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ABSTRACT 

Brown, Austin R. A Cumulative Summation Nonparametric Multiple Stream Process 

Control Chart Based on the Extended Median Test. Published Doctor of 

Philosophy dissertation, University of Northern Colorado, 2019.  

 In statistical process control applications, situations may arise in which several 

presumably identical processes or “streams” are desired to be simultaneously monitored. 

Such a monitoring scenario is commonly referred to as a “Multiple Stream Process 

(MSP).” Charts which have been designed to monitor an MSP typically monitor the 

means of the streams through collecting samples from each stream and calculating some 

function of the sample means. The resulting statistic is then iteratively compared to 

control limits to determine if a single stream or subset of streams may have shifted away 

from a specified target value. Traditional MSP charting techniques rely on the 

assumption of normality, which may or may not be met in practice. Thus, a cumulative 

summation nonparametric MSP control charting technique, based on a modification of 

the classical extended median test was developed and is referred to as the 

“Nonparametric Extended Median Test – Cumulative Summation (NEMT-CUSUM) 

chart.” The development of control limits and estimation of statistical power are given. 

Through simulation, the NEMT-CUSUM is shown to perform consistently in the 

presence of normal and non-normal data. Moreover, it is shown to perform more 

optimally than parametric alternatives in certain circumstances. Results suggest the 

NEMT-CUSUM may be an attractive alternative to existing parametric MSP monitoring 
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techniques in the case when distributional assumptions about the underlying monitored 

process cannot reasonably be made.  
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CHAPTER I 

INTRODUCTION 

Over the course of the 20
th

 century and into the 21
st
 century, statistical process 

control (SPC) and quality management and their myriad of benefits have become more 

highly emphasized in many types of organizations (“History of Total Quality 

Management,” n.d.). From Henry Ford’s assembly lines in the early 1900s, to Walter 

Shewhart’s formal development of a control chart at Bell Laboratories in 1924, to the 

founding of groups focused upon quality in more modern times, practitioners and 

academics over the last century have worked together to identify sources of variability in 

business processes in order to provide quality products and services to customers 

(Montgomery, 2013). The principle of using statistical information to improve the quality 

of processes and products was brought to notoriety by Dr. W. Edwards Deming who, in 

the 1950s, gave a series of lectures to Japanese executives who were attempting to 

economically recover and rebuild from World War II (Delavigne & Robertson, 1994). 

Deming’s principles ran contrary to the classical and, at the time, ubiquitous management 

style brought to prominence during the Industrial Revolution by Fredrick Taylor 

(Delavigne & Robertson, 1994). In Taylor’s view, processes and procedures could be 

optimized such that the only source of variability is user error, thus implying processes 

are entirely deterministic. Deming’s insight was that processes have two sources of 

variability, one due to assignable cause and one due to random chance, as is the case in 

traditional statistical hypothesis testing (Delavigne & Robertson, 1994). Therefore, if 
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assignable causes can be quickly identified and corrected, overall quality would improve. 

That is, as variability decreases, quality increases (Montgomery, 2013). Deming informed 

the Japanese executives that if they would implement his quality and management 

philosophy of continuous monitoring and improvement through utilization of statistical 

techniques, that they would “capture the world,” (Delavigne & Robertson, 1994; Neave, 

1990). The executives heeded his advice and grew companies such as Mitsubishi and 

Toyota into the large, powerful, and profitable modern global organizations they are 

today (Delavigne & Robertson, 1994).  

While not as widely adopted as early, American companies began implementing 

statistical techniques for ensuring quality during and after World War II, and the 

American Society for Quality (ASQ) was founded in 1946 (“History of Total Quality 

Management,” n.d.). However, it was not until nearly 40 years later that the Deming 

philosophy was even widely known in the United States when NBC famously aired a 

television documentary named, “If Japan Can…Why Can’t We?” (Walton, 1991). This 

documentary was followed closely by an article authored by Deming explaining the 

benefits of his methods (Deming, 1981). Business executives from across the country and 

globe became highly interested in these principles and further developed the field of 

quality management through concepts such as Motorola’s “Six Sigma” initiative, the 

founding of the International Organization for Standardization (ISO), and Lean 

Manufacturing (Montgomery, 2013).  Walton (1991) gave several anecdotes of American 

organizations implementing Deming’s philosophy and enjoying great successes.  

Some of the primary principles Deming presented to the executives in 1950s 

(referred to as Deming’s 14 Points) Japan and promoted for the remainder of his life are: 
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(1) The role of business is to innovate and improve; (2) All of the organization must fully 

and closely adhere to the philosophy of continuous improvement; (3) “Require statistical 

evidence of built-in quality;” (4) Do not only consider supplier price in awarding 

contracts; (5) Never cease in the improvement of all processes; (6) Continually train 

employees; (7) Ensure leadership empowers workers to take ownership of the work; (8) 

“Drive out fear” of asking questions or making improvement recommendations to 

leadership; (9) Remove departmental partitions to allow cross-organizational 

collaboration; (10) Eliminate managerial slogans and “exhortations;” (11) Do not set 

unrealistic, arbitrary quotas; (12) Provide workers with the encouragement to perform 

good work; (13) “Encourage Education;” (14) Top management commitment to the 

quality program (Neave, 1990; Walton, 1991). While much of the Deming method is 

rooted in a qualitative organizational paradigm shift, the concrete ways this shift occurs is 

through allowing empirical data, visualized as to aid in understanding, to drive decisions 

(Walton, 1991). Walton (1991) outlined seven “helpful charts” for this purpose: (1) the 

cause-and-effect diagram; (2) the flow chart; (3) the Pareto chart; (4) the runs or trend 

chart; (5) the histogram; (6) the scatterplot; and (7) the control chart. Of these charts, the 

control chart is of particular interest to statisticians.  

Statistical Process Control Charts 

The control chart is a popular tool in quality management as they have been 

shown to improve productivity, prevent the manufacturing of defective products, 

minimize the frequency of process adjustments, give “diagnostic information” about a 

process, and give information about the capability of a process (Montgomery, 2013). The 

general idea, originally developed by Walter Shewhart in Bell Laboratories in 1924, is to 
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determine if an observable process has substantially or significantly changed (Shewhart, 

1924). In his charting scheme, which bears his name, there are three main components: a 

specified mean target value, say 𝜇0, which the process ideally meets, and two control 

limits, one upper control limit (referred to as 𝑈𝐶𝐿) and one lower control limit (referred 

to as 𝐿𝐶𝐿). Future sample observations of size 𝑛, where 𝑛 ≥ 1, usually taken at equal 

time intervals, are compared to the 𝑈𝐶𝐿 and 𝐿𝐶𝐿  (Shewhart, 1924; Montgomery, 2013). 

When the process is performing as expected, referred to as an “in-control process,” future 

sample observations taken should deviate minimally from the target value 𝜇0. However, 

when a sample observation falls beyond either the 𝑈𝐶𝐿 or 𝐿𝐶𝐿, this signals to the process 

operator that the process mean may have deviated from 𝜇0. That is, evidence exists that 

the process may be “out-of-control,” and that an investigation to determine if an 

assignable cause for this possible shift can be found is warranted. The concept described 

here is referred to as a “charting scheme” or “charting technique.” The 𝑈𝐶𝐿, 𝐿𝐶𝐿, and 𝜇0 

are typically plotted as horizontal lines on a graph and the future sample observations are 

plotted against these values, typically from left to right with the rightmost observation 

being the most recently observed (Montgomery, 2013). The basic construction, plotting 

the deviations of empirical observations from its target value and comparing those 

deviations to a control limit or limits, is the foundation of all control charting techniques. 

The style of chart chosen depends upon what is desired to be monitored, the nature of the 

process being monitored, and the magnitude of deviation from target to be protected 

against (i.e., desired sensitivity to shifts from target), which is often quantified in terms of 

the process’ standard deviation, 𝜎.  
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The Shewhart-style chart can be used for variables, such as the 𝑋̅-chart, to directly 

monitor a process’ mean (Montgomery, 2013). It can also be used for the monitoring of 

attributes, such as the number of nonconformities, average number of nonconformities 

per unit inspected, or the fraction of units in a sample having some nonconformity 

(Montgomery, 2013). Moreover, the Shewhart-style chart can be used to monitor a 

process’ variability, such as the 𝑅-chart or the 𝑠-chart (Montgomery, 2013).   

However, there exist other many other charting techniques which can be used 

when the nature of the process does not lend itself well to the Shewhart-style chart, such 

as in the case when the sample size from the monitored process is 𝑛 = 1, or when the 

magnitude of the shift desired to protect against is small. In both cases, the Shewhart-

style chart is known to be ineffective (Montgomery, 2013). Page (1954) developed a 

control chart where cumulative summations of deviations from target, in both the positive 

and negative direction, of sequential observations are plotted against a control limit. This 

type of technique is referred to as a “CUSUM” (an acronym for “cumulative 

summation”) chart, is commonly used to monitor a process’ mean, and can be used when 

future samples are of size 𝑛 = 1 (Montgomery, 2013). The CUSUM method, unlike 

Shewhart-style charts, takes into consideration the entire sequence of observations rather 

than only the latest observation (Montgomery, 2013). Roberts (1959) developed a control 

chart based upon the geometric series. In his charting scheme, the current plotted point is 

the weighted mean of the current observation and the previous observations, which is 

plotted against an upper and lower control limit. This technique, referred to as the 

“Exponentially Weighted Moving Average (EWMA)” chart, is similar to the CUSUM 
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technique in that it considers the entire sequence of observations in addition to being 

effective when the sample size is 𝑛 = 1.  

The aforementioned charting techniques are univariate, that is, they monitor a 

single process. Multivariate charts, which jointly monitor multiple processes, have also 

been developed. These techniques are advantageous in the case when it is desired to 

simultaneously monitor several different processes with possibly differing target values 

as they take into consideration the correlation structure between the processes. In 1947, 

Harold Hotelling developed a multivariate analogue to the Shewhart 𝑋̅-chart referred to 

as Hotelling’s-𝑇2 chart (Montgomery, 2013). Lowry, Woodall, Champ, & Rigdon (1992) 

developed a multivariate extension of the EWMA chart. Pignatiello & Runger (1990) 

presented two multivariate extensions of the CUSUM charting technique. Bersimis, 

Psarakis, & Panaretos (2007) gave a comprehensive overview of modern multivariate 

control charting schemes. Woodall & Montgomery (2014) also discussed advances in 

multivariate control charting schemes as well as a variety of other schemes, including 

those designed for time-to-event data, autocorrelated data, and functional data.   

As is the case in many classical statistical models, many control charts are 

dependent upon the assumption of the underlying process following a normal 

distribution. While several charting schemes, including those mentioned previously, are 

robust to small departures from normality, extreme non-normality can lead to the 

deterioration of the performance of a particular charting technique (Montgomery, 2013). 

Montgomery (2013) outlines several studies which examine the effects of non-normality 

on various control charts. One issue, however, is that it is often difficult if not impossible 

to ascertain the distribution of a process, especially when the quality control program is 
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in its relative infancy. Because of this practical consideration, attention has been given to 

the creation of nonparametric control charting schemes (Chakraborti, Van Der Laan, & 

Bakir, 2001). Nonparametric statistical methods are not dependent upon the variables of 

interest following any particular distribution and are still valid even in the case when the 

measurement scale is less than interval (Conover, 1999). Bakir & Reynolds (1979) 

developed a CUSUM chart which utilizes the one sample nonparametric Wilcoxon 

Signed Rank Test. Amin, Reynolds, & Bakir (1995) proposed several control charts 

based on the one sample nonparametric sign test. Wang, Zhang, & Xiong (2017) 

developed a univariate CUSUM chart based on the Mann-Whitney test statistic.  

Statement of the Problem 

As mentioned, the type of control chart chosen for practical implementation 

should be related to the nature of what is to be monitored. For instance, there may be 

cases where there are several presumably identical processes with identical target values. 

Such processes are referred to as “multiple-stream” processes (MSP), and when in-

control, can be conceptualized as a one-way analysis of variance (ANOVA) model under 

the null hypothesis (Montgomery, 2013). Boyd (1950) initially proposed a Shewhart-style 

control charting scheme to monitor a MSP’s mean and variation by calculating the 

sample mean and range for each stream and taking the minimum and maximum as the 

plotting statistic. Mortell & Runger (1995) point out the inefficiency which can arise in 

Boyd’s chart and propose two charting schemes: one to monitor variability among the 

streams which uses a variant of the Shewhart-style 𝑋̅-chart, and one to monitor the 

variability of one stream with respect to the others using Shewhart, EWMA, and 

CUSUM-style frameworks to monitor the maximum range of all the stream sample 



8 
 

 
 

means at a given sample. Montgomery (2013) concludes that if all the streams are highly 

correlated, that only one stream needs to be monitored. Meneces, Olivera, Saccone & 

Tessore (2008) suggest utilizing a Shewhart chart for each stream as this technique is a 

more effective use of information. Vicentin, Silva, Piccirillo, Bueno & Oprime (2018) 

proposed considering an MSP as mixture of multiple related distributions, which come 

from the same parametric family, but may possibly have different parameters. The 

authors developed a Shewhart-style charting scheme for their proposed MSP 

conceptualization. Jirasettapong & Rojanarowan (2011) discussed several competing 

MSP charts and when their respective use is most appropriate. However, they conclude 

that there exists “no perfect MSP chart that is better than the others in all aspects,” 

(Jirasettapong & Rojanarowan, 2011). Additionally, since many of these charting 

schemes, and specifically those of Boyd, Mortell and Runger, and Meneces, use the 

Shewhart-style 𝑋̅-chart, their ability to quickly detect shifts from target may possibly 

deteriorate in the presence of non-normal data since normality is an assumption for the 

use of the 𝑋̅-chart (Montgomery, 2013).     

Purpose of the Study 

There are two primary purposes of this study. After the body of literature was 

reviewed for nonparametric control charts and for MSP control charts independently in 

Chapter II, this study assessed the performance via Monte Carlo simulation of the Boyd, 

Mortell and Runger, and Meneces MSP control charting techniques in non-normal data 

situations, such as light-tailed data, heavy-tailed data, and skewed data, to determine their 

in-control and out-of-control performance, as generally measured by the average number 

of samples required to detect a shift of a particular magnitude. The measure is referred to 
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as “Average Run Length (ARL)” and is denoted in the in-control case as “𝐴𝑅𝐿0,” and as 

“𝐴𝑅𝐿1,” in the out-of-control case (Montgomery, 2013). Second, this study developed 

and proposed a new nonparametric MSP control charting technique using the Extended 

Median Test (EMT) which uses the CUSUM framework. Its in-control and out-of-control 

performance is compared to the Boyd, Mortell and Runger, and Meneces MSP charting 

schemes in normal, light-tailed, heavy-tailed, and skewed data situations. In Chapter III, 

the mathematical foundations and recommended operation of this study’s proposed 

charting technique was given. The new chart is referred to as the “Nonparametric 

Extended Median Test CUSUM (NEMT-CUSUM)” chart.  

Research Questions  

The research questions guiding this study are as follows: 

Q1 What values of the parameter 𝛿 of the NEMT-CUSUM chart yield the 

commonly desired 𝐴𝑅𝐿0 values of 200, 370, and 500 which correspond to 

Type I error rates of 𝛼 = 0.005, 0.0027, and 0.002?  

 

Q2 For a specified value of 𝐴𝑅𝐿0, what is the statistical power yielded when a 

subset of the 𝐶 monitored streams has shifted away from target, 

considering different magnitude shifts, number of monitored streams, and 

sample sizes of the streams? 

  

Q3 How does the performance of the NEMT-CUSUM chart, in terms of 

𝐴𝑅𝐿1, compare to the performance of the Boyd, Mortell and Runger, and 

Meneces MSP charts in the presence of data coming from normal, light-

tailed, heavy-tailed, and skewed distributions when half of the monitored 

streams shift from the target median of magnitudes ranging from 0 to 3 in 

increments of 0.25 have occurred? 

 

Limitations of Study 

 As is the case in most all research, there exist limitations. It is important to clearly 

state these limitations for the sake of other researchers who may wish to replicate or 

expand upon these analyses as well as for practitioners who may wish to implement the 
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newly proposed techniques in a practical setting. One primary limitation is with respect to 

the 𝐴𝑅𝐿1 performance assessment in comparing the new charting scheme to existing 

charting schemes. As Monte Carlo computer simulations in the statistical software 

package R were used for the sake of time, this implies that the data used in analysis came 

from known, well-defined distributions. In practice, this may not necessarily be the case, 

and it may difficult to determine from what distribution observed data come. Because of 

this, results are only valid for the distributions used. Moreover, while 12 different shifts 

away from target will be considered for both 𝐴𝑅𝐿0 and 𝐴𝑅𝐿1 assessment, this analysis 

does not consider shifts of small increments or shifts of larger than 3𝜎, which may be 

desired to be known in practice. Third, as the NEMT-CUSUM relies upon an application 

of a 𝜒2 Goodness of Fit test under independent binomial sampling, its practical 

application for MSP monitoring is limited to the assumptions of that test. Specifically, it 

is assumed: (1) the streams are independent of each other; (2) under the null hypothesis, 

all streams have the same median; (3) the sample sizes taken from each stream are 

sufficiently large such that the asymptotic properties of the 𝜒2 test statistic can be used; 

and (3) each cell’s expectation must be ≥ 5 (Conover, 1999; Agresti, 2007). Fourth, it is 

also assumed that random samples taken between at each time point are independent of 

the samples taken at all other time points for a given stream. In a practical setting, 

autocorrelation may be present and may impact the performance of the proposed charting 

scheme. Fifth, it is also assumed that if chart operators do not have a specified target 

median value, 𝜇0, then they have a good estimate of what it is. In practice, this may not 

necessarily be the case.  
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 To summarize, the various existing statistical process control charts were 

designed to efficiently monitor a particular process exhibiting particular characteristics. 

Classically, these charts were designed to monitor a univariate process, such as a single 

product being manufactured on a single assembly line. However, sometimes the process 

desired to be monitored is comprised of several presumably identical processes, or 

“streams.” Such a process is referred to as a “Multiple Stream Process (MSP)” and 

charting techniques have been developed for this circumstance. However, existing MSP 

charting techniques depend on the underlying process following a normal distribution, 

which may or may not necessarily be the case in practice. A comprehensive review of the 

literature uncovered an apparent gap where, to the best of the author’s knowledge, no 

chart had been developed for monitoring an MSP which was also nonparametric in 

nature. Thus, the purpose of this dissertation was to fill this gap by developing a 

nonparametric MSP chart.  
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CHAPTER II 

LITERATURE REVIEW 

In this chapter, a review of relevant existing literature regarding univariate 

charting techniques is given. Specifically, this chapter reviews traditional parametric 

charting techniques used for detecting shifts in a process’ mean, including the Shewhart 

𝑋̅-chart, EWMA and CUSUM charts, as well as MSP charts. Additionally, a review of 

nonparametric statistical tests for comparing location parameters of multiple independent 

groups and nonparametric charting schemes are also given. 

Review of Univariate Control Charts 

As mentioned in Chapter I, the Shewhart-style control chart, first developed in 

1924, is a commonly used technique to monitor a process’ mean (Shewhart, 1924; 

Montgomery, 2013). When the Shewhart-style chart is used to monitor a process’ mean, 

it is referred to as the “𝑋̅-chart,” as the sample statistic used to estimate the process’ mean 

is the sample mean, 𝑋̅. The 𝑋̅-chart’s effectiveness is most evident in detecting large 

mean shifts away from a target value often referred to as 𝜇0 (Montgomery, 2013). 

“Large” contextually means two or more standard deviations, both in the positive and 

negative direction, where a process’ true standard deviation is denoted as 𝜎. To use the 

𝑋̅-chart, let 𝑥1 … 𝑥𝑛 denote a random sample of size 𝑛 from a normally distributed 

random variable with mean, 𝜇0, and standard deviation, 𝜎, both of which may or may not 

be known, and may possibly need to be estimated. Then, sample means for each future 
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sample taken are calculated and plotted against the 𝑈𝐶𝐿 and 𝐿𝐶𝐿. The 𝑈𝐶𝐿 and the 𝐿𝐶𝐿, 

in the case where 𝜇0 and 𝜎 are known, are calculated by:  

 𝑈𝐶𝐿 =  𝜇0 + 𝐿𝜎 

𝐿𝐶𝐿 =  𝜇0 − 𝐿𝜎. 

 

(1) 

Here, “𝐿” represents the number of standard deviations in the positive and 

negative direction the control limits are from the target value, 𝜇0, and is sometimes 

referred to as the “half-width” (Meneces et al., 2008). Generally, this value is taken to be 

3, which is synonymous with having a probability of observing a point exceeding either 

control limit when the process is in-control (a “false alarm” or “Type I Error” from 

hypothesis testing) of 𝛼 = 0.0027 (Montgomery, 2013). Such a chart construction yields 

𝐴𝑅𝐿0 = 370 (Montgomery, 2013). However, in practice, it may be unreasonable to 

assume either 𝜇0 or 𝜎 are known, and therefore they both need to be estimated using 

historical observations. In such cases, Montgomery (2013) recommended taking 

approximately 20-25 samples of size 𝑛 to estimate both 𝜇0 and 𝜎. When 4 ≤ 𝑛 ≤ 6, it is 

common practice to use the sample relative range as an estimate of 𝜎, where the relative 

range is defined as 𝑊 = 𝑅/𝜎 (Montgomery, 2013). Thus, the estimates for 𝜇0 and 𝜎 are 

given by: 

 
𝜇̂0 = 𝑥̅̅ =

1

𝑚
∑ 𝑥̅𝑖

𝑚

𝑖=1

 

𝜎̂ =
𝑅̅

𝑑2
=

1

𝑑2𝑚
∑ 𝑅𝑖

𝑚

𝑖=1

, 

 

(2) 

where 𝑥̅𝑖 = 𝑛−1(𝑥1𝑖 + ⋯ + 𝑥𝑛𝑖), 𝑅𝑖 = max(𝑥1𝑖 … 𝑥𝑛𝑖) − min(𝑥1𝑖 … 𝑥𝑛𝑖), and 𝑑2 is the 

mean of the relative range, and can be found in the appendices of most statistical process 
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control texts (Montgomery, 2013). Thus, the 𝑈𝐶𝐿, 𝐿𝐶𝐿, and Center Line (“𝐶𝐿”) can now 

be calculated by: 

 
𝑈𝐶𝐿 = 𝑥̅̅ +

3

𝑑2√𝑛
𝑅̅ 

𝐶𝐿 = 𝑥̅̅ 

𝐿𝐶𝐿 =  𝑥̅̅ −
3

𝑑2√𝑛
𝑅̅, 

 

(3) 

where 3/(𝑑2√𝑛)𝑅̅ is sometimes referred to as the constant, “𝐴2,” which can also be 

found in the appendices of several statistical process control texts (Montgomery, 2013). 

However, when the sample size increases to approximately 𝑛 = 10 or 𝑛 = 12, 

Montgomery (2013) noted that the range method of estimating 𝜎 loses efficiency, and 

thus it is recommended to instead use the sample standard deviation, 𝑠, which is 

calculated as: 

 

𝑠 = √
1

𝑛 − 1
∑(𝑥𝑖 − 𝑥̅)2

𝑛

𝑖=1

. 

 

(4) 

 However, while it is well-known that the sample variance, 𝑠2, is an unbiased 

estimator of the population variance, 𝜎2, 𝑠 is not an unbiased estimator of the population 

standard deviation. In fact, the expected value of 𝑠 is 𝑐4𝜎, where 𝑐4 is a constant whose 

value is a function of the sample size, and is another tabled value commonly found in 

statistical process control texts (Montgomery, 2013). The estimator for 𝜇0 will remain the 

same as in (3), and the new estimator for 𝜎, given 𝑚 historical samples of size 𝑛 

becomes: 
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𝜎̂ =

𝑠̅

𝑐4
=

1

𝑚(𝑐4)
∑ 𝑠𝑖

𝑚

𝑖=1

. 

 

(5) 

 Thus, the 𝑈𝐶𝐿, 𝐿𝐶𝐿, and 𝐶𝐿 can be calculated by: 

  

𝑈𝐶𝐿 =  𝑥̅̅ +
3𝑠̅

𝑐4√𝑛
 

𝐶𝐿 = 𝑥̅̅ 

𝐿𝐶𝐿 = 𝑥̅̅ −
3𝑠̅

𝑐4√𝑛
. (6) 

 

 Montgomery (2013) also recommended using the sample standard deviation as an 

estimate for the unknown process standard deviation in cases where the sample size is 

variable from sample to sample.  

Control Charts for Detecting  

Small Mean Shifts 

 

 As mentioned in Chapter I, there are issues in using a Shewhart-style chart under 

certain circumstances. First, it is known that Shewhart-style charts are not particularly 

effective at detecting small shifts of the mean away from target (≤ 1.5𝜎) (Montgomery, 

2013). Second, while there are techniques available to use an 𝑋̅-chart in the case when 

𝑛 = 1, such as the Moving Range chart, this charting technique’s in-control performance 

is “generally much worse” than that of a standard 𝑋̅-chart (Montgomery, 2013). 

Montgomery (2013) noted that the cause of this phenomenon is that the moving range 

values are correlated, and the Moving Range chart does not consider the correlation 

between plotting statistics. Finally, the Shewhart-style framework does consider the 

entire sequence of sample plotting statistics taken. The “Exponentially Weighted Moving 
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Average (EWMA)” chart and the “Cumulative Summation (CUSUM)” chart correct for 

these shortcomings (Montgomery, 2013).  

 Exponentially weighted moving average chart. The EWMA control chart is a 

technique based on geometric moving averages (Roberts, 1959). An EWMA control chart 

possesses the same three components present in a Shewhart-style chart: the target value, 

𝜇0, the 𝑈𝐶𝐿 and the 𝐿𝐶𝐿 (Roberts, 1959). However, since it takes into consideration the 

entire sequence of observations, the computation of the EWMA’s 𝑈𝐶𝐿 and 𝐿𝐶𝐿 will 

differ from the control limits for the 𝑋̅-chart.  

Allow 𝑍𝑖 to represent the EWMA plotting statistic at sample 𝑖. Roberts (1959) 

proposed calculating 𝑍𝑖 as:  

 𝑍𝑖 = 𝑟𝑋̅𝑖 + (1 − 𝑟)𝑍𝑖−1, 

 

(7) 

where 0 < 𝑟 ≤ 1 and 𝑍0 = 𝜇0. Roberts (1959) showed that the expectation and variance 

of 𝑍𝑖, assuming the 𝑋̅𝑖’s are independent, are: 

 𝐸[𝑍𝑖] = 𝜇0 
 

(8) 

  
𝑉𝑎𝑟[𝑍𝑖] = 𝜎𝑍𝑖

= √
𝑟

2 − 𝑟
[1 − (1 − 𝑟)2𝑖]𝜎𝑋̅ , 

 

(9) 

which as 𝑖 → ∞, the variance will approach an asymptote of:  

 
𝑉𝑎𝑟[𝑍𝑖] = 𝜎𝑍𝑖

= √
𝑟

2 − 𝑟
𝜎𝑋̅ . 

 

(10) 

Therefore, the 𝑈𝐶𝐿, 𝐿𝐶𝐿, and 𝐶𝐿 can be computed by: 
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 𝑈𝐶𝐿 = 𝜇0 + 𝑘𝜎𝑍𝑖
 

𝐶𝐿 = 𝜇0 

𝐿𝐶𝐿 = 𝜇0 − 𝑘𝜎𝑍𝑖
, 

 

(11) 

where 𝑘 denotes the number of standard deviations in both the positive and negative 

direction the 𝑈𝐶𝐿 and 𝐿𝐶𝐿 are away from 𝜇0, respectively. Note, while the notation given 

in (9) and (10) denotes the sample statistic being taken as the sample mean (which 

implies a sample size of 𝑛 > 1), the EWMA charting scheme can also be used in the case 

when 𝑛 = 1 (Montgomery, 2013). Also of note, it is assumed here that operators have a 

reasonably accurate estimate of the measured process’ standard deviation, denoted in (9) 

and (10) as 𝜎𝑋̅ (Montgomery, 2013). Further, EWMA charts are desirable in practice as 

they are “very insensitive to the normality assumption” (Montgomery, 2013).  

Montgomery (2013) recommended to use values of 𝑟 between 0.05 and 0.25 

(where smaller values of 𝑟 are recommended when protecting against smaller shifts from 

target and vice versa) and that using 2.6 ≤ 𝑘 ≤ 3.05 “works reasonably well” with larger 

values of 𝑘 being paired with larger values of 𝑟. Using 𝑟 = 0.1 and 𝑘 = 2.7 will yield in-

control performance of 𝐴𝑅𝐿0 ≈ 500 (Montgomery, 2013).  

 Cumulative summation control chart. Page (1954) proposed an alternative 

control charting technique to the Shewhart-style charts referred to as the “Cumulative 

Summation (CUSUM)” chart. Based upon Wald’s Sequential Likelihood Ratio Test, the 

CUSUM chart plots cumulative deviations from some target value, 𝜇0, in both the 

positive and negative direction (Wald, 1945; Page, 1954). Like the 𝑋̅-chart and the 

EWMA chart, the CUSUM chart is also comprised of a target value, a 𝑈𝐶𝐿, and a 𝐿𝐶𝐿. If 
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an operator wished to monitor a process’ mean, the plotting statistic to be used for the 

CUSUM chart at sample 𝑖 is defined as: 

 

𝐶𝑖 = ∑(𝑋̅𝑗 − 𝜇0).

𝑖

𝑗=1

 

 

(12) 

 In order to determine if the process has possibly shifted away from target, it is 

necessary to calculate control limits to compare against the cumulative deviations. If 

using the statistic in (12), derivation of control limits would depend on knowledge of the 

distribution of the underlying statistic being monitored as well as the distribution of the 

sum of those statistics. There are two other common techniques used to calculate the 

control limits: one is called the “V-Mask” and the other is called the “Tabular Method” 

(Montgomery, 2013). Montgomery (2013) recommends use of the Tabular Method, and 

thus, that is what will be discussed here. In the Tabular Method, the previously given 

plotting statistic is modified into a positive and negative plotting statistic and these are 

given by: 

 𝑆𝑖
+ = max[0, 𝑥𝑖 − (𝜇0 + 𝑘) + 𝑆𝑖−1

+ ] 

𝑆𝑖
− = max[0, (𝜇0 − 𝑘) − 𝑥𝑖 + 𝑆𝑖−1

− ], 

 

(13) 

where 𝑆0
+ = 𝑆0

− = 0, and 𝑘 is a constant referred to as a “slack value,” and is commonly 

chosen to be one-half of the size of the shift desired to protect against (Montgomery, 

2013). For example, if it is desired to protect against shifts of 1𝜎, 𝑘 = 1/2. As shown in 

(13), there are two plotting statistics for CUSUM charts when using the Tabular Method. 

𝑆𝑖
+ represents the plotting statistic for positive deviations from 𝜇0 and 𝑆𝑖

− represents the 

plotting statistic for negative deviations from 𝜇0. Here, 𝑥𝑖 could be a sample statistic such 
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as the sample mean, but it could also be an individual observation in the case where 

𝑛 = 1. Note, like the EWMA charting scheme, it is assumed an accurate estimate of the 

process standard deviation is available (Montgomery, 2013).  

