various  sequence  and  abundance  data  availability

configurations (see Table 1.3). For example, given only the DNA sequence data sampled from a

focal local community, the relative bin magnitudes of the observed 1D-SGD can be used as the

summary  statistic  vector  and  both  H'  and  Λ  can  be  estimated,  along  with  the  other  model

parameters such as c, and † (ABC configuration M I; Table 1.3).

To  construct  the  reference  table  for  the  cross-validation  analyses,  we  performed

1,000,000 community assembly simulations, sampling parameter values of K, c, and Λ according

to uniform prior distributions (K = ~U(1,000-10,000),  c = ~U(0.0001-0.01), and Λ = ~U[0, 1);

see  Table  1.1  for  all  simulation  parameters).  We  then  conducted  ABC leave-one-out  cross-

validation using the cv4abc function of the abc R package (Beaumont et al., 2002; Csilléry et al.,

2012; Lintusaari et al., 2017). For the ABC procedure we used simple rejection sampling and a

tolerance sufficient to retain 1000 samples from the prior to construct the posterior estimate for

each parameter of interest. We performed 100 leave-one-out cross-validation replicates per data

configuration for each estimated parameter, and quantified accuracy of parameter estimation by

calculating root-mean-square error (RMSE) and the coefficient of determination (R 2) for sampled

and estimated parameter values.

Empirical application - Following our simulation experiments demonstrating that the

ABC model can effectively estimate parameters, we perform an empirical analysis on a published
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dataset  from a community of spiders from the island of Réunion,  an overseas department of

France located in the Indian Ocean approximately 900 km east of Madagascar. In the original

study, spiders were sampled from 10 lowland rainforest plots distributed across the island and

sorted into 57 presumed biological species using a protocol combining morphological sorting and

mtDNA sequencing (570bp Cytochrome Oxidase c Subunit I;  Emerson et al., 2017). The dense

sampling allows us to use both the H' calculated from the observed SAD as well as the 1D-SGD

calculated  from  the  observed  sequence  data  for  estimating  assembly  model  parameters.

Therefore, we use model configuration M I  to estimate H', and M A, M I , and M AIto alternatively

estimate Λ (Table 1.1). Under all model configurations we estimate parameters c’ and †. For the

ABC inference procedure, we simulated 1,000,000 samples by drawing parameter values from

the same prior distribution used for the cross-validation analysis,  and used the same rejection

method to accept the closest 1,000 data sets to sample from the posterior distribution.  When

calculating π for each island taxon we used sample sizes with respect to numbers of individuals

matching the observed spider data exactly with respect to numbers of individuals and length of

DNA sequence.

We evaluated the overall goodness of fit of our posterior estimate to the observed data in

two  ways.  First,  we  quantified  the  absolute  Euclidean  distances  between  the  retained  and

observed summary statistics. Additionally, we performed a prior predictive check by projecting

the retained simulated SGD, along with the observed SGD into principal component (PC) space.

A good fit of the model to the data should generate simulated summary statistics sufficiently

similar to those of the observed data as to be indistinguishable in the PC analysis.

Results

The joint SAD and SGD through time  - The classically lognormal-like shape of the
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SAD, with most species being of low abundance, is mirrored by a similar distribution of genetic

diversities (Fig. 1.1). The shape of the joint spectrum of community genetic diversity (π), and distribution of D) and

genetic  divergence  (Dxy)  generally  widens  over  time  as  richness  increases,  while  the

corresponding H' of the SAD generally increases over the same time intervals (Figs. 1.1 & 1.2).

We find that most species display low amounts of standing genetic diversity, as characterized by

average pairwise differences (π), and distribution of D), although there are important temporal dependencies as these

characteristics only accrue with time as Λ progresses. On the other hand, time has a reduced

impact  on the distribution of  Dxy,  which obtains the lognormal-like  shape even at  very early

stages of assembly, although with greater variability, as expected given that the final waiting

times in the larger ancestral population will predict a large variance in this summary statistic,

regardless of colonization time (Takahata & Nei, 1985).

Varying community-wide colonization rate (c), community size (K), and island origin

(volcanic vs continental) also have characteristic impacts on components of the SGD and H'.

Lower c resulted in a greater change in H' over time which was most apparent at lower K values

and volcanic island settings, yet H' had the reverse trend under continental island settings.  The

mean values  of  π), and distribution of D  and Dxy  tended to increase over  time under  the  continental  island  settings

whereas  only  the  former  tended  to  increase  under  the  volcanic  island  setting.  However,

Shannon’s index calculated on these two distributions of genetic diversity (H'π), and distribution of D  .and H'Dxy) both

tended to increase over time under both island settings. Likewise, the mean values of π), and distribution of D,  D xy, H'π), and distribution of D

.and H'Dxy  tended to all increase over time regardless of the colonization rate (c) or community

size  (K),  although the  magnitude  of  change  depended on  these  parameter  values  and  island

setting.

In the early stages of island community assembly, the 2D-SGDs from volcanic islands

differ substantially from those of continental islands. There is a priority effect on volcanic islands
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whereby  the  initial  colonizing  species  quickly  consumes  all  available  niche-space  as  early

arriving populations saturate the local carrying capacity. In this case the initial colonizing species

have  elevated  π), and distribution of D  as  well  as  high  Dxy.  However,  this  genetic  signature  of  the  early  stage  of

community assembly quickly erodes as more species gain a foothold on the island, and as  Λ

approaches 1.0 a characteristic distribution of π), and distribution of D and Dxy emerges. In contrast, the early stages of

assembly in continental islands are characterized by uniformly higher values of π), and distribution of D and D xy which

tend to decrease as Λ approaches 1.0. As Λ approaches 1.0, the SAD and 2D-SGD for both island

origin models become indistinguishable.

Different colonization rates and local community sizes leave different signatures through

time on the both the SAD and the 2D-SGD. Overall, higher colonization rates tend to increase the

species richness in the community, predominantly by increasing the proportion of rare species, as

well as species with lower π), and distribution of D. Higher colonization also increases local extinction rates, and this

increase in turnover decreases average divergence times, with a subsequent reduction in both π), and distribution of D

and  Dxy in  a  higher  proportion  of  sampled  species.  In  a  similar  fashion,  under  reduced

colonization rates, turnover is lower, the proportion of rare species is reduced, divergence times

are longer on average, and π), and distribution of D is increased on average.

Bias  and  accuracy  in  estimating  parameters -  Broadly  speaking,  cross-validation

indicated reasonable accuracy and limited bias in estimating all parameters under all ABC model

configurations, with the notable exception being ABC configuration M Aas well as attempting to

estimate  K  under all  ABC configurations.  Under ABC model  configuration  M I ,  ABC cross-

validation indicated a strong signal  in the data for estimating H'  using only the 1D-SGD bin

values as the summary statistic vector (Fig. 1.3; RMSE=0.26, R2=0.96), with little added value

when  additionally  including  Dxy  under  M AI (RMSE=0.27,  R2=0.95).  Likewise,  Λ  could  be
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estimated well using ABC model configuration M I  and M AI (R
2=0.68-72), yet using only H' as

the  lone  summary statistic  (M A)  resulted  in  poor  conditions  for  estimating  Λ (RMSE=0.28,

R2=0.05).  Our  joint  framework  additionally  demonstrated  accurate  estimation  of  other

ecologically important parameters governing assembly such as community-wide extinction rate

(†), and effective colonization rate (c’), with R2 between estimated and true values ranging from

0.61-0.89 under ABC model configurations  M I ,  M AI,  M MI  and  M AMI.  

Estimating  parameters  for  the  Réunion  spider  community -  For  an  empirical

application, we chose to use only the 1D-SGD as observations to estimate H' calculated from the

observed SAD (M I). In this configuration the bin magnitudes of the 1D-SGD are treated as the

summary statistic vector, and H' is treated as the parameter to be estimated. However, we also

have the observed H' calculated from the samples for direct comparison to the estimate of H'

under the ABC configuration M I . In this case, our ABC mode estimate of H' = 1.816 (Fig. 1.4a;

95% HPD: 1.171-2.822) came remarkably close to the observed H' of 2.246 calculated from the

sampled abundance data. This good fit of the posterior estimate to the observed H' indicates that

the observed distribution of genetic diversity contains sufficient information about the community

history of effective population size trajectories across island species with regards to predictions of

the  contemporary  SAD under  a  neutral  model  of  assembly  (Fig.  1.3).  Our  simulation  study

demonstrates this possible dynamic as both H' and the SGD are predicted to increase over time

under most conditions, such that our ABC model could potentially estimate the former with the

latter given the strongly temporal features of our assembly model. Given the coupled dynamic of

H' and the SGD as a progressive function of time in our simulation study, it follows that our ABC

procedure has potential to estimate the degree of equilibrium parameter, Λ as shown in our cross-

validation experiments. We estimated  Λ for the spider community using three different ABC
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model configurations configurations representing different combinations of H' and the 1D-SGD

as summary statistics (M A, M I , and M AI). Given M A the mode estimate of Λ was 0.51 but with

a  diffuse  posterior  distribution  (Fig.  1.4b;  95%  HPD:  0.05-0.93).  In  sharp  contrast,  ABC

configurations M AI and M I  yielded mode estimates and HPDs that were both relatively clustered

around high values of Λ (Fig. 1.4c & 1.4d; posterior mean 0.89; 95% HPD: 0.69-1). Additionally,

ABC estimates of c' (Fig. 1.4e; posterior mean 0.001; 95% HPD: 0.0007-0.0017) and † (Fig. 1.4f;

posterior mean 0.001;  95% HPD: 0.0009-0.0012) under model  M AI, were broadly concordant.

More  formal  goodness-of-fit  analysis  with  both  the  prior  predictive  check  with  principal

components  and  Euclidean  distances  between  retained  and  observed  summary  statistics

corroborate the good fit of the model. 

Discussion

The ETIB and its extension, the UNTB (MacArthur & Wilson 1963; Hubbell 2001) have

a history of success predicting regional patterns of abundance distribution curves (Chust, Irigoien,

Chave, & Harris, 2013; McGill, 2003), beta diversity (Chase, 2010; Chave & Leigh, 2002; Condit

et  al.,  2002),  phylogenetic  patterns  (Burbrink,  McKelvy,  Alexander  Pyron,  &  Myers,  2015;

Graham & Fine, 2008; Franck Jabot & Chave, 2009), and spatial structure in populations (Jordan,

Barraclough, & Rosindell, 2016; Rosindell & Cornell, 2007). In recent years significant advances

have  been  made  to  explicitly  incorporate  spatial  relationships  (Azaele  et  al.,  2015;  Gascuel,

Laroche,  Bonnet-Lebrun,  & Rodrigues,  2016;  O’Dwyer  & Green,  2010),  temporal  dynamics

(Engen,  Solbu,  & Sæther,  2017),  species-area relationships  (O’Dwyer  & Cornell,  2017),  and

phylogenetic information  (Cavender-Bares, Kozak, Fine, & Kembel, 2009; T. J. Davies, Allen,

Borda-de-Água, Regetz, & Melián, 2011; Manceau, Lambert, & Morlon, 2015; Morlon, 2014;

Webb, Ackerly, McPeek, & Donoghue, 2002). Here we have introduced a flexible framework
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that  brings community-level  population genetic or comparative phylogeographic data into the

realm of biogeographic community assembly.  Reciprocally, our joint approach provides a way to

ground comparative phylogeographic models using ecological and biogeographic neutral theory

(Rosindell et al. 2011) rather than focusing on generic models of concordance and discordance

(Papadopoulou & Knowles 2016). This approach of using ecological neutral theory to derive a

testable null model with associated predictions of colonization times was  recently explored in the

context  of  biogeographic  assembly  of  a  gall  wasp  and parasitoid  community  in  the  western

Palearctic (Bunnefeld et al. 2018).

From the perspective of community ecology, important progress has been made toward

linking  community  ecology  models  with  population  genetics  (Baselga  et  al.,  2013;  Baselga,

Gómez-Rodríguez,  &  Vogler,  2015;  Vellend,  2005)),  with  forthcoming  opportunities  for

ecological  theory  to  further  incorporate  the  potentially  powerful  dimension  of  flexible

comparative  phylogeographic  models  (McGaughran  2015;  Satler  &  Carstens  2017;  Xue  &

Hickerson  2017).  This  should  be  facilitated  by  the  increasing  availability  of  genome-scale

phylogeographic data that allows exploration of evolutionary models of increasing complexity

and explanatory power (Schraiber & Akey, 2015), yet such approaches have seen limited use to

infer the temporal and spatial dynamics at play at the community level (but see (Bunnefeld et al.

2018)). On the other hand, while many classic comparative phylogeographic studies attempted to

infer histories of Pleistocene community assembly and diversification (Bermingham & Moritz

1998; Bernatchez & Wilson 1998; Hewitt 2000; Brunsfeld et al. 2001) by examining combined

results  of  multiple  single-taxon phylogeographic  studies  within  a  region  (Emerson & Hewitt

2005; Emerson et al. 2011), most of these endeavors were not explicitly grounded in ecological

assembly theory.

Even the  explicitly  comparative  phylogeographic  models  that  globally  operate  at  the
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assemblage level have yet to be grounded in ecological theory that can account for stochastic and

deterministic forces underlying community assembly (Satler & Carstens 2016; Prates et al. 2016;

Gehara et al. 2017). Fortunately, the community assembly models that generate expectations for

temporally dynamic SADs  (Missa, Dytham, & Morlon, 2016) and speciation/colonization rates

(Rosindell  & Harmon,  2013) could  have  an  identifiable  relationship  with  population  genetic

parameters  like  divergence  times,  admixture,  expansion,  colonization  times,  and  changes  in

effective population sizes.  Unifying the parameters  of  these two modeling frameworks could

provide a new way of testing an array of competing assembly models with genetic data as well as

estimating the relative strength of various deterministic forces underlying the assembly models

such as niche filtering and competition. By explicitly linking ecological and micro-evolutionary

processes whose dynamics and equilibrium expectations can occur on different time-scales, our

new joint approach potentially allows for improved resolution and statistical power for estimating

parameters as well as improved potential for and testing and fitting a number of different various

neutral and non-neutral community assembly models (Vellend 2010). Likewise, understanding

whether  or  not  communities  tend  toward  stable  equilibria  remains  an  unanswered  question

(Harmon & Harrison,  2015;  Rabosky & Hurlbert,  2015;  Valente,  Etienne,  & Dávalos,  2017;

Valente, Phillimore, & Etienne, 2015) that can now be addressed with our joint approach that

makes generative predictions of richness, abundance, and the spectrum of genetic diversity under

both ecological and evolutionary time scales. 

