
Final Report

Investigating the Stability and Efficiency of ADO Modules in
a Web-based Manufacturing Control Interface

I. Introduction

Yuqiu You, Ph.D.
yu.you@morehead-st.edu

Department oflndustrial & Engineering Technology
Morehead State University

In today's new manufacturing environment, manufacturing enterprises are facing rapidly
changing situations. To be competitive, enterprises must adapt to changes and evolve to be
reactive so that changes become natural dynamic states rather than something forced onto the
enterprise [2]. This evolution requirement necessitates the need for enterprise integration with an
increasing emphasis on agility. The Manufacturing Engineering Laboratory (MEL) of the
National Institute of Standards and Technology (NIST), defines enterprise integration as
providing the right information, at the right place, at the right time, and updating the information
in real time to reflect the actual state of the enterprise operation [I]. The purpose of enterprise
integration is to be a tool for the enterprise operation supporting day-to-day decision making
across the entire operation. This tool links decision makers on all organizational levels to
relevant and real time information across the organizational boundaries [3]. The implementation
of enterprise integration requires explicit knowledge of both the information needed and created
by the different activities in the enterprise operation; requires information sharing systems and
integration platforms capable of handling information transaction across heterogeneous
environments; and also requires the up-date of the operational data as well as adapting to
environmental changes [4].

The management of complex value chains in manufacturing enterprises requires increased
integration of disparate plant control systems and other computerized enterprise processes [5].
However, the state of enterprise integration becomes rather confusing. On the one hand, the
need for enterprise integration solutions is intensified by the competitive environment and
market expectations. On the other, the solutions seem to compete with one another, focus on
particular issues, use conflicting terminology and do not provide any clues on their relations to
solutions on other issues. This dilemma is even more obvious on the interfacing between
manufacturing control functions and other enterprise functions for manufacturing enterprises [6].

The purpose of this study is to provide a modular and economic solution in implementing
manufacturing enterprise-control integration. To achieve the objective, a web-based module for
a Lab VIEW control station is established to interface between manufacturing control functions
and higher management level functions in a manufacturing enterprise. This web-based module
provides a generalized model for integration applications on enterprise-control system

1

integration. It is composed of three parts, Active Server Pages (ASP .NET) web forms,
Lab VIEW control applications, and a dynamic database. The mechanism for retrieving, storing,
and publishing real-time data among these three parts is the core method for building the module.
The dynamic database is to support real-time data management in the system. The method
solves the problem of communication between different applications and languages, and
provides a way of getting real-time data from Lab VIEW applications and publishing to web
services. The implementation of this module provides a template for enterprise-wide web
applications to communicate with Lab VIEW interfaced control and monitor processes in real
time. It is small in scale, but its module function adds flexibility, compatibility, and extendibility
for future development.

In order to evaluate the efficiency of the module, a single service model was established based
on the queuing network modeling. The service represents the system resource (CPU and
processor), and the customer represents the transactions processed in Lab VIEW application. The
existing system is the system running a Lab VIEW control application without a data collector.
The modified system is the system running a Lab VIEW control application with a data collector
integrated. A statistical technique, one-way ANOV A, is applied to provide answers to the
question - is there a significant difference on the CPU usage and the number of threads between
the existing system and the modified system.

II. Methodology

2.1 Overview of the Integration Module

~-1 I Pr~~:;:· 1-'--LA_N --'--'2~li:::. --""'~ u ~N Collcclo• D
Operator
In erface

LAN

1 - 1ie
II Jc\f

iill l!li
I;. u el

Plant Floor Controllers

Web/Database Server

• Internet

sf \ __
II~ ll~

~,.. ..,-;;
Remote lntorfa.cos and

Web·based Applications

Figure 1: System Architecture

Figure 1 displays the architecture overview of the web-based enterprise integration module. The
modular system consists of three main components: a Lab VIEW-based process data collector, a
virtual server, and a web-based interface. The Lab VIEW-based process data collector is a set of
subVIs developed in Lab VIEW environment to collect real-time process data from Lab VIEW
control applications and send the collected data to specified database tables. The data collector is
developed by using Lab VIEW controls and Microsoft® ActiveX ®Data Objects (ADO) and it
can access and manipulate data in a database from Lab VIEW control applications. This data

2

collector has features of ease of use, high speed, low memory overhead, and reusability. It can be
utilized by various Lab VIEW applications for data collection activities with minor modifications.
The frequency of data updating is determined by the timer configuration of the While Loop in
Lab VIEW applications which is a configurable parameter [7].