𝑆𝑖
+ and 𝑆𝑖

− are compared to a control limit commonly referred to as ℎ. If 𝑆𝑖
+ > ℎ 

or 𝑆𝑖
− > ℎ, this signals to the operator that a shift may have taken place (Montgomery, 

2013). A feature of the CUSUM chart is that not only is the operator alerted that a shift 

has taken place, the construction of the plotting statistic, being cumulative deviations 

from target, will also show the operator at what point the shift began to occur. Therefore, 

more information can be utilized when searching for an assignable cause.  

Operators must choose a value of ℎ such that the CUSUM chart attains a desired 

value of 𝐴𝑅𝐿0, and this value of ℎ will differ depending on the distribution of the 

underlying process being monitored (Montgomery, 2013). There have been several 

different proposed approaches to determining this value. Page (1954) gave an integral 

equation for the exact value of 𝐴𝑅𝐿0 given a particular value of ℎ and a specified 

probability density function of the monitored process. The integral equation is difficult to 

find a direct solution to, and thus, alternative approaches to estimating 𝐴𝑅𝐿0 given a 

particular value of ℎ and a specified probability density function have been proposed in 

the time since. Brook & Evans (1972) approached the problem by regarding a CUSUM 

chart as a Markov chain. Reynolds (1975) used a Brownian motion approximation. 

Woodall (1983) utilized numerical quadrature in his approximation. Montgomery (2013) 

recommended, if the monitored process follows a normal distribution, that setting 

𝑘 = 1/2 and ℎ = 4.77 will yield 𝐴𝑅𝐿0 = 370. Gan (1991) also gave recommendations 
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for selecting 𝑘 and ℎ such that the CUSUM chart would perform “optimally,” assuming 

the monitored process follows a standard normal distribution.  

Review of Control Charts for Multiple  

Stream Processes  
 

 In the prior descriptions of the 𝑋̅-chart, the EWMA chart, and the CUSUM chart, 

the process being monitored are considered “single stream processes,” where operators 

are interested in only monitoring the mean from a single process. In practice, there may 

be instances where multiple streams are desired to be monitored. As mentioned in 

Chapter I, a “Multiple Stream Process (MSP)” is one where observations being taken 

during a single sample consist of numeric measurements from multiple individual sources 

or “streams” (Montgomery, 2013). For example, the number of transactions separate 

bank tellers within the same bank process over the course of an hour would be an MSP. 

As an additional example, identical models of automobiles being manufactured on 

separate assembly lines would also be an MSP. In such cases, several different MSP 

charts have been proposed as this type of process is common in practice and differs from 

traditional, univariate charting techniques (Montgomery, 2013). 

Boyd’s Group Control Chart  

Boyd (1950) proposed a “Group Control Chart (GCC)” to monitor an MSP which 

utilizes the general framework of a Shewhart-style 𝑋̅-chart, including an 𝑈𝐶𝐿 and a 𝐿𝐶𝐿. 

To construct the control limits, 𝑚 preliminary samples of size 𝑛 are taken from each of 

the 𝑠 streams as if an 𝑋̅-chart were being used for each of the streams (Montgomery, 

2013). Then, the 𝑈𝐶𝐿 and 𝐿𝐶𝐿 are computed by aggregating the observations into a 

single, overall “grand mean,” denoted 𝑥̅̅, and “grand range,” denoted 𝑅̅. The equations for 

calculating the control limits are given by: 
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𝑈𝐶𝐿 = 𝑥̅̅ +

3

𝑑2√𝑛
𝑅̅ 

𝐿𝐶𝐿 = 𝑥̅̅ −
3

𝑑2√𝑛
𝑅̅, 

 

(14) 

where the constant 𝑑2, whose value is a function of the sample size taken at the 

individual stream level, has the same meaning as in the standard 𝑋̅-chart described in (3) 

(Montgomery, 2013). The plotting statistic used in Boyd’s GCC at a given future sample 

is both the minimum and maximum sample mean values taken from the 𝑠 streams (2013). 

For example, if 𝑠 = 4 streams were being monitored, and the sample means taken at 

future sample number 𝑖 were 𝑋̅1𝑖 = 21.1, 𝑋̅2𝑖 = 21.4, 𝑋̅3𝑖 = 21.6, and 𝑋̅4𝑖 = 22.0,  then 

the means plotted against the control limits would be 𝑋̅1𝑖 and 𝑋̅4𝑖. If the minimum and 

maximum mean values from the 𝑠 streams are within the control limits, then it is 

straightforward to recognize that all the other mean values would also be within the 

control limits.  

 Montgomery (2013) pointed to some potential issues when using Boyd’s GCC. 

As samples are taken from each of the 𝑠 streams, this technique may become overly 

cumbersome when the number of streams becomes prohibitively large. Furthermore, as 

information from only the minimum and maximum mean values are considered, data 

from the remaining 𝑠 − 2 streams is omitted. Thus, this technique inefficiently uses 

collected data. Another issue with Boyd’s GCC is the lack of care provided to the 

correlation between the streams, and this can either substantially inflate or deflate 𝐴𝑅𝐿0 

to an unacceptable level (Mortell & Runger, 1995). Grimshaw, Bryce & Meade (1999) 

proposed widening the control limits of Boyd’s GCC to account for this. Grimshaw et al. 
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(1999) also recommended widening the limits to account for the tendency of the chart’s 

𝐴𝑅𝐿0 to deteriorate as the number of streams being monitored becomes large.  

Nelson (1986) recommended use of a “runs rule” to ameliorate the 𝐴𝑅𝐿0 problem 

in Boyd’s GCC which can be used with or without control limits. Runs rules are similar 

to control limits in that they help operators make decisions about the in or out-of-control 

nature of the process being monitored. However, instead of comparing a statistic to a 

control limit, the patterns formed in sequential observations are analyzed. They are often 

an attractive alternative to a more complex charting scheme due to their simple nature 

(Nelson & Stephenson, 1996). Nelson (1986) suggested that if one monitored stream 

produces the maximum or minimum observed 𝑋̅𝑖 for 𝑟 = 4 consecutive points, then this 

signals a possible out-of-control stream. Nelson & Stephenson (1996) also proposed 

additional runs rules for Boyd’s GCC. However, additional rules can add complexity to a 

monitoring scheme and should be implemented cautiously (Montgomery, 2013).  

Mortell and Runger’s Group Control Chart  

Mortell & Runger (1995) outlined many of the aforementioned issues with 

Boyd’s GCC and proposed several alternative charting techniques. Their basic premise in 

all of the proposed charting schemes is that MSP variance among the 𝑠 streams can be 

partitioned into between-stream variation and within-stream variation. Thus, they propose 

use of a model quite similar to a one-way random effect analysis of variance (ANOVA) 

model. Let 𝑌𝑡𝑗𝑘 be the 𝑘th measurement from the 𝑗th stream at time 𝑡. Thus, the MSP 

model can be written in scalar notation as: 

 𝑌𝑡𝑗𝑘 = 𝜇0 + 𝐴𝑡 + 𝜖𝑡𝑗𝑘, 

 

(15) 
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where 𝐴𝑡 ∼ 𝑁(0, 𝜎𝑎
2) represents the mean difference in measurement from target value 

𝜇0 across all 𝑠 streams, and 𝜖𝑡𝑗𝑘 ∼ 𝑁(0, 𝜎2) represents the mean difference measurement 

𝑘 on stream 𝑗 is away from 𝜇0 + 𝐴𝑡 (Mortell & Runger, 1995; Montgomery, 2013). It is 

also assumed 𝐴𝑡 and 𝜖𝑡𝑗𝑘 are independent of each other, but the 𝐴𝑡’s might not 

necessarily be independent of each other (Mortell & Runger, 1995). For charting, the 

authors proposed using two different charts: one to monitor common variation (i.e., shifts 

in the mean of 𝐴𝑡) and one to monitor shifts in a single stream with respect to the others 

(i.e., shifts in the mean of 𝜖𝑡𝑗𝑘) (Mortell & Runger, 1995).  

To monitor common variation among the streams, the authors proposed a 

Shewhart-style 𝑋̅-chart. In this technique, the authors propose taking sample means of 

size 𝑛 from each of the 𝑠 streams, aggregating them into an overall mean, and using this 

as the plotting statistic (Mortell & Runger, 1995). While this is like Boyd’s GCC, with 

the exception being the overall mean of the sample means is the plotting statistic, the key 

difference between the two techniques is in how the control limits are computed. Instead 

of using the individual sample size, 𝑛, in the control limit construction, the authors 

instead use the overall sample size, 𝑛 × 𝑠, in the control limit construction. Clearly, this 

increase in sample size will narrow the width of the control limits from those in Boyd’s 

GCC given in (14) thereby making it more sensitive to simultaneous and equal shifts 

across all streams (Mortell & Runger, 1995). However, one problem the authors noted in 

using this technique is the problem of the 𝐴𝑡’s possibly being autocorrelated, which may 

deteriorate chart performance.    

To monitor shifts in a single stream with respect to the others, the authors 

recommended using the maximum range among stream means in a Shewhart, EWMA 
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(using weighting values of 𝑟 of 0.1, 0.3, and 0.8), and CUSUM-style frameworks 

(Mortell & Runger, 1995). That is, their proposed plotting statistic is: 

 𝑅𝑡 = max
𝑗

𝑌𝑡𝑗 − min
𝑗

𝑌𝑡𝑗. 

 

(16) 

 To evaluate the performance of their proposed techniques, the authors conducted 

a simulation study to estimate the in-control and out-of-control 𝐴𝑅𝐿 for shifts in both a 

single stream and in multiple streams. They consider shifts from a target value of 𝜇0 = 0 

to 0.5, 1, 1.5, and 2 for processes comprised of 2, 3, 5, 10, and 20 streams (Mortell & 

Runger, 1995). Across the various conditions, the CUSUM chart tended to perform most 

optimally, both in terms of in-control and out-of-control performance. However, the 

authors recommend use of the two-chart technique in the case when a large number of 

streams are being monitored (Mortell & Runger, 1995).  

 The conceptualization of an MSP described by (15) has been extended to other 

studies. Epprecht, Barbosa & Simões (2011) essentially combined Mortell and Runger’s 

𝑅𝑡 chart with the Boyd’s GCC chart for monitoring shifts of a single stream. The authors 

recommended estimating 𝜇̂0 + 𝐴̂𝑡 = 𝑏̂𝑡 by taking samples of size 𝑛 from each of the 𝑚 

streams and calculating the sample mean (Epprecht et al, 2011). Then, they propose 

subtracting 𝑏̂𝑡 from each sample mean from each stream at each time point 𝑡, which they 

refer to as 𝑒̂𝑡𝑖. (Epprecht et al., 2011). Therefore, at each time point, there will be as many 

𝑒̂𝑡𝑖.’s as there are streams being monitored. Now, as in Boyd’s GCC, the minimum and 

maximum 𝑒̂𝑡𝑖. are plotted against an upper and lower control limit (Epprecht et al., 2011). 

Via simulation, the authors showed their charting scheme to have superior performance, 

in terms of 𝐴𝑅𝐿1, to Mortell and Runger’s 𝑅𝑡 chart for shifts of > 1𝜎 (Epprecht et al., 
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2011). However, it was unclear whether 𝑏̂𝑡 ought to be estimated in Phase I analysis and 

remain static for Phase II analysis or if it ought to be calculated for each Phase II sample. 

Additionally, the improved performance of Epprecht’s proposed charting scheme over 

Mortell and Runger’s 𝑅𝑡 chart was marginal in most cases (Epprecht et al., 2011).  

 Runger, Alt & Montgomery (1996) also utilized (15) to produce a multivariate 

control chart. They considered the observations from each stream taken at time 𝑡 to be a 

vector, 𝒀𝒕 with an associated covariance matrix 𝚺 = 𝜎𝑎
2𝟏𝟏𝑻 + 𝜎2𝑰, where the variance 

terms are those described by (15), 𝟏 denotes a vector whose elements are all equal to 1, 

(. )𝑻 denotes the transpose of a vector or matrix, and 𝑰 denotes the identity matrix 

(Runger et al., 1996). Through the principal component analysis (PCA) framework, the 

authors effectively developed Hotelling’s 𝑇2 statistic, except with differing projection 

matrices used in the quadratic form (Runger et al., 1996). Essentially, Hotelling’s 𝑇2 

chart is akin to the sum of squares regression statistic used in classical hypothesis testing 

whereas this charting statistic is analogous to the mean corrected sum of squares total 

statistic also used in classical hypothesis testing (Ravishanker & Dey, 2002; Runger et 

al., 1996). That is, the proposed charting statistic is 𝑆2 = 𝜎−2𝒀𝑻(𝑰 − 𝑠−1𝟏𝟏𝑻)𝒀. From 

linear model theory, if 𝒀 ∼ 𝑵𝑺(𝝁, 𝚺), then 𝑆2 ∼ 𝜒2(𝑠 − 1, 𝜈 = 𝜎−2𝝁𝑻(𝑰 − 𝑠−1𝟏𝟏𝑻)𝝁) as 

(𝑰 − 𝑠−1𝟏𝟏𝑻) is a symmetric, idempotent positive definite matrix (Ravishanker & Dey, 

2002). The authors note that while this scheme would not be effective in detecting shifts 

in all streams, that it would be effective in detecting shifts in one or multiple streams 

(Runger et al., 1996). Additionally, the authors recommended that their 𝑆2 statistic can be 

used in a multivariate CUSUM or multivariate EWMA charting scheme in order to more 

effectively detect small shifts away from target (Runger et al., 1996).  
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Meneces’ Control Chart for  

Each Stream Technique  

 

Meneces et al. (2008) noted that the historically cumbersome technique of using 

an 𝑋̅-chart for each stream in an MSP has been alleviated by modern computing 

resources. However, the authors noted that the main problem with using a chart for each 

stream is the decrease in 𝐴𝑅𝐿0 (or equivalently, an increase in the Type I error rate, 𝛼) 

due to cross-correlation between pairs of streams, which is defined as 𝜌 (Meneces et al., 

2008). Consider the case when 𝜌 = 0. The probability of observing an out-of-control 

point at sample number 𝑖 given the process is in control across all of the 𝑠 streams being 

individually monitored is approximately 𝑠𝛼 (Meneces et al., 2008). This implies that as 

the number of streams increases, so too will the probability of making a Type I error. The 

method the authors suggest using to correct the inflated error rate is to widen the control 

limits to be greater than the classical half-width of three, as given in (3), (6), and (14), as 

𝜌 → 0 and 𝑠 → ∞ (Meneces et al., 2008). The authors obtained estimates for the half-

widths to be used to obtain a Type I error rate of 𝛼 = 0.0027, which yields 𝐴𝑅𝐿0 = 370 

(Meneces et al., 2008). Table 1 gives the simulated and recommended values to use in 

place of three for various numbers of streams being monitored.  

In order to assess the performance of the 𝑋̅-chart for each stream technique, the 

authors used direct comparison to and Boyd’s GCC and the Mortell and Runger’s 

Shewhart 𝑋̅-chart to monitor shifts in a single stream with respect to the others (Meneces 

et al., 2008). In this comparison, the authors used industry data from an in-control MSP 

where 𝑠 = 14 and the total number of samples taken was 53 (Meneces et al., 2008). 

Calculating a mean pairwise correlation between the 14 streams of 𝜌̂ = 0.2782, the 

authors decided to use a half-width value 𝐿 = 3.72, which is nearly the mean of the 
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recommend half-width values for 𝑠 = 10 and 𝑠 = 20 given in Table 1 (Meneces et al., 

2008). In their scheme, they did not observe an out-of-control point, as would be 

expected. However, Boyd’s GCC and the Mortell and Runger chart both observed out-of-

control points incorrectly, with the former scheme observing more than 10 (Meneces et 

al., 2008). 

Table 1  

Recommended Control Limit-Half Width Values 

Number of Streams Control Limit Half-Width 

1 3.00 

2 3.20 

5 3.46 

10 3.64 

20 3.82 

50 4.04 

100 4.20 

 

Meneces et al. (2008) noted that the primary value in their proposed charting 

scheme is with respect to the distinguishing of a shift in a single stream. Since data is 

being collected and used for each individual stream, the observed data are used more 

efficiently than in Boyd’s GCC or in Mortell and Runger’s charts (Meneces et al., 2008). 

Additionally, the authors suggested that in practice, while individual streams produce the 

same output, that it may not necessarily the case that they all have the same target value 

(Meneces et al., 2008). In such cases, erroneous conclusions may be drawn by the 

schemes proposed by Boyd and Mortell and Runger (Meneces et al., 2008).  
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Other Multiple Stream Process 

Monitoring Techniques 

 

 To the author’s knowledge, the control charting schemes described previously 

represent nearly all of the academic studies regarding MSP monitoring. However, there 

do exist other studies which also contribute to the MSP body of literature which will be 

described here.  

 A mixture distribution approach. Vicentin et al. (2018) proposed a new 

Shewhart-style charting scheme to monitor the location parameters of an MSP. The 

authors conceptualized an MSP as a mixture distribution where each stream has its own, 

unique albeit related distribution (Vicentin et al., 2018). For example, the authors used 

four normal distributions with differing means and variances (Vicentin et al., 2018). 

However, the authors acknowledged that the MSP might not be evident, as would 

possibly be in the case where a seemingly identical part is purchased from multiple 

suppliers (Vicentin et al., 2018). Thus, identifying the number of streams becomes an 

important task to the efficacy of the chart. However, the authors only proposed use of 

visual inspection of historical samples via a histogram or other graphical aid to identify 

the appropriate number of streams to be monitored (Vicentin et al., 2018). As such, the 

proposed plotting statistic is the sample mean, which is calculated without respect to the 

proposed number of streams in the MSP (Vicentin et al., 2018). The authors developed 

control limits in a similar manner to (3), except taking into consideration that the plotting 

statistic may come from any of the monitored streams and that the half-widths could be 

changed depending on the desired shift to be protected against (Vicentin et al., 2018).  

To evaluate their chart’s performance, the authors performed a simulation for 

various size shifts away from target. However, instead of determining how quickly the 
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charting scheme can detect shifts in a single stream with respect to the others, they shifted 

multiple streams simultaneously (Vicentin et al., 2018). Additionally, the authors’ 

simulation monitored four streams, and has been mentioned previously, the number of 

streams being monitored changes the efficacy of the charting scheme (Mortell & Runger, 

1995; Meneces et al., 2008). Therefore, no direct comparison to any of the 

aforementioned charting schemes was made or could be made. Generally, as the shifts 

increase in magnitude in both the positive and negative direction in the streams, the chart 

signal more quickly (Vicentin et al., 2018). The authors noted this shortcoming of their 

analysis in the conclusions and recommended a direct comparison study in the future 

(Vicentin et al., 2018). 

A fractional, adaptive sampling approach. As has been mentioned, one of the 

benefits of Boyd’s GCC or Mortell and Runger’s 𝑅𝑡 charting schemes is that only one 

chart is being used for each of the 𝑠 streams being monitored, which can be a desirable 

characteristic (Mortell & Runger, 1995; Montgomery, 2013). However, it may be 

cumbersome in practical environments to take a sample from each stream. Therefore, 

taking a sample from a fraction of the total number of streams may be more pragmatic 

approach (Lanning, 1998). Lanning (1998) suggested that such a sampling technique 

could be used in a 𝑋̅-chart framework for monitoring an MSP. Moreover, it is normal to 

assume that if a plotting statistic plots near, but does not exceed a control limit, that 

operators may be more inclined to take larger samples at smaller time intervals (Lanning, 

1998). To both ends, Lanning (1998) proposed taking a fixed sample from a fraction of 

the total number of streams at a fixed time interval and calculating an overall sample 

mean to be used as the plotting statistic in a 𝑋̅-chart, as described previously. If the 
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sample mean plots near the target value, then the standard, fixed intervals between 

sampling continues (Lanning, 1998). “Near” here contextually means within “warning 

limits,” which in an 𝑋̅-chart are usually set to be ±2𝜎 instead of ±3𝜎 (Montgomery, 

2013). If the sample mean exceeds the warning limits, then the sample size increases and 

the interval between samples is reduced (Lanning, 1999). The increase in sample size and 

reduction in time between observed samples must be determined prior to technique 

implementation and is often a function of physical limitations (Lanning, 1998). 

Montgomery (2013) noted that this technique is most effective in detecting a shift which 

affects all streams. It was also noted that use of the adaptive sampling technique is more 

effective in terms of the speed with which shifts are detected than the fixed interval 

sampling technique (Lanning, 1998; Montgomery, 2013).  

Review of Some Nonparametric Tests 

 As mentioned in Chapter I, many of the common statistical hypothesis tests used 

in practice are dependent upon the variable of interest following a parametric distribution. 

Most commonly, it is assumed in traditional statistical testing and in the control charting 

schemes outlined in this chapter that the variable of interest is assumed to follow a 

normal or Gaussian distribution. However, in practical settings, this assumption may not 

reasonably be met, or it may be difficult if not impossible to verify. When this is the case, 

the conclusions drawn from use of a parametric test or charting technique may be 

erroneous (Conover, 1999). In such cases, and “when the price of making a wrong 

decision is high,” it would be of use to utilize inferential tests and charting techniques 

which do not assume the variable of interest follows any particular distribution (Conover, 

1999). Such tests and charting schemes are considered to be “nonparametric” in nature, 
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as the variable of interest has no parametric distributional assumption upon it. Several 

nonparametric inferential tests have been developed as alternatives to their parametric 

analogues. Of these, many nonparametric tests have been found to be preferable to their 

parametric counterparts, in terms of asymptotic relative efficiency, especially when the 

variable of interest comes from a heavy-tailed distribution (Conover, 1999). Additionally, 

several nonparametric control charting techniques which use nonparametric test statistics 

have been proposed as substitutes to the classical control charts discussed previously in 

this chapter.  

One Population Nonparametric Tests 

In research settings, it may be of interest for a researcher to make a determination, 

that is, test a hypothesis, about the unknown value of a single population’s mean, denoted 

𝜇. In introductory statistics courses, the well-known parametric inferential test used to 

test the null hypothesis, 𝐻0: 𝜇 = 𝜇0 versus an alternative hypothesis, 𝐻1: 𝜇 ≠ 𝜇0 (which 

could be one-sided) is referred to as a “one population t-test” (Montgomery, 2013). 

However, the t-test assumes the variable of interest follows a normal distribution. If this 

is not the case or cannot be reasonably assumed, some nonparametric alternatives to the 

one population t-test are the Sign Test and Wilcoxon’s Signed Rank Test (Conover, 

1999). 

 Sign test. The Sign Test, while nonparametric in nature, does have two primary 

assumptions (Conover, 1999). First, the sampled observations must be independent of 

each other. Second, data must be measured on at least an ordinal measurement scale for 

statements such as “less than” or “greater than” to have meaning. The Sign Test’s 

statistical hypotheses are like that of the one population t-test with the exception that 
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inference is made about the population median instead of the population mean (Conover, 

1999). Let 𝜇 denote the unknown population median and 𝜇0 denote a hypothesized value 

of the population median under 𝐻0. The hypotheses then being tested are the null 

𝐻0: 𝜇 = 𝜇0 versus the alternative 𝐻1: 𝜇 ≠ 𝜇0 (where again, the alternative could be one-

sided) (Conover, 1999).  

 The procedure to obtain the test statistic for the Sign Test is straightforward. Let 

𝑥1, 𝑥2, … , 𝑥𝑛 denote a random sample from some population with an unknown median 𝜇. 

Then take the difference between each 𝑥𝑖 and 𝜇0. If 𝑥𝑖 = 𝜇0, then it is recommended to 

omit that data point (Conover, 1999). Let 𝑛∗ represent the total number of observations 

for which 𝑥𝑖 ≠ 𝜇0.  Let 𝑆𝑇 denote the test statistic for the Sign Test. It is computed as: 

  

𝑆𝑇 = ∑ 𝐼(𝑥𝑖 > 𝜇0)

𝑛∗

𝑖=1

, 

 

(17) 

where 𝐼(𝑥𝑖 > 𝜇0) = 1 if 𝑥𝑖 − 𝜇0 > 0 and 𝐼(𝑥𝑖 > 𝜇0) = 0 otherwise. If 𝐻0 is true, it 

would be expected that 𝑆𝑇 = 𝑛∗/2. Thus, under 𝐻0, 𝑆𝑇 ∼ 𝐵𝐼𝑁(𝑛∗, 𝑝 = 0.50) (Conover, 

1999). P-values associated with a particular value of 𝑆𝑇 can be found using either tabled 

values found in the appendices of most statistical texts or using statistical software 

applications. Additionally, for 𝑛∗ > 20, 𝑆𝑇 can be standardized to the standard normal 

distribution using the Central Limit Theorem (Conover, 1999). This standardized test 

statistic is given by: 

 
𝑆𝑇𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 =

(𝑇 + 0.5) − 0.5𝑛∗

0.5√𝑛∗
 . 

 

(18) 

  Wilcoxon signed rank test. Wilcoxon (1945) developed inferential tests based 

on ranking procedures which bear his name. When a single population is being analyzed, 
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the Wilcoxon Signed Rank Test (WSRT) test can be applied (Conover, 1999). The 

statistical hypotheses tested by the WSRT are identical to those tested by the Sign Test 

(i.e., 𝐻0: 𝜇 = 𝜇0 versus 𝐻1: 𝜇 ≠ 𝜇0). The two main differences between these one sample 

nonparametric tests are the underlying assumptions and the testing procedure. With 

respect to the assumptions, in addition to assuming the sample data were randomly 

selected and thus independent of each other, the WSRT also assumes the measurement 

scale of the variable of interest is at least interval and that the population’s underlying 

distribution is symmetric (Conover, 1999).   

 The testing procedure, while still straightforward, requires additional steps 

beyond those required by the Sign Test (Conover, 1999). Let 𝑥1, 𝑥2, … , 𝑥𝑛 denote a 

random sample of size 𝑛 from some population. Then let 𝐷𝑖 = 𝑥𝑖 − 𝜇0, where 𝑥𝑖’s for 

which 𝑥𝑖 = 𝜇0 are omitted from the analysis making the analyzed sample size 𝑛∗ 

(Conover, 1999). Now, rank the |𝐷𝑖| such that |𝐷(1)| < |𝐷(2)| < ⋯ < |𝐷(𝑛∗)|, and let 𝑅(𝑖) 

denote the ranking of |𝐷(𝑖)|. If two or more |𝐷(𝑖)| are tied in value, then assign each tied 

value the mean of the 𝑅(𝑖) values occupied by those tied values (Conover, 1999). For 

example, if two |𝐷(𝑖)| were both tied for the second smallest value, then they would both 

be assigned 𝑅(𝑖) = 0.5(2 + 3) = 2.5. Let 𝑊+ denote the test statistic for the WSRT. The 

value of 𝑊+ is then calculated by: 

 

𝑊+ = ∑(𝑅(𝑖))𝐼(𝐷(𝑖))

𝑛∗

𝑖=1

, 

 

(19) 

where 𝐼(𝐷(𝑖)) = 1 if 𝐷(𝑖) > 0 and 𝐼(𝐷(𝑖)) = 0 if 𝐷(𝑖) < 0. Thus, the statistic is the sum 

of the positive ranks. Quantiles for the exact null distribution of 𝑊+ can be found in the 
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appendices of several statistical texts for small values of 𝑛∗ (Conover, 1999). Thus, p-

values associated with a value of 𝑊+ can be found in these texts in addition to statistical 

software programs. Like 𝑆𝑇, 𝑊+ can also be standardized using: 

 
𝑊𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑

+ =
∑ (𝑅(𝑖))𝐼(𝐷(𝑖))𝑛∗

𝑖=1

√∑ ((𝑅(𝑖))𝐼(𝐷(𝑖)))
2

𝑛∗

𝑖=1  

 . 

 

(20) 

In cases where the somewhat more restrictive assumptions of the WSRT are met, it is 

preferable over the Sign Test in terms of statistical power (Conover, 1999).  

Two Independent Population  

Nonparametric Tests 

In some research situations, the comparison of two independent population’s 

means is desired. The statistical hypotheses being tested are the null 𝐻0: 𝜇1 = 𝜇2 versus 

the alternative 𝐻1: 𝜇1 ≠ 𝜇2. Traditionally, the parametric test used to test the given 

hypotheses is referred to as an “two independent populations t-test.” Like the one 

population t-test, the two independent populations t-test is dependent upon the variable of 

interest being normally distributed (Montgomery, 2013). When this assumption is not 

met, two alternative nonparametric test that could be used are called the Median Test and 

the Mann-Whitney Test (Conover, 1999). 

 The median test. The Median Test is a nonparametric alternative to the two 

independent populations t-test. As is the case with the aforementioned nonparametric one 

population tests, inference is made with respect to the population medians and not the 

means (Conover, 1999). Thus, the hypotheses being tested by the Median Test are the 

null 𝐻0: 𝜇1 = 𝜇2 versus the alternative 𝐻1: 𝜇1 ≠ 𝜇2.  
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Like the independent populations t-test, it is assumed that observations from 

either population are independent of each other, and that observations within each group 

are also independent of each other (Conover, 1999). More specifically, it is assumed 

under the null that for 𝑝 = 0.5, each population is sampled from an independent binomial 

distribution (Snedecor & Cochran, 1989; Conover, 1999). The measurement scale of the 

variable of interest must be at least ordinal for statements such as “less than” and “greater 

than” to have meaning. Additionally, since under the null hypothesis it is assumed both 

populations have the same median, then it is also assumed that observations from both 

populations have the same probability of exceeding the median (Conover, 1999). Also, as 

this test is an application of the traditional 𝜒2 Goodness of Fit test, it must also meet 

those additional assumptions as well. Primarily, the expected cell frequencies (i.e., 

(𝑟𝑜𝑤 𝑡𝑜𝑡𝑎𝑙) × (𝑐𝑜𝑙𝑢𝑚𝑛 𝑡𝑜𝑡𝑎𝑙)/𝑁) must be ≥ 5 in order for the asymptotic approximate 

null distribution to be accurate (Conover, 1999; Agresti, 2007). 

Let 𝑥1, 𝑥2, … , 𝑥𝑛1
 and 𝑦1, 𝑦2, … , 𝑦𝑛2

 denote random samples of size 𝑛1 and 𝑛2 

from the two independent populations. Aggregate the data and find the median of the 

total sample which is denoted 𝜇. Now, create a 2 × 2 contingency table where the 

columns denote observations from either population, the top row denotes observations 

exceeding 𝜇, and the bottom row denotes observations which are less than or equal to 𝜇 

(Conover, 1999). Table 2 graphically shows the data structure the Median Test uses. 

Under the null hypothesis, both populations are assumed to have the same median. 

Additionally, as the samples 𝑛1 and 𝑛2 are assumed to be taken from two binomial 

distributions, 𝑂11 and 𝑂12 are assumed to be distributed as binomial random variables. 
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That is 𝑂11 ∼ 𝐵𝐼𝑁(𝑛1, 𝑝 = 𝑎/𝑁) and 𝑂12 ∼ 𝐵𝐼𝑁(𝑛2, 𝑝 = 𝑎/𝑁). If 𝑛1 = 𝑛2, then 

𝑂1𝑖 ∼ 𝐵𝐼𝑁(𝑛, 𝑝 = 0.5𝑁), 𝑖 = 1,2. 

Table 2  

Contingency Table Used for Median Test 

Sample Population 1 Population 2 Totals 

>  𝜇 𝑂11 𝑂12 𝑎 

≤ 𝜇 𝑂21 𝑂22 𝑏 

Totals 𝑛1 𝑛2 𝑁 

 

 Let 𝑀𝑇 denote the Median Test’s test statistic. It is calculated by: 

 

𝑀𝑇 =
𝑁2

𝑎𝑏
∑

(𝑂1𝑖 −
𝑛𝑖𝑎
𝑁 )

2

𝑛𝑖

2

𝑖=1

  . 