Assembly  of  the  Réunion  spider  community -  The  joint  data  of  mitochondria

polymorphism  and  abundance  structure  from  >  50  spider  species  on  the  volcanic  island  of

Réunion affords us the opportunity to compare the estimate of the Shannon’s index (H') using

only the genetic data (i.e. ABC model configuration M I) with the H' calculated from the observed

abundance  distribution.  In  this  case,  the  posterior  distribution  of  H'  under  M I  was  able  to
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successfully recover the observed H'.  If this is a general feature of our approach it  would be

encouraging given that estimating species abundances directly from field surveys can be difficult

and problematic for some taxa (Kunin et al. 2000; Petrovskaya et al. 2012).

Using the distributions of abundance and genetic diversity jointly (M AI) also allowed us

to gain insight into the stage of progression towards equilibrium of this spider assemblage under

our ecologically neutral  model,  yet  the distribution of genetic diversity alone may have been

sufficient (M I). This was not the case of using the distribution of abundances alone (M A ), as the

95% HPD of the sampled posterior distribution for  Λ under ABC configuration  M A was very

wide, and heavily influenced by the prior (Fig. 1.4b), indicating there is little information about

equilibrium state  Λ solely from in H'. In contrast, the 95% HPD for both ABC configurations

including the SGD (M I  amd M AI) were significantly narrower and less influenced by the prior

(Figs. 1.4c & 1.4d). This result is in agreement with the ABC cross-validation findings suggesting

that  estimation  under  ABC  configuration  M AI improves  accuracy  and  reduces  bias  in  the

estimation of Λ. It is notable that both ABC configurations including island genetic data ( M I  amd

M AI)  strongly indicate  that  this  isolated spider community is  consistent  with an ecologically

neutral assembly that is approaching or has reached equilibrium. Additionally, this assessment is

supported by the similar mode estimates and largely overlapping HPD of c' (mode: 0.001, 95%

HPD: 0.0007-0.0017) and † (mode: 0.001, 95% HPD: 0.0008-0.0012) which hews to the more

traditional consideration of equilibrium as the dynamic balance of colonization and extinction.

Indeed, Réunion island emerged from a classic volcanic hotspot formation approximately five

million years ago (Gillot et  al. 1994; Lénat et al.  2001), and this is likely sufficient time for

equilibrium expectations of species richness, and community wide distributions of abundance and

genetic diversity to have accumulated.
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Although we do not sample any of the source sister species or sister populations from the

mainland,  the  parameterization  of  the  source  meta-community  remains  under  all  ABC

configurations. A related feature is that our model does not include in situ speciation in the local

island community, yet because we do not collect data from the source species and do not use any

phylogenetic information, in situ speciation is perfectly accommodated whereby the formation of

new island species from pre-existing island species is parameterized as colonization from the

source meta-community.

Outlook  - The  simple  neutral  model  we  introduce  can  be  used  as  a  candidate  null

hypothesis against which to test comparative population genomic/phylogeographic data, while the

flexibility  of  the  framework  can  be  extended  to  accommodate  various  particular  ecological

contexts. For example, the model could explicitly incorporate  in situ local speciation either as

instantaneous events or as a protracted process  (Rosindell, Cornell, Hubbell, & Etienne, 2010).

Furthermore,  it  could  incorporate  non-neutral  processes  by  including  trait  parameters  for

differential niche-filtering or dispersal limitation across species that result in variable colonization

rates.  In  this  case  variation  in  colonization  probabilities  would  be  a  proxy  for  non-neutral

processes such as trait-dependent environmental filtering  (Pigot & Etienne, 2015). Along these

lines,  the  model  could  also  accommodate  deterministic  processes  such  as  resource-limited

colonization probabilities or priority effects while retaining the stochastic dynamics of ecological

drift underlying our joint model in the spirit of stochastic assembly theory (Tilman, 2004). In this

case the magnitude of deviation from neutral expectations of colonization time, abundances, and

genetic diversities could be modeled as a free parameter within our joint assembly model.

The increased complexity of these different modelling strategies would all benefit from

the increased information content  of  higher resolution data types such as RADseq  (Andrews,

Good, Miller, Luikart, & Hohenlohe, 2016), UCEs (Faircloth et al., 2012) or even whole genomes
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(Bunnefeld  et  al.  2018).  Thanks  to  algorithmic  improvements,  the  coalescent  simulator  we

incorporate  here  (msPrime)  is  capable  of  efficiently  generating  genomic-scale  complex  and

arbitrary  demographic  histories   under  the  full  ancestral  process  of  coalescence  and

recombination. Further, new developments in obtaining spectral summaries of short read SNP

data across species (Xue & Hickerson 2017) or longer block-wise data to better accommodate

recombination (Reddy et al. 2017) could be used within the ABC approach we develop here for

parameter estimation or extended into a supervised machine learning for robust discrimination of

complex neutral and non-neutral models (Schrider & Kern 2018).

For the joint modeling ABC approach we present here, we take the alternative approach

to sampling deeply across the genome at the expense of only being able to accommodate limited

numbers of taxa. While this results in more uncertainty due to only using single draws from the

highly stochastic  coalescent  process  per  species,  this  noise  is  incorporated into our  posterior

estimates while gaining the borrowing strength from sampling potentially large numbers of taxa

(Beaumont 2010) The widespread availability of mitochondrial  and environmental DNA data

also  makes  our  approach  amenable  to  model  the  assembly  of  complex  microbial  systems

(Venkataraman et al., 2015) with time-series information (Capo, Debroas, Arnaud, & Guillemot,

2016;  Ridenhour  et  al.,  2017).  Such  time  series  data  could  introduce  an  additional  axis  of

information  allowing  increased  power  to  test  hypotheses  about  the  process  of  community

assembly within a historical perspective.

From a practical  standpoint,  our model makes it  possible to fit  assembly models and

estimate abundances from a small genetic sample of the community. An obvious advantage is that

obtaining comparable DNA sequence data for a community of species can be logistically less

challenging  than  obtaining  reliably  comparable  abundance  data.  Taxa  with  high  dispersal

potential  such as spiders  are ideally  suited for  the estimation of SADs because their  genetic
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samples  are more likely to have arisen from a panmictic coalescent  process. While taxa with

elevated levels of population structure might be more challenging for parameter estimation under

our simple model, it could potentially be extended to accommodate in situ speciation within the

local community, as well as explicitly modelling spatial processes (Haller & Messer 2017). Our

model thus provides a flexible framework that can, even in the absence of comparable species

abundance  data,  allow researchers  to  use  the  vast  amounts  of  available  mitochondrial  DNA

sequence data to test among competing models of island community assembly. 
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Chapter 2: Unifying the study of ecological communities across timescale

Introduction

Biodiversity  in  ecological  communities  accumulates  in  a  hierarchical  fashion  across

spatial and temporal scales (Leibold and Chase 2019). Fluctuations of species abundances within

these  communities  operate  on  rapid  ecological  timescales,  with  periods  of  relative  stability

obtained  over  handfuls  or  tens  of  generations.  Population  genetic  variation,  by  contrast,

accumulates  and degrades over  timescales of  tens to  tens  of  thousands of generations,  while

phylogenetic  and  functional  diversity  accumulate  even  more  unhurriedly,  on  the  order  of

thousands  to  millions  of  generations  (Uyeda,  Hansen,  Arnold,  & Pienaar,  2011).  Over  time,

various  fields  have  emerged to investigate  processes  within individual  levels  of  organization

(macroecology, comparative population genetics, macroevolution), but only recently have inroads

been made to combine theory across multiple levels of organization. Complicating matters, there

is little  consensus over whether, and to what  degree, ecological interactions contribute to the

structuring of ecological communities. Likewise, the relative contributions of colonization and in

situ speciation to the composition of community structure remains an open question. Feedbacks

across biological levels of organization are well known, yet we continue to lack a unified model

of community assembly that accounts for such feedbacks, while incorporating the possibility of

variable  strengths  of  ecological  interaction,  as  well  as  the  continuum of  the  contribution  of

colonization and speciation to the accumulation of biodiversity.

Historically  there  have  been  two  methods  to  investigate  the  impacts  of  evolutionary

history  and  ecological  assembly  processes  on  community  dynamics  and  macroecological

patterns:  1)  idealized  complex  simulation  models  that  generate  hypotheses  about  idealized

community (Chesson, 2000; Gavrilets & Vose, 2005; Hubbell, 2001; MacArthur & Wilson, 1967;
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Marquet et al., 2014; Tilman, 2004); and 2) empirical data investigated in a descriptive fashion

that reveal aggregate differences in macroecological patterns from real world systems across a

range of spatial and temporal scales  (Craven, Knight, Barton, Bialic-Murphy, & Chase, 2019;

Keil  & Chase,  2019;  R.  E.  Ricklefs  & Bermingham,  2001;  Rominger  et  al.,  2016;  Wagner,

Harmon, & Seehausen, 2014). Recent advances in simulation-based inference under increasingly

complex  models  provides  a  third  option  of  unifying  multiple  processes  and  multiple  data

categories across different scales - we can use real multi-axis data to fit and compare competing

models representing modes of community formation, from evolved to dispersal assembled, via

various  pathways.  Several  studies  have  recently  shown  that  complex  biological  models  and

resultant high-dimensional data can be tractable within a machine learning framework (Schrider

& Kern, 2018; Sheehan & Song, 2016), providing a robust inference procedure for simulation-

based interrogation of empirical data.

Whether there are universal rules that structure ecological communities is a question of

great interest, and there have been many previous efforts to investigate this. Inasmuch as one

might subscribe to our formalization of the accumulation of biodiversity as a hierarchical process

across timescales,  previous approaches have tended to focus on one or at  most  two of these

timescales (Leidinger & Cabral, 2017). For example, ecological models inspired by the Neutral

Theory of Biodiversity and Biogeography (Hubbell 2001) have primarily focused on predicting

the shape of the local species abundance distribution (SAD) under the assumptions of community

equilibrium  and/or  stationarity.  As  central  as  the  SAD  is  to  macroecology  and  community

ecology, it is often not sufficient to distinguish among different models of community assembly

(Chave, Muller-Landau, & Levin, 2002; McGill et al., 2007). A great deal of work has been done

to incorporate phylogenetic information with abundance data to make inference about community

assembly processes (Webb et al. 2002, Jabot & Chave 2009). While such approaches make useful
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predictions, they rely heavily on an assumption of equilibrium within the local community. Along

another axis, recent important progress has been made toward linking community ecology models

with population genetics  (Baselga et al.,  2013, 2015; Vellend, 2005); however, current theory

either  lacks  an explicitly  population genetic  foundation  (Vellend 2005),  or  considers  genetic

variation only of a focal taxon (e.g. Laroche et al. 2015). There have been other efforts to unify

different time-scales with mechanistic eco-evolutionary models. For example (Cabral, Wiegand,

& Kreft,  2019) unify population-level  and evolutionary timescales to investigate the dynamic

relationship  between  community  age,  competition,  and  local  richness.  Likewise,  (Pontarp,

Brännström, & Petchey, 2019) devise a trait-based, spatially explicit eco-evolutionary model to

make inferences about prey and predator niche width with potentially diverse data types.

The  shape  of  the  species  abundance  distribution  (SAD),  as  central  as  it  is  to

macroecology and community ecology, is not sufficient to distinguish among different models of

community assembly, even at equilibrium (Chave et al., 2002; McGill et al., 2007). As massive

multi-dimensional  datasets  continue  to  emerge  from  next-generation  biodiversity  monitoring

efforts  applying  community-wide  surveying  techniques  such  as  eDNA  (Deiner  et  al.,  2017),

metabarcoding  (Andújar,  Arribas,  Yu,  Vogler,  & Emerson,  2018;  Dopheide et  al.,  2019) and

remote-sensing technologies that can directly infer trait data  (Cavender-Bares et al., 2017), the

challenges associated with moving beyond descriptive approaches of interpretation and inference

have limited broader understanding of processes generating biodiversity patterns (but see Bohan

et al., 2017; Derocles et al., 2018).

Incorporating  temporal  dynamics  can  help  to  distinguish  among  processes  (Azaele,

Pigolotti, Banavar, & Maritan, 2006; Chisholm & O’Dwyer, 2014; F. Jabot, Laroche, Massol,

Arthaud, & Crabot, 2018; Kalyuzhny, Kadmon, & Shnerb, 2015; Nee, 2005; Robert E. Ricklefs,
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2006), yet current theory fails to generalize across levels of biological organization. Modern high-

throughput  sequencing  technology  which  facilitates  community-scale  metabarcoding  efforts

(Andújar et al., 2018; Taberlet, Coissac, Pompanon, Brochmann, & Willerslev, 2012), combined

with hierarchical population genetic models of aggregate demographic histories, provide insights

into temporal dynamics of the community assembly process  (Overcast et al 2019a). Likewise,

species trait data have been shown to be key in distinguishing ecological drivers of local diversity

(Kunstler et al., 2012; McGill et al., 2007) and furthermore constitute the bedrock of comparative

evolutionary  (Harmon, Weir, Brock, Glor, & Challenger, 2008; Pennell & Harmon, 2013) and

community phylogenetic (Ruffley et al 2019) approaches. Thus, a full model incorporating the

totality of  ecologically and evolutionarily relevant data axes remains to be described.

Here we introduce a mechanistic eco-evolutionary model of community assembly that

builds  upon  classic  community  ecology  theory  (Hubbell,  2001;  Leibold  &  Chase,  2017;

MacArthur & Wilson, 1967; Vellend, 2016) to make historically dynamic joint predictions for

observed  data  along  three  biodiversity  axes,  including  species  richness  and  relative  species

abundance (Rosindell & Harmon, 2013), genetic diversity and divergence (Overcast et al 2019),

and trait  evolution in a phylogenetic context  (Ruffley  et  al. 2019).  Specifically,  we integrate

ecological  models  of  community  biodiversity,  comparative  phylogeography,  and  community

phylogenetics, with an explicit focus on incorporating microevolution and ecological interaction

processes, which are often underrepresented in mechanistic models (Leidinger & Cabral, 2017).