The web server and the database server could be set up as two computer servers located in the
same LAN network, or two virtual servers established and configured in one computer. In this
study, the servers' capacity for client support is not the critical concern. Therefore, two virtual
servers are established and hosted by one computer. One is the database server, which hosts a
Microsoft Desktop Engine (MSDE) database and provides a management interface for direct
database control. The database server supports the communication charmels for the data
collector module running in the Lab VIEW control applications. The database exchanges
production information with manufacturing control systems in near real time through the
communication charmels. The other one is a virtual web server, which hosts ASP web pages
and supports remote accesses to the interface. The web server compiles dynamic web pages
according to different data requests received from clients, and interacts with clients.

The web-based interface consists of a series of ASP dynamic web pages. It is supported by the
MSDE database server and the Lab VIEW-based data collector module. Therefore, the web
based interface is not only a normal web site that can be accessed by authenticated users over the
Internet, but also a remote real-time system control panel and data analyzer that provides real
time process data and historical data analysis for the decision-making process in the
manufacturing enterprise. This interface is the end-user component of the web-based integration
module. It needs to be customized and re-configured for specific usage of the integration module.

The web-based interface in this integration module was developed in .NET environment. Due to
the time and resource limitation in this study, the web-based interface is built only to provide
critical features that are necessary for system performance testing. In the module's future
applications, the interface needs to be customized and enhanced to provide more functions and
features. The major features of the module are real-time data retrieving from the database server,
data analysis, real-time controlling and monitoring of the plant-floor process, and a live video of
the process. The main window of the interface is shown in Figure 2.

l!:lmmmw•wrMMt.MMlWf.M@IQl
Oa.bciO 0 0 0

. --- - -
l abc ,0.\ I 01 I

2 "" 0.2 02 -

' "" 0.3 " • "" 0.4 4 04 4

obo 0 ""
'" ""
"' 2 ""
"" '"
•bo 4 '"
~

Figure 2: The Main Interface Window

3

The main window of the web-based interface provides data tables to display the real-time
process data from the plant-floor process which can be updated every 250 milliseconds. This
window is developed to provide real-time data in a timely manner for decision makers in a
manufacturing enterprise. The simplicity of the interface will reduce the page load and access
time and save the processing cycle time of the server

The main window provides a button from which authorized personnel can navigate to the real
time Lab VIEW control panel of the plant-floor process as shown in Figure 3.

~"'··-~:.-.-.==""::1.:'~rij£J-.:-.. --- . ._ ··--:·~::-.:-.:--------- ---. ----- ~MJ
· - I C'ollr--tt" ufTedmolrii;r ... 1

t \\"c1 Process Tr:Uncr

..!.l- ---

Figure 3: Lab VIEW Real-time Control Panel

The control panel above is a virtual instrument programmed in Lab VIEW environment. As
shown above, a wet process control station with tanks, valves, and sensors is built to simulate an
automatic manufacturing process in this study. Controls and indicators on the interface provide a
way for users to interact with the control process. A video clip is integrated into the interface for
users to monitor the real process through an Internet camera. Two waveform graphics provide
history data tracking of temperature and incoming pressure of each tank. The current value of
tank levels, temperatures, and incoming flow rates for tanks are also shown on the interface by
digital indicators.

2.2 Construction of the Data Collector

The construction of the data collector includes four components: the Open Database
Connectivity (ODBC) standard, the structured query language (SQL) for command statements,
the OLE DB standard for lower-level database access, and the ActiveX data objects (ADO).

The data collector complies with the ODBC standard, so that it can communicate with all
OD BC-supported database applications. The data collector module in Lab VIEW environment
calls the Microsoft Application Programming Interface (API) for ODBC. ODBC then
communicates with a database's specific driver that translates the call to the database's low level
language. The data collector module is compatible with any database providing an ODBC driver
that translates the ODBC calls to the native database language [8]. ODBC API and drivers are
integrated with all ODBC supported database servers, so that no extra software or application
package is required to realize the communication.