 

(21) 

 While perhaps less evident than the standardized Sign Test and WSRT test 

statistics, the Median Test statistic is the sum of two squared standardization of the two 

binomial random variables. However, since 𝑎 and 𝑏 are assumed fixed, one of the 𝑂1𝑖’s 

can be written in terms of the other. Thus, the squared standardized test statistic implies 

𝑀𝑇 ∼̇ 𝜒2(1) as 𝑁 → ∞ (Conover, 1999).  

 The Mann-Whitney test. Mann & Whitney (1947) developed a nonparametric 

test to statistically determine if one random variable is stochastically larger than another 

random variable using ranks in a nearly identical way as Wilcoxon. In fact, the Mann-

Whitney Test presented in this section is sometimes alternatively referred to as the 

“Wilcoxon Rank-Sum Test” (Wang et al., 2017). The Mann-Whitney (MW) Test tests the 

null hypothesis 𝐻0: 𝜇1 = 𝜇2 against the alternative 𝐻1: 𝜇1 ≠ 𝜇2. As was the case for the 

Median Test, the MW Test also assumes independence between groups and within 
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groups (Conover, 1999). Additionally, the variable of interest must be measured at least 

on the ordinal scale for ranking to be performed (Conover, 1999).  

 To calculate the test statistic, first let 𝑥1, 𝑥2, … , 𝑥𝑛1
 and 𝑦1, 𝑦2, … , 𝑦𝑛2

 denote two 

mutually independent random samples such that 𝑛1 + 𝑛2 = 𝑁. The data is then 

aggregated and assigned a rank. Let 𝑅(𝑋𝑖) and 𝑅(𝑌𝑗) denote the respective rankings 

assigned to 𝑋𝑖 and 𝑌𝑗 for all 𝑖 and 𝑗. Much like the WSRT statistic, tied values are 

assigned the mean of the rankings the tied values would hold (Conover, 1999). Let 𝑀𝑊 

denote the MW test statistic. If there are a minimal number of ties, the test statistic can be 

calculated as: 

 

𝑀𝑊 = ∑ 𝑅(𝑋𝑖).

𝑛1

𝑖=1

 

 

(22) 

 Conover (1999) recommended use of an alternative test statistic in the case when 

many ties are present. This alternative is the standardization of 𝑀𝑊 and is given by: 

 

𝑀𝑊𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 =
(𝑀𝑊 −

𝑛1(𝑁 + 1)
2 )

√
𝑛1𝑛2

𝑁(𝑁 − 1)
∑ 𝑅(𝑖)

2𝑁
𝑖=1 −

𝑛1𝑛2(𝑁 + 1)2

4(𝑁 − 1)

 , 

 

(23) 

where ∑ 𝑅(𝑖)
2𝑁

𝑖=1  denotes the squared ranks for all observations across both samples 

(Conover, 1999). Critical values and their associated p-values can be found in the 

appendices of many statistical texts as well as in several statistical software programs. 

Similar to the relationship of the Sign Test and the WSRT, the MW Test may be 

preferable to the Median Test in terms of statistical power while the latter tends to be 

more efficient when the data come from heavy-tailed distributions (Conover, 1999). 

 

 



38 
 

 
 

Multiple Independent Population  

Nonparametric Tests 

 In research settings, researchers may be interested in comparing means between 

multiple independent populations. Here, the hypotheses being tested are the null 𝐻0: 𝜇1 =

𝜇2 = ⋯ 𝜇𝑐 versus the alternative 𝐻1: 𝜇𝑖 ≠ 𝜇𝑗 for at least one pair of (𝑖, 𝑗) where 𝑖 ≠ 𝑗. 

The parametric testing procedure commonly used to test these hypotheses is a one-way 

ANOVA F-test (Montgomery, 2013). Like the one population t-test and the two 

independent populations t-test, the ANOVA F-test assumes the variable of interest for 

each of the 𝑐 independent populations are normally distributed with possibly differing 

means and equal variances (Montgomery, 2013). As mentioned in the description of the 

other nonparametric tests, normality may not always be reasonably assumed, and 

therefore, nonparametric alternatives may be more appropriate. Two nonparametric 

alternatives which could be used are the Extended Median Test and the Kruskal-Wallis 

Test.  

 The extended median test. The naming convention of this particular test points 

to its purpose: extending the Median Test previously described to 𝐶 independent 

populations. Thus, instead of an application of a 𝜒2 Goodness of Fit test of two binomial 

samples, it is an application of a 𝜒2 Goodness of Fit test of 𝐶 binomial samples (Conover, 

1999; Snedecor & Cochran, 1989). Therefore, all of the assumptions and general testing 

procedures presented in the Median Test’s description are the same for the Extended 

Median Test (EMT) as well (Conover, 1999). The EMT tests the statistical hypotheses: 

𝐻0: 𝜇1 = 𝜇2 = ⋯ 𝜇𝑐 versus 𝐻1: 𝜇𝑖 ≠ 𝜇𝑗 for at least one pair of (𝑖, 𝑗) where 𝑖 ≠ 𝑗 

(Conover, 1999). Table 3 presents the extension of Table 2 to the case where 𝑐 

populations are being compared. 
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Table 3  

Contingency Table Used for Extended Median Test 

Sample Population 1 Population 2 … Population c Totals 

>  𝜇 𝑂11 𝑂12 … 𝑂1𝑐 𝑎 

≤ 𝜇 𝑂21 𝑂22 … 𝑂2𝑐 𝑏 

Totals 𝑛1 𝑛2 … 𝑛𝑐 𝑁 

Let 𝐸𝑀 denote the test statistic for the EMT. It is calculated in an identical way to what is 

shown in (21), with the summation going across all 𝑐 populations.  

 

𝐸𝑀 =
𝑁2

𝑎𝑏
∑

(𝑂1𝑖 −
𝑛𝑖𝑎
𝑁 )

2

𝑛𝑖

𝑐

𝑖=1

 . 

 

(24) 

 Like the Median Test, 𝐸𝑀 ∼̇ 𝜒2(𝐶 − 1) as 𝑁 → ∞ (Conover, 1999). Therefore, 

critical values and p-values can be readily found in the appendices of most any statistical 

text and in statistical software programs. However, it should be noted that there are three 

primary limitations for the EMT which also hold for the Median Test. First, as 𝜇 is 

estimated from the empirical sample rather than being specified a priori, the results are 

strongly dependent on 𝜇 being a reasonable estimator of the true population median. If 

the sample sizes between groups are small or greatly vary, 𝜇 may not be accurate. 

Second, if the populations have dramatically different medians, the cell expectation 

assumption may not be met. Third, this test is effectively a quantile test where only one 

quantile is being considered (Conover, 1999). It may be the case that the populations 

have the same median, but their other quantiles drastically differ.  

 Kruskal-Wallis test. Kruskal & Wallis (1952) extended the MW test to the case 

when more than two independent populations are being compared. As a result, the 
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assumptions for the MW test are nearly identical to those of the Kruskal-Wallis (KW) 

Test (Conover, 1999). It is assumed each of the 𝑐 populations are mutually independent, 

the observations within each sample are also independent, and the measurement scale of 

the variable of interest is assumed to be at least ordinal (Conover, 1999). In addition, it is 

also assumed that either each of the 𝐶 populations have identical distribution functions or 

“some of the populations tend to yield larger values than other populations do” (Conover, 

1999). The KW Test tests the hypotheses: 𝐻0: The 𝑐 populations have identical 

distribution functions versus 𝐻1: At least one of the populations yields larger 

observations than at least one other population.  

 Let 𝑥𝑗1, 𝑥𝑗2, … , 𝑥𝑗𝑛𝑗
 denote a random sample from the 𝑗th population of size 𝑛𝑗 , 

where ∑ 𝑛𝑗
𝑐
𝑗=1 = 𝑁. Let 𝐾𝑊𝑇 denote the test statistic for the KW Test. To calculate 

𝐾𝑊𝑇, first aggregate the samples together and assign ranks to each of the 𝑁 

observations. (Conover, 1999). The same procedure is used for tied observations as was 

described in the sections on the WRST and MW Test. Let 𝑅(𝑋𝑖𝑗) denote the rank of the 

𝑋𝑖𝑗th observation and let 𝑅𝑖 = ∑ 𝑅(𝑋𝑖𝑗)
𝑛𝑖
𝑗=1 , 𝑖 = 1 … 𝑛𝑖. Then, 𝐾𝑊𝑇 can be calculated 

by: 

 
𝐾𝑊𝑇 =

1

𝑆2
(∑

𝑅𝑖
2

𝑛𝑖
−

𝑁(𝑁 + 1)2

4

𝑐

𝑖=1

), 

 

(25) 

where: 

 

𝑆2 =
1

𝑁 − 1
( ∑ 𝑅(𝑋𝑖𝑗)

2

𝐴𝑙𝑙 
𝑅𝑎𝑛𝑘𝑠

−
𝑁(𝑁 + 1)2

4
) . 

 

(26) 
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 The exact null distribution of 𝐾𝑊𝑇 can be cumbersome to calculate (Conover, 

1999). Consequently, tabled quantiles found in the appendices of statistical texts are often 

limited to a small number of values for 𝑐 and 𝑛𝑗 . Conover (1999) recommended use of 

the asymptotic 𝜒2(𝐶 − 1) approximation. In deciding which of the nonparametric tests to 

use when comparing multiple independent populations, the KW Test is preferable (in 

terms of asymptotic relative efficiency) to the EMT when the variable of interest comes 

from a normal or light-tailed distribution (Conover, 1999). The EMT is preferable in 

terms of asymptotic relative efficiency to the KW Test when the variable of interest 

comes from a heavy-tailed distribution (Conover, 1999). 

Review of Some Nonparametric  

Control Charting Techniques 

 

 As stated in the previous section, nonparametric tests are of value when the 

assumptions of their parametric counterparts are not met or cannot be verified, and the 

“price of making a wrong decision is high” (Conover, 1999). In business settings where 

quality management techniques are employed, specifically through use of control charts, 

there may exist many costly wrong decisions. As mentioned in the discussion on relevant 

control charts, all have an assumption of the monitored process following a normal 

distribution. Chakraborti et al. (2001) noted that in cases where this assumption is not met 

that the performance of the control chart, in terms of 𝐴𝑅𝐿0 and 𝐴𝑅𝐿1, may substantially 

deteriorate. Consequently, operators may be receiving frequent false alarms, or they may 

be alerted of a shift in the process’ mean after a large number of nonconformities have 

been produced. In either scenario, the cost to a business may be sizeable and faith in the 

quality management program may wane. Therefore, it would be of value to employ and 
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further develop charting techniques which are nonparametric in nature to avoid such 

problems (Chakraborti et al., 2001).  

A Shewhart-Style Sign Test Chart  

Amin et al. (1995) noted that performance of the classical 𝑋̅-chart may be 

negatively impacted in the presence of non-normal data. Therefore, the authors proposed 

use of the one population Sign Test statistic, as given in (17), as the plotting statistic in a 

Shewhart-style framework (Amin et al., 1995). One assumption the authors made for 

mathematical simplicity was that the variable of interest is continuous such that 𝑃[𝑥𝑖 −

𝜇0 = 0] = 0 (Amin et al., 1995). It is straightforward to see from (17) that 0 ≤ 𝑆𝑇 ≤ 𝑛 

under 𝐻0. Additionally, the null distribution of 𝑆𝑇 is symmetric about 𝑛/2 (Amin et al., 

1995). As a result, for some desired 𝐴𝑅𝐿0, a control limit the authors denote “𝑎2” can be 

determined by solving:  

 
𝐴𝑅𝐿0 =

1

𝑃(|𝑆𝑇| ≥ 𝑎2)
 . 

 

(27) 

  To compare the performance of their chart with respect to the traditional 𝑋̅-chart, 

the authors carried out a simulation study using both standard two-sided charts and one-

sided positive charts (Amin et al., 1995). Here, random samples of size 𝑛 = 10 were 

generated from several distributions, including light-tailed, heavy-tailed, and skewed 

(Amin et al., 1995). The simulated samples were then monitored using both charting 

techniques, and 𝐴𝑅𝐿1 values were estimated for shifts away from target of various 

magnitudes. The authors noted that the performance of the 𝑋̅-chart is superior to their 

Shewhart-style chart when the underlying data were generated from the normal and 

uniform distributions (Amin et al., 1995). However, when the data were generated from 

heavy-tailed or skewed distributions, and the size of the shift was small (< 1𝜎), their 
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chart was found to be superior (Amin et al., 1995). The preferable performance was 

especially evident when the technique was one-sided (Amin et al., 1995).  

A Cumulative Summation-Style  

Sign Test Chart  

Amin et al. (1995) also proposed a CUSUM-style chart where the observations 

are the values of the Sign Test statistic. In their technique, samples of size 𝑛 are taken, 

and their proposed CUSUM plotting statistics are given by: 

 

𝑆𝑡
+ = ∑(𝑆𝑇𝑖 − 𝑘)

𝑡

𝑖=1

− 𝑚𝑖𝑛
0≤𝑢≤ 𝑡

(∑(𝑆𝑇𝑖 − 𝑘)

𝑢

𝑖=1

) 

𝑆𝑡
− = 𝑚𝑎𝑥

0≤𝑢≤𝑡
(∑(𝑆𝑇𝑖 − 𝑘)

𝑢

𝑖=1

) − ∑(𝑆𝑇𝑖 − 𝑘)

𝑡

𝑖=1

 . 

 

(28) 

 Like the standard CUSUM procedure described before, if either of the plotting 

statistics exceeds some control limit ℎ, then this is evidence to the operator that a shift 

may have taken place (Amin et al., 1995). Treating the CUSUM plotting statistics like a 

Markov chain, the authors were able to estimate values of 𝑘 for various sized shifts from 

target (Amin et al., 1995). The authors then performed a simulation study to determine 

which values of 𝑘 and ℎ would yield a desired value of 𝐴𝑅𝐿0 (Amin et al., 1995). To 

evaluate the performance of their proposed CUSUM chart, the authors compared its 

performance via simulation to the performance of a CUSUM which used 𝑋̅ for each 

sample (Amin et al., 1995). The CUSUM using 𝑋̅ tended to perform better than the Sign 

Test CUSUM when the data came from a uniform distribution (Amin et al., 1995). 

However, the performance of the Sign Test CUSUM was far superior to that of the 𝑋̅ 

CUSUM for heavy-tailed and skewed distributions (Amin et al., 1995). Interestingly, the 

authors noted that the Sign Test CUSUM was even more effective than the 𝑋̅ CUSUM 
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when monitoring small shifts from target when the data were normally distributed (Amin 

et al., 1995). Additionally, the authors also made note that the Sign Test CUSUM 

performed better than their proposed Shewhart-style Sign Test chart, as the distributions 

and shifts considered in both simulations were identical (Amin et al., 1995).  

A Cumulative Summation Chart  

Based on the Wilcoxon Signed  

Rank Test 

 

Bakir & Reynolds (1979) developed a CUSUM charting technique using the 

WSRT statistic. In their technique, individual observations are either grouped together 

naturally or artificially such that a group (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑔) constitutes a future sample 𝑖 

(Bakir & Reynolds, 1979). The authors refer to their grouped technique as “Grouped 

Signed Rank (GSR)” chart. The authors slightly modify the test statistic given in (19) to 

be the sum of all ranks as opposed to the sum of all positive ranks (Bakir & Reynolds, 

1979). Let 𝑅𝑖𝑗 denote the rank of 𝑥𝑖𝑗 within the group (|𝑥𝑖1|, |𝑥𝑖2|, … , |𝑥𝑖𝑔|) for 𝑖 = 1,2, … 

and 𝑗 = 1,2, … 𝑔 (Bakir & Reynolds, 1979).  For sample number 𝑖, define the Bakir and 

Reynolds WSRT statistic as: 

 

𝑆𝑅𝑖 = ∑ 𝑠𝑔𝑛(𝑥𝑖𝑗)𝑅𝑖𝑗

𝑔

𝑗=1

 . 

 

(29) 

The upper and lower CUSUM plotting statistics proposed by the authors are 

nearly identical to those given in (28) with the exception of replacing 𝑆𝑇𝑖 with 𝑆𝑅𝑖 given 

in (29) (Bakir & Reynolds, 1979; Amin et al., 1995). As was the case with the other 

described CUSUM techniques, one of the purposes of the authors’ study was to 

determine for which values of ℎ and 𝑘 the in-control performance of the GSR technique 

would yield desirable 𝐴𝑅𝐿0 (Bakir & Reynolds, 1979). Much like other proposed 
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CUSUM techniques, the authors treated the GSR CUSUM as a Markov chain to estimate 

its in-control performance for various combinations of 𝑘 and ℎ via computer simulation 

(Bakir & Reynolds, 1979). Unlike other proposed CUSUM techniques, the authors 

showed that the choice of 𝑘 and ℎ for the GSR CUSUM is dependent upon the skewness 

or lack thereof of the underlying probability distribution function (Bakir & Reynolds, 

1979). Considering a symmetric distribution is an assumption of the WSRT, this 

additional simulation was warranted (Bakir & Reynolds, 1979; Conover, 1999).  

 To assess the performance of their chart, the authors compared the GSR CUSUM 

to a standard CUSUM chart (which assumed normality) and the traditional 𝑋̅-chart (Bakir 

& Reynolds, 1979). They considered two cases: one where natural grouping (i.e., samples 

of size 𝑛 = 10 were taken at each time point) was assumed and one where individual 

observations constituted the sample, and thus artificial grouping took place (Bakir & 

Reynolds, 1979). In the former case, the authors used 𝑥̅𝑖 as the plotting statistic in the 

standard CUSUM and 𝑋̅-charts, and 𝑆𝑅𝑖 for the observed value in the GSR CUSUM 

(Bakir & Reynolds, 1979). In the latter case, the authors used 𝑥𝑖 as the plotting statistic 

for the standard CUSUM and 𝑋̅-charts and waited until 10 individual observations had 

been accumulated to calculate 𝑆𝑅𝑖 in their GSR CUSUM (Bakir & Reynolds, 1979). The 

authors compared 𝐴𝑅𝐿1 of the three charts in both cases when the data came from the 

normal, uniform, double exponential, and Cauchy distributions (Bakir & Reynolds, 

1979). The uniform distribution is an example of a light-tailed distribution, while the 

latter two distributions represent heavy-tailed distributions.  

Through simulation, the authors determined that the GSR CUSUM is not quite as 

effective as the standard CUSUM when the data are normally distributed (Bakir & 
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Reynolds, 1979). They also noted that the GSR CUSUM is less efficient than the 

standard CUSUM as it required 10 observations before a point could be plotted (Bakir & 

Reynolds, 1979). This was found to be the case of all the studied distributions besides the 

heavy-tailed distributions. Interestingly, it was shown that the GSR CUSUM was more 

effective at detecting small shifts than the 𝑋̅-chart when the data were normal (Bakir & 

Reynolds, 1979). In the case where data came from the uniform distribution, the 

ungrouped 𝑋̅-chart was shown to have superior performance (Bakir & Reynolds, 1979). 

Finally, it was shown that when the data came from the double exponential distribution, 

the GSR CUSUM’s performance “is at least as good as the parametric procedures” (Bakir 

& Reynolds, 1979). The GSR CUSUM’s ability to detect shifts from data coming from 

the very heavy-tailed Cauchy distribution was far superior to that of the parametric 

alternatives (Bakir & Reynolds, 1979).  

A Shewhart-style Chart Based on  

the Mann-Whitney Test  

 

Chakraborti & van de Wiel (2008) proposed a univariate control chart which 

made use of the MW Test statistic. While the MW Test is commonly used to compare 

two independent populations, the authors creatively applied the MW Test’s procedure to 

a univariate process within a Shewhart-style framework (Chakraborti & van de Wiel, 

2008). They define one independent group to be a historical, in-control sample of size 𝑚, 

(denoted 𝑥1 … 𝑥𝑚) and the other independent group to be the ℎth future sample of size 𝑛 

(denoted 𝑦1 … 𝑦𝑛) (Chakraborti & van de Wiel, 2008). They then define the Mann-

Whitney plotting statistic for future sample ℎ as: 
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𝑀𝑋𝑌

ℎ = ∑ ∑ 𝐼(𝑥𝑖 < 𝑦𝑗)

𝑛

𝑗=1

𝑚

𝑖=1

 . 

 

(30) 

Note, the Mann-Whitney Test statistic given in (30) differs from the Mann-

Whitney Test statistic given in (22). The statistic in (22) is an equivalent alternative to 

(30). Wang et al. (2017) showed 𝑀𝑋𝑌
ℎ = 𝑀𝑊 − 𝑚(𝑚 + 1)/2. Chakraborti & van de 

Wiel (2008) noted that since 0 ≤ 𝑀𝑋𝑌
ℎ ≤ 𝑚𝑛, and since 𝑀𝑋𝑌

ℎ  is symmetric about 𝑚𝑛/2, 

that probabilistic control limits can be calculated for 𝑀𝑋𝑌
ℎ  for some specified 𝛼. Like a 

standard Shewhart-style chart, if 𝑀𝑋𝑌
ℎ > 𝑈𝑚𝑛 or 𝑀𝑋𝑌

ℎ < 𝐿𝑚𝑛, then this signals to the 

operator that the process may have gone out of control (Chakraborti & van de Wiel, 

2008).  

To calculate 𝐴𝑅𝐿0 and 𝐴𝑅𝐿1, the authors used an approximation to the exact 

integral solution for average run length (Chakraborti & van de Wiel, 2008). This 

approach is an alternative to indirectly estimating by performing a large number of 

simulation iterations, counting the number of points in-between the out-of-control 

observations, and taking the mean of those counts to be the average run length. Because 

the integral, much like Page’s integral, is not easily solved directly, the authors proposed 

and compared several techniques to both quickly and accurately estimate 𝐴𝑅𝐿’s 

(Chakraborti & van de Wiel, 2008). The most effective technique used a Monte Carlo 

approximation where 𝐾 iterations were taken (Chakraborti & van de Wiel, 2008). Let 

𝑝̂𝑢(𝑥𝑖) denote the estimated probability of a Type I error as estimated by the Lugannani-

Rice formula (Jensen, 1995). The estimated average run length is given by: 

 

𝐴𝑅̂𝐿0 ≈
1

𝐾
∑

1

𝑝̂𝑈(𝑥𝑖)

𝐾

𝑖=1

 . 

 

(31) 
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The authors compared the performance of their chart to that of a traditional 𝑋̅-

chart in the presence of normal, double exponential, and gamma distributions for shifts 

from target ranging from 0.5 – 3 (Chakraborti & van de Wiel, 2008). In the case of the 

normal distribution, it was found that the 𝑋̅-chart was more effective in detecting smaller 

shifts than the proposed chart, but the differences waned as the shifts approached three 

(Chakraborti & van de Wiel, 2008). In the case of the heavy-tailed double exponential 

distribution, the proposed charting technique was found to be more effective in detecting 

smaller shifts than the 𝑋̅-chart, but those differences also became scant as the shifts 

approached three (Chakraborti & van de Wiel, 2008). Finally, in the presence of the 

skewed gamma distribution, the proposed chart was again found to more quickly detect 

small shifts away from target than the 𝑋̅-chart (Chakraborti & van de Wiel, 2008).  

A Cumulative Summation Chart  

Based on the Mann-Whitney  

Test 

 

 Wang et al. (2017) proposed a CUSUM style chart based on the MW Test in a 

similar way to the technique proposed by Chakraborti & van de Wiel (2008). Besides the 

primary difference in the structure of the charting schemes, another distinction between 

the two Mann-Whitney charts is how the observations from future samples are collected. 

In Chakraborti’s Shewhart-style MW chart, future samples of size 𝑛 are iteratively 

collected to create a sequence of MW Test statistics (Chakraborti & van de Wiel, 2008). 

In the MW CUSUM proposed by Wang et al. (2017), the authors take future samples of 

size 𝑛 = 1. As explained previously, waiting to take samples of 𝑛 > 1 may be more 

inefficient than techniques where individual observations are allowable (Bakir & 

Reynolds, 1979). An additional difference between the two Mann-Whitney charts is that 
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Wang et al. (2017) standardize the MW Test statistic, which is advised in cases where the 

sample size is variable from sample to sample (Montgomery, 2013).  

Let 𝑀𝑊𝑡,𝑙 denote the MW Test statistic under the proposed framework. The 

expectation and variance of the MW Test statistic are given by: 

 
𝐸[𝑀𝑊𝑡,𝑙] =

𝑡(𝑙 − 𝑡)

2
 

 

(32) 

 
𝑉𝑎𝑟[𝑀𝑊𝑡,𝑙] =

𝑡(𝑙 − 𝑡)(𝑙 + 1)

12
 . 

 

(33) 

 Thus, the standardized MW Test statistic under this framework is given by:  

 
𝑆𝑀𝑊𝑡,𝑙 =

𝑀𝑊𝑡,𝑙 − 𝐸[𝑀𝑊𝑡,𝑙]

√𝑉𝑎𝑟[𝑀𝑊𝑡,𝑙]

 . 

 

(34) 

 The upper and lower CUSUM statistics are given by:  

 𝑆𝐽
+(𝑚, 𝑛) = 𝑚𝑎𝑥[0, 𝑆𝑗−1

+ (𝑚, 𝑛) + 𝑆𝑀𝑊𝑗,(𝑚+𝑛) − 𝑘] 

𝑆𝐽
−(𝑚, 𝑛) = 𝑚𝑎𝑥[0, 𝑆𝑗−1

− (𝑚, 𝑛) + 𝑆𝑀𝑊𝑗,(𝑚+𝑛) + 𝑘], 

 

(35) 

where 𝑆0
+(𝑚, 𝑛) = 𝑆0

−(𝑚, 𝑛) = 0, and 𝑘 = 0.5 (Wang et al., 2017). Note, the exact null 

distribution of the MW Test statistic is a function of the analyzed sample size (Conover, 

1999). When the analyzed sample size is small, the standardized value cannot reasonably 

be assumed to be approximately distributed as a standard normal distribution. It is only in 

the case that 𝑛 → ∞ (the practical interpretation of which is debated, but 𝑛 > 30 is a 

commonly used guideline) that such an approximation is reasonable (Montgomery, 

2013). Wang et al. (2017) concluded that because the observed value to be used in the 

CUSUM framework would only approach the standard normal distribution as the number 

of future observations became large, and because the sample size for each 𝑆𝑀𝑊𝑡,𝑙 is 

variable, a dynamic control limit, ℎ(𝑚, 𝑛), should be used instead of the traditional static 
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control limit, ℎ. This approach closely mirrors what was described in the section on 

calculating control limits for the EWMA chart.   

 Since ℎ(𝑚, 𝑛) is variable, the approaches described in prior sections regarding 

estimating ℎ could not be used. Instead, the authors performed a simulation to obtain a 

value of ℎ(𝑚, 𝑛) given a specified 𝐴𝑅𝐿0 and a given reference sample size 𝑚 for each 

future sample 𝑛 = 1,2, … 490 (Wang et al., 2017). The authors chose 𝐴𝑅𝐿0 =

100, 200, 370, and 500, and 𝑚 = 10, 50 (Wang et al., 2017). As the number of future 

samples becomes large, ℎ(𝑚, 𝑛) approaches a static figure for each combination of 𝐴𝑅𝐿0 

and 𝑚 (Wang et al., 2017).  

 To assess the out-of-control performance of their chart, the authors compared 

their technique to an existing nonparametric technique which utilized the MW Test 

statistic in an EWMA framework (Zhou, Zou, Zhang & Wang, 2007). The authors used 

simulated data from the standard normal, 𝜒2(4), 𝑡(4), and lognormal distributions where 

shifts in the mean varied from 0.00 − 3.00 in small increments (Wang et al., 2017). 

Additionally, the authors introduced the shift at various points in the sequence as the 

construction of 𝑆𝑀𝑊𝑡,𝑙 would seem to make it more sensitive to small shifts if it contains 

a large amount of in-control observations and vice versa (Wang et al., 2017). As shown, 

for large shifts, both charts performed almost equally as well across all studied 

distributions (Wang et al., 2017). For smaller shifts, the proposed CUSUM performed 

slightly better across all studied distributions (Wang et al., 2017). Of note, the estimated 

𝐴𝑅𝐿1 values varied only minimally across the studied distributions (Wang et al., 2017). 

The result would be congruent with the MW Test’s assumptions as there is no assumption 

regarding the underlying shape of the distribution (Conover, 1999).  
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Nonparametric Multiple Stream Processes 

Control Chart 

 

 As has been noted, the purpose of all control charting schemes is to quickly detect 

a true shift in some monitored process or processes (Montgomery, 2013). A variety of 

control charting techniques have been developed to meet the needs of organizations and 

practitioners. MSP charts have been developed in the case when an organization collects 

observations from multiple, separate data points called “streams” (Boyd, 1950; Mortell & 

Runger, 1995; Meneces et al., 2008; Montgomery, 2013). The MSP control charting 

schemes described in Chapter II all assumed the underlying processes being monitored 

followed normal distributions and the various proposed techniques and recommendations 

were based upon the normality assumption (Boyd, 1950; Mortell & Runger, 1995; 

Meneces et al., 2008). Chakraborti et al. (2001) noted that in practice, processes may not 

necessarily follow any known parametric distribution, let alone a normal distribution. It is 

therefore of value to use nonparametric control charting techniques when the assumption 

of normality is not known or cannot reasonably be assumed (Chakraborti et al., 2001). 

However, a review of the literature found no specific mention of nonparametric MSP 

control charting schemes. Thus, it is the purpose of this dissertation to address this 

apparent gap in the literature by constructing a new nonparametric MSP control chart 

using the Extended Median Test within a CUSUM framework.   
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CHAPTER III 

METHODS 

A Proposed Cumulative Summation Nonparametric  

Multiple Stream Process Control Chart 

 

 In this chapter, a new nonparametric control chart for monitoring a multiple 

stream process (MSP) is proposed. Chart development is based upon a modification of 

the Extended Median Test (EMT) statistic given by (24). The EMT statistic is to be used 

as the observation within a, two-sided cumulative summation (CUSUM) framework, as 

given by (12). As noted in Chapter I, this new chart is referred to as the “Nonparametric 

Extended Median Test Cumulative Summation (NEMT-CUSUM) Chart.”  

Research Questions  

As stated in Chapter I, the research questions guiding this study are as follows: 

Q1 What value of the parameter 𝛿 of the NEMT-CUSUM chart yields the 

commonly desired 𝐴𝑅𝐿0 values of 200, 370, and 500 which correspond to 

Type I error rates of 𝛼 = 0.005, 0.0027, and 0.002?  

 

Q2 For a specified value of 𝐴𝑅𝐿0, what is the statistical power yielded when a 

subset of the 𝐶 monitored streams has shifted away from target, 

considering different magnitude shifts, number of monitored streams, and 

sample sizes of the streams? 