We  combine  summary  statistics  from  these  massive  eco-evolutionary  synthesis  simulations

(MESS) with supervised machine learning to test competing models spanning a continuum of

community assembly and evolution (niche versus neutral and evolved versus assembled) and to

estimate model parameters relevant to understand complex histories of community assembly and

evolution. We perform extensive simulation-based cross-validation analyses to explore precision
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and  accuracy  of  model  inference.  Finally,  we  apply  the  model  to  four  empirical  datasets

representing different  temporal  and spatial  scales:  weevils  from the islands of  Mauritius  and

Reunion  (Kitson,  Warren,  Thébaud,  Strasberg,  &  Emerson,  2018);  spiders  from  Reunion

(Emerson et al., 2017); trees from south-eastern Australia (Rossetto et al., 2015); and snails from

the Galapagos Islands (Kraemer, Philip, Rankin, & Parent, 2019; Triantis et al., 2016). We find

that distributions of genetic variation are more even than abundance distributions, and that, as

communities  approach  equilibrium,  the  correlation  between  abundance  and  genetic  diversity

increases. Both of these phenomena are direct outcomes of the different timescales these diversity

axes operate on.

Methods

Metacommunity  composition  - The  MESS  model  comprises  three  components

summarised  in  Figure  2.1.  The   metacommunity  component  consists  of  a  metacommunity

phylogeny relating all species, along with species abundances, and trait values evolved along the

phylogeny. The global phylogeny is produced by simulating a constant birth-death process with

fixed speciation (λ) and extinction (λ ⋅ϵ) parameters, until the desired number of species (SM) is

reached (TreeSim v2.4;  Stadler,  2019).  Next,  we simulate  a  Brownian motion model  of  trait

evolution on the phylogeny with a root value of 0 and a rate of σ2
M (ape v5.3; Paradis, Claude, &

Strimmer,  2004).  Traits  evolve following a Brownian motion process in the metacommunity,

rather  than  an  Ornstein–Uhlenbeck  process  (Butler  &  King,  2004),  because  species  in  the

metacommunity are not exposed to constraints imposed by the local environmental conditions.

Additionally, we assume no trait variation among conspecific individuals in the metacommunity.

Finally, the abundances of each species are sampled from a log-series distribution parameterized

by the total number of species (SM) and the total metacommunity size (J M).
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Local community dynamics - The foundations of the community dynamics underlying

MESS are based on the joint  neutral  model  of  abundance and genetic diversity described in

Overcast et al. (2019a). Briefly, we simulate an individual based model of community assembly

inspired by the ecological neutral theory of Hubbell (2001), with assembly in a local community

proceeding by a process of birth, death, and colonization from the metacommunity. Departing

from the previous model, MESS local community dynamics can range from fully neutral (species

traits  have no effect),  to  various  degrees  of non-neutrality  determined by the magnitude that

species traits  influence individual death probability (δ ) through competition or environmental

filtering. Following Ruffley et al. (2019), we based our environmental filtering and competition

models  on  a  functional  relationship  common  in  coevolutionary  models  which  relates  trait

interactions with the probability of persistence in a community, scaled by the ecological strength (

sE; Lande 1976; Nuismer and Harmon 2015; Andreazzi et al. 2017). Calculated death rates per

species are normalised to provide a vector of death probabilities that weight the random sampling

of which individual will die in each time step according to a multinomial distribution.

As a first  approximation, we implement a point mutation speciation process (Hubbell

2001), although other modes could be incorporated in future versions of the model (Rosindell et

al.,  2010).  Speciation is  implemented phenomenologically and takes place with probability  ν

upon each birth  event.  Upon each speciation event,  the  new individual  is  assigned a  unique

species identity, and its prior species identity is recorded as the parental for purposes of building

the local phylogeny. The offspring species receives a new trait  value sampled from a normal

distribution centered on the parent species’ trait value and with variance equal to σ2
M/(λ+λ ⋅ϵ).

Population genetics component - Following Overcast et al. (2019), the forward-time

histories  of  colonization  and  abundance  changes  through  time  per  species  are  used  to

parameterize backward-time coalescent  models with immigration for each species to generate
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sampled local nucleotide diversities (π), and distribution of D; Nei & Li, 1979). For reasons of computational efficiency,

and to achieve a realistic scale in terms of numbers of individual organisms, we use a scaling

parameter (α ) to specify the number of individuals per deme, thus the total number of organisms

in the local community is given by J ⋅α . This notion of demes (or ‘cohorts’, groups of individuals

that perform the same actions at the same time, see Harfoot et al., 2014) is conceptually similar to

that of propagules from MacArthur and Wilson (1963), which they defined as "the minimum

number of individuals of a given species needed to achieve colonization". We use the forward-

time frequency of colonization events (scaled to number of colonizations per generation) for each

species to parameterize the migration probability in the coalescent  of  colonization/divergence

with ongoing immigration. Given an observed dataset, coalescent simulations match the observed

sample sizes of each species for which DNA sequence data was obtained with regards to numbers

of individuals per taxon and length of sequence.

Summary Statistics - We specify a hierarchical structure of summary statistics for each

of the target data axes: species abundances, population genetic variation, and trait values. First,

several relevant summary statistics are calculated per species, for each of the data axes. Next,

each species-level statistic is aggregated and community-scale summary statistics are calculated

per  axis  of  data,  capturing  information  about  the  distribution  of  the  statistic  across  the

community.  We  include  as  summaries  the  first  four  moments  of  each  community-wide

distribution, as well as pairwise Spearman rank correlations among all data axes. For correlations

involving the trait axis, we consider the absolute value of the difference between the species trait

and the local trait mean as the trait variable. We also calculate the differences between regional

and local values of trait mean and standard deviation (Δμ
traitand Δσ❑

2

traitrespectively). Additionally,

we utilize a framework of generalized Hill numbers as community-scale summary statistics, to
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quantify the shape of each distribution  (Chao, Chiu, & Jost, 2014; Gaggiotti et al., 2018). In

order to distinguish between these diversity metrics when calculated on distributions of different

data  axes  we  will  refer  to  the  Hill  number  of  order  q for  abundance  data  as  qD,  for  trait

(functional) data as qFD, and for genetic data as qGD. For simplicity, throughout the manuscript

we will refer to Hill numbers calculated on distributions of each data axis as abundance, π), and distribution of D, and

trait Hill numbers.

Model  behavior  - In  an  effort  to  investigate  the  behavior  of  the  MESS model,  we

undertook a series of exploratory simulation experiments, with the aim of understanding how

varying parameters of the model affect the distributions of community-scale data, and whether

the chosen summary statistics capture information that  could distinguish the degree to which

differences in species traits (i.e., non-neutral processes) influence the structure of the community.

Given that time is integral to the dynamics underlying the MESS model, we aimed to control for

this  in  the  first  suite  of  simulations,  with  the  goal  of  evaluating  variability  and  overlap  of

summary  statistics  across  assembly  models  at  a  fixed  point  in  time.  Temporal  approach  to

equilibrium (Λ) is  measured as the fraction of information about  the initial  state of the local

community which is no longer present in the current state (see Overcast et al. 2019a) for a full

treatment of this parameter). To control for temporal variation of summary statistics, Λ was fixed

at  0.75 and we allowed  ν to  take one of  three values  corresponding to  no-,  low- and high-

speciation (0, 5.10-4, and 5.10-3 respectively). We generated 10,000 simulations for each assembly

model (neutral/filtering/competition) using fixed parameter values of intermediate magnitude.

We were additionally interested in how summary statistics of different assembly model

types vary through time (e.g. from early-, to middle-, and late-stage community assembly). To

investigate  this,  we  generated  10,000  simulations  for  each  assembly  model  using  fixed

parameters of intermediate magnitude,  allowing only  ν to vary (taking one of three values as
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above) and sampling communities at different stages of the assembly process (Λ ~ U[0,1]). Given

the complexity and volume of data generated by these simulations, we summarize the results by

plotting fitted least squares polynomial functions on all of the summary statistics for each model

independently through time.

Machine learning inference power analysis and cross-validation - The MESS package

includes  an  automated  multi-stage  machine  learning  (ML)  inference  procedure.  Briefly,  the

MESS ML classification and regression procedures can be performed with a number of ensemble

learning strategies including random forest  (Breiman, 2001) and gradient boosting  (Friedman,

2001). We quantify model uncertainty on parameter estimates as prediction intervals (PIs) using a

quantile  regression  approach  (Meinshausen  2006),  and  we  implement  posterior  predictive

simulations to assess the goodness of fit of the model to the observed data (Gelman 2003). Unless

otherwise  indicated,  all  ML algorithms  are  implemented  in  python  using  the  architecture  of

scikit-learn (v0.20.3, Pedregosa et al., 2011).

We explored the power, accuracy, and bias of the ML inference procedure to classify

community assembly models and estimate parameters using simulation experiments and cross-

validation (CV). For assembly model classification, we generated 10,000 simulations per model

class (i.e. neutral/filtering/competition) and fixed all  MESS parameters at intermediate values,

varying only the size of the local community (J) and the local speciation probability (v). For

quantifying  the  accuracy  and bias  of  MESS parameter  estimation  utilizing  an  ML ensemble

method regression framework, we generated 10,000 community simulations per assembly model

class while varying several parameters of interest (α ,  J,  sE,  m,  v, and  Λ) using log-uniform or

uniform prior distributions. ML estimator performance was then investigated using a K-fold CV

procedure whereby simulations were split into training and testing sets,  with the model being

iteratively trained on each K-fold and performance being evaluated as minimized CV prediction
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error on the held out training set. Classifier model adequacy was quantified by the percent error

rate of misclassification, and regression model accuracy was quantified by the explained variance

and R2 (coefficient of determination) regression scores.

Empirical analysis - As a demonstration of the model, we selected four sets of local

communities  that  are  assumed  to  occupy  different  locations  on  the  continuum  of

evolved/assembled  and  neutral/non-neutral  assembly.  Each  system  has  some  combination  of

community-scale data available for two of the three axes which can be considered by the model.

In this way we hope to demonstrate the power of MESS across taxonomic and spatial scales,

using data availability scenarios that might be encountered by empirical biologists in the present

or very near future. Our empirical analyses include: 1) the spider community from Réunion island

with a standardized sampling of ten 50 m x 50 m plots and 1282 individuals sequenced for one

~500bp  mtDNA  region  (COI)   (Emerson  et  al.,  2017);  2)  weevil  communities  from  two

Mascarene islands (Réunion and Mauritius) which have been densely sampled for abundance and

sequenced for one mtDNA region (~600bp COI) at the community-scale (Kitson et al., 2018); 3)

three subtropical rain forest tree communities scored for multiple continuous traits and shotgun

sequenced  for  whole  cpDNA  (Rossetto  et  al.,  2015) and  ;  4)  Galapagos  snail  communities

collected from all major islands, sampled for one mtDNA region (~500bp COI;  Kraemer et al.,

2019) and scored for two continuous traits (Triantis et al., 2016). For each empirical dataset we

conducted  10,000 simulations  of  each  assembly model  class  and generated  abundances,  trait

values, and genetic variation corresponding to genomic regions with identical numbers of base

pairs under an infinite-sites model at a rate sufficient to generate diversity similar to the empirical

data.  We then conducted a round of ML model  selection,  parameter estimation,  and quantile

regression to generate parameter estimates and PIs. Finally, we implemented posterior predictive

simulations to assess goodness of fit of the selected model and parameters to each of the observed
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datasets.

Results

Model behavior and power analysis - Simulations generated under different community

assembly  models  produced  markedly  different  distributions  of  community-scale  data  which

translates into perceivable differences captured by the summary statistics. In the first case we

considered the behavior of the model by comparing summary statistics from 10,000 simulations

under each community assembly model using fixed parameter values and sampling Λ at exactly

0.75 (Fig. 2.2). Neutral simulations generated communities with higher species richness, more

even distributions of abundance as summarized by the normalized  qD values, and higher mean

and  standard  deviation  of  π), and distribution of D  values.  Filtering  and  competition  models  were  largely

indistinguishable  in  terms  of  abundance  and  genetic  diversity,  with  distributions  of  species

richness, and mean and standard deviation of the population genetic statistics broadly overlapping

(Fig. 2.2).

Distributions  of  statistics  related  to  trait  values  showed  more  nuanced  and  variable

behavior,  obtaining  characteristics  that  differ  between  the  three  models.  There  was  little

difference among distributions of  Δμ
trait, with the exception that filtering models produced more

variable results. However, trait variance distributions (Δσ❑

2

trait) varied considerably among models,

with  competition  tending  to  yield  negative  values  (more  variation  locally  than  regionally),

filtering producing positive values (less variation locally than regionally),  and neutral models

producing values centered on zero. The trait Hill numbers (qFD) tended to be higher for neutral

models, though the differences among models were more subtle. Looking at correlations between

pairs of data axes provides further information. For example, abundance and trait values were

strongly negatively  correlated,  indicating that  species  with traits  far  from the  local  optimum
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tended to have low abundance. Also, abundance and π), and distribution of D were positively correlated in the large part,

indicating the tendency of more abundant species to harbor more genetic diversity, though there

was a strong temporal dependency to this correlation.

Next,  we  investigated  the  temporal  dynamics  of  MESS  community  histories  by

comparing 10,000 simulations for each assembly model using fixed parameters of intermediate

magnitude and sampling a random Λ per simulation (Fig. 2.3). In agreement with the first round

of simulations, species richness in neutral models tended to exceed that of the non-neutral models

throughout the entire community assembly process.  In general,  a low rate of local  speciation

produced a slight increase in richness and Hill numbers for neutral simulations, whereas a high

rate  produced dramatic  increases  in  these metrics  for  all  simulation scenarios.  Between non-

neutral models, richness and Hill numbers for competition were, on average, always greater than

those of filtering models across all timepoints, with differences increasing with  v. For neutral

models,  qD tended  to  slowly  increase  monotonically  through  time,  whereas  qGD initially

increased  quickly  with  community-scale  genetic  diversity  accumulating  more  slowly  in  later

stages of assembly. Increasing  v increased the average maximum qGD for non-neutral models,

but in these simulations this maximum value tended to saturate very early, with little change

through time. qFD demonstrated a more dynamic temporal trajectory. Broadly, the relationships

among the tTrait Hill numbers (qFD) mirrored those of the abundance and π), and distribution of D Hill numbers, with

neutral models obtaining the highest, filtering the lowest, and competition somewhat intermediate

values, and a trend of increasing values through time. However, one key difference in qFD is that

early-stage communities display relatively high values, with values decreasing as Λ increases

from 0 to ~0.2, and then showing an increasing trend as Λ proceeds from 0.2 to 1.