4

The data collector adopts the Structured Query Language (SQL) as command statements for data
manipulation in data access. There are three pertinent classes in SQL statements, Data
definition/control language, Data manipulation language, and Queries. Data Definition/Control
Language (DDL/DCL) statements define and control the structure of the database.They also
define and grant access privileges to database users. Data Manipulation Language (DML)
statements operate on the data contents of database tables [8]. These statements are used to
insert rows of data into a table, update rows of data in a table, delete rows from a table, and
conduct database transactions. Queries are SQL SELECT statements that specify which tables
and rows are retrieved from the database.

OLE DB is an API that allows for lower-level database access from a compiler. There are three
types of COM components for OLE DB, OLE DB Data Providers, OLE DB Consumers, and
OLE DB Service Providers [9]. OLE DB Data Providers are data source-specific software layers
that are responsible for accessing and exposing data. OLE DB Consumers are data-centric
applications, components, or tools that use data through the OLE DB interfaces. OLE DB
Service Providers are optional components that implement standard services to extend the
functionality of data providers. The Lab VIEW-based data collector module uses MDAC as data
providers, which means MDAC needs to be installed for the data collector to function properly.
All data access in the data collector occurs through an OLE DB provider.

ADO is an ActiveX wrapper to OLEDB so that any programming language or tool that supports
COM can use the OLE DB technology through ADO [IO]. The Lab VIEW-based data collector
consists of ADO objects through invoke and Property Nodes. The object model of ADO in this
data collector was made up of three main COM objects, Connection, Command, and Recordset.
A Connection object represents a unique session with a data source. A Command object can be
used to query a database and return records in a Recordset object, to execute a bulk operation, or
to manipulate the structure of a database. Recordset object represents the entire set of records
from a base table or the results of an executed command.

The data collector module is integrated into Lab VIEW applications as sub VIs which can be
called by the primary VI for database communication functions. According to the ADO
hierarchical structure used, the data collector module has four groups of sub VIs. Each of the
groups represents one type of object applied in ADO database communication method. The four
groups are the Connection Object Vls, the Command Object VIs, the Recordset Object VIs, and
the SQL Statement VI. The advantage of creating these four groups of sub VIs in the names of
ADO objects is to provide a simple and understandable structure of the subVIs for easier
modular integration in Lab VIEW applications. Three sub VIs are created in the Connection
group, the ADO Create Connection VI, the ADO Open Connection VI, and the ADO Close
Connection VI. VIs in this Connection group can be used to create, open, or close a connection
with a specified ADO object which is used for a database communication. Three sub Vls are
created in the Command group, the ADO Create Command VI, the ADO Execute Command VI,
and the ADO Set Command Text VI. The sub VIs in this Command group can be used to
initialize a SQL command, set the SQL command statement, configure the SQL command, and
execute the SQL command on the specified database. Three sub VIs are created in the Recordset
group: the ADO Create Recordset VI, the ADO Open Recordset VI, and the ADO Close

5

Recordset VI. The Recordset object represents the entire set of records from a base table or the
results of an executed command.

2.3 The Database Server and the Web-based Interface

The most critical feature of the web-based interface is the real-time communication with the
MSDE database server. The web-based interface is developed in ASP.NET enviromnent.
ASP.NET provides a platform for web application development. Due to the complex methods
and procedures required by dynamic web applications, coding is still an important and necessary
tool for ASP.NET programming. In the programming process of the web-based interface, two
steps are applied, logic design and coding. In the interface, the object used to contain the
retrieved data from the database server is DataGrid, which is a data bound list control that
displays the items from data source in a table. The procedure logic used to build the methods
and events to enable the dynamic communication between the DataGrid control and the database
follows the pattern in Figure 4.

Create Sq/Connection
Component

Create SqlDataAdapter

Build Datasets

Fill Datasets from
Sq/DataAdapter

Bind Datasets to DataGrid

Figure 4: Procedure Logic for DataGrid Control

This procedure logic uses the method of SQL statements to communicate with the MSDE
database server. First, a Sqlconnection component is built to establish the connection channel by
specifying the connection string in VB (Visual Basic) coding. Then a SqlDataAdapter object is
called and configured. The DataAdapter supplies the methods and properties to connect to a
database, retrieve data, and populate the Dataset with that data. The code begins with the
component initialization by defining the class namespace that will used in this program. Then
each object that will be used must be declared, such as SqlConnection, SqlCommand,
Sq!DataAdapter, DataSet, and so on. The most important part in coding is building the events
that realize the procedures and methods.