 

Q3 How does the performance of the NEMT-CUSUM chart, in terms of 

𝐴𝑅𝐿1, compare to the performance of the Boyd, Mortell and Runger, and 

Meneces MSP charts in the presence of data coming from normal, light-

tailed, heavy-tailed, and skewed distributions when half of the monitored 

streams shift from the target median of magnitudes ranging from 0 to 3 in 

increments of 0.25 have occurred? 
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The EMT was chosen to be the nonparametric test used for monitoring a MSP for 

one main reason. The testing procedure underlying the EMT is more straightforward than 

that of the Kruskal-Wallis Test as there are fewer steps and fewer calculations (Conover, 

1999). However, the EMT can be further simplified to directly be an application of a 𝜒2 

Goodness of Fit test, as is shown. Therefore, if the proposed charting scheme, using a 

slight modification to the EMT, were to be implemented in a practical setting, it would 

seem less likely than the Kruskal-Wallis Test to cause confusion. Dr. Deming’s 13
th

 point 

in his 14-point framework is to continually educate employees on the quality 

management program (Montgomery, 2013). Markedly, the employees ought to clearly 

understand the use of the control charting schemes being used to monitor product and 

service quality (Montgomery, 2013). Thus, it would be of benefit for control charts to be 

clear to understand as well as efficient and effective in detecting shifts away from target. 

The EMT can reasonably be justified to meet the former benefit, and the purpose of this 

study was to address the degree to which the second benefit is met. 

 The CUSUM framework was chosen as the charting technique to be used for the 

reasons described in Chapter II. The CUSUM technique is more effective than the 

classical Shewhart-style charts in detecting small shifts (< 1.5𝜎) away from target 

(Montgomery, 2013). Furthermore, the entire sequence of observations is taken into 

consideration in the CUSUM plotting statistics (as shown in (12)) rather than only the 

latest observation (Montgomery, 2013). Additionally, (12) was used rather than the 

common tabular method as shown in (13) as it allows the Type I error rate 𝛼 to be fixed 

from sample to sample, which may or may not be the case when using the tabular method 

(Adams, Woodall & Lowry, 1992).  
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 Before describing the methods used to address the research questions stated in 

Chapter I, it is of benefit to mention the practical assumptions used in this study. First, it 

is assumed that a reasonable estimate of the target value of the median, denoted 𝜇0, is 

known either from technical specifications or historical estimates. Second, the EMT as 

described in Chapter II and the 𝜒2 Goodness of Fit test upon which it is based assumes 

the populations or streams in this case are independent. While other studies described 

situations in which the streams had some degree of correlation, it will be assumed the 

streams are independent here. Additionally, it is also assumed the streams are sampled as 

independent binomial random variables not only at each sampled time point, but also 

between all sampled time points (i.e., no autocorrelation). Third, while the number of 

groups or streams the EMT can analyze could be arbitrarily large but finite, for assessing 

𝐴𝑅𝐿1 performance of the competing charting schemes in this study, the number of 

streams was fixed at 𝐶 = 10. Fourth, the EMT statistic, as described by (43), allows 

samples from each of the 𝐶 groups to be of varying sizes. In this study for assessing 

𝐴𝑅𝐿1 performance, the sample size is equal and fixed across all samples. Finally, the 

total sample size was taken to be large enough such that the asymptotic properties of the 

EMT statistic could be leveraged. 

Chart Construction 

 

Distribution of Monitored Statistic  

In this section, the proposed methodology for constructing the NEMT-CUSUM is 

given. Let 𝑥𝑖1𝑡 … 𝑥𝑖𝑛𝑖𝑡 denote a random sample of size 𝑛𝑖 from stream 𝑖 at time 𝑡 where 

𝑡 = 1,2 …, and 𝑖 = 1,2, … , 𝐶. Let the random samples from each stream be mutually 

independent and assume that all of the streams have the same target median, 𝜇0. At time 
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𝑡, using the random samples taken, obtain the frequencies of observations from each 

sample taken which are either ≥ 𝜇0 or < 𝜇0. Let 𝑂1𝑡, 𝑂2𝑡 … 𝑂𝑐𝑡 denote the frequencies of 

observations from each sampled stream which are either ≥ 𝜇0 or < 𝜇0. Then, Table 4 can 

be constructed where the 𝑂𝑖𝑡’s denote frequencies ≥ 𝜇0. 

Table 4  

Table Used for Modified Extended Median Test 

Frequency of Observations ≥ 𝜇0 𝑂1𝑡  𝑂2𝑡 … 𝑂𝑐𝑡 

Sample sizes 𝑛1𝑡 𝑛2𝑡 … 𝑛𝐶𝑡 

 

 If each stream has the same median, then it can be assumed that: 

 𝑂𝑖𝑡 ∼ 𝐵𝐼𝑁(𝑛𝑖𝑡, 𝑝0 = 0.5), ∀ (𝑖, 𝑡) 

 

(36) 

which implies that a random observation taken from each stream is assumed to have the 

same probability of exceeding 𝜇0, and: 

 𝐸[𝑂𝑖𝑡] = 𝑛𝑖𝑡𝑝0 

𝑉𝑎𝑟[𝑂𝑖𝑡] = 𝑛𝑖𝑡𝑝0(1 − 𝑝0). 

 

(37) 

Consequently, in order for 𝑛𝑖𝑡𝑝0 = 𝑛𝑖𝑡(0.5) ≥ 5, as is assumed in order to use the 𝜒2 

approximation, then 𝑛𝑖𝑡 ≥ 10 (Conover, 1999; Agresti, 2007). Now, using all relevant 

information, it is apparent that the modified EMT is a direct application of a 𝜒2 Goodness 

of Fit test. Assuming each 𝑛𝑖𝑡(0.5) ≥ 5, then each 𝑂𝑖𝑡 can be standardized to become 

independent, approximate standard random variables. That is, 

 𝑂𝑖𝑡 − 𝑛𝑖𝑡𝑝0

√𝑛𝑖𝑡𝑝0(1 − 𝑝0)
∼̇ 𝑁(0,1). 

 

(38) 
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Agresti (2007) noted that the approximation becomes better as 𝑛𝑖𝑡 → ∞. If the sampled 

streams are mutually independent, the covariance between them is well known to be zero. 

Additionally, it is also well known that the variance of the sum of independent random 

variables is the sum of each respective random variable’s variance term.  

 It is important to note a relationship between sums independent normal random 

variables. Let 𝑋1 … 𝑋𝑁 denote independent normal random variables with means 𝜇1 … 𝜇𝑁 

and standard deviations 𝜎1 … 𝜎𝑁 and let 𝑍 = ∑ 𝑋𝑖
𝑁
𝑖=1 . Using the moment generating 

function of the normal distribution, the moment generating function of 𝑍 is: 

 𝑀𝑍(𝑡) = 𝐸[exp(𝑍𝑡)] 

= 𝐸 [exp ((∑ 𝑋𝑖

𝑁

𝑖=1

) 𝑡)] 

= 𝐸[exp(𝑡𝑋1 + 𝑡𝑋2 + ⋯ + 𝑡𝑋𝑁
)] 

= 𝐸[exp(𝑡𝑋1)]𝐸[exp(𝑡𝑋2)] … 𝐸[exp(𝑡𝑋𝑁)] 

= (exp(𝜇1𝑡 + 𝜎1
2𝑡20.5)) … (exp(𝜇𝑁𝑡 + 𝜎𝑁

2𝑡20.5)) 

= (exp (𝑡 ∑ 𝜇𝑖

𝑁

𝑖=1

+ 0.5𝑡2 ∑ 𝜎𝑖
2

𝑁

𝑖=1

)) 

⇒ 𝑍 ∼ 𝑁 (∑ 𝜇𝑖

𝑁

𝑖=1

, ∑ 𝜎𝑖
2

𝑁

𝑖=1

). 

 

(39) 

For a sample taken at time 𝑡, define 𝐸𝑀𝑇𝑡 to be the sum of the standardized 𝑂𝑖𝑡’s. Then, 

as a result of (38) and (39): 

 

𝐸𝑀𝑇𝑡 = ∑ (
𝑂𝑖𝑡 − 𝑛𝑖𝑡𝑝0

√𝑛𝑖𝑡𝑝0(1 − 𝑝0)
)

𝐶

𝑖=1

∼̇ 𝑁(𝜇 = 0, 𝜎2 = 𝐶). 

 

(40) 
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 Thus, for the sample taken at time 𝑡, one value of 𝐸𝑀𝑇𝑡 will be obtained. As the 

distribution given in (40) is the null distribution, small deviations of 𝐸𝑀𝑇𝑡 away from 0 

in either the positive or negative direction implies that none of the streams may have 

shifted away from 𝜇0. Conversely, large deviations of 𝐸𝑀𝑇𝑡 away from 0 implies that at 

least one of the streams may have a different median than 𝜇0. 𝐸𝑀𝑇𝑡 will serve as the 

statistic monitored by the CUSUM framework.  

Distribution of Cumulative  

Summation Statistic 

 

 For each sample taken at time 𝑡, one 𝐸𝑀𝑇𝑡 will be calculated. Then, the CUSUM 

statistic to be used for monitoring the MSP will have the form given by (12). Let 𝑆𝑡 

denote the CUSUM statistic at time = 1,2, … . Then, let its value be defined as: 

 

𝑆𝑡 = ∑ 𝐸𝑀𝑇𝑗

𝑡

𝑗=1

 . 

 

(41) 

Since 𝐸𝑀𝑇𝑡 and subsequently 𝑆𝑡 can vary in both the positive and negative direction, 

each 𝑆𝑡 will be compared to 𝑈𝐶𝐿𝑡 and 𝐿𝐶𝐿𝑡 where: 

 𝑈𝐶𝐿𝑡 = 𝐸[𝑆𝑡] + 𝛿√𝑉𝑎𝑟[𝑆𝑡] 

𝐿𝐶𝐿𝑡 = 𝐸[𝑆𝑡] − 𝛿√𝑉𝑎𝑟[𝑆𝑡] , 

 

(42) 

and where 𝑈𝐶𝐿𝑡 and 𝐿𝐶𝐿𝑡 will vary for a specified value of 𝛼 for each time 𝑡. If 𝑆𝑡 >

𝑈𝐶𝐿𝑡 or 𝑆𝑡 < 𝐿𝐶𝐿𝑡, then it is signaled to the operator that a shift away from target may 

have occurred in one or multiple of the streams being monitored. In order to calculate 

these limits, the distribution of 𝑆𝑡 must first be derived. From the computation of 𝑆𝑡, it is 

clear that: 
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 𝑆𝑡 = 𝑆𝑡−1 + 𝐸𝑀𝑇𝑡. 

 

(43) 

The result in (43) implies that 𝑆𝑡 is dependent upon 𝑆𝑡−1. However, there are two 

different approaches to addressing the dependency. The first approach conditions 𝑆𝑡 upon 

𝑆𝑡−1 and thus is conceptualized much like classical regression with fixed predictors. The 

second approach conceptualizes (43) as a random walk process, which is used in time 

series applications (Wei, 2007). Of note, a random walk process is a special case of a first 

order autoregressive process (AR-1) (Wei, 2007). With respect to the former 

conceptualization, since 𝑆𝑡−1 is a known quantity, as in regression, the randomness 

inherent in 𝑆𝑡 comes from 𝐸𝑀𝑇𝑡. Therefore, like the general linear model:  

 𝑆𝑡|𝑆𝑡−1 ∼̇ 𝑁(𝑆𝑡−1, 𝐶). 

 

(44) 

Using the result given by (44), 𝑈𝐶𝐿𝑡 and 𝐿𝐶𝐿𝑡 can be obtained by: 

 𝑈𝐶𝐿𝑡 = 𝑆𝑡−1 + 𝛿√𝐶 

𝐿𝐶𝐿𝑡 = 𝑆𝑡−1 − 𝛿√𝐶 , 

 

(45) 

where 𝑡 = 1, 𝑆0 = 0. Note, 𝑈𝐶𝐿𝑡 and 𝐿𝐶𝐿𝑡 are indexed by time, which implies that the 

control limits are dynamic, and not static as is the case with the tabular CUSUM method 

(Montgomery, 2013). This property allows 𝛼 to be fixed from sample to sample. This, in 

conjunction with the asymptotic property of the 𝐸𝑀𝑇𝑡’s, allows relatively straightforward 

computation of 𝐴𝑅𝐿0 and 𝐴𝑅𝐿1.  

 Now, with respect to the conceptualization of (43) as a random walk process, and 

as aforementioned, a random walk is a special case of an AR-1 process (Wei, 2007). Let 
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{𝑍𝑡} denote a random walk series with white noise process 𝑎𝑡 ∼ 𝑁(0, 𝜎2) where all 𝑎𝑡 

are independent for all 𝑡 = 1,2, … . Then, the random walk process is defined by: 

 𝑍𝑡 = 𝑍𝑡−1 + 𝑎𝑡. 

 

(46) 

The expectation of the process described by (46) is: 

 

𝐸[𝑍𝑡] = 𝐸 [∑ 𝑎𝑗

𝑡

𝑗=1

] 

= ∑ 𝐸[𝑎𝑗]

𝑡

𝑗=1

 

= 𝑡(0) = 0, 

 

(47) 

and its variance is defined in a similar way by: 

 

𝑉𝑎𝑟[𝑍𝑡] = 𝑉𝑎𝑟 [∑ 𝑎𝑗

𝑡

𝑗=1

] 

= ∑ 𝑉𝑎𝑟[𝑎𝑗]

𝑡

𝑗=1

 

= 𝑡𝜎2. 

 

(48) 

Of note, the result in (48) shows that a random walk process is not stationary since its 

variance depends on 𝑡. Now, using (47) and (48), along with the knowledge that 

𝑉𝑎𝑟[𝐸𝑀𝑇𝑗] = 𝐶, the results in (47) and (48) can be input into (42) such that: 

 𝑈𝐶𝐿𝑡
∗ = 𝛿√𝑡𝐶 

𝐿𝐶𝐿𝑡
∗ = −𝛿√𝑡𝐶. 

 

(49) 
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Like what was computed in (45), (49) shows that 𝑈𝐶𝐿𝑡
∗  and 𝐿𝐶𝐿𝑡

∗  will change with time 

when treating 𝑆𝑡 as a random walk process. In this case, they will increase in their 

respective positive and negative directions with each step by magnitude √𝑡. This property 

of having dynamic limits is useful since 𝛼 can be fixed across all time points, as is the 

case with the conditional regression conceptualization of 𝑆𝑡.  

 While either conceptualization of 𝑆𝑡 could be used to create and use the NEMT-

CUSUM control chart, this work utilized the conditional regression conceptualization. 

There are two main reasons for this. First, even though the control limits given in (45) 

change with the conditional mean, 𝑆𝑡−1, the magnitude of the difference between 𝑈𝐶𝐿𝑡 

and 𝐿𝐶𝐿𝑡 is fixed across all observed time points as:  

 𝑈𝐶𝐿𝑡 − 𝐿𝐶𝐿𝑡 = 𝑆𝑡−1 + 𝛿√𝐶 − 𝑆𝑡−1 + 𝛿√𝐶 

= 2𝛿√𝐶 . 

 

(50) 

The difference between the control limits given in (49) will increase with time as 

𝑈𝐶𝐿𝑡
∗ − 𝐿𝐶𝐿𝑡

∗ = 2𝛿√𝑡𝐶. When plotting 𝑆𝑡, having a fixed width between the limits 

makes the chart easier to visually inspect, especially for large 𝑡. The second reason for 

using the conditional regression conceptualization as opposed to the marginal random 

walk conceptualization is related to the calculation of 𝐴𝑅𝐿0 and the interpretation of 𝛼. In 

all of the control charts described in Chapter II, and as is generally the case in control 

charting techniques, 𝐴𝑅𝐿0 is defined as the expected number of samples taken before a 

false alarm signals when the process is in-control. As an example, assume a classical 

CUSUM chart is set up such that the control limit ℎ were set such that 𝐴𝑅𝐿0 ≈ 370. If 

10,000 CUSUM series were simulated, each of them would signal a false alarm at some 
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time point, but these would vary. One may be 90, one may be 1000, but their sample 

mean would be approximately 370. However, in the random walk conceptualization of 

𝑆𝑡, the same approach could not be taken since the distribution depends on 𝑡. Notice, this 

is also true for the EWMA chart when the sample number is small and the steady-state 

control limits cannot be used. However, the control limits for the EWMA approach an 

asymptotic value as shown in (9) and (10). The control limits in (49) will not approach an 

asymptote as 𝑡 → ∞.  

Thus, in order to have a nominal 𝐴𝑅𝐿0 and 𝛼 as thought of in the classical sense, 

practical implementation of the random walk chart would have to have 𝑡 fixed at some 

upper value and then the chart would need to be reset at 𝑡 = 1. This is due to 𝛼. The Type 

I error rate 𝛼 is the probability of a false alarm or in traditional hypothesis testing, it is the 

probability of rejecting the null hypothesis when the null hypothesis is indeed true. As an 

example, if a one-population t-test were performed 1,000 times on the same population, 

and if the null hypothesis were true, it would be expected that 1000𝛼 of those tests would 

show statistical significance incorrectly. The same result would be yielded for the random 

walk 𝑆𝑡, but only if 𝑡 was fixed. Thus, one of the attractive features of the CUSUM 

framework, namely the consideration of the whole series of observations, becomes 

somewhat limited. Certainly, the conditional regression 𝑆𝑡 is also nonstationary because 

its mean varies, but the problem described here is not exacerbated in the same way it is as 

in the random walk conceptualization and this is shown through the simulation study 

results presented in Chapter IV. For these two reasons, the conditional regression 𝑆𝑡 was 

used in this work. 



62 
 

 
 

Assessing the In-Control Performance of the Proposed 

Charting Technique 

 

 The first research question guiding this study is to determine which values of 𝛿 

should be used to obtain common 𝐴𝑅𝐿0 values of 200, 370, and 500 which correspond to 

Type I error rates of 𝛼 = 0.005, 0.0027, and 0.002. This question can be reframed as 

one of conditional probability.  

Let 𝜇1, 𝜇2, … , 𝜇𝐶 denote the true medians for each of the monitored streams, and 

also let 𝑝1, 𝑝2, … , 𝑝𝑐 denote the true probability parameters of each stream’s binomial 

distribution. If all streams have not shifted away from the specified, common target 

median, 𝜇0, then it is implied that 𝜇0 = 𝜇1 = ⋯ = 𝜇𝐶 and 𝑝0 = 𝑝1 = ⋯ = 𝑝𝐶. Then, for 

a given value of 𝛼 and given that all 𝐶 streams have not shifted from their common target 

median, 𝜇0, it is desired to determine what values of 𝑈𝐶𝐿𝑡 and 𝐿𝐶𝐿𝑡 ought to be used 

such that the probability of 𝑆𝑡 exceeding either control limit thereby signaling a false 

alarm is equal to a specified 𝛼. Mathematically, this can be written as: 

 𝑃[(𝑆𝑡 > 𝑈𝐶𝐿𝑡) ∪ (𝑆𝑡 < 𝐿𝐶𝐿𝑡)|𝜇̃0 = 𝜇1 = 𝜇2 = ⋯ = 𝜇𝐶] = 𝛼. 

 

(51) 

 However, since 𝑆𝑡 > 𝑈𝐶𝐿𝑡 and 𝑆𝑡 < 𝐿𝐶𝐿𝑡 are disjoint events, and as the normal 

distribution is symmetric about its mean, it would be sufficient to examine: 

 𝑃[𝑆𝑡 < 𝐿𝐶𝐿𝑡|𝜇0 = 𝜇1 = 𝜇2 = ⋯ = 𝜇𝐶] =
𝛼

2
 .  

 

(52) 

If the inverse cumulative distribution function of the standard normal distribution is 

denoted Φ−1, then: 
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 𝐿𝐶𝐿𝑡 − 𝑆𝑡−1

√𝑐
= Φ−1 (

𝛼

2
) 

𝑆𝑡−1 − 𝛿√𝑐 − 𝑆𝑡−1

√𝑐
= Φ−1 (

𝛼

2
) 

−𝛿 = Φ−1 (
𝛼

2
) 

⇒ 𝛿 = Φ−1 (1 −
𝛼

2
) . 

 

(53) 

While 𝑈𝐶𝐿𝑡 and 𝐿𝐶𝐿𝑡 can be found for some 𝛼, 𝐶, and 𝑡 without much strain, example 

tabled values of 𝛿𝑡, 𝑈𝐶𝐿𝑡 and 𝐿𝐶𝐿𝑡 are also given in Chapter IV for 𝛼 = 0.005, 0.0027, 

0.002, 𝐶 = 1,2, … ,10 and 𝑡 = 1,2, … ,20.  

Assessing the Out-of-Control Performance of the  

Proposed Charting Technique 

 

 After the control limits required to achieve a specified value of 𝐴𝑅𝐿0 have been 

determined, the second research question, which examined the out-of-control 

performance of the NEMT-CUSUM can be addressed. If 𝛼 denotes the probability of 

making a Type I error, then let 𝛽 denote the probability of making a Type II error. In 

terms of control charts, a Type II error occurs when a shift away from target has taken 

place, but the chart does not signal. As was the case with the first research question, the 

probability of making a Type II error can be written as a conditional probability. When 

the MSP being monitored is in-control for all streams, it is implied 𝜇0 = 𝜇1 = ⋯ = 𝜇𝐶. 

This further implies that for all 𝑂𝑖𝑡’s, the probability parameter in their binomial 

distributions are all equal to 𝑝0 = 0.5. If one or more of the medians of the monitored 

streams have shifted away from 𝜇0 to some value 𝜇𝐴, it is implied that at least one of the 

streams’ probability parameter has shifted away from 𝑝0 = 0.5 to some other value 𝑝𝐴. 

Let 𝑝0 and 𝑝𝐴 be related by: 

 𝑝𝐴 = 𝑝0 + 𝛾,  (54) 
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where: 

 −𝑝0 < 𝛾 < 1 − 𝑝0. (55) 

To note, the interpretation of 𝛾 and 𝑝𝐴 differs somewhat from the classical interpretation 

of a shift away from target. If Table 4 is used as the framework for the proposed charting 

scheme, where the 𝑂𝑖𝑡’s are the frequency of observations being equal to or exceeding 

𝜇0, then 𝑝0 is interpreted as the probability of an observation being equal to or exceeding 

𝜇0 under the in-control or null assumptions. However, if 𝑝0 shifts to 𝑝𝐴 for some number 

of streams, this implies that 𝜇0 may not be the 50
th

 percentile for those number of 

streams, but rather the 100(1 − 𝑝𝐴)th percentile. For example, if 𝑝𝐴 = 0.50 + 0.25 =

0.75 for some number of streams, then it is implied that the probability of an observation 

meeting or exceeding 𝜇0 is 0.75 for those number of streams. If 0.75 of the observations 

should fall at or in excess of 𝜇0, then 1 − 0.75 = 0.25 of the observations would be less 

than 𝜇0. By definition, 𝜇0 would be the 25
th

 percentile for those shifted streams and not 

the 50
th

 percentile under the in-control assumptions.  

Let 𝐶0 denote the number of streams for which a shift has not occurred and let 𝐶𝐴 

denote the number of streams for which a shift has occurred. Note, while shifts of varying 

magnitudes could occur in all streams, it is assumed here that the shift occurring in the 𝐶𝐴 

streams is of the same magnitude. At time 𝑡, the shifted statistic, denoted 𝐸𝑀𝑇𝑡
∗, would 

then have the form: 

 

𝐸𝑀𝑇𝑡
∗ = ∑

𝑂𝑖𝑡 − 𝑛𝑖𝑝0

 √𝑛𝑖𝑡𝑝0(1 − 𝑝0)

𝐶0

𝑖=1

+ ∑
𝑂𝑖𝑡 − 𝑛𝑖𝑡𝑝𝐴

√𝑛𝑖𝑡𝑝𝐴(1 − 𝑝𝐴)

𝐶

𝑖=𝐶0+1

 . (56) 
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Then, at time 𝑡, 𝛽 is the probability of 𝑆𝑡 not exceeding either control limit given that 𝐶𝐴 

number of streams’ probability parameters have shifted away from 𝑝0 to 𝑝𝐴. This can be 

written in mathematical notation by:  

 
𝑃[𝐿𝐶𝐿𝑡 ≤ 𝑆𝑡 ≤ 𝑈𝐶𝐿𝑡|𝜇0 = 𝜇1 = ⋯ = 𝜇𝐶0

, 𝜇𝐴 = 𝜇𝐶0+1 = ⋯ = 𝜇𝐶] = 𝛽, 

 

(57) 

or equivalently using the complement: 

 𝑃[(𝑆𝑡 > 𝑈𝐶𝐿𝑡) ∪ (𝑆𝑡 < 𝐿𝐶𝐿𝑡)|𝜇0 = 𝜇1 = ⋯ = 𝜇𝐶0
, 𝜇𝐴 = 𝜇𝐶0+1 = ⋯ = 𝜇𝐶]

= 1 − 𝛽. 
 

(58) 

(58) can be conceptualized as the probability of the chart signaling when a shift has taken 

place, and is sometimes referred to as “statistical power.” Since the events are disjoint, 

(58) can be rewritten as: 

 𝑃[𝑆𝑡 > 𝑈𝐶𝐿𝑡|𝜇0 = 𝜇1 = ⋯ = 𝜇𝐶0
, 𝜇𝐴 = 𝜇𝐶0+1 = ⋯ = 𝜇𝐶]

+ 𝑃[𝑆𝑡 < 𝐿𝐶𝐿𝑡|𝜇0 = 𝜇1 = ⋯ = 𝜇𝐶0
, 𝜇𝐴 = 𝜇𝐶0+1 = ⋯ = 𝜇𝐶] = 1 − 𝛽. 

 

(59) 

 In order to empirically determine 𝛽, the distribution of 𝑆𝑡 must be derived when a 

shift has taken place. Let this distribution be referred to as the “alternative distribution.” 

Using (56), the alternative distribution can be written as a function of the null 

distribution. Let the sums of the standardized in-control streams and out-of-control 

streams be denoted as the quantities 𝑄𝑡 and 𝐻𝑡, respectively. That is: 

 

𝑄𝑡 = ∑
𝑂𝑖𝑡 − 𝑛𝑖𝑡𝑝0

 √𝑛𝑖𝑡𝑝0(1 − 𝑝0)

𝐶0

𝑖=1

 

𝐻𝑡 = ∑
𝑂𝑖𝑡 − 𝑛𝑖𝑡𝑝𝐴

√𝑛𝑖𝑡𝑝𝐴(1 − 𝑝𝐴)

𝐶

𝑖=𝐶0+1

 

(60) 

𝐻𝑡 can be rewritten as: 

 



66 
 

 
 

 

𝐻𝑡 = ∑
𝑂𝑖𝑡 − 𝑛𝑖𝑡𝑝𝐴

√𝑛𝑖𝑡𝑝𝐴(1 − 𝑝𝐴)

𝐶

𝑖=𝐶0+1

 

= ∑
𝑂𝑖𝑡 − 𝑛𝑖𝑡(𝑝0 + 𝛾)

√𝑛𝑖𝑡((𝑝0 + 𝛾)(1 − 𝑝0 − 𝛾))

𝐶

𝑖=𝐶0+1

 

= ∑
𝑂𝑖𝑡 − 𝑛𝑖𝑡𝑝0 − 𝑛𝑖𝛾

√(𝑛𝑖𝑡𝑝0 + 𝑛𝑖𝑡𝛾)((1 − 𝑝0) − 𝛾)

𝐶

𝑖=𝐶0+1

 

= ∑
𝑂𝑖𝑡 − 𝑛𝑖𝑡𝑝0 − 𝑛𝑖𝛾

√𝑛𝑖𝑡𝑝0(1 − 𝑝0) − 𝑛𝑖𝑡𝑝0𝛾 + 𝑛𝑖𝑡(1 − 𝑝0)𝛾 − 𝑛𝑖𝑡𝛾2

𝐶

𝑖=𝐶0+1

 

= ∑
𝑂𝑖𝑡 − 𝑛𝑖𝑡𝑝0 − 𝑛𝑖𝑡𝛾

√𝑛𝑖𝑡𝑝0(1 − 𝑝0) [1 −
𝛾

1 − 𝑝0
+

𝛾
𝑝0

−
𝛾2

𝑝0(1 − 𝑝0)
]

𝐶

𝑖=𝐶0+1

 

=
1

√1 −
𝛾

1 − 𝑝0
+

𝛾
𝑝0

−
𝛾2

𝑝0(1 − 𝑝0)

∑
𝑂𝑖𝑡 − 𝑛𝑖𝑡𝑝0

√𝑛𝑖𝑡𝑝0(1 − 𝑝0)

𝐶

𝑖=𝐶0+1 

− ∑
𝑛𝑖𝑡𝛾

√𝑛𝑖𝑡𝑝0(1 − 𝑝0) [1 −
𝛾

1 − 𝑝0
+

𝛾
𝑝0

−
𝛾2

𝑝0(1 − 𝑝0)
]

𝐶

𝑖=𝐶0+1

 . 

(61) 

 

Now, defining the sum of the sample sizes of the out-of-control streams as 𝑛𝐶𝐴
, let:  
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𝜃 =

1

√1 −
𝛾

1 − 𝑝0
+

𝛾
𝑝0

−
𝛾2

𝑝0(1 − 𝑝0)

 

𝜀 = ∑
𝑛𝑖𝑡𝛾

√𝑛𝑖𝑡𝑝0(1 − 𝑝0) [1 −
𝛾

1 − 𝑝0
+

𝛾
𝑝0

−
𝛾2

𝑝0(1 − 𝑝0)
]

𝐶

𝑖=𝐶0+1

 

=
𝑛𝐶𝐴

𝛾

√𝑛𝐶𝐴
𝑝0(1 − 𝑝0) [1 −

𝛾
1 − 𝑝0

+
𝛾
𝑝0

−
𝛾2

𝑝0(1 − 𝑝0)
]

 . 

(62) 

Combining (61) and (62), 𝐻𝑡 is now function of the null distribution being scaled and 

shifted by some constants as: 

 

𝐻𝑡 = 𝜃 ∑
𝑂𝑖𝑡 − 𝑛𝑖𝑡𝑝0

√𝑛𝑖𝑡𝑝0(1 − 𝑝0)

𝐶

𝑖=𝐶0+1

− 𝜀 ∼̇ 𝑁(𝜇 = −𝜀, 𝜎2 = 𝐶𝐴𝜃) (63) 

Since under the null distribution 𝑄𝑡 ∼̇ 𝑁(0, 𝐶0), and since it is still assumed the 

monitored streams, regardless of their in-control or out-of-control status, are independent, 

then: 

 𝐸𝑀𝑇𝑡
∗ = 𝑄𝑡 + 𝐻𝑡 ∼̇ 𝑁(−𝜀, 𝐶0 + 𝐶𝐴𝜃). (64) 

Let 𝑆𝑡
∗ denote the shifted plotting statistic. Then, as in (44),  

 𝑆𝑡
∗ = 𝑆𝑡−1

∗ + 𝐸𝑀𝑇𝑡
∗. (65) 

Therefore, using the same conditional distribution structure as (44),  

 𝑆𝑡
∗|𝑆𝑡−1

∗ ∼̇ 𝑁(𝑆𝑡−1
∗ − 𝜀, 𝐶0 + 𝐶𝐴𝜃). (66) 

To calculate the exact probability given by (59), 𝑈𝐶𝐿𝑡 and 𝐿𝐶𝐿𝑡 must first be calculated 

under the in-control assumptions, as given in the previous section. Then, using these 

control limits and the result given by (66), statistical power can be directly calculated for 
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a given 𝛼, 𝛾, 𝑛𝐶𝐴
, 𝐶𝐴, and 𝐶0. In control charting literature, it is common to present 

graphical representations of statistical power for a given control charting technique, 

which are referred to as “operating characteristic (OC) curves,” (Montgomery, 2013). 