Model selection ML cross-validation - ML model classification prediction error reached

a minimum value with  J of 1000 for all model classes and all evaluated feature sets (Fig. 2.4;
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mean error rate 0.16). Prediction error was slightly higher for small J (mean error rate 0.19), and

did not improve dramatically when increasing J from 1000 to 2000 (mean change in error rate -

0.02). Neutral simulations were more accurately classified than non-neutral simulations across all

feature sets and  v values (mean error rate 0.05 and 0.18 respectively).  ML classifiers trained

using only summary statistics related to abundance and π), and distribution of D produced highly accurate classification

of neutral simulations (mean error rate 0.05), but failed to distinguish the two non-neutral models

(error  rate  >  0.4).  Importantly,  in  this  condition  the  predicted  model  class  for  non-neutral

simulations was overwhelmingly the alternative non-neutral model and rarely the neutral model.

For example simulations under a competition model were misclassified as filtering (0.35) with a

much higher rate than neutral (0.08). Including trait information along with one other data axis

(either  π), and distribution of D or abundance)  produced classification error  rates approximately equal  to  error rates

produced by models trained on the full suite of summary statistics.

Parameter estimation ML cross-validation - Cross-validation explained variance and

R2 regression scores for model parameter (α ,  J,  sE,  sC,  m,  v,  and  Λ) estimation were broadly

congruent and positive in almost all cases, indicating simulated and estimated parameter values

were correlated (in some cases highly so). For neutral simulations Λ had the highest R 2 (0.963)

and sE the lowest (-0.037), with most parameters having moderate R2 values (e.g. α  = 0.567; m =

0.685; Fig. 2.5). The small R2 for  sE is expected given that neutral simulations should have no

information about strength of environmental interactions. Estimates of small to moderate values

of  m and  v were  accurate,  but  larger  values  tended  to  be  underestimated.  ML  parameter

estimation for simulations of filtering and competition models obtained improved accuracy to

estimate  sE (R2  = 0.146 and  R2  = 0.287, respectively); however,  R2 values for other parameters

were reduced with respect to the neutral simulations. Both non-neutral models produced diffuse

estimates of α  (R2 = 0.205 and R2 = 0.258) and J (R2 = 0.398 and R2 = 0.448). The most significant
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difference  between  the  non-neutral  models  concerned  estimates  of  Λ.  Under  competition

scenarios, Λ estimates were precise but upwardly biased between R2 = 0 and 0.5, with increasing

variance between Λ = 0.75 and 1. Under filtering scenarios, Λ estimates were only accurate for

values close to Λ = 0.5, with decreasing accuracy as Λ moved away from this value in either

direction.

Empirical  Examples  - We  used  three  empirical  examples  to  demonstrate  how

community  assembly  processes  can  be  characterized  and  model  parameters  estimated  using

multiple axes of community-scale data. The ML classification procedure identified the neutral

model  as  the  most  probable  for  all  three  Mascarene arthropod communities  (Fig.  2.6a),  with

considerable support for neutrality of the Reunion spider community (predicted class probability

0.939), and more equivocal class probabilities for Mauritius and Réunion weevil communities

(0.566 and 0.53, respectively). For the classification of communities which included data axes of

abundance and genetic variation, the most important features for classification were 1D, standard

deviation and mean of π), and distribution of D,  2D, and 4D (accounting for 44% of relative importance of all retained

features).

The ML classification procedure identified environmental filtering as the most probable

model for all tree and snail communities, with higher support for the snails (mean predicted class

probability 0.698), and weak support for the trees (mean probability 0.440). Combining filtering

and competition predicted class probabilities indicated the average probability of non-neutrality

for the trees was 0.633, and for the snails was 0.865. Feature importance values for classification

using axes of trait and genetic data were broadly diffuse across the retained summary statistics,

with Δσ❑

2

trait accounting for 11% of relative importance of all retained features, and the remainder

accounting for 5% or less.

The  ML  regression  procedure  for  parameter  estimation  indicated  that  the  selected
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empirical datasets occupied a broad swath of parameter space (Fig. 2.6b). Empirical PIs were

quite varied, with some parameter estimate PIs spanning the width of the prior, while the PI of

other parameters were narrow, a result which is consistent with CV results. The tree communities

had small estimated α and narrow PIs (mean α = 1423; 1019-2481 95% PI), when compared to

the arthropod and snail communities, which had larger estimated α (e.g. Mauritius weevil α =

7107; 3497-9831 95% PI).  ML estimates of  Λ were more varied, with the weevil and spider

communities approaching or reaching Λ = 1, snail communities having more intermediate Λ, and

tree communities having the lowest values (< 0.4 in all cases). Estimates of  m and vdisplayed an

idiosyncratic pattern, with spider and snail communities having low estimated values for both,

and weevil and tree communities having high estimated values for both, with the exception of the

Nightcap trees, which had high  v and low m. Ecological strength (  sE ) was the most difficult

parameter to estimate, in the sense that all estimates were close to the mean of the prior, and PIs

spanned the majority of the prior range. Posterior predictive simulations indicated a good fit of

the estimated parameters to all empirical datasets.

Discussion

We have described an individual-based mechanistic model of community assembly, the

MESS model, that unifies the key processes underlying the dynamics of local biodiversity across

multiple timescales: 1.) dispersal; 2.) stochastic drift; 3.) deterministic competition/filtering; and

4.) speciation (Vellend 2010, 2016).The MESS model integrates these processes in The MESS

model  implements  an hierarchical  framework to  make local  multi-dimensional  predictions  of

summary statistics  that  capture  information both within and among the various  axes  of data.

Generalized Hill numbers provide the unifying framework within which qD, qFD, and qGD values

are  comparable  across  communities  of  different  spatial  and/or  temporal  scales.  Simulation

experiments show that neutral models have elevated S, qD, qFD, and qGD with respect to filtering
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and competition models, across all except the earliest timepoints (Fig. 2.3), a direct result of the

ecological  equivalence  of  individuals  in  neutral  models  generating  communities  with  lower

species dominance. In a similar fashion, for non-neutral models, species that are more fit survive

preferentially and increase in abundance, reducing evenness in the community and causing 1D to

plateau at a low level. Increased speciation rate has little impact on 1D in the neutral case because

ecological equivalence confers no cost or benefit  to offspring species, whereas in non-neutral

models  new species  inherit  the  trait  value of  their  parent  (with small  perturbation).  In  these

conditions increasing speciation rate increasingly favors the evolution and accumulation of small

clades of species that have ecological advantage, causing a concurrent reduction in 1D. qGD and

qFD obtain broadly similar temporal dynamics.

Overall, we find that any two of the three data axes are sufficient to accurately identify

the relative strength of deterministic versus stochastic processes in local community assembly,

and that  including  trait  information  allows  descrimination  between which  of  the  non-neutral

processes are more important in driving the local patterns of biodiversity (Fig. 2.4). Additionally,

using any two data axes always resulted in improved classification accuracy when compared to

using a single axis alone. These results highlight the flexibility of MESS to mask unobserved

summary statistics  such  that  inference  can  be  made  from a  wide  variety  of  high-throughput

biodiversity surveys across different spatial scales and data availabilities. MESS will perform best

when  provided  data  for  all  three  axes,  but  it  was  designed  to  allow  for  incomplete  and

heterogeneous sampling (with some decrease in accuracy; Fig. 4), recognizing that some data

axes are more or less difficult to obtain given different focal communities.

The empirical communities we chose to evaluate represent both a variety of available

data axes, and a range of perceived dispersal limitation, with Galapagos snails being the most

dispersal-limited, the Australian trees being least limited, and the Mascarene spiders and weevils
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somewhat  intermediate.  As  we  assume  the  Reunion  spider  community  is  well  mixed  (i.e.

panmictic within the island), the high probability of classification as neutral, and estimate of Λ

approaching 1,  along with the relatively high  m and low  v,  are  concordant  with a  late-stage

community that is structured primarily by colonization and ecological drift (Barabás, D’Andrea,

Rael, Meszéna, & Ostling, 2013; Vergnon, van Nes, & Scheffer, 2012). Both weevil communities

had similar estimates of Λ, but higher estimated v, and more equivocal classification as neutrally

evolving.  The  elevated  v and  partial  weight  of  non-neutral  classification  could  be  a  strong

indication of cryptic diversity,  which is  in line with the expectation that the weevils  are less

dispersive compared to spiders. The snail  communities were classified as being structured by

environmental  filtering,  with  low estimated  m aligning  with  expectations.  However,  the  low

estimates of v and sE are somewhat surprising, given their poor dispersal ability and documented

pattern  of  single-island  endemism  (Parent  & Crespi,  2006).  In  this  case,  unmodeled  habitat

heterogeneity, which is known to be an important predictor of snail diversity (Parent & Crespi,

2006), could easily artificially deflate estimates of v and sE. Finally, because the Australian tree

communities are sampled from semi-isolated habitat patches we expect their behavior to deviate

from that of truly isolated communities.  This is in agreement with the finding that these tree

communities are all far from equilibrium, though the moderate  m and high  v and  sE estimates

indicate that local turnover, in the context of a selective environment, is important and ongoing.

Additionally, considering the fit  of the tree data to a smaller α, the sample abundance in the

scaled model and the (unobserved) 'true' abundance that better reflects the effective population

size are more similar for trees than for the other datasets.  More simply this could mean that

sample abundance is closer to true abundance even though the former is unobserved.

The MESS model is an individual-based mechanistic model of community assembly that

unifies processes relevant to the accumulation of biodiversity across ecological and evolutionary
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timescales,  incorporating  dispersal,  stochastic  drift,  deterministic  competition/filtering,  and

speciation to generate joint predictions of abundances, population genetic diversities, and trait

variation  in  a  phylogenetic  context.  The  model  generates  explicit  temporal  predictions  of

community-scale  data  across  these  three  axes,  spanning  equilibrium  and  non-equilibrium

conditions,  and allowing for  stochasticity  along a  continuum of  scenarios  ranging from pure

ecological  neutrality,  to  strong  ecological  interactions  and/or  environmental  filtering.  To

complement  the  simulation  framework of  the  MESS model,  our  implementation  includes  an

extensive  suite  of  ML tools  for  performing  model  selection  and  parameter  estimation  from

observed  data,  and  plotting  routines  for  visualizing  and  evaluating  results.  This  unified

mechanistic model  provides a general  framework for hypothesis testing and biodiversity data

synthesis,  enabling  scientists  to  generate  multi-dimensional  forecasts  and  test  parameterized

hypotheses about the historical and future processes driving biodiversity patterns from small-

scale intensively sampled plots, to islands sensu lato, to regional and sub-continental scales.
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Chapter 3: The spatial distribution of genetic variation in ecological communities

Introduction

The  rapid  development  of  remote  sensing  techniques  which  generate  high-resolution

environmental data along with the increasing spatial and taxonomic scale of integrated multi-

dimensional  data  from  high-throughput  ecological  surveys  have  transformed  our  ability  to

monitor the biosphere and understand the processes that underlie how communities are formed.

Despite an accelerating data revolution driven by widespread deployment of technologies that can

obtain  community-scale  data  ranging  from  biodiversity  metrics  that  quantify  genes,  traits,

abundances, and ecosystem function at various levels of spatial granularity from local to global-

scale,  two  fundamental  bottlenecks  have  limited  our  ability  to  develop  a  more  integrated

understanding of how biodiversity accumulates within regional biotas: 1) lack of a mechanistic

model for generating process based hypotheses of biodiversity structure (chapter 2); and 2) lack

of a predictive model for extrapolating biodiversity structure from a limited sample to unsampled

locations  across  the  landscape.  Here  we  will  develop  a  framework  to  address  the  second

challenge by using multiple heterogeneous data types collected locally at fine spatial scales to

make  spatial  predictions  of  different  axes  of  biodiversity.  This  will  allow  for  a  better

understanding  of  how  geophysical,  climatic,  and  oceanographic  features  correlate  with

community structure at the regional scale. In conjunction with a mechanistic model that uses the

same multi-axis biodiversity metrics to infer community assembly processes (chapters 1 & 2), we

hope to be able to make broader inference of ecological processes across the planet.

Species distribution modeling (SDM) has been a highly successful endeavor to better

understand abiotic and biotic determinants of single species ranges, how ranges change in the

context  of  historical  and/or future  changes in  climate  and landscape as  well  as  filling in the

“Wallacean  shortfall”,  (i.e.  the  incomplete  information  on  species  distributions;  (Lomolino,
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2004))  by  means  of  SDM-based  spatial  predictions  on  the  basis  of  correlations  of  known

occurrences with environmental variables (Lozier, Aniello, & Hickerson, 2009; Phillips, Dudík,

& Schapire, 2004). Extending this general correlative strategy to make global spatial predictions

at the community or assemblage-level have made significant strides on several fronts. Species

richness  is  one  of  the  most  well  characterized  biodiversity  metrics  with  many  examples  of

predictive models that  correlate spatially explicit  abiotic and biotic variables with richness at

different  spatial  scales  (Jetz & Rahbek,  2002;  Kerr & Packer,  1997;  Zellweger et  al.,  2016).

Likewise, local richness can be predicted with correlative models similar to single species SDMs

by way of stacked SDMs (D’Amen et al., 2015; Distler, Schuetz, Velásquez-Tibatá, & Langham,

2015) and joint SDMs  (Harris,  2015; Ovaskainen, Roy, Fox, & Anderson, 2016), while local

species abundance distributions can be similarly modeled and predicted by relating environmental

variables with observed rank abundance distributions (Ellis, Smith, & Pitcher, 2012; McCarthy,

Mokany, Ferrier, & Dwyer, 2018).