6

2.4 Testing and Analysis

In this study, a queuing network model is established to analyze the effect of this integrated data
collector on the existing computer system, the control server. A statistical method, one-way
ANOV A, is applied to evaluate the effect on the system.

By applying a queuing network modeling method, a single service model is established. The
service represents the system resource (CPU and memory), and the customer represents the
transactions processed in Lab VIEW application. The existing system is the system running a
Lab VIEW control application without a data collector. The modified system is the system
running a LabVIEW control application with a data collector integrated [11]. A statistical
technique, one-way ANOVA, is applied to test ifthere is a significant difference on the CPU
usage and the number of threads between the existing system and the modified system. If the
significant difference exists between the evaluation means, the execution of the data collector
does have a significant effect on the existing system. Therefore, the development of the module
does not meet the requirement of the study. If there is no significant difference, the execution of
the data collector does not increase the system processing load significantly. Therefore, the data
collector was verified to be an efficient module for the integration of data collection processes.

In this study, ANOV A test has been conducted on 40 pairs of data sampled randomly- twenty
pairs of CPU usage (percentage data) and twenty pairs of the thread number sampled
respectively from the existing system and the modified system.

H0 :s; =si
Null Hypothesis 1: Mean difference between the CPU Usages on the existing system and the
modified system is equal to zero. Any observed differences can be attributed to chance
(sampling error) alone.

Null Hypothesis 2: Mean difference between the number of threads on the existing system and
the modified system is equal to zero. Any observed differences can be attributed to chance
(sampling error) alone.

HA:s;;'si
Alternative Hypothesis 1: The CPU Usage means on the existing system and the modified
system are significantly different. The observed differences can not be attributed to chance
(sampling error) alone.

Alternative Hypothesis 2: The means of thread numbers on the existing system and the modified
system are significantly different. The observed differences can not be attributed to chance
(sampling error) alone.

In this study, the population is all the system performance measurements, including CPU usage
and the number of threads that can be measured by the Windows Task Manager on the existing
system and the modified system. From the population, 40 pairs of data are sampled randomly.
Twenty pairs of CPU usage (percentage data) are sampled from the existing system and the
modified system. Twenty pairs of the thread number are sampled from the existing system and

7

the modified system. The data is read randomly during the system operation. The entire data
sampling process is arranged in I 0 days at different time schedules, so that the data in various
networking usage situations could be included into the samples. In order to maintain the
consistence of operating environments between the existing system and the modified system, the
data samplings from two systems are paired together. One data sampling from the existing
system is closely followed by one data sampling from the modified system. Therefore, the
variance caused by chance errors could be eliminated.

Table I. ANOVA Test Results on CPU Usage

ANOVA

CPU

Sum of
Squares df Mean Square

Between Groups 24.025 1 24.025
Within Groups 1491.350 38 39.246
Total 1515.375 39

F Siq.
.612 .439

Table I is the ANOVA test results calculated by SPSS software. The total variability of the CPU
Usage variable is 1515.375. It is partitioned into the SS due to within-group variability and
variability due to differences between means. In this test, the SS due to within-group variability
is 1491.35, 98.4% of the total SS. And the variability due to differences between means is
24.025, only 1.6% of the total SS. Therefore, the variability due to differences between means is
not significant. This analysis is also verified by the F test. By using dfl =!, df2=38, the critical F
value of this test is 4.098. The F value in this ANOVA test is 0.612, which is less than the
critical F value. The test is not statistically significant. It can be concluded that the null
hypothesis about the CPU Usage variable is accepted.