Here, the y-axis denotes the complement of power, 𝛽, the x-axis denotes the magnitude 

of the shift, 𝛾 in this instance, and multiple curves are plotted for various sample sizes 

(Montgomery, 2013). In Chapter IV, power curves are presented for 𝐶 = 1, 5, 10, 15, and 

20, 𝐶𝐴 = 𝐶 − 1 (with the exception of 𝐶 = 1, where 𝐶𝐴 = 1),  

𝑛𝐶𝐴
= 10(𝐶𝐴), 20(𝐶𝐴), 30(𝐶𝐴), 50(𝐶𝐴), and 100(𝐶𝐴), 𝛾 ∈ (0, 0.50), and 𝛼 =

0.005, 0.0027, and 0.002. 

Comparing the Performance of the Proposed  
Charting Scheme to Other Multiple Stream 

Process Control Charts 

 

The third research question posed in Chapter I was to compare the performance of 

the NEMT-CUSUM to that of the Boyd, Mortell and Runger, and Meneces MSP 

Charting Schemes. The performance was assessed when monitoring 𝐶 = 10 streams in 

the presence of normal and non-normal data when 𝐶𝐴 = 5 streams shift away from target 

of magnitudes ranging from 0 − 3 in increments of 0.25. The comparison was made in 

terms of 𝐴𝑅𝐿1. A Monte Carlo computer simulation was performed using the statistical 

software package R to address this research question (R Core Team, 2018).  

Random samples of size 𝑛 = 10 were generated from four different distributions 

for each of the 𝐶 = 10 monitored streams. The in-control forms of these distributions are: 

the normal distribution with a mean of 1 and a standard deviation of 1, 𝑁(𝜇 = 1, 𝜎 = 1), 

the light-tailed uniform distribution on the [0,1] interval, 𝑈𝑁𝐼𝐹(0,1), the heavy-tailed 

Laplacian distribution with scale parameter 1 and location parameter 1, 𝐿𝑎𝑝𝑙𝑎𝑐𝑒(𝜃 =
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1, 𝜂 = 1), and the positively-skewed exponential distribution with scale parameter of 1, 

𝐸𝑋𝑃(𝜃 = 1). The normal distribution’s in-control mean is 𝜇 = 1. The uniform 

distribution’s in-control mean is 𝜇 = 0.5. The Laplacian distribution’s in-control mean is 

𝜇 = 𝜂 = 1. The exponential distribution’s in-control mean is 𝜇 = 𝜃 = 1. To assess the 

out-of-control performance, the means of these distributions were shifted by magnitudes 

ranging from 0 – 3 in increments of 0.25. For example, the normal distribution’s mean 

was shifted from 0.25 – 3. Table 5 contains all combinations of charting schemes and 

magnitudes of shift for the normal distribution. This table was replicated for all 

distributions under consideration. Note, 𝐴𝑅𝐿1𝑖𝑗𝑘 denotes the estimated 𝐴𝑅𝐿1 value for 

the 𝑘th magnitude of shift for the 𝑗th distribution being monitored by the 𝑖th charting 

scheme. 
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Table 5 

 

Estimated Average Run Lengths for Competing Control Charting Schemes 
Distribution 

and Target 

Value 

𝑁(1,1), 𝜇0 = 1 

 Charting Scheme 

Magnitude 

of Shift 

NEMT-

CUSUM 
Boyd’s GCC 

Mortell & 

Runger’s 𝑅𝑡 

Chart 

Meneces 

Chart for 

Every Stream 

0.25𝜇0 𝐴𝑅𝐿11111 𝐴𝑅𝐿12111 𝐴𝑅𝐿13111 𝐴𝑅𝐿14111 

0.50𝜇0 𝐴𝑅𝐿11121 𝐴𝑅𝐿12121 𝐴𝑅𝐿13121 𝐴𝑅𝐿14121 

0.75𝜇0 𝐴𝑅𝐿11131 𝐴𝑅𝐿12131 𝐴𝑅𝐿13131 𝐴𝑅𝐿14131 

1𝜇0 𝐴𝑅𝐿11141 𝐴𝑅𝐿12141 𝐴𝑅𝐿13141 𝐴𝑅𝐿14141 

1.25𝜇0 𝐴𝑅𝐿11151 𝐴𝑅𝐿12151 𝐴𝑅𝐿13151 𝐴𝑅𝐿14151 

1.50𝜇0 𝐴𝑅𝐿11161 𝐴𝑅𝐿12161 𝐴𝑅𝐿13161 𝐴𝑅𝐿14161 

1.75𝜇0 𝐴𝑅𝐿11171 𝐴𝑅𝐿12171 𝐴𝑅𝐿13171 𝐴𝑅𝐿14171 

2.00𝜇0 𝐴𝑅𝐿11181 𝐴𝑅𝐿12181 𝐴𝑅𝐿13181 𝐴𝑅𝐿14181 

2.25𝜇0 𝐴𝑅𝐿11191 𝐴𝑅𝐿12191 𝐴𝑅𝐿13191 𝐴𝑅𝐿14191 

2.50𝜇0 𝐴𝑅𝐿111(10)1 𝐴𝑅𝐿121(10)1 𝐴𝑅𝐿131(10)1 𝐴𝑅𝐿141(10)1 

2.75𝜇0 𝐴𝑅𝐿111(11)1 𝐴𝑅𝐿121(11)1 𝐴𝑅𝐿131(11)1 𝐴𝑅𝐿141(11)1 

3.00𝜇0 𝐴𝑅𝐿111(12)1 𝐴𝑅𝐿121(12)1 𝐴𝑅𝐿131(12)1 𝐴𝑅𝐿141(12)1 

 

To determine the 𝐴𝑅𝐿1 for the NEMT-CUSUM, random samples of size 𝑛 = 10 

were generated for each of the 𝐶𝐴 streams from each of the comparison distributions 

assuming 𝜇0 is equal to the in-control mean. The 𝐶𝐴 streams’ samples were generated 

from a shifted distribution whereas the other 10 − 𝐶𝐴 streams’ samples were generated 

from the in-control distribution. Then, the procedure described to calculated 𝐸𝑀𝑇𝑡, 𝑆𝑡, 

and 𝑈𝐶𝐿𝑡 and 𝐿𝐶𝐿𝑡 was performed for 𝑡 = 1,2, … ,10000. Each 𝑆𝑡 was iteratively 
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compared to 𝑈𝐶𝐿𝑡 and 𝐿𝐶𝐿𝑡. When 𝑆𝑡 > 𝑈𝐶𝐿𝑡 or 𝑆𝑡 < 𝐿𝐶𝐿𝑡, 𝑡 was saved in a separate 

vector. Then, the mean difference of all recorded 𝑡’s was taken to be an estimate of 𝐴𝑅𝐿1 

for the given distribution, number of out-of-control streams, and magnitude of shift. This 

procedure was performed 10000 times and the mean of the estimated 𝐴𝑅𝐿1 values was 

taken to be the true 𝐴𝑅𝐿1 estimate. This process was repeated for all considered shifts 

away from target. 

To determine the 𝐴𝑅𝐿1 for Boyd’s GCC, 𝑚 = 25 preliminary samples of size 

𝑛 = 10 from the in-control distribution were generated for each of the 𝐶 = 10 streams. 

These preliminary samples were taken from the in-control distributions mentioned 

previously to construct the in-control 𝑈𝐶𝐿 and 𝐿𝐶𝐿, as described by (14). After the 

control limits were calculated, samples of size 𝑛 = 10 from each of the four distributions 

for a specified shift away from target were generated for each of the 𝐶𝐴 streams whereas 

the other 𝐶 − 𝐶𝐴 streams had data generated from the in-control distribution. The means 

of each sample were stored in a matrix of dimension 100000 × 10. Each row of the 

matrix was considered a sample. The minimum and maximum of each row was 

iteratively compared to the control limits. When the minimum or maximum of a row 

exceeded either control limit, the row number was recorded in a separate vector. The 

mean of the difference between the elements of the separate vector was taken to be the 

estimate for 𝐴𝑅𝐿1 for a given distribution and a given shift away from target. This 

process was repeated for all considered shifts away from target. 

To determine 𝐴𝑅𝐿1 for the Mortell and Runger MSP Shewhart-style chart to 

monitor shifts in a single stream with respect to the others, the same technique for data 

generation as was used for Boyd’s GCC was employed. Since 𝑅𝑡, as described by (16), 
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does not have a simple distributional form, control limits were determined by simulation. 

A sample of size 100000 was generated for each of the four in-control distributions, and 

the values associated with the 0.00135
th

 and 0.99865
th

 quantiles were taken to be the 𝐿𝐶𝐿 

and 𝑈𝐶𝐿, respectively. The control limits derived from these quantiles are traditionally 

associated with 𝐴𝑅𝐿0 = 370 for Shewhart-style charts (Montgomery, 2013).  

After the control limits were calculated, samples of size 𝑛 = 10 were generated 

for each stream, with 𝐶𝐴 streams having data from the shifted distribution and 10 − 𝐶𝐴 

streams having data from the in-control distribution. The observations were aggregated 

and 𝑅𝑡 was calculated. This was performed 100000 times and the 𝑅𝑡’s were stored in a 

100000 × 1 dimensional vector. Then, the 𝑅𝑡’s were iteratively compared to the control 

limits. When a value of 𝑅𝑡 exceeded either control limit, the row number within the 

vector was recorded. The mean of the differences between the elements within the vector 

was taken to be an estimate of 𝐴𝑅𝐿1 for a given distribution and a given shift away from 

target. Again, this process was repeated for all considered shifts away from target. 

To estimate 𝐴𝑅𝐿1 for the Meneces MSP charting scheme, the in-control control 

limits first had to be computed. Using Table 1, the mean of the proposed values of 𝐿 for 

𝑠 = 2 and 𝑠 = 5 was taken to be the half-width (𝐿 = 3.33). 𝑚 = 25 preliminary samples 

of size 𝑛 = 10 were taken from each of the 𝐶 = 10 streams from the in-control 

distribution. The overall mean of the preliminary samples was the used as the estimate for 

the center line. The overall standard deviation of the preliminary samples was taken to be 

the estimate of the MSP’s standard deviation to be used in computing the control limits. 

Then, the 𝑈𝐶𝐿 and 𝐿𝐶𝐿 were computed as in (1).  
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After constructing the control limits, samples of size 𝑛 = 10 were taken for each 

stream, with 𝐶𝐴 samples being generated from the shifted distribution and 10 − 𝐶𝐴 

samples being generated from the in-control distribution. The sample means were 

computed for each stream. 100000 means were generated for each distribution for each 

stream. These means were stored in a matrix of dimension 100000 × 10, where each row 

denotes a sample number and each column denotes a monitored stream. The rows were 

iteratively compared to the control limits. If a row contained a mean from one of the 

streams which exceeded either control limit, the row number was saved in a separate 

vector. The mean of the differences of the elements in this separate vector was taken to 

be the estimate of 𝐴𝑅𝐿1 for a given number of streams out-of-control, 𝐶𝐴, and a given 

shift away from target. The process was repeated for all considered shifts away from 

target.   

In Chapter IV, tabled values for 𝛿𝑡, 𝑈𝐶𝐿𝑡, and 𝐿𝐶𝐿𝑡, graphs of the power curves, 

and the results of the simulations described here are given both tabularly and graphically. 

In Chapter V, conclusions, recommendations for use of the NEMT-CUSUM chart, study 

limitations, and future studies are also given.  
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CHAPTER IV 

RESULTS 

 In this chapter, results for the research questions proposed in Chapter I are 

presented. First, tabled values of 𝛿, 𝑈𝐶𝐿𝑡 and 𝐿𝐶𝐿𝑡 are provided for various values of 𝛼 

and 𝐶, as specified in Chapter III. Second, OC curves are given for 𝛾 ∈ (0, 0.50), and 

several values of 𝛼, 𝐶, 𝐶𝐴, and 𝑛𝐶𝐴
, as also stated in Chapter III. Finally, 𝐴𝑅𝐿1 

comparisons are made between the NEMT-CUSUM, Boyd’s GCC, Mortell and Runger’s 

𝑅𝑡 chart, and the Meneces MSP charting scheme as given in Chapter III and as shown in 

Table 5.  

Specifying Control Limits for Proposed 

Control Charting Scheme 

 

 The aim of the first research question is to find values of 𝛿, and consequently 

𝑈𝐶𝐿𝑡 and 𝐿𝐶𝐿𝑡, such that 𝛼 can be fixed at a specified value. Values of 𝛼 are typically 

chosen to be 0.005, 0.0027, or 0.002 which generally correspond to 𝐴𝑅𝐿0 values of 

200, 370, and 500, respectively. As discussed in Chapter III, the control limits of the 

NEMT-CUSUM are dynamic such that 𝛼 can be fixed across all time points. This implies 

that for practical implementation, 𝑈𝐶𝐿𝑡 and 𝐿𝐶𝐿𝑡 must be specified at each time point in 

order for 𝛼 to remain fixed. Using (48) will yield these values for a given value of 𝛼 at 

time 𝑡 for a given number of monitored streams, 𝐶, and an observed 𝑆𝑡−1. From (53), it 

was shown that: 
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𝛿 = Φ−1 (1 −

𝛼

2
), 

 

(67) 

and therefore the 𝑈𝐶𝐿𝑡 and 𝐿𝐶𝐿𝑡 can be calculated by: 

 
𝑈𝐶𝐿𝑡 = 𝑆𝑡−1 + (Φ−1 (1 −

𝛼

2
)) √𝐶 

𝐿𝐶𝐿𝑡 = 𝑆𝑡−1 − (Φ−1 (1 −
𝛼

2
)) √𝐶, 

 

(68) 

where Φ−1 denotes the inverse cumulative distribution function of the standard normal 

distribution, and 𝑆0 = 0. It is clear that calculation of these control limits depends on the 

value of 𝑆𝑡−1 (i.e., the limits are dynamic and specific to the observed data). Because of 

this, traditional tabled values of the control limits cannot be calculated for a general case. 

However, the computation of the limits for an example data set is shown to illustrate how 

this could be done in practice. 

The subsequent tables give the values of 𝛿, 𝑈𝐶𝐿𝑡 and 𝐿𝐶𝐿𝑡, for 𝑡 = 1,2, … ,20, 

and 𝐶 = 1,2, … ,10. Table 6 is for 𝛼 = 0.005, Table 7 is for 𝛼 = 0.0027, and Table 8 is 

for 𝛼 = 0.002. Note, the example data was generated from the standard normal 

distribution for all considered streams. The subsequent tables give the values of 𝑈𝐶𝐿𝑡, 

𝐿𝐶𝐿𝑡, and 𝛿 for 𝑡 = 1,2, … ,20, and 𝐶 = 1,2, … ,10. Table 6 contains the 𝐸𝑀𝑇𝑡 statistics 

calculated for each 𝐶 considered. Note, the underlying data used to generate the 𝐸𝑀𝑇𝑡 

statistics was randomly generated from the standard normal distribution (i.e., 𝜇0 = 0) 

where the sample size from each stream was taken to be 𝑛 = 10. The columns of Table 6 

denote the 𝐸𝑀𝑇𝑡 statistic for each considered 𝐶 and the rows denote the time, 𝑡. Table 7 

contains calculated control limits for 𝛼 = 0.005, Table 8 is for 𝛼 = 0.0027, and Table 9 

is for 𝛼 = 0.002.  
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Table 6  

Extended Median Test Statistics Used to Generate Control Limits 

  Number of Streams C 

t 1 2 3 4 5 6 7 8 9 10 

1 1.26 1.26 0.63 0.63 0.00 0.63 -0.63 -0.63 1.26 2.53 

2 0.63 0.63 0.00 0.00 1.90 2.53 0.63 -0.63 -0.63 -1.90 

3 -0.63 -0.63 0.00 1.26 0.63 0.00 1.26 2.53 2.53 3.79 

4 -1.26 0.00 0.63 1.26 0.63 -0.63 -0.63 0.00 0.00 -0.63 

5 0.00 1.26 1.26 3.79 2.53 2.53 3.79 3.79 4.43 3.16 

6 -0.63 0.00 1.90 2.53 1.26 0.63 0.63 1.90 3.79 6.32 

7 -0.63 0.00 -1.26 -2.53 -1.90 -0.63 0.63 1.26 1.90 0.00 

8 -0.63 -0.63 -1.26 -0.63 0.00 1.26 0.63 1.26 0.63 0.63 

9 -0.63 -1.90 -1.90 -1.26 -1.26 -1.90 -2.53 -4.43 -5.06 -5.69 

10 -0.63 -1.26 -3.16 -3.79 -3.16 -3.16 -3.16 -2.53 -1.90 0.00 

11 -0.63 -2.53 -1.90 -1.26 -1.26 -0.63 -1.90 -1.90 -1.90 -0.63 

12 -0.63 -1.26 -1.26 -1.26 -1.26 -1.26 -1.90 -3.16 -3.16 -3.79 

13 0.00 1.26 1.90 1.90 1.90 2.53 3.16 3.79 3.79 3.79 

14 1.26 3.79 3.79 3.79 3.79 5.06 6.32 6.96 6.32 7.59 

15 1.26 0.00 0.63 1.90 1.90 2.53 1.26 1.26 1.26 1.26 

16 0.00 -1.26 -0.63 -0.63 -0.63 -0.63 -0.63 -0.63 -0.63 -1.26 

17 0.00 0.63 0.63 0.00 -0.63 -1.90 -2.53 -3.16 -1.90 -1.90 

18 1.26 2.53 3.16 3.79 2.53 3.79 5.06 4.43 4.43 5.06 

19 0.63 0.00 -1.26 -1.26 -2.53 -3.16 -2.53 -2.53 -1.90 -3.16 

20 -0.63 -3.16 -3.16 -1.90 -1.26 -1.90 -1.90 -1.26 -2.53 -3.16 
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Table 7 

Calculated Control Limits for Type I Error Rate of 0.005 

  Number of Streams C 

𝛿 = 2.8070 

t 1 2 3 4 5 6 7 8 9 10 

1 
-2.8, 
2.8 

-4.0, 
4.0 

-4.9, 
4.9 

-5.6, 
5.6 

-6.3, 
6.3 

-6.9, 
6.9 

-7.4, 
7.4 

-7.9, 
7.9 

-8.4, 
8.4 

-8.9, 
8.9 

2 
-1.5, 
4.1 

-1.4, 
6.5 

-1.1, 
8.7 

-1.2, 
10.0 

-2.5, 
10.1 

-3.1, 
10.7 

-4.9, 
10.0 

-4.8, 
11.1 

-3.4, 
13.5 

-5.1, 
12.7 

3 
-0.9, 
4.7 

-0.2, 
7.8 

0.2, 
9.9 

0.1, 
11.3 

-0.6, 
12.0 

-1.8, 
11.9 

-3.0, 
11.9 

-3.5, 
12.4 

-3.4, 
13.5 

-5.1, 
12.7 

4 
0.4, 

6.0 

1.1, 

9.0 

2.7, 

12.5 

3.2, 

14.5 

2.6, 

15.1 

2.0, 

15.7 

2.1, 

16.9 

0.3, 

16.2 

1.1, 

17.9 

-1.3, 

16.5 

5 
-0.3, 
5.3 

-0.8, 
7.1 

-1.1, 
8.7 

-0.6, 
10.7 

-1.2, 
11.3 

-1.8, 
11.9 

-3.0, 
11.9 

-6.0, 
9.8 

-6.5, 
10.3 

-8.9, 
8.9 

6 
-0.9, 
4.7 

-2.1, 
5.9 

-3.6, 
6.1 

-1.8, 
9.4 

-3.1, 
9.4 

-3.7, 
10.0 

-6.2, 
8.7 

-9.8, 
6.0 

-9.7, 
7.2 

-13.3, 
4.4 

7 
-2.2, 
3.4 

-2.7, 
5.2 

-3.6, 
6.1 

-1.8, 
9.4 

-3.1, 
9.4 

-4.3, 
9.4 

-6.8, 
8.1 

-10.5, 
5.4 

-9.1, 
7.8 

-13.3, 
4.4 

8 
-2.8, 
2.8 

-3.3, 
4.6 

-4.9, 
4.9 

-3.1, 
8.1 

-4.4, 
8.2 

-6.2, 
7.5 

-6.2, 
8.7 

-11.1, 
4.8 

-9.7, 
7.2 

-13.9, 
3.8 

9 
-2.8, 
2.8 

-2.1, 
5.9 

-3.6, 
6.1 

-3.7, 
7.5 

-5.6, 
6.9 

-8.8, 
5.0 

-11.2, 
3.6 

-16.8, 
-0.9 

-16.0, 
0.8 

-19.0, 
-1.2 

10 
-2.2, 
3.4 

-0.2, 
7.8 

-3.0, 
6.8 

-1.2, 
10.0 

-3.7, 
8.8 

-6.2, 
7.5 

-9.3, 
5.5 

-14.3, 
1.6 

-15.4, 
1.5 

-18.4, 
-0.6 

11 
-0.3, 
5.3 

1.7, 
9.7 

-0.4, 
9.3 

0.7, 
11.9 

-2.5, 
10.1 

-5.0, 
8.8 

-9.3, 
5.5 

-15.5, 
0.4 

-16.6, 
0.2 

-22.2, 
-4.4 

12 
-0.3, 
5.3 

1.1, 
9.0 

-1.1, 
8.7 

-1.2, 
10.0 

-5.6, 
6.9 

-8.8, 
5.0 

-13.8, 
1.1 

-19.3, 
-3.4 

-21.7, 
-4.9 

-26.6, 
-8.8 

13 
-2.2, 
3.4 

-0.2, 
7.8 

-0.4, 
9.3 

-1.2, 
10.0 

-6.3, 
6.3 

-8.1, 
5.6 

-13.8, 
1.1 

-20.0, 
-4.1 

-21.7, 
-4.9 

-25.3, 
-7.6 

14 
-2.8, 
2.8 

-0.2, 
7.8 

-0.4, 
9.3 

-1.8, 
9.4 

-6.3, 
6.3 

-9.4, 
4.3 

-13.8, 
1.1 

-18.7, 
-2.8 

-21.1, 
-4.2 

-26.0, 
-8.2 

15 
-2.2, 
3.4 

1.1, 
9.0 

0.8, 
10.6 

0.7, 
11.9 

-3.1, 
9.4 

-6.2, 
7.5 

-11.2, 
3.6 

-14.9, 
1.0 

-17.3, 
-0.4 

-25.3, 
-7.6 

16 
-1.5, 
4.1 

3.0, 
10.9 

4.0, 
13.7 

5.8, 
17.0 

0.0, 
12. 6 

-1.2, 
12.6 

-5.5, 
9.3 

-8.6, 
7.3 

-12.8, 
4.0 

-19.0, 
-1.2 

17 
-0.3, 
5.3 

4.3, 
12.2 

7.2, 
16.9 

9.6, 
20.8 

4.5, 
17.0 

4.5, 
18.3 

1.4, 
16.3 

-0.4, 
15.5 

-6.5, 
10.3 

-11.4, 
6.3 

18 
-1.5, 
4.1 

3.6, 
11.6 

7.2, 
16.9 

9.6, 
20.8 

5.7, 
18.3 

6.4, 
20.2 

4.6, 
19.4 

1.5, 
17.4 

-5.3, 
11.6 

-9.5, 
8.2 

19 
-0.9, 
4.7 

5.5, 
13.5 

9.7, 
19.4 

12.1, 
23.3 

9.5, 
22.1 

11.5, 
25.2 

10.3, 
25.1 

7.2, 
23.1 

0.4, 
17.3 

-2.6, 
15.2 

20 
-0.9, 
4.7 

6.1, 
14.1 

9.7, 
19.4 

12.7, 
24.0 

8.9, 
21.5 

12.1, 
25.8 

10.3, 
25.1 

8.5, 
24.4 

2.3, 
19.2 

0.0, 
17.7 
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Table 8  

Calculated Control Limits for Type I Error Rate of 0.0027 

  Number of Streams C 

𝛿 = 3.0000 

t 1 2 3 4 5 6 7 8 9 10 

1 
-3.0, 
3.0 

-4.2, 
4.2 

-5.2, 
5.2 

-6.0, 
6.0 

-6.7, 
6.7 

-7.3, 
7.3 

-7.9, 
7.9 

-8.5, 
8.5 

-9.0, 
9.0 

-9.5, 
9.5 

2 
-1.7, 
4.3 

-1.7, 
6.8 

-1.4, 
9.0 

-1.6, 
10.4 

-2.9, 
10.5 

-3.6, 
11.1 

-5.4, 
10.5 

-5.3, 
11.6 

-3.9, 
14.1 

-5.7, 
13.3 

3 
-1.1, 
4.9 

-0.4, 
8.0 

-0.1, 
10.3 

-0.3, 
11.7 

-1.0, 
12.4 

-2.3, 
12.4 

-3.5, 
12.4 

-4.1, 
12.9 

-3.9, 
14.1 

-5.7, 
13.3 

4 
0.2, 

6.2 

0.8, 

9.3 

2.4, 

12.8 

2.9, 

14.9 

2.1, 

15.6 

1.5, 

16.2 

1.5, 

17.4 

-0.3, 

16.7 

0.5, 

18.5 

-1.9, 

17.1 

5 
-0.5, 
5.5 

-1.1, 
7.4 

-1.4, 
9.0 

-0.9, 
11.1 

-1.6, 
11.8 

-2.3, 
12.4 

-3.5, 
12.4 

-6.6, 
10.4 

-7.1, 
10.9 

-9.5, 
9.5 

6 
-1.1, 
4.9 

-2.3, 
6.1 

-3.9, 
6.5 

-2.2, 
9.8 

-3.5, 
9.9 

-4.2, 
10.5 

-6.7, 
9.2 

-10.4, 
6.6 

-10.3, 
7.7 

-13.9, 
5.1 

7 
-2.4, 
3.6 

-3.0, 
5.5 

-3.9, 
6.5 

-2.2, 
9.8 

-3.5, 
9.9 

-4.8, 
9.9 

-7.3, 
8.6 

-11, 
6.0 

-9.6, 
8.4 

-13.9, 
5.1 

8 
-3.0, 
3.0 

-3.6, 
4.9 

-5.2, 
5.2 

-3.5, 
8.5 

-4.8, 
8.6 

-6.7, 
8.0 

-6.7, 
9.2 

-11.6, 
5.3 

-10.3, 
7.7 

-14.5, 
4.4 

9 
-3.0, 
3.0 

-2.3, 
6.1 

-3.9, 
6.5 

-4.1, 
7.9 

-6.1, 
7.3 

-9.2, 
5.5 

-11.7, 
4.1 

-17.3, 
-0.4 

-16.6, 
1.4 

-19.6, 
-0.6 

10 
-2.4, 
3.6 

-0.4, 
8.0 

-3.3, 
7.1 

-1.6, 
10.4 

-4.2, 
9.2 

-6.7, 
8.0 

-9.8, 
6.0 

-14.8, 
2.2 

-16.0, 
2.0 

-19.0, 
0.0 

11 
-0.5, 
5.5 

1.4, 
9.9 

-0.8, 
9.6 

0.3, 
12.3 

-2.9, 
10.5 

-5.5, 
9.2 

-9.8, 
6.0 

-16.1, 
0.9 

-17.2, 
0.8 

-22.8, 
-3.8 

12 
-0.5, 
5.5 

0.8, 
9.3 

-1.4, 
9.0 

-1.6, 
10.4 

-6.1, 
7.3 

-9.2, 
5.5 

-14.3, 
1.6 

-19.9, 
-2.9 

-22.3, 
-4.3 

-27.2, 
-8.2 

13 
-2.4, 
3.6 

-0.4, 
8.0 

-0.8, 
9.6 

-1.6, 
10.4 

-6.7, 
6.7 

-8.6, 
6.1 

-14.3, 
1.6 

-20.5, 
-3.5 

-22.3, 
-4.3 

-25.9, 
-7.0 

14 
-3.0, 
3.0 

-0.4, 
8 

-0.8, 
9.6 

-2.2, 
9.8 

-6.7, 
6.7 

-9.9, 
4.8 

-14.3, 
1.6 

-19.2, 
-2.3 

-21.6, 
-3.6 

-26.6, 
-7.6 

15 
-2.4, 
3.6 

0.8, 
9.3 

0.5, 
10.9 

0.3, 
12.3 

-3.5, 
9.9 

-6.7, 
8.0 

-11.7, 
4.1 

-15.4, 
1.5 

-17.9, 
0.1 

-25.9, 
-7.0 

16 
-1.7, 
4.3 

2.7, 
11.2 

3.7, 
14.1 

5.4, 
17.4 

-0.4, 
13.0 

-1.7, 
13.0 

-6.0, 
9.8 

-9.1, 
7.9 

-13.4, 
4.6 

-19.6, 
-0.6 

17 
-0.5, 
5.5 

4.0, 
12.5 

6.8, 
17.2 

9.2, 
21.2 

4.0, 
17.5 

4.0, 
18.7 

0.9, 
16.8 

-0.9, 
16.1 

-7.1, 
10.9 

-12.0, 
7.0 

18 
-1.7, 
4.3 

3.3, 
11.8 

6.8, 
17.2 

9.2, 
21.2 

5.3, 
18.7 

5.9, 
20.6 

4.1, 
20.0 

1.0, 
18.0 

-5.8, 
12.2 

-10.1, 
8.9 

19 
-1.1, 
4.9 

5.2, 
13.7 

9.4, 
19.7 

11.7, 
23.7 

9.1, 
22.5 

11.0, 
25.7 

9.8, 
25.6 

6.7, 
23.7 

-0.1, 
17.9 

-3.2, 
15.8 

20 
-1.1, 
4.9 

5.9, 
14.4 

9.4, 
19.7 

12.3, 
24.3 

8.5, 
21.9 

11.6, 
26.3 

9.8, 
25.6 

8.0, 
24.9 

1.8, 
19.8 

-0.6, 
18.3 
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Table 9 

Calculated Control Limits for Type I Error Rate of 0.002 

  Number of Streams C 

𝛿 = 3.0902 

t 1 2 3 4 5 6 7 8 9 10 

1 
-3.0, 
3.1 

-4.2, 
4.4 

-5.2, 
5.4 

-6.0, 
6.2 

-6.7, 
6.9 

-7.3, 
7.6 

-7.9, 
8.2 

-8.5, 
8.7 

-9.0, 
9.3 

-9.5, 
9.8 

2 
-1.8, 
4.4 

-1.8, 
6.9 

-1.6, 
9.1 

-1.8, 
10.6 

-3.1, 
10.7 

-3.8, 
11.4 

-5.6, 
10.7 

-5.6, 
11.9 

-4.2, 
14.3 

-6.0, 
13.6 

3 
-1.2, 
5.0 

-0.6, 
8.2 

-0.3, 
10.4 

-0.5, 
11.9 

-1.2, 
12.6 

-2.5, 
12.6 

-3.7, 
12.6 

-4.3, 
13.2 

-4.2, 
14.3 

-6.0, 
13.6 

4 
0.1, 

6.3 

0.7, 

9.4 

2.2, 

12.9 

2.7, 

15.0 

1.9, 

15.8 

1.3, 

16.4 

1.3, 

17.7 

-0.5, 

17.0 

0.2, 

18.8 

-2.2, 

17.4 

5 
-0.6, 
5.6 

-1.2, 
7.5 

-1.6, 
9.1 

-1.1, 
11.2 

-1.9, 
12.0 

-2.5, 
12.6 

-3.7, 
12.6 

-6.8, 
10.6 

-7.4, 
11.2 

-9.8, 
9.8 

6 
-1.2, 
5.0 

-2.5, 
6.3 

-4.1, 
6.6 

-2.4, 
10 

-3.7, 
10.1 

-4.4, 
10.7 

-6.9, 
9.4 

-10.6, 
6.8 

-10.5, 
8.0 

-

14.2, 

5.3 

7 
-2.5, 
3.7 

-3.1, 
5.6 

-4.1, 
6.6 

-2.4, 
10.0 

-3.7, 
10.1 

-5.0, 
10.1 

-7.5, 
8.8 

-11.3, 
6.2 

-9.9, 
8.6 

-

14.2, 

5.3 

8 
-3.1, 
3.1 

-3.7, 
5.0 

-5.4, 
5.4 

-3.7, 
8.7 

-5.0, 
8.8 

-6.9, 
8.2 

-6.9, 
9.4 

-11.9, 
5.6 

-10.5, 
8.0 

-

14.8, 

4.7 

9 
-3.1, 
3.1 

-2.5, 
6.3 

-4.1, 
6.6 

-4.3, 
8.1 

-6.3, 
7.5 

-9.5, 
5.7 

-12.0, 
4.4 

-17.6, 
-0.1 

-16.9, 
1.7 

-

19.9, 

-0.3 

10 
-2.5, 
3.7 

-0.6, 
8.2 

-3.5, 
7.2 

-1.8, 
10.6 

-4.4, 
9.4 

-6.9, 
8.2 

-10.1, 
6.3 

-15.1, 
2.4 

-16.2, 
2.3 

-

19.3, 

0.3 

11 
-0.6, 
5.6 

1.3, 
10.1 

-0.9, 
9.8 

0.1, 
12.5 

-3.1, 
10.7 

-5.7, 
9.5 

-10.1, 
6.3 

-16.3, 
1.2 

-17.5, 
1.0 

-

23.1, 

-3.5 

12 
-0.6, 
5.6 

0.7, 
9.4 

-1.6, 
9.1 

-1.8, 
10.6 

-6.3, 
7.5 

-9.5, 
5.7 

-14.5, 
1.9 

-20.1, 
-2.6 

-22.6, 
-4.0 

-

27.5, 

-7.9 

13 
-2.5, 
3.7 

-0.6, 
8.2 

-0.9, 
9.8 

-1.8, 
10.6 

-6.9, 
6.9 

-8.8, 
6.3 

-14.5, 
1.9 

-20.8, 
-3.3 

-22.6, 
-4.0 

-

26.2, 

-6.7 

14 
-3.1, 
3.1 

-0.6, 
8.2 

-0.9, 
9.8 

-2.4, 
10.0 

-6.9, 
6.9 

-10.1, 
5.0 

-14.5, 
1.9 

-19.5, 
-2.0 

-21.9, 
-3.4 

-

26.8, 

-7.3 

15 
-2.5, 
3.7 

0.7, 
9.4 

0.3, 
11.0 

0.1, 
12.5 

-3.7, 
10.1 

-6.9, 
8.2 

-12.0, 
4.4 

-15.7, 
1.8 

-18.1, 
0.4 

-

26.2, 

-6.7 

16 
-1.8, 
4.4 

2.6, 
11.3 

3.5, 
14.2 

5.2, 
17.6 

-0.6, 
13.2 

-1.9, 
13.3 

-6.3, 
10.1 

-9.4, 
8.1 

-13.7, 
4.8 

-

19.9, 

-0.3 

17 
-0.6, 
5.6 

3.9, 
12.6 

6.7, 
17.4 

9.0, 
21.4 

3.8, 
17.7 

3.8, 
19.0 

0.7, 
17.0 

-1.2, 
16.3 

-7.4, 
11.2 

-

12.3, 

7.2 

18 
-1.8, 
4.4 

3.2, 
12 

6.7, 
17.4 

9.0, 
21.4 

5.1, 
18.9 

5.7, 
20.9 

3.8, 
20.2 

0.7, 
18.2 

-6.1, 
12.4 

-

10.4, 

9.1 

19 
-1.2, 
5.0 

5.1, 
13.9 

9.2, 
19.9 

11.5, 
23.9 

8.9, 
22.7 

10.8, 
25.9 

9.5, 
25.9 

6.4, 
23.9 

-0.4, 
18.1 

-3.4, 
16.1 

20 
-1.2, 
5.0 

5.7, 
14.5 

9.2, 
19.9 

12.2, 
24.5 

8.3, 
22.1 

11.4, 
26.5 

9.5, 
25.9 

7.7, 
25.2 

1.5, 
20.0 

-0.9, 
18.6 
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Examining the control limit values from left to right across the rows of Table 7, 

Table 8, and Table 9, the limits generally increase in magnitude. This is to be expected as 

the asymptotic variance of 𝑆𝑡 is a function of the number of monitored streams. 