Along with the increasing availability of high-resolution spatial data, and the increasing

complexity of spatial modelling tools, the availability of genetic data has been increasing along

multiple  axes,  including greater  sampling of  loci  within individuals,  and greater  sampling of

individuals within populations (Taberlet et al., 2012). As sequence data continues to be more and

more widely available,  recent  efforts  have been made to move beyond local  prediction from

abundance or  genetic  samples,  to  global  predictions  of  biodiversity  structure  (Miraldo et  al.,

2016; Pelletier & Carstens, 2018; Smith, Seeholzer, Harvey, Cuervo, & Brumfield, 2017). The

advent of large-scale, curated databases of sequences (Genomic Observatories; N. Davies et al.,

2014; Deck et al., 2017) allow for the possibility of making spatial and temporal predictions of

occurrence and abundance for whole assemblages at regional or global scales  (Crandall et al.,

2019; Gratton et al., 2017). Additionally, large scale ecological monitoring projects, such as the
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National Ecological Observatory Network (NEON) sites, offer the potential for replicated, high-

throughput  ecological  surveying,  which  can  help  ground-truth  methods  developed  for

community-scale inference. Finally, the distribution of genetic variation at the scale of the entire

community is becoming possible not only to obtain, but also to model.

As the biodiversity science and observation community is now moving to conceptualize

and  formulate  an  expanded  set  of  essential  biodiversity  variables  (EBVs)  to  enable  better

integrated and effective biodiversity monitoring, prediction, and inference  (Jetz et al., 2019), a

general  approach  to  make  spatial  prediction  across  much  of  the  planet  that  is  logistically

unreachable for intensive sampling is needed. The challenge here is to move beyond description

and quantification of sampled biodiversity to actually enable prediction of biodiversity structure

across the landscape. The inherent heterogeneity and sparseness of raw biodiversity data can be

overcome by the use of models and remotely sensed covariates to inform predictions that are

contiguous in space and time. The increasing availability of high-resolution spatial data, along

with  the  increasing  complexity  of  spatial  modelling  tools,  and  the  increasing  availability  of

population genetic sampling of sequence data at the community scale suggests the potential for a

whole new kind of inference.

To this end, we offer here a novel approach that uses supervised machine learning to

model the spatial relationships between suites of biotic and abiotic environmental variables (Title

& Bemmels, 2018) and the structure of local distributions of species abundances and genetic

diversities as summarized by a framework of generalized Hill numbers (Chao et al., 2014). This

approach will have general  applicability with the emerging efforts to advance remote sensing of

biodiversity  (Pettorelli et al., 2016; Turner et al., 2003) from the sky as well as on the ground

intensive genetic biodiversity surveys  (Porter & Hajibabaei,  2018; Valentini et al.,  2016) that

obtain ground-truthed assemblage-level data across multiple axes of the EBV hypercube (Miller,
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1994).  To  demonstrate  this  approach,  we  use  DNA  sequence  and  abundance  data  of  local

decopod communities intensively sampled across the Indo-Pacific Coral Triangle (Al Malik et al.,

2018; Kholilah et al., 2018; Knowlton & Leray, 2015; Pertiwi, Malik, & Kholilah, 2018) and

abiotic  (MARSPEC;  Sbrocco & Barber,  2013) and biotic  (Bio-Oracle;  Assis,  Tyberghein,  &

Bosch,  2018;  Tyberghein  et  al.,  2012) data  layers  for  fine  scale  resolution of  environmental

variables for marine systems. We use the supervised machine learning  (ML) via random forest

(Breiman,  2001;  Prasad,  Iverson,  &  Liaw,  2006) to  make  spatial  predictions  of  these  two

categories  of  Hill  numbers  across  the  coral  seascape,  as  well  as  quantify  pairwise  site

dissimilarity, and fit different non-equilibrium models of local community assembly that quantify

levels  of  dispersal,  speciation  and  magnitudes  of  ecological  equivalency  with  regards  to

competition and environmental filtering (Overcast et al., 2019a; Overcast et al., 2019b).   

Methods

Sampling design - The Coral Triangle is a volcanically and tectonically active region

spanning  6  million  km2 in  Southeast  Asia  and  is  a  global  hotspot  of  marine  biodiversity

(Bellwood,  Renema,  &  Rosen,  2012;  Hoeksema,  2007;  Myers,  Mittermeier,  Mittermeier,  da

Fonseca, & Kent, 2000). Decapod communities were sampled from 136 dead branching corals of

similar size collected at 10 sites widely distributed across the Coral Triangle (Table 3.1; Fig. 3.1).

In order to reduce decapod community sampling variance we specifically targeted sampling from

Pocillopora species. At each site between 5 and 32 (mean 12.7) dead coral colonies were sampled

at approximately 10 m depth. Macro-organisms inhabiting each coral colony were removed and

sorted  following well  described sampling  protocols  (Head et  al.,  2018;  Plaisance,  Knowlton,

Paulay, & Meyer, 2009). Coral heads with fewer than 10 decapod samples were removed from

the study prior to sequencing.

DNA barcoding, OTU clustering and calculation of summary statistics -  Samples
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were  sequenced  for  one  660  base  pair  region  of  the  Cytochrome  Oxidase  Subunit  I  (COI).

Sequences were clustered at 5% similarity using MOTHUR  (Schloss et al., 2009), to establish

working hypotheses for operational taxonomic units (OTUs). Samples were sorted by hand and

assigned to  higher  taxonomic  rank (infraorders  Anomura,  Brachyura  or  Caridea),  and  where

possible were identified to species level based on the results of BLAST searches of genbank. We

constructed rarefaction curves  for  each sampling site  in  order  to  ensure  approximately equal

sampling  effort,  given  probable  differences  in  richness  per  site.  As  we  are  interested  in  the

abundance  and  genetic  diversity  structure  of  communities,  we  aggregated  abundances  and

calculated nucleotide diversity (π), and distribution of D;  Nei & Li, 1979) for each species per site.  All downstream

analyses were performed for each infraorder independently, as well as for the combined dataset,

pooling all infraorders together. As all individuals of each infraorder within a site are presumed to

compose an ecological community, results are reported primarily for the combined data, with key

infraorder-specific results provided when relevant. All downstream analyses were performed on

the full dataset, as well as on a subset of data with sampling rarefied to the site with the smallest

number of samples.  As results  did not  qualitatively change under rarefaction,  here we report

results only of the full data.

Characterizing diversity: Hill numbers for genetics and abundance - We quantify

community structure using a framework of generalized Hill numbers, following a growing body

of literature indicating their usefulness as a summary of high dimensional community data (Chao

et  al.,  2014;  Gaggiotti  et  al.,  2018).  The  attribute  diversity  component  of  generalized  Hill

numbers have the form:

(Eq 3.1)
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where S is species richness, vu is the attribute value for species u, au is the abundance of species u,

and q is the order of the equation. qAD quantifies the relative frequency of species attribute values

(in this case abundance or π), and distribution of D) and is undefined for order 1, though a limit exists as q approaches 1

(see Chao et al. 2014). The qAD value is difficult to interpret directly and is not comparable across

different  data  types,  but  it  can  be  converted  into  an  effective  number  of  species  or  species

equivalents:

    (Eq 3.2)

where φ= 1 for species diversity and genetic diversity. Hill numbers calculated in this way are not

directly comparable across sampling locations, as different S will change their interpretation. To

account for this, all Hill number values for all data types are additionally normalized by dividing

by  S,  converting  them to percentages  and allowing for  comparability  across  communities  of

differing richness. For simplicity, and to allow distinguishing between Hill numbers calculated on

different data axes, we refer to Hill numbers calculated on abundance distributions as qD, and on

genetic diversity distributions as qGD, for given values (q) of the order of the function.

Characterizing site dissimilarity - As a first exploration of community turnover across

the landscape we calculated pairwise dissimilarity among sites for abundance distributions. For

dissimilarity analysis we selected two different metrics, Bray-Curtis dissimilarity (Bray & Curtis,

1957) and cosine distance (Smith, Pontasch, & Cairns, 1990), as these capture different aspects of

the  data.  Bray-Curtis  (BC)  is  commonly  used  to  quantify  compositional  dissimilarity  of

ecological  communities,  accounting  for  both  species  composition  and  abundance  structure.

Cosine distance is similar in spirit to Euclidean distance, but is insensitive to magnitude, and so

provides a simple measure of species turnover that does consider differential abundances. For the
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genetic data we quantified pairwise dissimilarity as the mean (μDxy) and standard deviation (σDxy)

of Dxy (Nei,  1987;  Nei  & Li,  1979) between all  population pairs  present  in both sites under

consideration. For example, to calculate μDxy between Aceh and Solor we calculate Dxy
 between

sampled species present in both sites, then take the average. In a marine environment, complex

hydrological regimes may distort the classic distance-decay relationship among sites  (Soininen,

McDonald, & Hillebrand, 2007), therefore we investigated the relationship between geographic

distance  and  community  dissimilarity  using  vegan (Oksanen  et  al.,  2010).  Distance-decay

analyses were performed using both abundance information, and presence/absence data. We also

investigated the proportional contributions of turnover and nestedness to community composition

using betapart (Baselga & Orme, 2012).

Abundance  genetic  diversity  correlation  - We  investigated  the  abundance  genetic

diversity correlation (AGDC) by examining R2 values of linear regressions between these data

axes across different sites. As most species are rare, many have been sampled and sequenced for

only a handful of individuals,  complicating the calculation of π), and distribution of D. To ensure our regression R2

values  were  not  impacted  by  the  increased  variance  of  small  sample  size,  we  calculated

correlations for both the full data at each site, and for the subset of species for which there were

more  than  4  individuals  sequenced.  Additionally,  as  abundance  and genetic  diversity  are  on

different  scales,  and  are  not  normally  distributed,  we  calculated  correlations  after  log-

transforming both axes, and also after rescaling all values into proportions.

Spatial environmental variables -  We focus on the current community standards for

global  data  sources  with  fine  scale  resolution  for  marine  systems  for  abiotic  (MARSPEC;

Sbrocco & Barber, 2013) and biotic (Bio-Oracle; Assis et al., 2018; Tyberghein et al., 2012) data

layers. MARSPEC comprises geophysical and bioclimatic data layers (e.g. average sea surface

temperature, north/south aspect, or depth of the seafloor) at ~30 arcsecond (1km) resolution. Bio-
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ORACLE provides layers at 5 arcminute resolution (~10 km) related to nutrient concentration,

primary production, phytoplankton biomass, and several additional abiotic layers which overlap

with  MARSPEC.  We  additionally  obtained  bathymetric  layers  projected  to  the  last  glacial

maximum  provided  by  Paleo-MARSPEC  (Sbrocco,  2014).  All  marine  data  layers  were

downloaded using the  sdmpredictors R package  (Bosch, Tyberghein, & De Clerck, 2017). We

clipped data layers to a bounding box around the sampling locations with a 5 degree buffer in all

cardinal directions (approximately 500 km). We further masked the climatic/environmental data

using  the  Global  Distribution  of  Coral  Reefs  (GDCR)  shape  data

(https://data.unep-wcmc.org/datasets/1) provided by the UN Environment  World Conservation

Monitoring Centre's Ocean Data Viewer project (UNEP-WCMC, WorldFish Centre, WRI, TNC,

2010). Finally, we performed a principal component (PC) analysis, as a first exploration of the

regions of environmental space that each sampling site occupies. We extracted bioclimatic and

geophysical data for each sampling site, as well as for 1000 random background points at greater

than -20m depth, projected these into PC space and plotted the first two PCs. We also plotted

loading for each data layer, to evaluate the correlations between data layers, and how the layers

contribute  to  environmental  variation  across  the  region.  As  a  further  exploration  of  spatial

environmental variation we extracted environmental data for all GDCR sites, projected these into

PC space and plotted the PC values on a map of the region, parameterizing the color of each

GDCR site by its location in PC space.

Estimation of community neutrality and proximity to turnover equilibrium -  We

estimated  the  degree  of  ecological  neutrality  and  the  proximity  to  turnover  equilibrium  of

communities at each sampling location using computer simulations and the ML infrastructure of

the MESS package (Overcast et al. 2019b). We chose prior ranges on parameters for the MESS

community simulations which were sufficient to reproduce patterns of richness, abundance, and
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genetic diversity observed in the empirical data. We generated 10,000 simulations for each of

three community assembly models representing pure ecological equivalence (the 'neutral' model),

environmental  filtering  ('filtering'),  and  competitive  exclusion  ('competition').  We  pooled  all

simulations and performed a cross-validation procedure to evaluate precision and recall of model

classification given our priors and the simulated summary statistics. We evaluated the accuracy of

the final trained ML classifier by plotting a confusion matrix of simulated versus predicted class

labels for a hold-out  set  of  test  simulations.  Finally,  we used the trained classifier  to predict

assembly model class probabilities for each of the 10 sampling sites.

After establishing the most probable assembly model for each site, we undertook an ML

regression procedure to estimate the community equilibrium state, and migration rate into the

local  community (the  Λ and  m terms in  MESS, respectively).  Again,  we performed a cross-

validation procedure to evaluate ML regression accuracy, using R2 and explained variance scores

as metrics. Finally, we split simulations into training and testing sets, trained a random forest

regressor, and used it to predict Λ and m per site. Prediction intervals (PI) were constructed using

a random forest quantile regression approach (Meinshausen, 2006). As sites may differ in their

most  probable  assembly  model,  we  performed  cross-validation  and  trained  ML  ensemble

regressors on simulations for each model class independently. All computer simulations were

performed within the MESS framework, and custom ML architecture was constructed in python

using  scikit-learn (v0.20.3;  Pedregosa  et  al.,  2011).  Machine  learning  classification  and

regression  procedures  for  MESS  simulations  were  performed  with  both  random  forest  (RF;

Breiman, 2001) and gradient boosting (Friedman, 2001) algorithms, and python code and jupyter

notebooks are provided for both methods in the github repository. Results are reported only for

RF  methods,  as  we  found  these  to  produce  more  accurate  classification,  and  higher  cross-

validation R2 scores.
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Predicting  community  structure  across  the  landscape -  With  the  dual  goal  of  1)

learning associations between climatic/geophysical variables and community-level metrics at two

different  axes  of  biodiversity  (species  abundances  and  genetic  diversities)  and  2)  making

predictions  of  these biodiversity  metrics  in  unsampled locations,  we undertook a  multi-stage

random forest supervised ML parameterization, training, and validation procedure using climatic/

geophysical metrics as predictor variables and  S, 1D & 1GD as response variables. Care must be

taken when training a predictive model on small sample size data (Kirpich et al., 2018) as highly

complex  models  will  tend  to  overfit  the  data  (Bzdok,  Krzywinski,  &  Altman,  2017;  Lever,

Krzywinski,  &  Altman,  2016).  As  a  first  step  we  perform  a  feature  selection  procedure

(Degenhardt, Seifert, & Szymczak, 2019) to retain only those variables that contain the greatest

amount of information about the prediction targets, and to remove variables that are invariant,

correlated, or uninformative (boruta_py v0.1.5; Kursa & Rudnicki, 2010; Speiser, Miller, Tooze,

& Ip,  2019).  Latitudes  and  longitudes  were  included  as  potential  covariates,  along  with  all

MARSPEC  and  Bio-Oracle  data  layers.  Next,  we  explored  random  forest  regressor  hyper-

parameter  space  with  cross-validation  and  a  randomized  search  strategy  to  identify  model

parameters that maximized prediction accuracy. We evaluated estimator performance given our

available data using 4-fold cross-validation with R2 and mean absolute error (MAE) scores as the

evaluation  metrics  (Fushiki,  2011;  Kohavi,  1995).  Finally,  we  generated  a  prediction  set  by

sampling 1000 random sites  as  latitudes  and longitudes  falling  within the  GDCR mask.  We

extracted  environmental  and  geophysical  data  as  the  estimator  feature  set,  which  we

downsampled to retain only those features selected as above, and confronted with the trained ML

estimator to predict 1D & 1GD for all 1000 sites in the prediction set. We constructed prediction

intervals  to  quantify  uncertainty  around  the  most  probable  target  values  using  a  quantile

regression  approach  (Meinshausen,  2006),  and  extracted  feature  importances  to  evaluate  the
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proportion  of  information  contained  within  retained  feature  variables  with  respect  to  target

variables  of  interest.  Unless  otherwise  specified,  all  ML  infrastructure  was  implemented  in

python, and built on top of scikit-learn (v0.20.3; Pedregosa et al., 2011).