Table 2. ANOVA Test Results on the Number of Threads

ANOVA

THREADS

Sum of
Squares df Mean Square

Between Groups 46.225 1 46.225
Within Groups 4585.550 38 120.672
Total 4631.775 39

F Sia.
.383 .540

Table 2 is the ANOVA test results on the number of threads calculated by SPSS software. The
total variability of the thread number variable is 4631.775. It is partitioned into the SS due to
within-group variability and variability due to differences between means. In this test, the SS
due to within-group variability is 4585.55, 99% of the total SS. And the variability due to
differences between means is 46.225, only 1 % of the total SS. Therefore, the variability due to
differences between means is not significant. This is also verified by the F test. By using dfl=l,
df2=38, the critical F value of this test is 4.098. The F value in this ANOVA test is 0.383, which

8

is less than the critical F value. The test is not statistically significant. It can be concluded that
the null hypothesis about the number of threads is accepted. The evaluation means in the
existing system and the modified system are equal.

As the one-way ANOV A test is conducted based on 40 sampled CPU Usage variables and 40
sampled thread numbers, it could be concluded that the evaluation means from the existing
system and the modified system are equal. Any observed differences could be attributed to
chance (sampling error) alone. It is verified that in the single service model, the system
modification does not have significant effect on the existing system.

III.Findings and Recommendations

3.1 Findings

As demonstrated above, the enterprise-control system integration is the field in which the most
complicated and confusing problems exist. This is caused by the variety of manufacturing
control devices and the various formats of manufacturing data. This study is focused on the
process of dealing with manufacturing information data based on Lab VIEW related control
processes. The system developed in this study eliminates the need for relying on third-party
software to provide the communication channel between the Lab VIEW controller and the SQL
relational database. Instead, a modular Lab VIEW-based data collector is integrated into the
Lab VIEW control application. The modular data collector resides in the Lab VIEW environment
as programmable subVIs. The subVIs can be accessed and used by any Lab VIEW applications
after they are saved in the Lab VIEW Dynamic Link Library (DLL). The data collector can be
used as a component of modular integration systems in any Lab VIEW-based manufacturing
process. The advantages of the data collector are described below.

First, the data collector is small in size, occupying less than 300 kilobytes memory. Compared
with the size of any software supporting the database communication with Megabytes, it
occupies very small memory in the control server. When the data collector is running inside the
Lab VIEW application, the machine is not in the multi-tasking status with several applications
running together. All the data processing and function realization is executed within a single
control application. The ANOV A test results show that the data collector does not make
significant change on the existing computer system. Second, the data collector provides an
economic way to implement integration solutions. This is also a critical factor when small-to
medium-sized manufacturing companies consider their investment budget on system integration
implementation. The same data collector may not adapt to various cases in the real industry
world. However, the theories and principles applied in the development process can be used by
manufacturing engineers and IT engineers to develop similar modular application in various
control processes. For example, the flexible usage of ADO objects, the combination of .NET
functions and ActiveX function, and the encapsulation of SQL statements, can be applied in the
communication of control applications with relational databases, not limited to Lab VIEW-based
applications.

Last, the whole integration system is simplified by adopting modular components. It is easier to
update and maintain the operation of the system, and deal with the product obsolescence.

9

ActiveX objects, ADO objects, and SQL statements are basic programming components for any
web-based applications. The revision of the web-based interface, the update of the relational
database, or the change of the manufacturing control process can be achieved by modification of
each module.

3.2 Recommendations for Future Studies

The engineering- and business-driven need for manufacturing process data has led to the
development of manufacturing information systems, with the focus on the relational database.
This study has proposed an approach for developing a modular integration system to deal with
manufacturing data process. This approach has technically improved the flexibility and
efficiency of the communication between plant-floor control process and the database server,
with reduced cost. However, further studies are recommended to get the statistical data about the
implementation of enterprise-control integration solutions in small-to-medium-sized
manufacturing companies, compare the efficiencies between the modular system and a
conventional system, and to evaluate the feasibility of the modular integration system.

Collecting and analyzing real-time data from the plant floor plays a critical role in meeting the
market's demand for consistent product quality and improving time to market for a
manufacturer's products. However, for quite a few small-to-medium-sized manufacturing
companies, complete implementation of the manufacturing information system is still above their
short-term plan, or even long-term plan. If they still have stand-alone workstations running on
the plant floor as isolated information islands and old version PLC controllers without advanced
data integration module, the implementation becomes even more expensive. The follow-up
studies will aim at testing the integration module in a manufacturing company with data analysis,
and providing a more mature solution for control system integration for Lab VIEW-based
systems with economic and technical adjustment.