Additionally, it is noted that the limits also tend to increase in magnitude as 𝑡 increases. 

This result is also unsurprising as 𝑆𝑡 is a cumulative summation.  

Determining Statistical Power of the 

Proposed Charting Scheme 

 

 The purpose of the second research question was to find the statistical power of 

the NEMT-CUSUM charting scheme. While this can be determined exactly by (59) and 

(66) for a given 𝐶, 𝐶𝐴, 𝑛𝐶𝐴
, 𝛾, 𝛼, and some prior value 𝑆𝑡−1

∗ , it may be of use to 

practitioners to have graphical representations for quick reference. Such graphs, referred 

to as “operating characteristic (OC) curves” are customary accompaniments for many 

common control charting techniques (Montgomery, 2013). However, like the calculation 

of the control limits, the alternative distribution depends on 𝑆𝑡−1
∗  as: 

 
𝑆𝑡

∗|𝑆𝑡−1
∗ ∼̇ 𝑁(𝑆𝑡−1

∗ − 𝜀, 𝐶0 + 𝐶𝐴𝜃), 
 

(69) 

where: 

 
𝜃 =

1

√1 −
𝛾

1 − 𝑝0
+

𝛾
𝑝0

−
𝛾2

𝑝0(1 − 𝑝0)

 , 

 

(70) 

 
𝜀 =

𝑛𝐶𝐴
𝛾

√𝑛𝐶𝐴
𝑝0(1 − 𝑝0) [1 −

𝛾
1 − 𝑝0

+
𝛾
𝑝0

−
𝛾2

𝑝0(1 − 𝑝0)
]

 . 

(71) 

 Therefore, in a similar way to the calculation of the control limits, OC curves are 

generated using example data, as a general OC curve cannot be plotted. In lieu of this, for 
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a particular combination of 𝐶, 𝐶𝐴, 𝑛𝐶𝐴
, and 𝛼, one thousand random values of 𝑆𝑡−1

∗  were 

generated given some value of 𝛾 and 𝛽 was calculated for each value. Then, the mean of 

the calculated 𝛽’s was taken to be the true 𝛽. Figure 1 through Figure 3 represent some of 

the curves proposed in Chapter III. The remainder can be observed in Appendix A.  

 

Figure 1. Operating Characteristic Curve for C = 5, CA = 4, and Type I Error Rate of 

0.005 

 
Figure 2. Operating Characteristic Curve for C = 5, CA = 4, and Type I Error Rate of 

0.0027 
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Figure 3. Operating Characteristic Curve for C = 5, CA = 4, and Type I Error Rate of 

0.002 

 Observing Figure 1 through Figure 3, several interesting phenomena are observed. 

First, as the 𝛾 approaches its upper limit, the NEMT-CUSUM charting scheme has a 

lower probability of making a Type II error (i.e., greater power), and thus is more likely 

to signal an out-of-control point, as would be expected. Second, it is clear that as the 

sample size increases, the NEMT-CUSUM becomes more sensitive to smaller shifts in 𝛾 

as noted by the steepening of the slopes of the OC curves within each figure. This 

graphical result is also to be expected due to the result obtained in (62) as 𝜀 is a function 

of the sample size, 𝑛𝐶𝐴
. However, the differences between the steepness of the curves 

shown in Figure 1, Figure 2, and Figure 3, while slightly different, do not appear to be 

dramatically different.  

Chart Performance Comparison Results 

 For the third research question, the performance of the NEMT-CUSUM is 

compared to existing MSP monitoring techniques. As stated in Chapter III, the 

comparison will be in terms of 𝐴𝑅𝐿1 considering different magnitudes of shifts and 

different distributions. The results, which mirror the structure provided in Table 5, are 
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given in Table 9, Table 10, Table 11, and Table 12. The code used for this simulation can 

be found in Appendix B. Note, the MSP technique with the smallest 𝐴𝑅𝐿1 will be bolded, 

as this scheme would be found to have performed most optimally. Additionally, and as 

noted in Chapter III, all control limits were set such that 𝐴𝑅𝐿0 ≈ 370 (i.e., 𝛼 = 0.0027) 

for fair comparison. It should further be noted that for the normal, uniform, and Laplacian 

distributions, their means and medians are equivalent. However, for the exponential 

distribution, it can be shown that 𝜇 = 𝜆 ln(2), where 𝜆 = 𝜇. This equivalency was used 

in the 𝐴𝑅𝐿 simulation for the NEMT-CUSUM.  
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Table 10 

Average Run Length Comparison for Normally Distributed Data 
Distribution 

and Target 

Value 

𝑁(1,1), 𝜇0 = 1 

 Charting Scheme 

Magnitude 

of Shift 

NEMT-

CUSUM 
Boyd’s GCC 

Mortell & 

Runger’s 𝑅𝑡 

Chart 

Meneces 

Chart for 

Every Stream 

0.25𝜇0 
2.2901 6.9035 8.2731 2.1566 

0.50𝜇0 6.4076 52.1487 35.3933 8.6791 

0.75𝜇0 37.1485 531.5027 187.2411 62.6334 

1𝜇0 286.6044 1897.0392 302.0182 259.6250 

1.25𝜇0 45.6954 205.1646 167.8463 65.3986 

1.50𝜇0 8.8978 19.6906 35.7976 9.0865 

1.75𝜇0 4.2448 3.5996 8.5067 2.2110 

2.00𝜇0 4.2718 1.3700 2.8217 1.1438 

2.25𝜇0 6.1042 1.0259 1.4750 1.0058 

2.50𝜇0 5.2248 1.0003 1.0958 1.0000 

2.75𝜇0 2.6851 1.0000 1.0100 1.0000 

3.00𝜇0 1.6893 1.0000 1.0004 1.0000 

 

 In Table 10, which represents the case when the parametric MSP charts would be 

would be appropriate to use, it is clear that Meneces charting technique seems to be most 

effective comparing the parametric charting schemes. This result is congruent with what 

Meneces et al (2008) also found in their analysis. However, for small shifts, the NEMT-

CUSUM chart was found to have superior performance. 

 

 



85 
 

 
 

Table 11 

Average Run Length Comparison for Uniformly Distributed Data 
Distribution 

and Target 

Value 

𝑈𝑁𝐼𝐹(0,1) 𝜇0 = 0.50 

 Charting Scheme 

Magnitude 

of Shift 

NEMT-

CUSUM 
Boyd’s GCC 

Mortell & 

Runger’s 𝑅𝑡 

Chart 

Meneces 

Chart for 

Every Stream 

0.25𝜇0 
1.0008 1.0000 2.2752 1.0000 

0.50𝜇0 1.0010 1.5013 16.2930 2.4576 

0.75𝜇0 9.4895 24.1163 172.2190 57.1274 

1𝜇0 286.3873 97.6778 360.2254 183.7638 

1.25𝜇0 44.3936 2.8504 14.6257 3.3182 

1.50𝜇0 12.6879 1.0838 2.0183 1.1083 

1.75𝜇0 6.7086 1.0020 1.1109 1.0028 

2.00𝜇0 4.9340 1.0000 1.0081 1.0001 

2.25𝜇0 4.2453 1.0000 1.0005 1.0000 

2.50𝜇0 3.9218 1.0000 1.0000 1.0000 

2.75𝜇0 3.9063 1.0000 1.0000 1.0000 

3.00𝜇0 4.0185 1.0000 1.0000 1.0000 

 In Table 11, the uniform distribution, which represents an example of a light-

tailed distribution, was the data situation analyzed. For downward shifts away from 

target, the NEMT-CUSUM tended to perform more optimally. However, and as generally 

the case when comparing nonparametric and parametric tests in the presence of light-

tailed data, the parametric charting schemes were more powerful than the NEMT-

CUSUM in all upward shifts considered (Conover, 1999).  
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Table 12  

Average Run Lengths Comparison for Laplacian Distributed Data 
Distribution 

and Target 

Value 

𝐿𝑎𝑝𝑙𝑎𝑐𝑒(1,1) 𝜇0 = 1 

 Charting Scheme 

Magnitude 

of Shift 

NEMT-

CUSUM 
Boyd’s GCC 

Mortell & 

Runger’s 𝑅𝑡 

Chart 

Meneces 

Chart for 

Every Stream 

0.25𝜇0 
2.5284 8.1230 47.4134 5.5130 

0.50𝜇0 5.9113 25.6817 133.5194 15.5445 

0.75𝜇0 29.1895 77.3210 256.7306 39.6770 

1𝜇0 280.5016 129.1964 281.2655 51.6539 

1.25𝜇0 35.5752 81.8567 254.8772 25.3206 

1.50𝜇0 8.3189 27.4041 131.0118 9.0949 

1.75𝜇0 4.5116 8.5979 46.3026 3.4718 

2.00𝜇0 3.8905 3.1966 18.5632 1.6697 

2.25𝜇0 4.6212 1.5945 7.3881 1.1373 

2.50𝜇0 5.9305 1.1155 3.5348 1.0153 

2.75𝜇0 6.5443 1.0113 2.0256 1.0006 

3.00𝜇0 5.3362 1.0003 1.3921 1.0000 

Table 12 gives the comparison of the considered charting techniques in the 

presence of heavy-tailed data, represented here by the Laplacian distribution. As has been 

the case in the other comparison tables, the NEMT-CUSUM tended to perform more 

optimally than its parametric alternatives for downward shifts. However, the Meneces 

charting scheme tended to signal an out-of-control point more quickly, on average, than 
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the other considered techniques, especially for relatively large, upward shifts away from 

target. 

Table 13  

Average Run Lengths Comparison for Exponentially Distributed Data 
Distribution 

and Target 

Value 

𝐸𝑋𝑃(1), 𝜇0 = 1 

 Charting Scheme 

Magnitude 

of Shift 

NEMT-

CUSUM 
Boyd’s GCC 

Mortell & 

Runger’s 𝑅𝑡 

Chart 

Meneces 

Chart for 

Every Stream 

0.25𝜇0 
4.1754 1.0000 1.0002 1.0000 

0.50𝜇0 7.3369 1.4178 1.9193 1.0840 

0.75𝜇0 49.2004 16.7420 35.4300 4.2939 

1𝜇0 281.7526 355.1449 332.5518 35.5473 

1.25𝜇0 57.7853 702.4397 315.9681 73.0702 

1.50𝜇0 13.9108 662.3800 336.7406 74.0793 

1.75𝜇0 5.4827 774.0625 357.5699 72.6880 

2.00𝜇0 2.9666 743.7669 289.9186 72.4554 

2.25𝜇0 1.9691 711.8071 280.2704 71.4707 

2.50𝜇0 1.5450 673.5448 237.6280 67.7610 

2.75𝜇0 1.2985 806.1301 200.2691 68.5443 

3.00𝜇0 1.1790 633.2692 197.7248 71.5165 

Finally, Table 13 shows the comparison of the MSP charting techniques in the 

presence of skewed data, which is represented in these analyses by the exponential 

distribution. While the parametric MSP schemes were found to have superior 

performance to that of the NEMT-CUSUM for downward shifts away from target, the 
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latter performed substantially better than its parametric alternatives for upward shifts. 

Interestingly, the performance of the NEMT-CUSUM was fairly similar for the same 

magnitude of observed shift, but differing data situations with a slight exception for the 

uniform distribution. This general result is not necessarily surprising as the chart does not 

rely on the underlying data following a particular distribution.  

To conclude, the results addressing the three research questions guiding this 

dissertation were presented. For the first research question, an example dataset was given 

to demonstrate how control limits can be computed for a specified value of 𝛼. While a 

general form for the computation of the control limits is given by (68), exact values of the 

control limits cannot be computed for a general case as they are dependent upon the 

previously observed value, 𝑆𝑡−1. With respect to the second research question, OC curves 

were estimated for various values of 𝛼, 𝛾, 𝐶, 𝐶𝐴, and 𝑛𝐶𝐴
. The OC curves had to be 

estimated rather than explicitly computed as the alternative distribution is also dependent 

on the previously observed value, 𝑆𝑡−1
∗ . Here, it was shown that larger sample sizes have 

a higher probability of detecting shifts of a smaller magnitude and that smaller values of 

𝛼 are slightly less powerful than larger values of 𝛼. Finally, with the third research 

question, the performance of the NEMT-CUSUM was compared to that of existing 

parametric MSP techniques. It was shown that the NEMT-CUSUM performed more 

optimally than the competing techniques across all data situations for small shifts away 

from target. It was also shown that the NEMT-CUSUM was substantially more effective 

at detecting shifts away from target when the underlying data came from the skewed 

exponential distribution. While the parametric techniques, and in particular the Meneces 

Chart for Each Stream technique, had preferable performance in some instances, their 
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performance varied across the compared distributions. The NEMT-CUSUM performed 

consistently across the examined data situations.  
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CHAPTER V 

CONCLUSIONS 

In this dissertation, a nonparametric cumulative summation (CUSUM) chart for 

monitoring multiple stream processes (MSP) based on a modified version of the classical 

nonparametric median test was developed. Referred to as the “Nonparametric Extended 

Median Test – Cumulative Summation (NEMT-CUSUM)”, this chart was designed to be 

used in cases when chart operators have little or no knowledge of the monitored streams’ 

underlying distribution. Chart development and procedural use were discussed in Chapter 

III. Theoretical results were also shown in Chapter III for both the in-control and out-of-

control cases, given the assumptions described at the onset of the chapter hold. Finally, a 

simulation study was conducted to compare the performance of the NEMT-CUSUM to 

existing charting techniques whose assumptions are based on the underlying data coming 

from a normal distribution. Research questions one and two were addressed in Chapter III 

and the final research question was addressed in Chapter IV.  

Discussion 

Asymptotic Results 

Three research questions guided this study. The goal of the first was to develop 

and compute control limits for the NEMT-CUSUM such that the Type I error rate, 𝛼, 

could be fixed across all observed time points. The theoretical construction of these limits 

was shown in Chapter III and exact limits were calculated for an example data set for the 

number of monitored streams being 𝐶 = 1,2, … ,10 and 𝛼 = 0.005, 0.0027, and 0.002 as 
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shown in Table 7, Table 8, and Table 9 in Chapter IV. Given that the assumptions of the 

NEMT-CUSUM are met (i.e., large sample sizes for each monitored stream, mutual 

independence of the streams, and independence of the samples taken between all time 

points), the calculation of these limits is relatively straightforward as given by (48) and 

(51). However, in practice it is common for tabled values of the control limits of a control 

limit to be calculated for use by practitioners (Montgomery, 2013). Because the mean of 

the plotting statistic, 𝑆𝑡, is the last observed plotting statistic, 𝑆𝑡−1, this is not possible for 

a general case. Consequently, it is necessary to create a computer program to compute the 

limits if the NEMT-CUSUM is to be widely used. This may create a barrier to adoption. 

It may also be of value to modify the existing charting scheme such that the plotting 

statistic is symmetric about a constant asymptotic mean rather than a varying one.  

The purpose of the second research question was to calculate, both theoretically 

and empirically, the statistical power of the NEMT-CUSUM. The alternative distribution, 

given a fixed shift affecting some subset of the total number of monitored streams was 

derived in Chapter III. The theoretical distribution and formula for calculating statistical 

power was also given in Chapter III. For various combinations of the parameters of the 

alternative distribution, operating characteristic (OC) curves were presented in both 

Chapter IV and in Appendix A. Like the calculation of the control limits, the theoretical 

results found for statistical power depend on the independence and large-sample 

assumptions being met as well as the previous observation, 𝑆𝑡−1
∗ . Thus, it is not possible, 

given current chart construction, to calculate statistical power for a general case.  

Additionally, in this dissertation it was assumed that if a shift occurred in a subset 

of the monitored streams that the same shift occurred in those streams. In practical 
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settings, shifts of differing magnitudes may occur in the shifted subset of streams. For 

example, if the number of monitored streams is 𝐶 = 10 and the shifted number of 

streams is 𝐶𝐴 = 3, the shift present in the first shifted stream, say 𝛾1, might be different 

then the shift present in the other two shifted streams, say 𝛾2. Thus, while some of the 

literature assumes a fixed shift on a subset of monitored streams, the results here could be 

further generalized for the case when the shifted streams are shifted away from target by 

differing magnitudes (Mortell & Runger, 1995).  

Finally, because the NEMT-CUSUM only considers the hypothesized median in 

determining if a process is in-control or out-of-control, its power to detect a distributional 

shift (e.g., when both the location and scale parameters shift) is weakened. For example, 

if the null distribution is the standard normal distribution, but a subset of streams observe 

a shift in variance to say, 𝜎2 = 25, but the mean stayed constant, it is unlikely the 

NEMT-CUSUM would be able to efficiently detect the scale shift. Thus, it may be of 

value to design a nonparametric control chart which monitors several quantiles of the null 

distribution instead of only one. 

Simulation Results 

 As mentioned in Chapter IV and as shown in Table 10, Table 11, Table 12, and 

Table 13, the estimated 𝐴𝑅𝐿 values for the NEMT-CUSUM were generally consistent 

across the differing underlying data situations for the same observed shift away from 

target. This result is not surprising as the chart does not rely on the underlying data 

following a particular distribution, but it is an attractive feature for practitioners. The 

performance of the parametric charting schemes varied across the various data situations. 

Consider the case when the observed shift was 2.00𝜇0. The normal, light-tailed estimated 
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𝐴𝑅𝐿1 values appeared adequate, but their performance in the presence of heavy-tailed 

and skewed data deteriorated. If a chart operator does not have knowledge of the 

underlying distribution, they may be risking the observed process operating in an out-of-

control state for a substantial amount of time, which may cost the organization a 

substantial amount of time, money, or both. Therefore, “when the cost of making a 

mistake is high,” it may be of more value to the operator to use this nonparametric 

scheme.  

  While this simulation study provided valuable insights, it also has limitations. 

First, the specified Type I error rate was taken to be 𝛼 = 0.0027. This traditionally 

corresponds to an in-control 𝐴𝑅𝐿 ≈ 370. In this analysis, the NEMT-CUSUM was 

consistently estimated to have an 𝐴𝑅𝐿0 ≈ 280. There are two likely causes for this large 

difference between nominal and empirical 𝐴𝑅𝐿0. One, the probability of making a Type I 

error, 𝛼, is interpreted as the long-run proportion of runs of the NEMT-CUSUM which 

result in an improper out-of-control signal. Since the number of iterations used here was 

10000, it may be the case that this was not large enough for the empirical 𝐴𝑅𝐿0 to 

converge to the nominal 𝐴𝑅𝐿0. Two, the sample size used for each stream at each time 

point was taken to be 𝑛 = 10. While this meets the minimum sample typically 

recommended to use the asymptotic distributions, it may be the case that the minimum 

sample required is not quite large enough for the distribution of 𝑆𝑡|𝑆𝑡−1 does not yet 

converge to 𝑁(𝑆𝑡−1, 𝐶).  

 The second limitation of this simulation study is time constraints. First, and as 

stated previously, the number of iterations was taken to be 10000. This number could be 

chosen to be 50000 or 100000 to perhaps yield more representative, accurate 𝐴𝑅𝐿1 
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values, it would require additional computing time that was not available. Second, the 

were four distributions considered, while intended to illustrate chart performance in 

general distributional situations, do not represent all possible data situations. It would be 

of value to consider discrete data, data from mixture distributions (both the same and 

different), or autocorrelated data, among others. Going forward, it would be valuable to 

consider these other situations which may arise in practice in order to fully evaluate the 

performance of the NEMT-CUSUM.    

Future Directions 

If the assumptions of within and between stream independence and large sample 

sizes are met, the NEMT-CUSUM may be an attractive option for practitioners 

monitoring a multiple stream process. However, the main limitation of the technique is 

that calculation of the plotting statistic as well as the control limits is not as 

straightforward as compared to Boyd’s GCC, Meneces Chart for each Stream, or even 

Mortell & Runger’s 𝑅𝑡 chart. Thus, and as mentioned, one expansion of the NEMT-

CUSUM would be to modify the calculation of the plotting statistic, 𝑆𝑡, such that its 

mean and variance are constant across all time points. It is a nice feature of the NEMT-

CUSUM that 𝛼 is fixed across all trials through the use of dynamic control limits, but the 

necessity of some quantitative and statistical knowledge in order to calculate the control 

limits may create a barrier to wider implementation. Further, having the distribution of 

the plotting statistic not vary across the time would solve the limitation of not being able 

to calculate general tabled values of the control limits as well as general operating 

characteristic curves. 
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The second future direction for research to build upon the proposed charting 

scheme would be to determine how estimation of 𝜇0 using some historical samples 

affects the performance of the NEMT-CUSUM. Using the sample median of a small 

number of historical samples may substantially underestimate or overestimate the true 

median, and thus, the performance of the chart may wane. It would be of value to 

practitioners to understand how estimating the target median affects chart performance. 

Third, as mentioned in Chapter III, 𝑆𝑡 could reasonably be conceptualized as a 

marginal random walk process. However, and as is the case with the conditional 

regression conceptualization of 𝑆𝑡, a random walk process is not stationary. The issue 

relating to it being nonstationary were described in Chapter III. To possibly address this 

issue, a first-order autoregressive model could be fit to the 𝑆𝑡 series such that 𝑆𝑡 is 

stationary (i.e., its mean and variance do not depend on 𝑡). Thus, static limits could be 

computed and the chart, while somewhat more cumbersome to initially set up, would be 

more straightforward to operate going forward. This would be of great value to explore in 

future studies.  

Finally, and as also stated previously in this chapter, a limitation of designing a 

control chart to monitor a single quantile (i.e., a single location parameter) of the null 

distribution is that it is unlikely it would be efficient in detecting shifts in other quantiles. 

Therefore, it would be valuable to design a chart, still nonparametric in nature, which has 

the ability to detect such shifts in multiple stream processes. The Kruskal-Wallis 

nonparametric test or extending the 1 × 𝐶 contingency table used by the NEMT-CUSUM 

to an 𝑅 × 𝐶 contingency table, where 𝑅 denotes the number of intervals desired to be 

monitored from the null distribution, could potentially be used to more broadly monitor 
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shifts away from the null distribution. While the calculation of the plotting statistic would 

likely be more complicated than what was presented in this dissertation, the potential of 

more efficiently detecting a variety of shifts away from target may outweigh the added 

complexity.  

To conclude, the development of the NEMT-CUSUM control chart fills an 

apparent need in the body of literature regarding the monitoring of MSPs. Given that its 

assumptions are met, the results given in Chapter IV suggest that the NEMT-CUSUM is 

a promising alternative to existing parametric MSP monitoring techniques. However, 

even though it is nonparametric, the NEMT-CUSUM still relies upon some assumptions. 