Results

DNA barcoding, OTU clustering and calculation of summary statistics - The final

dataset comprised 7572 decapod crustacean individuals sampled from 149 dead coral heads and

sequenced for one 660bp COI region. After quality control, filtering, and OTU clustering the

resulting  database  contained  sequences  from  685  OTUs  across  the  infraorders  Anomura,

Brachyura, and Caridea. 57% of OTUs were identified to family level, 38% to genus level or

below and the remaining ~5% identified to infraorder level. Coral head and individual decapod

sampling effort were relatively even among sites, with on average 13.9 dead coral heads (8.7 SD),

146.1 OTUs (69.1 SD), and 702.9 individual samples per site (537.5 SD). Regional nucleotide

diversity  averaged  0.0028  (0.0007  SD).  The  number  of  individuals  per  site  correlated  with

richness (Spearman rank correlation = 0.96; p-value = 7e-6), in agreement with theory. However,

neither richness nor sampling effort correlated with average nucleotide diversity (p-value equal to

0.31 and 0.38, respectively), indicating a complex relationship between these data axes.

Hill numbers for genetics and abundance - As a very general trend, sites with larger

qD tended to have larger qGD values, and the relationships among sites tended to remain the same

across values of q (Table 3.2 & 3.3; Figs. 3.2a & 3.2b). For example, Pemuteran had the highest,

and Karimunjawa the lowest, qD  and qGD values across the spectrum of Hill numbers examined.

Similarly, Kalimantan tended toward middling values for all  q.  Aceh provides an exceptional

example, with very large values 0D and 1D but a precipitous reduction for larger values of qD, yet

retaining the second highest values of  qGD for all  q values. Another exception is Lembongan,
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with middling to high values of qD, yet the second lowest values across all qGD. Normalized qD

(Fig. 3.2c) and qGD (Fig. 3.2d) allow for a more direct comparison across different communities,

as the values scale between 0 and 1, and represent a more direct notion of evenness (Tables 3.3 &

3.4). Normalized qGD were always higher than qD for all sites across all values of q, indicating a

greater evenness in the genetic data. Several patterns are striking in the normalized data including

Karimunjawa and Lembongan both having very high values for qD, yet the lowest values for qGD.

Additionally, the disparity between abundance and genetic diversity at Aceh is clarified in the

normalized Hill analysis.

Characterizing  site  dissimilarity  - There  was  not  a  strong  correlation  between

geographic proximity and either abundance or genetic dissimilarity. The geographic pattern of

site  dissimilarity was quite heterogeneous (Fig.  3.3).  Compositionally  there was high affinity

among a  cluster  of  eastern  sites  (Manado,  RajaAmpat,  and  Solor),  one  central-southern  site

(Lombok) and Aceh, the most distant western site (cosine distances < 0.4). BarangLompo, though

the most geographically central site, was the most compositionally distinct, with cosine distance >

0.7 for all sites except Kalimantan. Similarity within the eastern cluster was reduced, but still

notable, when abundance was taken into account (mean BC = 0.55). Additionally, the affinity

between Aceh  and several  of  the  eastern  and  central  sites  was  reduced in  the  BC analysis,

indicating that the abundance structures are more different than beta diversity would suggest. In

terms of the genetic data axis, average  μDxy among all sites was 0.0083. Aceh was genetically

most distinct with  μDxy values > 0.0114 in all cases except for Karimunjawa (μDxy = 0.0063).

Karimujawa was also more genetically different than average (μDxy = 0.0095). Manado, Solor,

Lombok, RajaAmpat, and Lembongan (and to a lesser extent Pemuteran) formed a cluster of

genetic similarity, within which average μDxy equaled 0.0055.

Abundance genetic diversity correlation - Correlation results were robust to various
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subsampling  regimes,  for  example  selecting  only  the  species  with  more  than  4  individuals

sequenced,  therefore  results  are  reported only for  the  full  data.  Correlation results  were also

robust to log-transformation and rescaling to proportions, so we report results with abundance

and genetic diversity rescaled to proportions,  as this  eases the interpretation.  Abundance and

genetic diversity were positively correlated within all  sites,  considering both proportional and

absolute values (Fig. 3.4; p-values all << 0.05). Correlations spanned a range of R 2 values across

the sites, from 0.079 at Aceh, to 0.398 at Karimunajawa. In agreement with results of the Hill

number analysis, we found far more rare species with greater proportional π), and distribution of D than proportional

abundance, and very few common species with proportional abundance greater than or equal to

proportional π), and distribution of D. There was not a clear correspondence between the AGDC within a site and its

geographic  location,  though  there  was  a  conspicuous  tendency  for  AGDC  to  increase  with

increasing proximity to the north east Java Sea/south Makassar strait, the geographic center of the

Coral Triangle.

Spatial environmental variables - In total we used 45 environmental and geophysical

data layers, including mean, minimum, and maximum contemporary bathymetry, average annual

sea surface salinity, and profile curvature as a few examples. Additionally, we used the mean

depth of sea floor at the last glacial maximum (LGM) from the Paleo-MARSPEC data. As all

sample sites are ~6-10m below contemporary sea surface level, these were all well above sea

level during the LGM, so we converted LGM bathymetric data into paleo-distance to sea shore,

as a proxy for probable timing of recolonization history. Projecting environmental data from the

observed sites along with random background sites from approximately equal depth shows the

observed sites following a very strong gradient in PC space (Fig. 3.5). Inspecting the PC loadings

showed the  gradient  was  driven  primarily  by  variables  related  to  salinity,  photosynthetically

available radiation, concavity, and bathymetric slope, and to a lesser extent by distance to shore
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and dissolved oxygen. Several variables contributed little to the variation in environmental space

occupied  by  the  observed  sites,  including  those  associated  with  sea  surface  temperature,

chlorophyll  A  &  calcite  concentration.  Sites  within  the  Makassar  strait  (Kalimantan  &

BarangLompo)  and the  Java  Sea  (Karimunjawa)  occupied  more  typical  environmental  space

(more centrally clustered in PC space) whereas Eastern sites (Manado, RajaAmpat),  and sites

proximal to the lesser Sunda Islands (Solor, Lombok, Lembongan, Pemuteran) occupied more

distal  regions of PC space associated with increased salinity,  pH, concavity,  and bathymetric

slope.  Plotting  GDCR  environmental  and  geophysical  PCs  on  a  map  of  the  region  further

illustrates gross regional landscape variation (Fig. 3.6), which largely recapitulates the results of

the preliminary PC analysis.  Several  large geographic  regions display environmental  affinity,

including the lesser Sunda islands with the eastern Banda sea, and the Mentawai Islands and

Aceh with the Makassar strait. The north western Java sea, including Singapore and the islands of

the western Riau Archipelago, occupy a unique and unsampled region of environmental space

associated with increased chlorophyll concentration, diffuse attenuation at 490 nm, and annual

variance in sea surface salinity.

Estimation  of  community  neutrality  and  proximity  to  turnover  equilibrium  -

Community assembly model classification with MESS computer simulations and random forest

ML inference obtained several striking patterns (Fig. 3.7a). Evaluating feature importances for

classification using all MESS summary statistics for both abundance and genetic diversity axes

showed the majority of information with respect to model class was contained in 1D, 2D, 3D, 4D,

and the standard deviation of π), and distribution of D. Three eastern sites were classified as almost certainly neutral

(Manado, Solor, and RajaAmpat; classification probability > 0.9). Aceh and BarangLompo were

classified as most probably non-neutral (neutral probability < 0.2), with the bulk of probability

assigned to the filtering model, but with some probability favoring competition. The rest of the
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sites were classified with roughly equal probability for all three assembly model classes, resulting

in equivocal support for all the models.

For  estimation  of  the  progress  of  each  community  toward  turnover  equilibrium (Λ),

speciation rate (ν), and migration rate into the local community (m), we subsampled the MESS

simulations to retain only those simulations which belonged to the most probable assembly model

from the classification step. For simulations with less than 50% support for one assembly model

we retained all simulations during the parameter inference procedure. Feature importances for

ML estimation of Λ indicated  2D,  3D,  4D contained the most information  with respect to this

parameter,  with all  other summary statistics contributing less than 5% of feature importance.

Feature importances for m were much more diffusely distributed among abundance and genetic

diversity summary statistics, with significant weight placed on the correlation between abundance

and genetic diversity (~20%), and approximately equal weight placed on the standard deviation of

π), and distribution of D,  4GD,  1D,  3D and  4D (~10% each).  Aceh was predicted to have the smallest  Λ (0.91), with

BarangLompo and Karimunjawa also predicted to have low values (0.93 and 0.95 respectively).

Eastern and Lesser Sunda Island sites were all predicted to have Λ = 0.97, indicating an increased

proximity to turnover equilibrium. Most sites were predicted to have moderate migration rates

(m),  on the order  of  0.007,  with Karimunjawa having slightly lower  m (0.006),  indicating a

largely homogenous migration regime region-wide.

Predicting  community  structure  across  the  landscape  - Random  forest  hyper-

parameter tuning and feature selection identified east/west aspect, sea surface salinity variables,

and distance to shore as the most relevant features for predicting  1D and  1GD.  Evaluating RF

leave-one-out cross-validation for simultaneous estimation of normalized 1D and 1GD produced

average mean absolute error of 0.05 (SD 0.03) and 0.026 (SD 0.016), respectively. Finally, we

used abundance and genetic data from all sites to train a new model using previously selected
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model hyper-parameters. We used this model to predict 1D and 1GD for all GDCR sites within the

region, and plotted the predictions across the landscape (Fig. 3.7b & 3.7c, respectively), along

with  observed  values  from  the  sampled  communities.  As  expected  from  inspection  of  the

environmental  PCs,  north/south aspect,  slope,  depth of  sea  floor,  and annual  variance in  sea

surface salinity were the most important features for ML prediction. For the most part, values of

1D from observed communities tended to closely match those of projected values of surrounding

regions. Notable exceptions were Lembongan, with the highest scaled 1D among samples (0.633),

and Aceh with the  lowest  (0.375),  both of  which are  surrounded by areas  projected to  have

moderate  1D values (0.45-0.5).  Likewise, most sampling sites had values that were similar to

those projected to sites in their near vicinity when considering 1GD, with the exception of Solor,

which had very low 1GD in an area projected to have higher values (~0.34 or higher). Plotting the

difference between predicted 1D and 1GD showed a striking central/peripheral contrast (Fig. 3.8),

with more similarity in evenness to the east in the Banda Sea and Banda Arc, and to the west in

the central  and northern Riau archipelago and the Mentawai Islands to  the west  of  Sumatra.

Regions with the greatest difference in evenness between  1D and  1GD tended to be peripheral

(e.g.  Manado  and  RajaAmpat),  whereas  reduced  differences  in  evenness  were  concentrated

around the Makassar strait, and the Bali and Flores Seas.

Discussion

Genetic  diversity  at  the  scale  of  the  ecological  community  - Comparative

phylogeography leverages the power of aggregated population genetic inferences of demographic

history from multiple species in a community to answer fundamental questions about processes

underlying  community  diversification,  assembly,  and  macroecology  (Hickerson  et  al.,  2010;

Papadopoulou & Knowles, 2016). Comparative phylogeography can be effective in the context of

studies of community assembly because there are often large amounts of available data, along
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with well-developed analytic pipelines to analyze these data. For example, mitochondrial data

from > 100 neotropical avian taxon-pairs spanning several potential riverine and montane barriers

was used to evaluate whether co-coversification was driven more by dispersal over pre-existing

barriers than vicariance across historically emerging barriers (Smith et al. 2014). Next-generation

DNA sequencing technology has also opened up new avenues of inquiry, such as a recent study

that used genome-wide comparative phylogeographic data from a large number of desert lizard

species to investigate whether estimates of effective population sizes correlated with observed

abundances  across  species  from this  diverse  taxonomic group  (Grundler,  Singhal,  Cowan,  &

Rabosky, 2019). However, comparative phylogeographic methods typically lack a grounding in

ecological  theory,  making  it  difficult  to  connect  results  with  specific  predictions  of  species

interactions and coexistence. For instance, comparative phylogeographic methods have tended to

focus  on  general  models  of  shared  demographic  histories  (Burbrink  et  al.,  2016;  Satler  &

Carstens, 2017; Stone et al.,  2012), rather than models that are explicitly parameterized from

ecological community assembly theory (but see Bunnefeld, Hearn, Stone, & Lohse, 2018).