A survey is recommended to be conducted on manufacturing companies for their current
situation of manufacturing information systems. The criteria for selected manufacturing
companies should include but not be limited to: (I) small-to-medium-sized; (2) produce different
types of products; (3) have different production types; and (4) located in different geographic
areas. Items listed in the survey questionnaires may include but not be limited to: (1) current
facilities used in manufacturing data processing, including both hardware equipment and
software applications; (2) current integration levels; (3) short-term strategic plan in improving
the manufacturing information system; (4) long-term strategic plan in improving the
manufacturing information system; and (5) personnel training plans and involvement. Based on
the result of the survey, statistic analysis should be taken to figure out the current situation of the
manufacturing information systems in these companies and also the problems.

After the survey is conducted, establish possible collaboration relationship with one or more
companies. With contributions from experienced control engineers and manufacturing engineers
in the companies, an experimental study needs to be conducted to compare the efficiencies
between the modular integration system and a conventional system for data collection. Both the
modular integration system, the system with the modular data collector, and a conventional
system, the system with third-party software for data collection, are implemented into the same

10

control process in the real-world manufacturing environment. Measurements including database
response time, system resource usage, and database updating cycle, are sampled from both
systems during the operation periods. Specified software or hardware may be required for the
accurate data sampling. ANOV A or t-test can be applied to compare the statistical significance
between the modular integration system and the conventional system. Therefore, the efficiency
improvement of the modular data collector can be further verified and tested in the real-world
manufacturing environment.

Technical enhancements need to be applied to the modular integration system. This step is also
needed to be conducted with experienced control engineers, manufacturing engineers and IT
staff from real world environments that are willing to support the project. The enhanced system
can be implemented to improve the manufacturing information system in the company. Tests
need to be conducted to evaluate the system performance based on measurements from the real
control process on the plant floor.

In conclusion, improving the implementation of manufacturing system integration for business
driven and engineering-driven purposes requires the efforts from cross-domain personnel in both
academia and industry.

IV. References

[l] Manufacturing Engineering Laboratory (2001). Issues in enterprise integration. retrieved
from MEL website January 23, 2005. http://mel.nist.gov

[2] Chang, T. C., Wysk, R., and Wang, H.P. (2005). Computer-Aided Manufacturing. Third
Edition. Prentice Hall, Upper Saddle River, NJ 07458.

[3] Francois, V. (1996), Enterprise Modeling and Integration: Principles and Applications,
Chapman & Hall.

[4] Weston, R.H. (1998), "The importance of holistic model driven manufacturing systems"
Proceedings of the Institution of Mechanical Engineers, Part B, Journal of Manufacturing
Engineering, Vol. 212, No.1, pp. 29-44.

[5] Mick, R. (2003). Building Agility into the Manufacturing Value Chain. ARC White Paper.
ARC Advisory Group.

[6] Dewar, I. (1999). Real-time optimization equals on-line performance improvements and
off-line benefits. ISA TECH 1999.

[7] Getting Started With NI Motion Control (2003). National Instrument.

[8] Foggon, D., & Maharry, D. (2004). Beginning ASP.NET 1.1 Databases. Apress.

[9] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design Patterns: Elements of
reusable object-oriented software. Addison-Wesley.

11

••

[IO] Grundgeiger, D. (200I). Programming Visual Basic .NET. O'Reilly.

[I I] Whitten, N. (1995). Managing Software Development Projects. Second Edition. Jolm
Wiley & Sons, Inc.

[I2] Gavalas, D., Ghanbari, M., O'Mahony, M., and Greenwood, D. (2000). Enabling mobile
agent teclmology for intelligent bulk management data filtering. In Proc. OfNOMS'OO,
Honolulu, HI, April I 1-13, pp. 865-876. IEEE Press, Piscataway, NJ.

[13] Gunasekaran, A. (200I). Agile Manufacturing: the 21st Century Competitive Strategy.
Elsevier.

[I4] Hua, J., & Ganz, A. (2003). A New Model for Remote Laboratory Education Based on
Next Generation Interactive Teclmologies. Frontiers in Education Conference.

[I5] Wojcik, M. & Ranganathan, G. (2000). Using Ethernet and web for process monitoring
andcontrol. ISA TECH 2000.

12