If these are not met, it is likely its performance would deteriorate, and consequently, a 

charting technique with less or looser assumptions should be developed in the case when 

the assumptions are not met. Another future consideration is to develop a similar charting 

scheme, but one in which the calculation of both the plotting statistic and control limits 

are straightforward in nature. The implementation and use of the NEMT-CUSUM 

requires some statistical knowledge which may prevent its adoption in practice. Though, 

such barriers could be ameliorated if a chart operator was convinced of the value of this 

nonparametric charting scheme, and if a computer program was developed to make 

computation of the plotting statistic and control limits automated.   
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Appendix A 

Additional Operating Characteristic Curves 
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Figure 4. Operating Characteristic Curve for C = 1, CA = 1, and Type I Error Rate of 

0.005 

 

Figure 5. Operating Characteristic Curve for C = 1, CA = 1, and Type I Error Rate of 

0.0027 
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Figure 6. Operating Characteristic Curve for C = 1, CA = 1, and Type I Error Rate of 

0.002 

 

Figure 7. Operating Characteristic Curve for C = 10, CA = 9, and Type I Error Rate of 

0.005 
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Figure 8. Operating Characteristic Curve for C = 10, CA = 9, and Type I Error Rate of 

0.0027 

 

Figure 9. Operating Characteristic Curve for C = 10, CA = 9, and Type I Error Rate of 

0.002 
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Figure 10. Operating Characteristic Curve for C = 15, CA = 14, and Type I Error Rate of 

0.005 

 

Figure 11. Operating Characteristic Curve for C = 15, CA = 14, and Type I Error Rate of 

0.0027 
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Figure 12. Operating Characteristic Curve for C = 15, CA = 14, and Type I Error Rate of 

0.002 

 

Figure 13. Operating Characteristic Curve for C = 20, CA = 19, and Type I Error Rate of 

0.005 
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Figure 14. Operating Characteristic Curve for C = 20, CA = 19, and Type I Error Rate of 

0.0027 

 

Figure 15. Operating Characteristic Curve for C = 20, CA = 19, and Type I Error Rate of 

0.002 
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Appendix B 

R Code  
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## Calculating Control Limits ## 

 

## Set Seed ## 

 

set.seed(123456) 

 

n <- 10 

p0 <- 0.5 

streams <- seq(1,10,by=1) 

 

alpha1 <- 0.005 

alpha2 <- 0.0027 

alpha3 <- 0.002 

 

mu0 <- 0 

 

## Generating Underlying Data ## 

 

dat <- matrix(rnorm(200*10),ncol=10) 

 

t1 <- dat[1:10,] 

t2 <- dat[11:20,] 

t3 <- dat[21:30,] 

t4 <- dat[31:40,] 

t5 <- dat[41:50,] 

t6 <- dat[51:60,] 

t7 <- dat[61:70,] 

t8 <- dat[71:80,] 

t9 <- dat[81:90,] 

t10 <- dat[91:100,] 
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t11 <- dat[101:110,] 

t12 <- dat[111:120,] 

t13 <- dat[121:130,] 

t14 <- dat[131:140,] 

t15 <- dat[141:150,] 

t16 <- dat[151:160,] 

t17 <- dat[161:170,] 

t18 <- dat[171:180,] 

t19 <- dat[181:190,] 

t20 <- dat[191:200,] 

 

o1 <- matrix(nrow=10,ncol=20) 

 

## Calculating Frequency >= mu0 ## 

 

for(i in 1:10){ 

   

  o1[i,1] <- ifelse(is.na(table(t1[,i] > mu0)[2]) == 

'TRUE',0,table(t1[,i] > mu0)[2]) 

  o1[i,2] <- ifelse(is.na(table(t2[,i] > mu0)[2]) == 

'TRUE',0,table(t2[,i] > mu0)[2]) 

  o1[i,3] <- ifelse(is.na(table(t3[,i] > mu0)[2]) == 

'TRUE',0,table(t3[,i] > mu0)[2]) 

  o1[i,4] <- ifelse(is.na(table(t4[,i] > mu0)[2]) == 

'TRUE',0,table(t4[,i] > mu0)[2]) 

  o1[i,5] <- ifelse(is.na(table(t5[,i] > mu0)[2]) == 

'TRUE',0,table(t5[,i] > mu0)[2]) 

  o1[i,6] <- ifelse(is.na(table(t6[,i] > mu0)[2]) == 

'TRUE',0,table(t6[,i] > mu0)[2]) 

  o1[i,7] <- ifelse(is.na(table(t7[,i] > mu0)[2]) == 

'TRUE',0,table(t7[,i] > mu0)[2]) 

  o1[i,8] <- ifelse(is.na(table(t8[,i] > mu0)[2]) == 

'TRUE',0,table(t8[,i] > mu0)[2]) 
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  o1[i,9] <- ifelse(is.na(table(t9[,i] > mu0)[2]) == 

'TRUE',0,table(t9[,i] > mu0)[2]) 

  o1[i,10] <- ifelse(is.na(table(t10[,i] > mu0)[2]) == 

'TRUE',0,table(t10[,i] > mu0)[2]) 

  o1[i,11] <- ifelse(is.na(table(t11[,i] > mu0)[2]) == 

'TRUE',0,table(t11[,i] > mu0)[2]) 

  o1[i,12] <- ifelse(is.na(table(t12[,i] > mu0)[2]) == 

'TRUE',0,table(t12[,i] > mu0)[2]) 

  o1[i,13] <- ifelse(is.na(table(t13[,i] > mu0)[2]) == 

'TRUE',0,table(t13[,i] > mu0)[2]) 

  o1[i,14] <- ifelse(is.na(table(t14[,i] > mu0)[2]) == 

'TRUE',0,table(t14[,i] > mu0)[2]) 

  o1[i,15] <- ifelse(is.na(table(t15[,i] > mu0)[2]) == 

'TRUE',0,table(t15[,i] > mu0)[2]) 

  o1[i,16] <- ifelse(is.na(table(t16[,i] > mu0)[2]) == 

'TRUE',0,table(t16[,i] > mu0)[2]) 

  o1[i,17] <- ifelse(is.na(table(t17[,i] > mu0)[2]) == 

'TRUE',0,table(t17[,i] > mu0)[2]) 

  o1[i,18] <- ifelse(is.na(table(t18[,i] > mu0)[2]) == 

'TRUE',0,table(t18[,i] > mu0)[2]) 

  o1[i,19] <- ifelse(is.na(table(t19[,i] > mu0)[2]) == 

'TRUE',0,table(t19[,i] > mu0)[2]) 

  o1[i,20] <- ifelse(is.na(table(t20[,i] > mu0)[2]) == 

'TRUE',0,table(t20[,i] > mu0)[2]) 

   

} 

   

## Standardizing Frequencies to N(0,1) ## 

 

E1 <- matrix(nrow = 10, ncol= 20) 

 

for(i in 1:10){ 

  for(j in 1:20){ 

    E1[i,j] <- (o1[i,j] - n*p0)/sqrt(n*p0*(1-p0)) 
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  } 

} 

 

## Calculating EMT Statistics for each considered C ## 

##           and at each time point                 ## 

 

EMT <- matrix(nrow=10,ncol=20) 

 

for(i in 1:20){ 

  EMT[,i] <- cumsum(E1[,i]) 

} 

 

## Write Table 6 to CSV ## 

 

write.csv(t(round(EMT,2)),"table6.csv",row.names=F) 

 

## Calculating St Matrix ## 

 

St <- apply(t(EMT),2,FUN=function(x){cumsum(x)}) 

 

 

## Generating Control Limits ## 

 

table7 <- matrix(nrow=20,ncol=10) 

table71 <- matrix(nrow=20,ncol=10) 

table8 <- matrix(nrow=20,ncol=10) 

table81 <- matrix(nrow=20,ncol=10) 

table9 <- matrix(nrow=20,ncol=10) 

table91 <- matrix(nrow=20,ncol=10) 

 



115 
 

 
 

## First Limits when S0 = 0 ## 

 

for(j in 1:10){ 

  table7[,j] <- round(-qnorm(alpha1/2)*sqrt(streams[j]),1) 

  table71[,j]<- round(qnorm(alpha1/2)*sqrt(streams[j]),1) 

  table8[,j] <- round(-qnorm(alpha2/2)*sqrt(streams[j]),1) 

  table81[,j] <- round(qnorm(alpha2/2)*sqrt(streams[j]),1) 

  table9[,j] <- round(-qnorm(alpha3/2)*sqrt(streams[j]),1) 

  table91[,j] <- round(qnorm(alpha2/2)*sqrt(streams[j]),1) 

   

} 

 

for(i in 2:20){ 

  for(j in 1:10){ 

     

    table7[i,j] <- round(qnorm(alpha1/2,mean=St[(i-

1),j],sd=sqrt(streams[j]),lower.tail=F),1) 

     

    table71[i,j] <- round(qnorm(alpha1/2,mean=St[(i-

1),j],sd=sqrt(streams[j]),lower.tail=T),1) 

     

    table8[i,j] <- round(qnorm(alpha2/2,mean=St[(i-

1),j],sd=sqrt(streams[j]),lower.tail=F),1) 

     

    table81[i,j] <- round(qnorm(alpha2/2,mean=St[(i-

1),j],sd=sqrt(streams[j]),lower.tail=T),1) 

 

    table9[i,j] <- round(qnorm(alpha3/2,mean=St[(i-

1),j],sd=sqrt(streams[j]),lower.tail=F),1) 

     

    table91[i,j] <- round(qnorm(alpha3/2,mean=St[(i-

1),j],sd=sqrt(streams[j]),lower.tail=T),1) 
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    } 

} 

 

big_table7 <- matrix(nrow=20,ncol=10) 

big_table8 <- matrix(nrow=20,ncol=10) 

big_table9 <- matrix(nrow=20,ncol=10) 

 

for(i in 1:20){ 

  for(j in 1:10){ 

    big_table7[i,j] <- paste(paste(table71[i,j],",", 

sep=""),table7[i,j],sep=" ") 

    big_table8[i,j] <- paste(paste(table81[i,j],",", 

sep=""),table8[i,j],sep=" ") 

    big_table9[i,j] <- paste(paste(table91[i,j],",", 

sep=""),table9[i,j],sep=" ") 

    } 

} 

 

write.csv(big_table7,"table7.csv",row.names=F) 

write.csv(big_table8,"table8.csv",row.names=F) 

write.csv(big_table9,"table9.csv",row.names=F) 
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## Building OC Curves ## 

 

## C, CA, & Alpha can be Modified ## 

 

library(ggplot2) 

 

spec_alpha <- 0.005 

p0 <- 0.5 

gamma_1 <- as.matrix(seq(0,0.49,by=0.001)) 

C <- 1 

CA <- 1 

C0 <- C - CA 

sample_s1ze1 <- 10 

sample_s1ze2 <- 20 

sample_s1ze3 <- 30 

sample_s1ze4 <- 40 

sample_s1ze5 <- 50 

sample_s1ze6 <- 100 

n_ca1 <- CA*sample_s1ze1 

n_ca2 <- CA*sample_s1ze2 

n_ca3 <- CA*sample_s1ze3 

n_ca4 <- CA*sample_s1ze4 

n_ca5 <- CA*sample_s1ze5 

n_ca6 <- CA*sample_s1ze6 

 

theta_parm <- matrix(ncol=1,nrow=length(gamma_1)) 

eps_parm1 <- matrix(ncol=1,nrow=length(gamma_1)) 

eps_parm2 <- matrix(ncol=1,nrow=length(gamma_1)) 

eps_parm3 <- matrix(ncol=1,nrow=length(gamma_1)) 

eps_parm4 <- matrix(ncol=1,nrow=length(gamma_1)) 
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eps_parm5 <- matrix(ncol=1,nrow=length(gamma_1)) 

eps_parm6 <- matrix(ncol=1,nrow=length(gamma_1)) 

 

for(i in 1:length(gamma_1)){ 

  theta_parm[i] <- 1/sqrt(1-(gamma_1[i]/(1-

p0))+(gamma_1[i]/p0)-(gamma_1[i]^2/(p0*(1-p0)))) 

  eps_parm1[i] <- (n_ca1*gamma_1[i])/sqrt(n_ca1*p0*(1-

p0)*(1-(gamma_1[i]/(1-p0))+(gamma_1[i]/p0)-

(gamma_1[i]^2/(p0*(1-p0))))) 

  eps_parm2[i] <- (n_ca2*gamma_1[i])/sqrt(n_ca2*p0*(1-

p0)*(1-(gamma_1[i]/(1-p0))+(gamma_1[i]/p0)-

(gamma_1[i]^2/(p0*(1-p0))))) 

  eps_parm3[i] <- (n_ca3*gamma_1[i])/sqrt(n_ca3*p0*(1-

p0)*(1-(gamma_1[i]/(1-p0))+(gamma_1[i]/p0)-

(gamma_1[i]^2/(p0*(1-p0))))) 

  eps_parm4[i] <- (n_ca4*gamma_1[i])/sqrt(n_ca4*p0*(1-

p0)*(1-(gamma_1[i]/(1-p0))+(gamma_1[i]/p0)-

(gamma_1[i]^2/(p0*(1-p0))))) 

  eps_parm5[i] <- (n_ca5*gamma_1[i])/sqrt(n_ca5*p0*(1-

p0)*(1-(gamma_1[i]/(1-p0))+(gamma_1[i]/p0)-

(gamma_1[i]^2/(p0*(1-p0))))) 

  eps_parm6[i] <- (n_ca6*gamma_1[i])/sqrt(n_ca6*p0*(1-

p0)*(1-(gamma_1[i]/(1-p0))+(gamma_1[i]/p0)-

(gamma_1[i]^2/(p0*(1-p0))))) 

} 

 

alt_EMT1 <- matrix(nrow=1000,ncol=length(gamma_1)) 

alt_EMT2 <- matrix(nrow=1000,ncol=length(gamma_1)) 

alt_EMT3 <- matrix(nrow=1000,ncol=length(gamma_1)) 

alt_EMT4 <- matrix(nrow=1000,ncol=length(gamma_1)) 

alt_EMT5 <- matrix(nrow=1000,ncol=length(gamma_1)) 

alt_EMT6 <- matrix(nrow=1000,ncol=length(gamma_1)) 
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for(i in 1:length(gamma_1)){ 

  alt_EMT1[,i] <- rnorm(1000,mean=-

eps_parm1[i],sd=sqrt(theta_parm[i]*CA)) 

  alt_EMT2[,i] <- rnorm(1000,mean=-

eps_parm2[i],sd=sqrt(theta_parm[i]*CA)) 

  alt_EMT3[,i] <- rnorm(1000,mean=-

eps_parm3[i],sd=sqrt(theta_parm[i]*CA)) 

  alt_EMT4[,i] <- rnorm(1000,mean=-

eps_parm4[i],sd=sqrt(theta_parm[i]*CA)) 

  alt_EMT5[,i] <- rnorm(1000,mean=-

eps_parm5[i],sd=sqrt(theta_parm[i]*CA)) 

  alt_EMT6[,i] <- rnorm(1000,mean=-

eps_parm6[i],sd=sqrt(theta_parm[i]*CA)) 

} 

 

alt_St1 <- apply(alt_EMT1,2,FUN=function(x){cumsum(x)}) 

alt_St2 <- apply(alt_EMT2,2,FUN=function(x){cumsum(x)}) 

alt_St3 <- apply(alt_EMT3,2,FUN=function(x){cumsum(x)}) 

alt_St4 <- apply(alt_EMT4,2,FUN=function(x){cumsum(x)}) 

alt_St5 <- apply(alt_EMT5,2,FUN=function(x){cumsum(x)}) 

alt_St6 <- apply(alt_EMT6,2,FUN=function(x){cumsum(x)}) 

 

## Calculate Control L1m1ts ## 

 

UCL1 <- matrix(nrow=1000,ncol=length(gamma_1)) 

LCL1 <- matrix(nrow=1000,ncol=length(gamma_1)) 

UCL2 <- matrix(nrow=1000,ncol=length(gamma_1)) 

LCL2 <- matrix(nrow=1000,ncol=length(gamma_1)) 

UCL3 <- matrix(nrow=1000,ncol=length(gamma_1)) 

LCL3 <- matrix(nrow=1000,ncol=length(gamma_1)) 

UCL4 <- matrix(nrow=1000,ncol=length(gamma_1)) 

LCL4 <- matrix(nrow=1000,ncol=length(gamma_1)) 
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UCL5 <- matrix(nrow=1000,ncol=length(gamma_1)) 

LCL5 <- matrix(nrow=1000,ncol=length(gamma_1)) 

UCL6 <- matrix(nrow=1000,ncol=length(gamma_1)) 

LCL6 <- matrix(nrow=1000,ncol=length(gamma_1)) 

 

UCL1[1,] <- -qnorm(spec_alpha/2)*sqrt(C) 

LCL1[1,] <- qnorm(spec_alpha/2)*sqrt(C) 

UCL2[1,] <- -qnorm(spec_alpha/2)*sqrt(C) 

LCL2[1,] <- qnorm(spec_alpha/2)*sqrt(C) 

UCL3[1,] <- -qnorm(spec_alpha/2)*sqrt(C) 

LCL3[1,] <- qnorm(spec_alpha/2)*sqrt(C) 

UCL4[1,] <- -qnorm(spec_alpha/2)*sqrt(C) 

LCL4[1,] <- qnorm(spec_alpha/2)*sqrt(C) 

UCL5[1,] <- -qnorm(spec_alpha/2)*sqrt(C) 

LCL5[1,] <- qnorm(spec_alpha/2)*sqrt(C) 

UCL6[1,] <- -qnorm(spec_alpha/2)*sqrt(C) 

LCL6[1,] <- qnorm(spec_alpha/2)*sqrt(C) 
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for(i in 2:1000){ 

  for(j in 1:length(gamma_1)){ 

    UCL1[i,j] <- qnorm(spec_alpha/2,mean=alt_St1[(i-

1),j],sd=sqrt(C),lower.tail=F) 

    LCL1[i,j] <- qnorm(spec_alpha/2,mean=alt_St1[(i-

1),j],sd=sqrt(C),lower.tail=T) 

    UCL2[i,j] <- qnorm(spec_alpha/2,mean=alt_St2[(i-

1),j],sd=sqrt(C),lower.tail=F) 

    LCL2[i,j] <- qnorm(spec_alpha/2,mean=alt_St2[(i-

1),j],sd=sqrt(C),lower.tail=T) 

    UCL3[i,j] <- qnorm(spec_alpha/2,mean=alt_St3[(i-

1),j],sd=sqrt(C),lower.tail=F) 

    LCL3[i,j] <- qnorm(spec_alpha/2,mean=alt_St3[(i-

1),j],sd=sqrt(C),lower.tail=T) 

    UCL4[i,j] <- qnorm(spec_alpha/2,mean=alt_St4[(i-

1),j],sd=sqrt(C),lower.tail=F) 

    LCL4[i,j] <- qnorm(spec_alpha/2,mean=alt_St4[(i-

1),j],sd=sqrt(C),lower.tail=T) 

    UCL5[i,j] <- qnorm(spec_alpha/2,mean=alt_St5[(i-

1),j],sd=sqrt(C),lower.tail=F) 

    LCL5[i,j] <- qnorm(spec_alpha/2,mean=alt_St5[(i-

1),j],sd=sqrt(C),lower.tail=T) 

    UCL6[i,j] <- qnorm(spec_alpha/2,mean=alt_St6[(i-

1),j],sd=sqrt(C),lower.tail=F) 

    LCL6[i,j] <- qnorm(spec_alpha/2,mean=alt_St6[(i-

1),j],sd=sqrt(C),lower.tail=T) 

  } 

} 

 

## Calculat1ng Beta ## 

 

b1 <- matrix(nrow=1000,ncol=length(gamma_1)) 

b2 <- matrix(nrow=1000,ncol=length(gamma_1)) 

b3 <- matrix(nrow=1000,ncol=length(gamma_1)) 
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b4 <- matrix(nrow=1000,ncol=length(gamma_1)) 

b5 <- matrix(nrow=1000,ncol=length(gamma_1)) 

b6 <- matrix(nrow=1000,ncol=length(gamma_1)) 

 

for(j in 1:length(gamma_1)){ 

  b1[1,j] <- pnorm(UCL1[1,j],mean=(-

eps_parm1[j]),sd=sqrt(C0+CA*theta_parm[j]),lower.tail=T) -  

                   pnorm(LCL1[1,j],mean=(-

eps_parm1[j]),sd=sqrt(C0+CA*theta_parm[j]),lower.tail=T) 

   

  b2[1,j] <- pnorm(UCL2[1,j],mean=(-

eps_parm2[j]),sd=sqrt(C0+CA*theta_parm[j]),lower.tail=T) -  

                   pnorm(LCL2[1,j],mean=(-

eps_parm2[j]),sd=sqrt(C0+CA*theta_parm[j]),lower.tail=T) 

   

  b3[1,j] <- pnorm(UCL3[1,j],mean=(-

eps_parm3[j]),sd=sqrt(C0+CA*theta_parm[j]),lower.tail=T) -  

                   pnorm(LCL3[1,j],mean=(-

eps_parm3[j]),sd=sqrt(C0+CA*theta_parm[j]),lower.tail=T) 

   

  b4[1,j] <- pnorm(UCL4[1,j],mean=(-

eps_parm4[j]),sd=sqrt(C0+CA*theta_parm[j]),lower.tail=T) -  

                   pnorm(LCL4[1,j],mean=(-

eps_parm4[j]),sd=sqrt(C0+CA*theta_parm[j]),lower.tail=T) 

   

  b5[1,j] <- pnorm(UCL5[1,j],mean=(-

eps_parm5[j]),sd=sqrt(C0+CA*theta_parm[j]),lower.tail=T) -  

                  pnorm(LCL5[1,j],mean=(-

eps_parm5[j]),sd=sqrt(C0+CA*theta_parm[j]),lower.tail=T) 

   

  b6[1,j] <- pnorm(UCL6[1,j],mean=(-

eps_parm6[j]),sd=sqrt(C0+CA*theta_parm[j]),lower.tail=T) -  

                   pnorm(LCL6[1,j],mean=(-

eps_parm6[j]),sd=sqrt(C0+CA*theta_parm[j]),lower.tail=T)} 
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for(i in 2:1000){ 

  for(j in 1:length(gamma_1)){ 

    b1[i,j] <- pnorm(UCL1[i,j],mean=(alt_St1[(i-1),j] - 

eps_parm1[j]),sd=sqrt(C0+CA*theta_parm[j]),lower.tail=T) -  

                     pnorm(LCL1[i,j],mean=(alt_St1[(i-1),j] 

- eps_parm1[j]),sd=sqrt(C0+CA*theta_parm[j]),lower.tail=T) 

     

    b2[i,j] <- pnorm(UCL2[i,j],mean=(alt_St2[(i-1),j] - 

eps_parm2[j]),sd=sqrt(C0+CA*theta_parm[j]),lower.tail=T) -  

                     pnorm(LCL2[i,j],mean=(alt_St2[(i-1),j] 

- eps_parm2[j]),sd=sqrt(C0+CA*theta_parm[j]),lower.tail=T) 

     

    b3[i,j] <- pnorm(UCL3[i,j],mean=(alt_St3[(i-1),j] - 

eps_parm3[j]),sd=sqrt(C0+CA*theta_parm[j]),lower.tail=T) -  

                     pnorm(LCL3[i,j],mean=(alt_St3[(i-1),j] 

- eps_parm3[j]),sd=sqrt(C0+CA*theta_parm[j]),lower.tail=T) 

     

    b4[i,j] <- pnorm(UCL4[i,j],mean=(alt_St4[(i-1),j] - 

eps_parm4[j]),sd=sqrt(C0+CA*theta_parm[j]),lower.tail=T) -  

                     pnorm(LCL4[i,j],mean=(alt_St4[(i-1),j] 

- eps_parm4[j]),sd=sqrt(C0+CA*theta_parm[j]),lower.tail=T) 

     

    b5[i,j] <- pnorm(UCL5[i,j],mean=(alt_St5[(i-1),j] - 

eps_parm5[j]),sd=sqrt(C0+CA*theta_parm[j]),lower.tail=T) -  

                     pnorm(LCL5[i,j],mean=(alt_St5[(i-1),j] 

- eps_parm5[j]),sd=sqrt(C0+CA*theta_parm[j]),lower.tail=T) 

     

    b6[i,j] <- pnorm(UCL6[i,j],mean=(alt_St6[(i-1),j] - 

eps_parm6[j]),sd=sqrt(C0+CA*theta_parm[j]),lower.tail=T) -  

                     pnorm(LCL6[i,j],mean=(alt_St6[(i-1),j] 

- 

eps_parm6[j]),sd=sqrt(C0+CA*theta_parm[j]),lower.tail=T)}} 
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b11 <- apply(b1,2,mean) 

b21 <- apply(b2,2,mean) 

b31 <- apply(b3,2,mean) 

b41 <- apply(b4,2,mean) 

b51 <- apply(b5,2,mean) 

b61 <- apply(b6,2,mean) 

 

colz <- c('n = 10' = 'red', 'n = 20' = 'blue', 'n = 30' = 

'green', 'n = 40' = 'purple', 'n = 50' = 'pink', 

          'n = 100' = 'black') 

 

ggplot() +  

  geom_line(aes(x = gamma_1, y = b11, col = 'n = 10')) +  

  geom_line(aes(x = gamma_1, y = b21, col = 'n = 20')) + 

  geom_line(aes(x = gamma_1, y = b31, col = 'n = 30')) + 

  geom_line(aes(x = gamma_1, y = b41, col = 'n = 40')) + 

  geom_line(aes(x = gamma_1, y = b51, col = 'n = 50')) +  

  geom_line(aes(x = gamma_1, y = b61, col = 'n = 100'))+ 

  labs(x = expression(gamma), y = expression(beta)) +   

  theme_classic() + ggtitle(bquote("C = 1," ~ C[A] == 1 ~", 

and"~ alpha == 0.005)) + 

  theme(plot.title = element_text(hjust=0.5)) +  

  scale_color_manual(name = "Sample Size", values = colz, 

                     limits = c('n = 10', 'n = 20', 'n = 

30', 'n = 40', 'n = 50', 'n = 100')) 
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## Dissertation Simulation ## 

 

## Estimating ARL1 for NEMT-CUSUM ## 

 

library(foreach) 

library(doParallel) 

 

no_cores <- detectCores() - 1 

 

cl <- makeCluster(no_cores) 

 

registerDoParallel(cl) 

 

## Setting Parameters ## 

 

specified_alpha <- 0.0027 

 

p0 <- 0.5 

 

c <- 10 

N <- 100 

n <- N/c 

big_sim_size <- 10000 
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EMT_function <- 

function(o1,o2,o3,o4,o5,o6,o7,o8,o9,o10,n,p0){ 

  return(sum((o1-n*p0)/sqrt(n*p0*(1-p0)), 

             (o2-n*p0)/sqrt(n*p0*(1-p0)), 

             (o3-n*p0)/sqrt(n*p0*(1-p0)), 

             (o4-n*p0)/sqrt(n*p0*(1-p0)), 

             (o5-n*p0)/sqrt(n*p0*(1-p0)), 

             (o6-n*p0)/sqrt(n*p0*(1-p0)), 

             (o7-n*p0)/sqrt(n*p0*(1-p0)), 

             (o8-n*p0)/sqrt(n*p0*(1-p0)), 

             (o9-n*p0)/sqrt(n*p0*(1-p0)), 

             (o10-n*p0)/sqrt(n*p0*(1-p0)))) 

} 

 

## Estimating ARL1 Using Normal(1,1) ## 

 

## Specifiy IC-Mean/Median ## 

 

mu0 <- 1 
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## Apply Option Using doParallel ## 

 

apply_function <- function(n,mu0,p0,delta){     

    s1 <- rnorm(n,mean=1*delta,sd=1) 

    s2 <- rnorm(n,mean=1*delta,sd=1) 

    s3 <- rnorm(n,mean=1*delta,sd=1) 

    s4 <- rnorm(n,mean=1*delta,sd=1) 

    s5 <- rnorm(n,mean=1*delta,sd=1) 

    s6 <- rnorm(n,mean=1,sd=1) 

    s7 <- rnorm(n,mean=1,sd=1) 

    s8 <- rnorm(n,mean=1,sd=1) 

    s9 <- rnorm(n,mean=1,sd=1) 

    s10 <- rnorm(n,mean=1,sd=1) 

     

    o1 <- ifelse(is.na(table(s1 > mu0)[2]) == 

'TRUE',0,table(s1 > mu0)[2]) 

    o2 <- ifelse(is.na(table(s2 > mu0)[2]) == 

'TRUE',0,table(s2 > mu0)[2]) 

    o3 <- ifelse(is.na(table(s3 > mu0)[2]) == 

'TRUE',0,table(s3 > mu0)[2]) 

    o4 <- ifelse(is.na(table(s4 > mu0)[2]) == 

'TRUE',0,table(s4 > mu0)[2]) 

    o5 <- ifelse(is.na(table(s5 > mu0)[2]) == 

'TRUE',0,table(s5 > mu0)[2]) 

    o6 <- ifelse(is.na(table(s6 > mu0)[2]) == 

'TRUE',0,table(s6 > mu0)[2]) 

    o7 <- ifelse(is.na(table(s7 > mu0)[2]) == 

'TRUE',0,table(s7 > mu0)[2]) 

    o8 <- ifelse(is.na(table(s8 > mu0)[2]) == 

'TRUE',0,table(s8 > mu0)[2]) 

    o9 <- ifelse(is.na(table(s9 > mu0)[2]) == 

'TRUE',0,table(s9 > mu0)[2]) 

    o10 <- ifelse(is.na(table(s10 > mu0)[2]) == 

'TRUE',0,table(s10 > mu0)[2]) 
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return(EMT_function(o1,o2,o3,o4,o5,o6,o7,o8,o9,o10,n,p0)) 

} 

 

## Size of Shift to be Tested ## 

 

delta <- 1 

 

## While Looping ## 

 

sim_time <- system.time({ 

arlz1 <- foreach(icount(big_sim_size),.combine = rbind) 

%dopar% { 

EMT <- c() 

EMT[1] <- apply_function(n,mu0,p0,delta) 

St <- c() 

St[1] <- EMT[1] 

UCL_t <- c() 

LCL_t <- c() 

cond_mu <- 0 

UCL_t[1] <- 

qnorm(specified_alpha/2,mean=cond_mu,sd=sqrt(c),lower.tail=

F) 

LCL_t[1] <- 

qnorm(specified_alpha/2,mean=cond_mu,sd=sqrt(c),lower.tail=

T) 

i <- 1 
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while(St[i] < UCL_t[i] && St[i] > LCL_t[i]){ 

 EMT[i+1] <- apply_function(n,mu0,p0,delta) 

 St[i+1]  <- sum(EMT[1:(i+1)]) 

 cond_mu  <- St[i] 

 UCL_t[i+1] <- 

qnorm(specified_alpha/2,mean=cond_mu,sd=sqrt(c),lower.tail=

F) 

 LCL_t[i+1] <- 

qnorm(specified_alpha/2,mean=cond_mu,sd=sqrt(c),lower.tail=

T) 

 i <- i + 1 

 } 

i 

}}) 

 

sim_time[3] 

mean(arlz1) 

 

## Estimating ARL1 Using UNIF(0,1) ## 

 

## Specifiy IC-Mean/Median ## 

 

mu0 <- 0.50 

 

## Apply Option Using doParallel ## 

 

apply_function <- function(n,mu0,p0,delta){     

  s1 <- runif(n,min=0,max=1*delta) 

  s2 <- runif(n,min=0,max=1*delta) 

  s3 <- runif(n,min=0,max=1*delta) 

  s4 <- runif(n,min=0,max=1*delta) 



130 
 

 
 

  s5 <- runif(n,min=0,max=1*delta) 

  s6 <- runif(n,min=0,max=1) 

  s7 <- runif(n,min=0,max=1) 

  s8 <- runif(n,min=0,max=1) 

  s9 <- runif(n,min=0,max=1) 

  s10 <- runif(n,min=0,max=1) 

   

  o1 <- ifelse(is.na(table(s1 > mu0)[2]) == 

'TRUE',0,table(s1 > mu0)[2]) 

  o2 <- ifelse(is.na(table(s2 > mu0)[2]) == 

'TRUE',0,table(s2 > mu0)[2]) 

  o3 <- ifelse(is.na(table(s3 > mu0)[2]) == 

'TRUE',0,table(s3 > mu0)[2]) 

  o4 <- ifelse(is.na(table(s4 > mu0)[2]) == 

'TRUE',0,table(s4 > mu0)[2]) 

  o5 <- ifelse(is.na(table(s5 > mu0)[2]) == 

'TRUE',0,table(s5 > mu0)[2]) 

  o6 <- ifelse(is.na(table(s6 > mu0)[2]) == 

'TRUE',0,table(s6 > mu0)[2]) 

  o7 <- ifelse(is.na(table(s7 > mu0)[2]) == 

'TRUE',0,table(s7 > mu0)[2]) 

  o8 <- ifelse(is.na(table(s8 > mu0)[2]) == 

'TRUE',0,table(s8 > mu0)[2]) 

  o9 <- ifelse(is.na(table(s9 > mu0)[2]) == 

'TRUE',0,table(s9 > mu0)[2]) 

  o10 <- ifelse(is.na(table(s10 > mu0)[2]) == 

'TRUE',0,table(s10 > mu0)[2]) 

   

  return(EMT_function(o1,o2,o3,o4,o5,o6,o7,o8,o9,o10,n,p0)) 

} 
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## Size of Shift to be Tested ## 

 

delta <- 1 

 

## While Looping ## 

 

sim_time <- system.time({ 

  arlz1 <- foreach(icount(big_sim_size),.combine = rbind) 

%dopar% { 

    EMT <- c() 

    EMT[1] <- apply_function(n,mu0,p0,delta) 

    St <- c() 

    St[1] <- EMT[1] 

    UCL_t <- c() 

    LCL_t <- c() 

    cond_mu <- 0 

    UCL_t[1] <- 

qnorm(specified_alpha/2,mean=cond_mu,sd=sqrt(c),lower.tail=

F) 

    LCL_t[1] <- 

qnorm(specified_alpha/2,mean=cond_mu,sd=sqrt(c),lower.tail=

T) 

    i <- 1 

    while(St[i] < UCL_t[i] && St[i] > LCL_t[i]){ 

      EMT[i+1] <- apply_function(n,mu0,p0,delta) 

      St[i+1]  <- sum(EMT[1:(i+1)]) 

      cond_mu  <- St[i] 

      UCL_t[i+1] <- 

qnorm(specified_alpha/2,mean=cond_mu,sd=sqrt(c),lower.tail=

F) 

      LCL_t[i+1] <- 

qnorm(specified_alpha/2,mean=cond_mu,sd=sqrt(c),lower.tail=

T) 
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      i <- i + 1 

    } 

    i 

  }}) 

 

sim_time[3] 

mean(arlz1) 

 

## Estimating ARL1 Using Laplace(1,1) ## 

 

library(rmutil) 

 

## Specifiy IC-Mean/Median ## 

 

mu0 <- 1 

 

## Apply Option Using doParallel ## 

 

apply_function <- function(n,mu0,p0,delta){     

  s1 <- rlaplace(n,m=1*delta,s=1) 

  s2 <- rlaplace(n,m=1*delta,s=1) 

  s3 <- rlaplace(n,m=1*delta,s=1) 

  s4 <- rlaplace(n,m=1*delta,s=1) 

  s5 <- rlaplace(n,m=1*delta,s=1) 

  s6 <- rlaplace(n,m=1,s=1) 

  s7 <- rlaplace(n,m=1,s=1) 

  s8 <- rlaplace(n,m=1,s=1) 

  s9 <- rlaplace(n,m=1,s=1) 

  s10 <- rlaplace(n,m=1,s=1) 

   