On the other hand, the expanding field of community genetics has made some recent

progress in this direction  (Hersch-Green, Turley, & Johnson, 2011), and there have been some

efforts  to  consider  intraspecific  genetic  polymorphism  within  a  dynamic  non-equilibrium

community assembly framework (Laroche, Jarne, Lamy, David, & Massol, 2015; Vellend et al.,

2014), within statistical models of macroecology (Pelletier & Carstens, 2018; Smith et al., 2017),

as well as characterizing the correlation between species diversity and the genetic diversity of a

focal taxon in ecological communities (the species-genetic diversity correlation; Lamy, Laroche,

David, Massol, & Jarne, 2017; Papadopoulou et al., 2011; Vellend, 2005) While positive species

genetic diversity correlations are often expected, negative correlations are predicted from theory

(Laroche  et  al.,  2015) and  have  been  observed  in  empirical  systems  (Marchesini,  Vernesi,

58

https://paperpile.com/c/tzL4ls/RRo6h
https://paperpile.com/c/tzL4ls/NTZlF
https://paperpile.com/c/tzL4ls/H4F6M+fvgoB+xQ60d
https://paperpile.com/c/tzL4ls/H4F6M+fvgoB+xQ60d
https://paperpile.com/c/tzL4ls/2u5MO+j0a4n
https://paperpile.com/c/tzL4ls/sQrwG+NTZlF
https://paperpile.com/c/tzL4ls/sQrwG+NTZlF
https://paperpile.com/c/tzL4ls/ZZddg
https://paperpile.com/c/tzL4ls/rdl0E
https://paperpile.com/c/tzL4ls/6xwQm+DC5VM+1oODM
https://paperpile.com/c/tzL4ls/6xwQm+DC5VM+1oODM
https://paperpile.com/c/tzL4ls/6xwQm+DC5VM+1oODM
https://paperpile.com/c/tzL4ls/LhS6a
https://paperpile.com/c/tzL4ls/LhS6a


Battisti, & Ficetola, 2018).

As  emerging  high-throughput  ecological  surveying  technologies  increasingly  include

ways  of  obtaining  genetic  information  across  entire  local  communities  (Deiner  et  al.  2017,

Krehenwinkel  et  al.  2018;  Krehenwinkel  et  al.  2019a;  Krehenwinkel  et  al.  2019b),  these

additional  axes  of  biodiversity  information  can  potentially  improve  efforts  to  infer  the

fundamental  processes  underlying  community  assembly  and regional  patterns  of  biodiversity

(Vellend, 2010) across different spatial scales  (Overcast et al.,  2019a; Overcast et al.  2019b).

However, even as these high-throughput surveys are deployed across large number of sampling

plots with subsequent plans of following through as long term research studies (Lindenmayer et

al.,  2012),  most  of  the  range  of  any  particular  species  will  be  missed.  Therefore,  even  if

techniques such as sample size adequacy and bootstrapping (Anderson & Santana-Garcon, 2015;

DePatta Pillar, 1998) are used to quantify proper sampling regarding size and numbers of plots,

logistic  constraints  and  the  spatial  heterogeneity  underlying  any  changes  in  species-specific

attributes will complicate extrapolating aggregate biodiversity metrics into unsampled areas.

To  help  fulfill  the  extrapolative  potential  of  high-throughput  multi-dimensional

ecological survey data, we describe here a way to make predictions of various assemblage-level

biodiversity metrics across an unsampled or sparsely sampled landscape from small numbers of

observed plots. This is accomplished using supervised machine learning the spatial relationships

between suites of abiotic environmental variables (Title & Bemmels, 2018) and Hill numbers for

local distributions of both species abundances and genetic diversities  (Chao et al., 2014). This

method is conceptually similar to gradient forests (Ellis et al, 2012), which have been previously

used to identify environmental predictors that correlate with community composition turnover, or

with turnover of genetic variation within species (Fitzpatrick & Keller, 2015). Here we unify both

these approaches to make predictions of genetic turnover at the scale of the entire community. We
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demonstrate this on regional-scale sampling of decapod crustacean communities from across the

Coral Triangle. After describing the observed spatial patterns of local distributions of abundance

and  genetic  diversities,  and  comparing  sampled  areas  using  dissimilarity  metrics,  we

subsequently use the multi-dimensional data to fit different ecological assembly models before

using our method to make spatial predictions into unsampled areas across the landscape.

Predicting community structure across the landscape - The Coral Triangle is a global

biodiversity hotspot, yet little is known about the spatial and taxonomic distribution of the vast

majority  of  macroinvertebrate  diversity  (Plaisance,  Caley,  Brainard,  &  Knowlton,  2011;

Plaisance et al., 2009). Previous work has shown that there is no relationship between abundance

and species co-occurrence, and no evidence for covariation of species densities (Gotelli & Abele,

1983). Thus, it  remains to be discovered whether abundance and genetic diversity scale with

environment or whether they are decoupled in this system. Additionally, we do not know how or

whether extreme hydrological  regimes contribute to or impact  community structure.  Here we

apply our new ML method to a sample of community-scale abundance and genetic data from

Coral  Triangle  decapod  communities  to  untangle  the  relationship  between  environment  and

community abundance and genetic diversity structure, and to make predictions for such data axes

across the entire region.

Mean absolute error on predictions of abundance and genetic diversity Hill numbers of

held out samples during leave-one-out cross-validation were quite low, indicating our ML model

identified some signal in the data associated with environmental variation, even given such a

small  sample  size.  As  environmental  and  geophysical  characteristics  of  the  region  are  quite

dynamic,  abundance  and  genetic  diversity  of  decapod  communities  are  distributed

heterogeneously across space, yet are largely correlated with each other, with notable exceptions.

Overall,  variables that  negatively correlated with proximity to  deep water  were the  strongest
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drivers of increased abundance and genetic diversity evenness, including reduced annual variance

in sea surface temperature, increased sea surface salinity, and increased nutrient concentrations.

We found a strong signal of increased evenness for both abundance and genetic diversity in the

Java Sea and Makassar strait, potentially indicating an environmental buffering effect in regions

proximal to the Sunda Shelf, and edge effects in peripheral regions, for example in the eastern

region of the Banda Sea or the Mentawai Archipelago to the west.

Hill numbers for genetics and abundance - Our results demonstrate several striking

findings. First, genetic diversity is more evenly distributed within ecological communities than is

abundance.  This  finding  is  in  line  with  simulations  of  local  ecological  communities  from

Overcast et al. (2019b) showing greater variance in abundances over time. This highlights the fact

that abundance and genetic diversity accumulate over different timescales, and that these axes of

data  contain orthogonal  information about  the  history of  accumulation of  biodiversity  within

ecological communities. The distributions of abundance and genetic diversity are broadly similar

among sites. However, Aceh provides a striking and interesting counterexample. The abundance

distribution within this community demonstrates strong dominance, with qD eroding precipitously

with increasing q values, yet the distribution of genetic variation remains much more even, which

is in  line  with our knowledge that  Aceh has been recently invaded by one species which is

dominating  local  community  abundance  (C.  Meyer,  personal  communication).  This  finding

demonstrates the power of examining multiple dimensions of biodiversity simultaneously.

The abundance genetic diversity correlation - If abundance and genetic diversity were

partitioned in a linear fashion then we would expect all species within a site to fall on or close to

the identity line in a plot of AGDC. Likewise, if abundance and genetic diversity were partitioned

randomly then we would expect a fairly uniform scatterplot in AGDC space. However, what we

observe in the decapod crustacean data is  quite unique and distinct  from either of these null
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expectations. For Coral Triangle decapod communities we observe that most species are rare (5%

of  proportional  abundance)  and have  proportionally  low (<  5%)  genetic  diversity  (Fig.  3.4).

Species with more than 10% of proportional abundance tended to constitute less than 10% of

proportional genetic diversity, and species with more than 10% of genetic diversity tended to

constitute less than 10% of abundance. This is in line with theory and recent findings (Overcast et

al 2019a; Overcast et al 2019b) which propose that rare species can obtain a complex abundance

history, occupying the landscape for enough time to amass considerable genetic variation, yet

remaining proportionally  rare,  and that  abundant  species  may have only recently entered the

community  and risen  to  large numbers  by chance,  without  having time to accumulate  much

genetic variation.

Estimation of community neutrality and proximity to turnover equilibrium - Model

classification cross-validation has previously shown that neutral and non-neutral assembly model

classes  can  be  readily  identified  using  genetic  and  abundance  data  (Overcast  et  al.  2019b),

however reliably distinguishing between competition and filtering models requires information

about species traits, which are presently unavailable for these decapod crustacean communities at

this time. However, the strong estimation of neutrality for the eastern sites (Manado, RajaAmpat,

Solor), while the rest are more equivocal is a very tantalizing outcome. Additionally, the finding

of a low estimated Λ for Aceh may not be surprising, given what we know about its invasion

history,  and given the fact  that  MESS inference can not presently account for disturbance in

estimation  of  Λ.  In  other  words,  it  is  difficult  to  distinguish  between  a  scenario  where  a

community has not naturally obtained equilibrium and one which has obtained equilibrium and

then undergone a recent disturbance. Additionally, in general, patterns of estimated values of the

MESS m and ν parameters were broadly similar across sites, with ν values much smaller than m,

indicating  a  stronger  contribution  of  dispersal  than  speciation  to  the  structuring  of  the
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communities.

Future directions - Taking into account the strict environmental tolerances of the coral

host, prediction of decapod crustacean community diversity may be improved by increasing the

resolution of spatial environmental and geophysical data along a number of axes. For example,

constructing geomorphons from bathymetric data can capture more robust information about the

shape of the sea floor, beyond simple aspect and slope  (Jasiewicz & Stepinski, 2013). Higher

resolution bathymetric data can also be used to increase the resolution of our current biotic and

abiotic  data  layers  through  an  interpolation  procedure  (e.g.  ANUSPLIN;  Hutchinson,  1998).

Whereas in this study we only consider linear geographic distance, it may be critical to more

explicitly model connectivity among sites by accounting for the regional hydrological regimes

(Monismith, 2006; Werner, Cowen, & Paris, 2007). Finally, targeting undersampled regions of

environmental space for future collecting efforts (e.g. the western Riau Archipelago) will allow

for both improvement and validation of the model.

Our method will easily generalize to any system where community-scale abundance and

genetic data are being gathered (Likens & Lindenmayer, 2018; Lindenmayer et al., 2012; Reinke,

Miller, & Janzen, 2019). Indeed, terrestrial systems should be able to use our method, in concert

with higher-resolution spatial data, and the variety of remote sensing products now becoming

available, to make even more powerful predictions. Especially promising are intensive surveys

that  capitalize  on eDNA techniques  (Bálint  et  al.,  2018;  Taberlet  et  al.,  2012) within  which

population  genetic  information  can  be  gained  along  with  species  occurrence  and  abundance

information  (Adams et al., 2019; Deiner et al., 2017; Grummer et al., 2019) and even various

biodiversity metrics from historical communities (Epp, 2019). Genetic diversity at the scale of the

ecological community is a powerful axis of data which records the history of the community at a

population genetic  timescale,  the  investigation of which is  still  in its  infancy (Overcast  et  al
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2019a;  Overcast  et  al  2019b).  Here  we  contribute  to  the  continuing  investigation  by

demonstrating  how  the  spatial  partitioning  of  community-scale  genetic  variation  can  be

decomposed into environmental correlates and used to make predictions across the landscape.

Further  investigations  of  this  new  axis  of  data  will  continue  to  shed  new  light  on  how

communities assemble.
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Table 1.1 gimmeSAD model input parameters
Model parameters, the definition of each parameter, and the values explored in the simulation 
analyses. Identical parameter values were applied during analysis of the empirical Réunion spider
dataset. For the simulations, the sequence length and mutation rate (μ) were chosen to correspond
with values for these parameters that are typical for arthropod mitochondrial DNA datasets. 

Parameter Definition Values used in simulation 
experiments 

K Local community size ~ uniform(1000-10000)

c Probability an empty deme is replaced by a 
colonizing individual sampled from the 
metacommunity (colonization rate)

~ log-uniform(0.0001-0.01) 

μ Mutation rate .011 base-1 species-1 My-1 

σ Abundance scaling factor 100

L Simulated Sequence Length 570

Smeta Number of species in the metacommunity 1000

Ameta Abundances of species in the metacommunity ~ logseries(p=0.98)

n Number of genetically sampled individuals per 
species at local and metacommunities for 
coalescent simulations

10
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Table 1.2 gimmeSAD model response variables
Variable names, definitions, and the dimensions of each variable used in the framework.

Variable Definition Dimensions

Slocal Number of species in the local community (i.e. local 
richness)

Unbounded positive integer

Ai
j Time-dependent abundances on the island community Slocal ×  τ jmatrix

Ai
jσ=N i

j Time-dependent effective population sizes Slocal × τ jmatrix

Mi Post-colonization migrants Slocal vector

Ne Harmonic mean of Time-dependent effective 
population sizes

Slocal vector

T i
j Colonization time vector Slocal vector

Ameta Abundances of species in the metacommunity Smeta vector

Λ Fraction of equilibrium obtained Continuous [0, 1]

H' Shannon's index of diversity Continuous value > 0

† Effective Extinction rate Continuous [0, 1]

c' Effective colonization rate Continuous [0, 1]
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Table 1.3 gimmeSAD ABC model configurations
An overview of the five different model configurations explored, indicating summary statistics 
derived from available observed data (π, Dxy, and/or H') and the parameters to be estimated under
our ABC framework. These scenarios arise from various combinations of observed abundances 
(A), community-scale nucleotide diversity (I), and island-mainland divergence (M). The 
Shannon’s index (H') can be configured either as a summary statistic or as an estimated pseudo-
parameter, depending on whether densely sampled abundances are available for the community 
of interest. Other pseudo-parameters c , c ' , K , † , Λ) can be estimated under all ABC 
configurations.

Model Configuration Summary Statistic Vectors Estimated Pseudo-Parameters

M A H' c , c ' , K ,† , Λ

M I π c , c ' , K ,† ,H' and Λ

M AI π H' c , c ' , K ,† , Λ

M MI π Dxy c , c ' , K ,† ,H' andΛ

`M AMI π Dxy H' c , c ' , K ,† , Λ
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Table 3.1 Coral Triangle sampling site geographical coordinates
Sampling site names used throughout this study and exact location information provided in 
degrees latitude and longitude.

Site Latitude Longitude

Pemuteran -8.1159 114.62

Lembongan -8.66159 115.461

Aceh 5.51136 95.16113

RajaAmpat -0.59425 130.58079

Karimunjawa -5.80239 110.37389

BarangLompo -4.96478 119.28472

Solor -8.4945 123.0762

Lombok -8.73642 115.88083

Manado 1.60661 124.73667

Kalimantan 0.06514 117.55861
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Table 3.2 Hill numbers for abundance
Hill numbers 0 through 6 for abundance distributions for each of the ten Coral Triangle decapod 
crustacean communities.

Aceh
Barang
Lompo Kalimantan

Karimun
jawa Lembongan Lombok Manado Pemuteran

Raja
Ampat Solor

0 208 92 118 63 102 129 105 315 169 153

1 78 50 66 34 65 69 58 143 89 68

2 29 25 43 22 42 41 34 77 49 38

3 17 16 33 17 32 30 25 52 34 28

4 13 13 28 15 27 25 21 40 28 24

5 11 11 25 14 24 23 19 34 25 22

6 10 10 23 13 22 21 18 30 23 21
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Table 3.3 Hill numbers for genetic diversity
Hill numbers 0 through 6 for genetic diversity distributions for each of the ten Coral Triangle 
decapod crustacean communities.

Aceh
Barang
Lompo Kalimantan

Karimunj
awa Lembongan Lombok Manado Pemuteran

Raja
Ampat Solor

0 96 51 65 36 50 64 52 161 85 68

1 73 39 49 25 34 44 39 117 64 47

2 60 33 41 20 27 34 31 96 53 37

3 52 29 37 16 23 29 26 83 47 32

4 47 26 34 14 21 26 23 75 43 29

5 43 24 31 13 20 24 20 69 39 27

6 40 23 30 12 19 23 19 64 37 26
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Table 3.4 Hill numbers for abundance scaled by species richness per site
Hill numbers 1 through 6 scaled by species richness for abundance distributions for each of the 
ten Coral Triangle decapod crustacean communities.

Aceh
Barang
Lompo Kalimantan

Karimunja
wa Lembongan Lombok Manado Pemuteran

Raja
Ampat Solor

1 0.375 0.54 0.563 0.543 0.634 0.533 0.555 0.455 0.526 0.444

2 0.142 0.275 0.365 0.342 0.416 0.315 0.326 0.245 0.29 0.247

3 0.081 0.176 0.28 0.271 0.315 0.233 0.242 0.165 0.204 0.186

4 0.061 0.137 0.238 0.24 0.266 0.197 0.205 0.128 0.167 0.16

5 0.053 0.119 0.213 0.223 0.238 0.177 0.184 0.107 0.147 0.146

6 0.048 0.108 0.198 0.212 0.22 0.164 0.171 0.095 0.135 0.13
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Table 3.5 Hill numbers for genetic diversity scaled by species richness per site
Hill numbers 1 through 6 scaled by species richness for genetic diversity distributions for each of 
the ten Coral Triangle decapod crustacean communities.

Aceh
Barang
Lompo Kalimantan

Karimun
jawa Lembongan Lombok Manado Pemuteran

Raja
Ampat Solor

1 0.757 0.767 0.759 0.704 0.673 0.694 0.745 0.727 0.753 0.696

2 0.628 0.64 0.638 0.543 0.534 0.539 0.602 0.595 0.628 0.551

3 0.547 0.561 0.566 0.451 0.467 0.455 0.506 0.516 0.552 0.475

4 0.491 0.509 0.518 0.395 0.427 0.406 0.439 0.464 0.5 0.431

5 0.45 0.472 0.484 0.36 0.401 0.375 0.393 0.427 0.463 0.401

6 0.42 0.446 0.459 0.336 0.383 0.354 0.36 0.4 0.435 0.381
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Figure 1.1 2D-SGD and corresponding rank abundance at varying stages of community 
assembly
Panel 1) Summed aggregations of the 2D-SGD across 1x104 replicated simulations at varying 
stages of community assembly. All simulations were conducted with intermediate values of 
community size and colonization rate (K=5000, c=0.03). Each point in the plot is a joint 
frequency bin for values of local nucleotide diversity (π), and distribution of D) and absolute genetic divergence (Dxy). 
The color of each bin indicates the number of species it contains, with cooler colors signifying 
fewer species and warmer colors signifying more species. Panel 2) Corresponding rank 
abundance plots of the 1x104 simulated communities. Values of Λ depicted capture multiple 
stages of community assembly from early (0.05, 0.1), through middle (0.25, 0.5), to late (0.75, 1).
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Figure 1.2 Shannon's diversity index at varying stages of community assembly
Histograms of Shannon's diversity index (H') for four different community parameterizations 
including low and high colonization, and small and large community sizes. 1x104 independent 
simulations were performed for five Λ values for each parameter combination. Depicted are a) 
Low colonization rate, small community size; b) High colonization rate, small community size; c)
Low colonization rate, large community size; d) High colonization rate, large community size. A 
range of Λ values were used to capture multiple stages of community assembly from early (0.05, 
0.1), through middle (0.25, 0.5), to late (0.75, 1).
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Figure 1.3 ABC cross-validation for model parameters
100 ABC cross-validation replicates for comparison of true vs estimated model parameters using 
only the 1D-SGD as data (M I). The red line shows the linear least-squares regression between 
true and estimated values. Results are shown for estimating carrying capacity (K), colonization 
rate (c), fraction of equilibrium (Λ), effective colonization rate (c'), extinction rate (†), and 
Shannon's diversity index (H').
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Figure 1.4 ABC posterior estimates of colonization/extinction rates, H' and Λ
ABC posterior estimates of colonization and extinction rates, and H' and Λ for the spider 
community from the island of Réunion. (a) Using the 1D-SGD as the summary statistic vector (
M I), the mode estimate of H' was 1.816 (95% HPD: 1.171-2.822; red dashed lines). The true 
value of H' from the observed abundance data was 2.246 (red solid line). Posterior estimates of Λ 
using three different model configurations: (b) only H' as data (M A); (c) only the 1D-SGD as data
( M I); and (d) both H' and the 1D-SGD as data ( M AI). Posterior estimates of colonization rate 
and extinction rate using model M AI are depicted in panels (e) and (f), respectively. In all panels 
the red dashed lines indicate the 95% HPD, and the blue line illustrates the prior distribution.
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Figure 2.1  Conceptual diagram illustrating the three primary components of MESS
The metacommunity component (red) encompasses of a global phylogeny relating all species, 
along with species abundances and trait values evolved along the phylogeny. The local 
community component (black) involves a forward-time process during which a local community 

77



assembles by birth, death, immigration, and local speciation. The population genetic component 
(blue) generates  backward-time coalescent simulations per species which are parameterized 
contingent on the abundance history and colonization time generated by the forward-time 
component to approximate the accumulation of genetic diversity. Each box illustrates a sub-
component of the model, and indicates the parameter(s) which determine the behavior of each 
sub-component. Arrows between sub-components indicate information flow through the process.
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Figure 2.2 Effect of varying speciation rate and community assembly model on summary 
statistics
Species richness, rank abundance, rank genetic diversity, and rank trait values for 1000 
simulations generated under neutral (orange), competition (dark blue) and filtering (aqua) 
scenarios with time fixed at 500 generations. From top to bottom, rows of panels correspond to 
simulations with high (ν = 0.0001), low (ν = 0.00005) and no (ν = 0) speciation. In the left 
column of panels, kernel density plots indicate the distribution of richness across simulations. In 
the rank plots (right panels), thick lines indicate average rank values and shaded areas show plus 
and minus one standard deviation.
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Figure 2.3 Community summary statistics through time for neutral and non-neutral models
This plot depicts the temporal change in select summary statistics for the three focal community 
assembly models at three different speciation rates: No, Low, and High corresponding to ν = 0, 
0.0005, 0.005, respectively. Community assembly models depicted are neutral (orange), filtering 
(aqua), and competition (dark blue). Each subpanel shows the resultant summary statistic for 
1000 simulations equally spaced through time for each model class. Simulated values are 
depicted as points, and a least squares polynomial is fit to better illustrate the trajectory. The far 
left column of panels illustrate species richness on the y-axes (S). The y-axes of the remaining 
columns illustrate the Hill number of order 1 for abundance, genetic diversity, and trait values, 
respectively. 
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Figure 2.4 Machine learning classification error rates and confusion matrices
Top row) Random-forest misclassification error rates given different combinations of available 
data axes for varying sizes of local communities (J). Data axes used for each suite of simulations 
are indicated along the top of the figure. The x-axis indicates increasing sizes of J, from 500-
10,000 in regular intervals. The y-axis indicates probability of assembly model misclassification, 
averaged over 1000 simulations per model class for each J (i.e. lower values indicate more 
accurate classification). In the figure, orange shows neutral simulations, aqua shows filtering, and
dark blue shows competition. Solid lines indicate precision and dashed lines indicate recall. 
Bottom row) Confusion matrices depicting detailed model misclassification rates for data 
availability scenarios given J values between 9000 and 10,000. In these figures, values on the 
diagonals indicate the proportion of accurately classified simulations for each model class. Off-
diagonal values indicate misclassified simulations.

81



Figure 2.5 Machine learning cross-validation parameter estimation
1000 parameter estimation cross-validation (CV) replicates using neutral community assembly 
model simulations and summary statistics from all data axes. True parameter values are on the x-
axes and the corresponding point estimates are on the y-axes. A parameter that is well estimated 
will have CV results that fall on or around the identity line (depicted in red). Note that ecological 
strength has no impact on neutral simulations, which produces the poor CV performance in 
estimating this parameter.
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Figure 2.6 MESS empirical analysis
Empirical classification and parameter estimation of five local communities including snails, 
tropical trees, and island arthropods. Panel A) depicts machine learning classification 
probabilities for each empirical community for three focal community assembly models. The 
proportion of color within each bar represents the proportional predicted model class for 
neutrality (orange),  environmental filtering (aqua), and competition (dark blue). Panel B) depicts 
pairwise estimates of five different model parameters under the best classified model for each 
local community dataset. The value along each parameter axis is indicated by the position of the 
representative icon.
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Figure 3.1 Coral Triangle decapod community sampling localities
A digital elevation map of the Coral Triangle indicating the approximate location of the 10 
sampling sites. A gross indication of one of the primary hydrological regimes of the region (the 
Indonesian Throughflow) is highlighted with the yellow arrow. 
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Figure 3.2 Hill numbers for abundance and genetic diversity distributions
The first 6 positive Hill numbers as well as 0D (equal to species richness) for combined decapod 
crustacean community distributions of abundance (panel a) and genetic diversity (panel b) for 
each of the 10 Coral Triangle sampling sites. Hill numbers are expressed in terms of numbers of 
"effective species", which provide an indication of how evenly abundance and genetic diversity 
are distributed within communities at each sampling site. Panels c) and d) show the same data, 
but normalize the Hill numbers by the value of 0D to allow better comparison across sites.
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Figure 3.3 Pairwise abundance and genetic diversity turnover among sites
This figure depicts beta diversity as measured by Bray-Curtis dissimilarity (above the diagonal) 
and cosine distance (below the diagonal) for abundance distributions (panel a), and mean (above) 
and standard deviation (below) of absolute genetic divergence (Dxy; panel c). Pairwise Bray-
Curtis dissimilarities (identical to values from panels a & c) are plotted on the map of the region 
for abundance (panel b) and absolute genetic divergence (panel d). In all panels darker colors 
indicate higher compositional similarity and lighter colors indicate lower similarity. Note that 
dissimilarity scales for abundance (panels a & b) and absolute genetic divergence (panels c & d) 
are on different scales and therefore are not directly comparable.
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Figure 3.4 Abundance/genetic diversity correlations within sampling sites
This figure depicts the per species correlation between abundance and genetic diversity. Each 
point in the figure corresponds to one species, with points colored by sampling location. The 
values in the figure for both axes are scaled to proportional abundance and proportional genetic 
diversity. Least-squares regression lines are plotted for each site, and R2 values indicate the 
strength of the correlations.
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Figure 3.5 Principal component analysis of environmental space
MARSPEC and Bio-ORACLE variables projected into principal component (PC) space for the 
10 sampling sites (red points) and 500 random sites (blue points) sampled from within a bounding
box described by the sampling locations. The first two PCs are depicted, with PC1 (explained 
variance 23.42%)  on the x-axis and PC2 (explained variance 11.61%) on the y-axis. Arrows 
indicate loadings on each MARSPEC variable, with the length of the arrow corresponding to 
increasing proportions of loading weight.
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Figure 3.6 Principal component analysis of environmental data projected across the region
All MARSPEC and Bio-ORACLE variables are projected into environmental principal 
component (ePC) space, and then plotted across the landscape, which is masked to the known 
distribution of corals in the region. The color of each point on the map corresponds to the location
of the environment at that point within ePC space. Inset shows ~80,000 points sampled from the 
background of known coral occurrences, and colored according to their location in ePC space. 
Loadings are as in figure 5, but are removed here for clarity. Locations of each of the 10 
empirical sampling sites are also plotted in ePC space, indicated by the labeled black points. 
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Figure 3.7 Predicted community assembly model class and predicted abundance and genetic
diversity distributions projected across the landscape
The machine learning assembly model class prediction probabilities for each sampling site (panel 
a) with support for neutral (blue), filtering (orange), and competition (red) models. The fraction 
of the bar indicates the proportion of support for each model class. Panels b) and c) show the 
projected abundance (1D) and  genetic diversity (1GD) structure summarized as the first Hill 
number normalized by species richness. A machine learning algorithm was trained on 
environmental correlates with 1D and 1GD as the target variables. Each point in the figures show 
the predicted 1D and 1GD at 80,000 points sampled across the landscape and masked to the 
known distribution of corals in the region, using the machine learning algorithm trained from the 
10 sampled localities. Darker colors indicate higher values, and lighter colors indicate lower. The 
location and known 1D and 1GD of the 10 sampling locations are also indicated on the figure.
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Figure 3.8 Difference between predicted 1D and 1GD projected across the landscape
This figure illustrates the difference between predicted 1D and 1GD values for all reef sites 
throughout the Coral Triangle. The difference between 1D and 1GD for the sampled communities 
are also indicated. Here darker values indicate greater difference between 1D and 1GD, 
independent of magnitude, and lighter colors indicate more similarity. Because some species may
be present in a community and yet have no genetic diversity, the scaled values of 1GD will always
be smaller than those of 1D.
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