133 
 

 
 

  o1 <- ifelse(is.na(table(s1 > mu0)[2]) == 

'TRUE',0,table(s1 > mu0)[2]) 

  o2 <- ifelse(is.na(table(s2 > mu0)[2]) == 

'TRUE',0,table(s2 > mu0)[2]) 

  o3 <- ifelse(is.na(table(s3 > mu0)[2]) == 

'TRUE',0,table(s3 > mu0)[2]) 

  o4 <- ifelse(is.na(table(s4 > mu0)[2]) == 

'TRUE',0,table(s4 > mu0)[2]) 

  o5 <- ifelse(is.na(table(s5 > mu0)[2]) == 

'TRUE',0,table(s5 > mu0)[2]) 

  o6 <- ifelse(is.na(table(s6 > mu0)[2]) == 

'TRUE',0,table(s6 > mu0)[2]) 

  o7 <- ifelse(is.na(table(s7 > mu0)[2]) == 

'TRUE',0,table(s7 > mu0)[2]) 

  o8 <- ifelse(is.na(table(s8 > mu0)[2]) == 

'TRUE',0,table(s8 > mu0)[2]) 

  o9 <- ifelse(is.na(table(s9 > mu0)[2]) == 

'TRUE',0,table(s9 > mu0)[2]) 

  o10 <- ifelse(is.na(table(s10 > mu0)[2]) == 

'TRUE',0,table(s10 > mu0)[2]) 

   

  return(EMT_function(o1,o2,o3,o4,o5,o6,o7,o8,o9,o10,n,p0)) 

} 

 

## Size of Shift to be Tested ## 

 

delta <- 1 
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## While Looping ## 

 

sim_time <- system.time({ 

  arlz1 <- 

foreach(icount(big_sim_size),.packages=c("rmutil"),.combine 

= rbind) %dopar% { 

    EMT <- c() 

    EMT[1] <- apply_function(n,mu0,p0,delta) 

    St <- c() 

    St[1] <- EMT[1] 

    UCL_t <- c() 

    LCL_t <- c() 

    cond_mu <- 0 

    UCL_t[1] <- 

qnorm(specified_alpha/2,mean=cond_mu,sd=sqrt(c),lower.tail=

F) 

    LCL_t[1] <- 

qnorm(specified_alpha/2,mean=cond_mu,sd=sqrt(c),lower.tail=

T) 

    i <- 1 

    while(St[i] < UCL_t[i] && St[i] > LCL_t[i]){ 

      EMT[i+1] <- apply_function(n,mu0,p0,delta) 

      St[i+1]  <- sum(EMT[1:(i+1)]) 

      cond_mu  <- St[i] 

      UCL_t[i+1] <- 

qnorm(specified_alpha/2,mean=cond_mu,sd=sqrt(c),lower.tail=

F) 

      LCL_t[i+1] <- 

qnorm(specified_alpha/2,mean=cond_mu,sd=sqrt(c),lower.tail=

T) 

      i <- i + 1 

    } 

    i 

  }}) 
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sim_time[3] 

mean(arlz1) 

 

## Estimating ARL1 Using EXP(1) ## 

 

## Specifiy IC-Mean/Median ## 

 

mu0 <- 1 

med <- mu0*log(2) 

 

## Apply Option Using doParallel ## 

 

apply_function <- function(n,mu0,p0,delta){     

  s1 <- rexp(n,rate=mu0*delta) 

  s2 <- rexp(n,rate=mu0*delta) 

  s3 <- rexp(n,rate=mu0*delta) 

  s4 <- rexp(n,rate=mu0*delta) 

  s5 <- rexp(n,rate=mu0*delta) 

  s6 <- rexp(n,rate=mu0) 

  s7 <- rexp(n,rate=mu0) 

  s8 <- rexp(n,rate=mu0) 

  s9 <- rexp(n,rate=mu0) 

  s10 <- rexp(n,rate=mu0) 

   

  o1 <- ifelse(is.na(table(s1 > med)[2]) == 

'TRUE',0,table(s1 > med)[2]) 

  o2 <- ifelse(is.na(table(s2 > med)[2]) == 

'TRUE',0,table(s2 > med)[2]) 

  o3 <- ifelse(is.na(table(s3 > med)[2]) == 

'TRUE',0,table(s3 > med)[2]) 
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  o4 <- ifelse(is.na(table(s4 > med)[2]) == 

'TRUE',0,table(s4 > med)[2]) 

  o5 <- ifelse(is.na(table(s5 > med)[2]) == 

'TRUE',0,table(s5 > med)[2]) 

  o6 <- ifelse(is.na(table(s6 > med)[2]) == 

'TRUE',0,table(s6 > med)[2]) 

  o7 <- ifelse(is.na(table(s7 > med)[2]) == 

'TRUE',0,table(s7 > med)[2]) 

  o8 <- ifelse(is.na(table(s8 > med)[2]) == 

'TRUE',0,table(s8 > med)[2]) 

  o9 <- ifelse(is.na(table(s9 > med)[2]) == 

'TRUE',0,table(s9 > med)[2]) 

  o10 <- ifelse(is.na(table(s10 > med)[2]) == 

'TRUE',0,table(s10 > med)[2]) 

   

  return(EMT_function(o1,o2,o3,o4,o5,o6,o7,o8,o9,o10,n,p0)) 

} 

 

## Size of Shift to be Tested ## 

 

delta <- 1 
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## While Looping ## 

sim_time <- system.time({ 

  arlz1 <- 

foreach(icount(big_sim_size),.packages=c("rmutil"),.combine 

= rbind) %dopar% { 

    EMT <- c() 

    EMT[1] <- apply_function(n,mu0,p0,delta) 

    St <- c() 

    St[1] <- EMT[1] 

    UCL_t <- c() 

    LCL_t <- c() 

    cond_mu <- 0 

    UCL_t[1] <- 

qnorm(specified_alpha/2,mean=cond_mu,sd=sqrt(c),lower.tail=

F) 

    LCL_t[1] <- 

qnorm(specified_alpha/2,mean=cond_mu,sd=sqrt(c),lower.tail=

T) 

    i <- 1 

    while(St[i] < UCL_t[i] && St[i] > LCL_t[i]){ 

      EMT[i+1] <- apply_function(n,mu0,p0,delta) 

      St[i+1]  <- sum(EMT[1:(i+1)]) 

      cond_mu  <- St[i] 

      UCL_t[i+1] <- 

qnorm(specified_alpha/2,mean=cond_mu,sd=sqrt(c),lower.tail=

F) 

      LCL_t[i+1] <- 

qnorm(specified_alpha/2,mean=cond_mu,sd=sqrt(c),lower.tail=

T) 

      i <- i + 1 

    } 

    i 

  }}) 

mean(arlz1) 
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## Boyd's GCC ARL1 Estimation ## 

 

## Estimating Control Limits from Preliminary Samples ## 

 

## IC Distribution == N(1,1) ## 

 

m <- 25 

n <- 10 

d2 <- 3.078 

C <- 10 

Ca <- 5 

delta <- seq(0.25,3,by=0.25) 

 

Big_ARL <- c() 

 

mu0 <- 1 

 

samplez <- matrix(nrow = n, ncol = m) 

 

for(i in 1:m){ 

  samplez[,i] <- rnorm(n,mean=mu0,sd=1) 

} 

 

xdbar <- mean(apply(samplez,2,mean)) 

rbar <- mean(apply(samplez,1,FUN=function(x){max(x) - 

min(x)})) 

 

UCL <- xdbar + 3*rbar/(d2*sqrt(n)) 

LCL <- xdbar - 3*rbar/(d2*sqrt(n)) 
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## Phase II ## 

 

## Generating Data ## 

 

for(t in 1:length(delta)){ 

 

sim_size <- 100000 

 

boyd_dat <- matrix(ncol=C,nrow=sim_size) 

 

max_min <- matrix(ncol=2,nrow=sim_size) 

 

boyd_arl <- c() 

 

for(i in 1:sim_size){ 

 

boyd_dat[i,1] <- mean(rnorm(n,mean=mu0*delta[t],sd=1)) 

boyd_dat[i,2] <- mean(rnorm(n,mean=mu0*delta[t],sd=1)) 

boyd_dat[i,3] <- mean(rnorm(n,mean=mu0*delta[t],sd=1)) 

boyd_dat[i,4] <- mean(rnorm(n,mean=mu0*delta[t],sd=1)) 

boyd_dat[i,5] <- mean(rnorm(n,mean=mu0*delta[t],sd=1)) 

boyd_dat[i,6] <- mean(rnorm(n,mean=mu0,sd=1)) 

boyd_dat[i,7] <- mean(rnorm(n,mean=mu0,sd=1)) 

boyd_dat[i,8] <- mean(rnorm(n,mean=mu0,sd=1)) 

boyd_dat[i,9] <- mean(rnorm(n,mean=mu0,sd=1)) 

boyd_dat[i,10] <- mean(rnorm(n,mean=mu0,sd=1)) 

 

max_min[i,1] <- max(boyd_dat[i,]) 

max_min[i,2] <- min(boyd_dat[i,]) 
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boyd_arl[i] <- ifelse(max_min[i,1] > UCL | max_min[i,1] < 

LCL | 

                        max_min[i,2] > UCL | max_min[i,2] < 

LCL, i, 0) 

 

  } 

 

 

Big_ARL[t] <- mean(diff(boyd_arl[which(boyd_arl != 0)])) 

 

} 

 

Big_ARL <- cbind(delta,Big_ARL) 

 

write.csv(Big_ARL,'Boyd_Norm.csv',row.names=F) 

 

rm(list=ls()) 

 

## IC Distribution == UNIF(0,1) ## 

 

m <- 25 

n <- 10 

d2 <- 3.078 

C <- 10 

Ca <- 5 

delta <- seq(0.25,3,by=0.25) 

 

Big_ARL <- c() 

 

mu0 <- 0.50 
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samplez <- matrix(nrow = n, ncol = m) 

 

for(i in 1:m){ 

  samplez[,i] <- runif(n,min=0,max=1) 

} 

 

xdbar <- mean(apply(samplez,2,mean)) 

rbar <- mean(apply(samplez,1,FUN=function(x){max(x) - 

min(x)})) 

 

UCL <- xdbar + 3*rbar/(d2*sqrt(n)) 

LCL <- xdbar - 3*rbar/(d2*sqrt(n)) 

 

## Phase II ## 

 

## Generating Data ## 

 

for(t in 1:length(delta)){ 

   

  sim_size <- 100000 

   

  boyd_dat <- matrix(ncol=C,nrow=sim_size) 

   

  max_min <- matrix(ncol=2,nrow=sim_size) 

   

  boyd_arl <- c() 

   

  for(i in 1:sim_size){ 

     

    boyd_dat[i,1] <- mean(runif(n,min=0,max=1*delta[t])) 
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    boyd_dat[i,2] <- mean(runif(n,min=0,max=1*delta[t])) 

    boyd_dat[i,3] <- mean(runif(n,min=0,max=1*delta[t])) 

    boyd_dat[i,4] <- mean(runif(n,min=0,max=1*delta[t])) 

    boyd_dat[i,5] <- mean(runif(n,min=0,max=1*delta[t])) 

    boyd_dat[i,6] <- mean(runif(n,min=0,max=1)) 

    boyd_dat[i,7] <- mean(runif(n,min=0,max=1)) 

    boyd_dat[i,8] <- mean(runif(n,min=0,max=1)) 

    boyd_dat[i,9] <- mean(runif(n,min=0,max=1)) 

    boyd_dat[i,10] <- mean(runif(n,min=0,max=1)) 

     

    max_min[i,1] <- max(boyd_dat[i,]) 

    max_min[i,2] <- min(boyd_dat[i,]) 

     

    boyd_arl[i] <- ifelse(max_min[i,1] > UCL | max_min[i,1] 

< LCL | max_min[i,2] > UCL | max_min[i,2] < LCL, i, 0) 

    } 

     

  Big_ARL[t] <- mean(diff(boyd_arl[which(boyd_arl != 0)])) 

   

} 

 

Big_ARL <- cbind(delta,Big_ARL) 

 

write.csv(Big_ARL,'Boyd_Unif.csv',row.names=F) 

 

rm(list=ls()) 
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## IC Distribution == Laplace(1,1) ## 

 

library(rmutil) 

 

m <- 25 

n <- 10 

d2 <- 3.078 

C <- 10 

Ca <- 5 

delta <- seq(0.25,3,by=0.25) 

 

Big_ARL <- c() 

 

mu0 <- 1 

 

samplez <- matrix(nrow = n, ncol = m) 

 

for(i in 1:m){ 

  samplez[,i] <- rlaplace(n,m=mu0,s=1) 

} 

 

xdbar <- mean(apply(samplez,2,mean)) 

rbar <- mean(apply(samplez,1,FUN=function(x){max(x) - 

min(x)})) 

 

UCL <- xdbar + 3*rbar/(d2*sqrt(n)) 

LCL <- xdbar - 3*rbar/(d2*sqrt(n)) 
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## Phase II ## 

 

## Generating Data ## 

 

for(t in 1:length(delta)){ 

   

  sim_size <- 100000 

   

  boyd_dat <- matrix(ncol=C,nrow=sim_size) 

   

  max_min <- matrix(ncol=2,nrow=sim_size) 

   

  boyd_arl <- c() 

   

  for(i in 1:sim_size){ 

     

    boyd_dat[i,1] <- mean(rlaplace(n,m=mu0*delta[t],s=1)) 

    boyd_dat[i,2] <- mean(rlaplace(n,m=mu0*delta[t],s=1)) 

    boyd_dat[i,3] <- mean(rlaplace(n,m=mu0*delta[t],s=1)) 

    boyd_dat[i,4] <- mean(rlaplace(n,m=mu0*delta[t],s=1)) 

    boyd_dat[i,5] <- mean(rlaplace(n,m=mu0*delta[t],s=1)) 

    boyd_dat[i,6] <- mean(rlaplace(n,m=mu0,s=1)) 

    boyd_dat[i,7] <- mean(rlaplace(n,m=mu0,s=1)) 

    boyd_dat[i,8] <- mean(rlaplace(n,m=mu0,s=1)) 

    boyd_dat[i,9] <- mean(rlaplace(n,m=mu0,s=1)) 

    boyd_dat[i,10] <- mean(rlaplace(n,m=mu0,s=1)) 

     

    max_min[i,1] <- max(boyd_dat[i,]) 

    max_min[i,2] <- min(boyd_dat[i,]) 
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    boyd_arl[i] <- ifelse(max_min[i,1] > UCL | max_min[i,1] 

< LCL | max_min[i,2] > UCL | max_min[i,2] < LCL, i, 0) 

    } 

   

  Big_ARL[t] <- mean(diff(boyd_arl[which(boyd_arl != 0)])) 

   

} 

 

Big_ARL <- cbind(delta,Big_ARL) 

 

write.csv(Big_ARL,'Boyd_Laplace.csv',row.names=F) 

 

rm(list=ls()) 

 

## IC Distribution == EXP(1) ## 

 

m <- 25 

n <- 10 

d2 <- 3.078 

C <- 10 

Ca <- 5 

delta <- seq(0.25,3,by=0.25) 

 

Big_ARL <- c() 

 

mu0 <- 1 

 

samplez <- matrix(nrow = n, ncol = m) 
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for(i in 1:m){ 

  samplez[,i] <- rexp(n,rate=1) 

} 

 

xdbar <- mean(apply(samplez,2,mean)) 

rbar <- mean(apply(samplez,1,FUN=function(x){max(x) - 

min(x)})) 

 

UCL <- xdbar + 3*rbar/(d2*sqrt(n)) 

LCL <- xdbar - 3*rbar/(d2*sqrt(n)) 

 

## Phase II ## 

 

## Generating Data ## 

 

for(t in 1:length(delta)){ 

   

  sim_size <- 100000 

   

  boyd_dat <- matrix(ncol=C,nrow=sim_size) 

   

  max_min <- matrix(ncol=2,nrow=sim_size) 

   

  boyd_arl <- c() 

   

  for(i in 1:sim_size){ 

     

    boyd_dat[i,1] <- mean(rexp(n,rate=1*delta[t])) 

    boyd_dat[i,2] <- mean(rexp(n,rate=1*delta[t])) 

    boyd_dat[i,3] <- mean(rexp(n,rate=1*delta[t])) 
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    boyd_dat[i,4] <- mean(rexp(n,rate=1*delta[t])) 

    boyd_dat[i,5] <- mean(rexp(n,rate=1*delta[t])) 

    boyd_dat[i,6] <- mean(rexp(n,rate=1)) 

    boyd_dat[i,7] <- mean(rexp(n,rate=1)) 

    boyd_dat[i,8] <- mean(rexp(n,rate=1)) 

    boyd_dat[i,9] <- mean(rexp(n,rate=1)) 

    boyd_dat[i,10] <- mean(rexp(n,rate=1)) 

     

    max_min[i,1] <- max(boyd_dat[i,]) 

    max_min[i,2] <- min(boyd_dat[i,]) 

     

    boyd_arl[i] <- ifelse(max_min[i,1] > UCL | max_min[i,1] 

< LCL | max_min[i,2] > UCL | max_min[i,2] < LCL, i, 0) 

    } 

   

  Big_ARL[t] <- mean(diff(boyd_arl[which(boyd_arl != 0)])) 

   

} 

 

Big_ARL <- cbind(delta,Big_ARL) 

 

write.csv(Big_ARL,'Boyd_Exp.csv',row.names=F) 
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## Mortell & Runger's Rt Shewhart Chart ## 

##           ARL1 Estimation            ## 

 

## IC Distribution == N(1,1) ## 

 

bootz <- 100000 

n <- 10 

C <- 10 

mu0 <- 1 

delta <- seq(0.25,3,by=0.25) 

 

mr_dat <- matrix(ncol=C,nrow=bootz) 

 

for(i in 1:bootz){ 

mr_dat[i,1] <- mean(rnorm(n,mean=mu0,sd=1)) 

mr_dat[i,2] <- mean(rnorm(n,mean=mu0,sd=1)) 

mr_dat[i,3] <- mean(rnorm(n,mean=mu0,sd=1)) 

mr_dat[i,4] <- mean(rnorm(n,mean=mu0,sd=1)) 

mr_dat[i,5] <- mean(rnorm(n,mean=mu0,sd=1)) 

mr_dat[i,6] <- mean(rnorm(n,mean=mu0,sd=1)) 

mr_dat[i,7] <- mean(rnorm(n,mean=mu0,sd=1)) 

mr_dat[i,8] <- mean(rnorm(n,mean=mu0,sd=1)) 

mr_dat[i,9] <- mean(rnorm(n,mean=mu0,sd=1)) 

mr_dat[i,10] <- mean(rnorm(n,mean=mu0,sd=1)) 

} 

 

initial_rangez <- apply(mr_dat,1,FUN=function(x){max(x)-

min(x)}) 

 

UCL <- quantile(initial_rangez, probs = c(0.99865)) 
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LCL <- quantile(initial_rangez, probs = c(0.00135)) 

 

## Phase II ## 

 

## Generating Data ## 

 

Big_ARL <- c() 

 

for(t in 1:length(delta)){ 

 

mr_dat1 <- matrix(ncol=C,nrow=bootz) 

rt <- c() 

rt_arl <- c() 

 

for(i in 1:bootz){ 

 

  mr_dat1[i,1] <- mean(rnorm(n,mean=mu0*delta[t],sd=1)) 

  mr_dat1[i,2] <- mean(rnorm(n,mean=mu0*delta[t],sd=1)) 

  mr_dat1[i,3] <- mean(rnorm(n,mean=mu0*delta[t],sd=1)) 

  mr_dat1[i,4] <- mean(rnorm(n,mean=mu0*delta[t],sd=1)) 

  mr_dat1[i,5] <- mean(rnorm(n,mean=mu0*delta[t],sd=1)) 

  mr_dat1[i,6] <- mean(rnorm(n,mean=mu0,sd=1)) 

  mr_dat1[i,7] <- mean(rnorm(n,mean=mu0,sd=1)) 

  mr_dat1[i,8] <- mean(rnorm(n,mean=mu0,sd=1)) 

  mr_dat1[i,9] <- mean(rnorm(n,mean=mu0,sd=1)) 

  mr_dat1[i,10] <- mean(rnorm(n,mean=mu0,sd=1)) 

 

  rt[i] <- max(mr_dat1[i,]) - min(mr_dat1[i,]) 

 

  rt_arl[i] <- ifelse(rt[i] > UCL | rt[i] < LCL, i, 0) 
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  } 

 

Big_ARL[t] <- mean(diff(rt_arl[which(rt_arl != 0)])) 

 

} 

 

Big_ARL <- cbind(delta,Big_ARL) 

 

write.csv(Big_ARL,'MR_Norm.csv',row.names=F) 

 

rm(list = ls()) 

 

## IC Distribution == UNIF(0,1) ## 

 

bootz <- 100000 

n <- 10 

C <- 10 

mu0 <- 0.5 

delta <- seq(0.25,3,by=0.25) 

 

mr_dat <- matrix(ncol=C,nrow=bootz) 

 

for(i in 1:bootz){ 

  mr_dat[i,1] <- mean(runif(n,min=0,max=1)) 

  mr_dat[i,2] <- mean(runif(n,min=0,max=1)) 

  mr_dat[i,3] <- mean(runif(n,min=0,max=1)) 

  mr_dat[i,4] <- mean(runif(n,min=0,max=1)) 

  mr_dat[i,5] <- mean(runif(n,min=0,max=1)) 

  mr_dat[i,6] <- mean(runif(n,min=0,max=1)) 
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  mr_dat[i,7] <- mean(runif(n,min=0,max=1)) 

  mr_dat[i,8] <- mean(runif(n,min=0,max=1)) 

  mr_dat[i,9] <- mean(runif(n,min=0,max=1)) 

  mr_dat[i,10] <- mean(runif(n,min=0,max=1)) 

} 

 

initial_rangez <- apply(mr_dat,1,FUN=function(x){max(x)-

min(x)}) 

 

UCL <- quantile(initial_rangez, probs = c(0.99865)) 

LCL <- quantile(initial_rangez, probs = c(0.00135)) 

 

## Phase II ## 

 

## Generating Data ## 

 

Big_ARL <- c() 

 

for(t in 1:length(delta)){ 

   

  mr_dat1 <- matrix(ncol=C,nrow=bootz) 

  rt <- c() 

  rt_arl <- c() 

   

  for(i in 1:bootz){ 

     

    mr_dat1[i,1] <- mean(runif(n,min=0,max=1*delta[t])) 

    mr_dat1[i,2] <- mean(runif(n,min=0,max=1*delta[t])) 

    mr_dat1[i,3] <- mean(runif(n,min=0,max=1*delta[t])) 

    mr_dat1[i,4] <- mean(runif(n,min=0,max=1*delta[t])) 



152 
 

 
 

    mr_dat1[i,5] <- mean(runif(n,min=0,max=1*delta[t])) 

    mr_dat1[i,6] <- mean(runif(n,min=0,max=1)) 

    mr_dat1[i,7] <- mean(runif(n,min=0,max=1)) 

    mr_dat1[i,8] <- mean(runif(n,min=0,max=1)) 

    mr_dat1[i,9] <- mean(runif(n,min=0,max=1)) 

    mr_dat1[i,10] <- mean(runif(n,min=0,max=1)) 

     

    rt[i] <- max(mr_dat1[i,]) - min(mr_dat1[i,]) 

     

    rt_arl[i] <- ifelse(rt[i] > UCL | rt[i] < LCL, i, 0) 

     

  } 

   

  Big_ARL[t] <- mean(diff(rt_arl[which(rt_arl != 0)])) 

   

} 

 

Big_ARL <- cbind(delta,Big_ARL) 

 

write.csv(Big_ARL,'MR_Unif.csv',row.names=F) 

 

rm(list = ls()) 

 

## IC Distribution == Laplace(1,1) ## 

 

library(rmutil) 

 

bootz <- 100000 

n <- 10 

C <- 10 
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mu0 <- 1 

delta <- seq(0.25,3,by=0.25) 

 

mr_dat <- matrix(ncol=C,nrow=bootz) 

 

for(i in 1:bootz){ 

  mr_dat[i,1] <- mean(rlaplace(n,m=1,s=1)) 

  mr_dat[i,2] <- mean(rlaplace(n,m=1,s=1)) 

  mr_dat[i,3] <- mean(rlaplace(n,m=1,s=1)) 

  mr_dat[i,4] <- mean(rlaplace(n,m=1,s=1)) 

  mr_dat[i,5] <- mean(rlaplace(n,m=1,s=1)) 

  mr_dat[i,6] <- mean(rlaplace(n,m=1,s=1)) 

  mr_dat[i,7] <- mean(rlaplace(n,m=1,s=1)) 

  mr_dat[i,8] <- mean(rlaplace(n,m=1,s=1)) 

  mr_dat[i,9] <- mean(rlaplace(n,m=1,s=1)) 

  mr_dat[i,10] <- mean(rlaplace(n,m=1,s=1)) 

} 

 

initial_rangez <- apply(mr_dat,1,FUN=function(x){max(x)-

min(x)}) 

 

UCL <- quantile(initial_rangez, probs = c(0.99865)) 

LCL <- quantile(initial_rangez, probs = c(0.00135)) 

 

## Phase II ## 

 

## Generating Data ## 

 

Big_ARL <- c() 
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for(t in 1:length(delta)){ 

   

  mr_dat1 <- matrix(ncol=C,nrow=bootz) 

  rt <- c() 

  rt_arl <- c() 

   

  for(i in 1:bootz){ 

     

    mr_dat1[i,1] <- mean(rlaplace(n,m=1*delta[t],s=1)) 

    mr_dat1[i,2] <- mean(rlaplace(n,m=1*delta[t],s=1)) 

    mr_dat1[i,3] <- mean(rlaplace(n,m=1*delta[t],s=1)) 

    mr_dat1[i,4] <- mean(rlaplace(n,m=1*delta[t],s=1)) 

    mr_dat1[i,5] <- mean(rlaplace(n,m=1*delta[t],s=1)) 

    mr_dat1[i,6] <- mean(rlaplace(n,m=1,s=1)) 

    mr_dat1[i,7] <- mean(rlaplace(n,m=1,s=1)) 

    mr_dat1[i,8] <- mean(rlaplace(n,m=1,s=1)) 

    mr_dat1[i,9] <- mean(rlaplace(n,m=1,s=1)) 

    mr_dat1[i,10] <- mean(rlaplace(n,m=1,s=1)) 

     

    rt[i] <- max(mr_dat1[i,]) - min(mr_dat1[i,]) 

     

    rt_arl[i] <- ifelse(rt[i] > UCL | rt[i] < LCL, i, 0) 

     

  } 

   

  Big_ARL[t] <- mean(diff(rt_arl[which(rt_arl != 0)])) 

   

} 

 

Big_ARL <- cbind(delta,Big_ARL) 
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write.csv(Big_ARL,'MR_Laplace.csv',row.names=F) 

 

rm(list = ls()) 

 

## IC Distribution == EXP(1) ## 

 

bootz <- 100000 

n <- 10 

C <- 10 

mu0 <- 1 

delta <- seq(0.25,3,by=0.25) 

 

mr_dat <- matrix(ncol=C,nrow=bootz) 

 

for(i in 1:bootz){ 

  mr_dat[i,1] <- mean(rexp(n,rate=1)) 

  mr_dat[i,2] <- mean(rexp(n,rate=1)) 

  mr_dat[i,3] <- mean(rexp(n,rate=1)) 

  mr_dat[i,4] <- mean(rexp(n,rate=1)) 

  mr_dat[i,5] <- mean(rexp(n,rate=1)) 

  mr_dat[i,6] <- mean(rexp(n,rate=1)) 

  mr_dat[i,7] <- mean(rexp(n,rate=1)) 

  mr_dat[i,8] <- mean(rexp(n,rate=1)) 

  mr_dat[i,9] <- mean(rexp(n,rate=1)) 

  mr_dat[i,10] <- mean(rexp(n,rate=1)) 

} 

 

initial_rangez <- apply(mr_dat,1,FUN=function(x){max(x)-

min(x)}) 
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UCL <- quantile(initial_rangez, probs = c(0.99865)) 

LCL <- quantile(initial_rangez, probs = c(0.00135)) 

 

## Phase II ## 

 

## Generating Data ## 

 

Big_ARL <- c() 

 

for(t in 1:length(delta)){ 

   

  mr_dat1 <- matrix(ncol=C,nrow=bootz) 

  rt <- c() 

  rt_arl <- c() 

   

  for(i in 1:bootz){ 

     

    mr_dat1[i,1] <- mean(rexp(n,rate=1*delta[t])) 

    mr_dat1[i,2] <- mean(rexp(n,rate=1*delta[t])) 

    mr_dat1[i,3] <- mean(rexp(n,rate=1*delta[t])) 

    mr_dat1[i,4] <- mean(rexp(n,rate=1*delta[t])) 

    mr_dat1[i,5] <- mean(rexp(n,rate=1*delta[t])) 

    mr_dat1[i,6] <- mean(rexp(n,rate=1)) 

    mr_dat1[i,7] <- mean(rexp(n,rate=1)) 

    mr_dat1[i,8] <- mean(rexp(n,rate=1)) 

    mr_dat1[i,9] <- mean(rexp(n,rate=1)) 

    mr_dat1[i,10] <- mean(rexp(n,rate=1)) 

     

    rt[i] <- max(mr_dat1[i,]) - min(mr_dat1[i,]) 
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    rt_arl[i] <- ifelse(rt[i] > UCL | rt[i] < LCL, i, 0) 

     

  } 

   

  Big_ARL[t] <- mean(diff(rt_arl[which(rt_arl != 0)])) 

   

} 

 

Big_ARL <- cbind(delta,Big_ARL) 

 

write.csv(Big_ARL,'MR_Exp.csv',row.names=F) 
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## Meneces et al Chart-for-Every-Stream ## 

##            ARL Estimation           ## 

 

## Estimating Control Limits from Preliminary Samples ## 

 

## IC Distribution == N(1,1) ## 

 

m <- 25 

n <- 10 

c4 <- 0.975 

C <- 10 

Ca <- 5 

L <- 3.33 

delta <- seq(0.25,3,by=0.25) 

 

Big_ARL <- c() 

 

mu0 <- 1 

 

samplez <- matrix(nrow = n, ncol = m) 

 

for(i in 1:m){ 

  samplez[,i] <- rnorm(n,mean=mu0,sd=1) 

} 

 

xdbar <- mean(apply(samplez,2,mean)) 

sigma_hat <- mean(apply(samplez,1,FUN=function(x){sd(x)})) 

 

UCL <- xdbar + L*sigma_hat/(c4*sqrt(n)) 

LCL <- xdbar - L*sigma_hat/(c4*sqrt(n)) 
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## Phase II ## 

 

## Generating Data ## 

 

for(t in 1:length(delta)){ 

 

sim_size <- 100000 

 

s1 <- matrix(nrow = sim_size, ncol = 1) 

s2 <- matrix(nrow = sim_size, ncol = 1) 

s3 <- matrix(nrow = sim_size, ncol = 1) 

s4 <- matrix(nrow = sim_size, ncol = 1) 

s5 <- matrix(nrow = sim_size, ncol = 1) 

s6 <- matrix(nrow = sim_size, ncol = 1) 

s7 <- matrix(nrow = sim_size, ncol = 1) 

s8 <- matrix(nrow = sim_size, ncol = 1) 

s9 <- matrix(nrow = sim_size, ncol = 1) 

s10 <- matrix(nrow = sim_size, ncol = 1) 

 

arl <- c() 

 

for(i in 1:sim_size){ 

  s1[i] <- mean(rnorm(n,mean=mu0*delta[t],sd=1)) 

  s2[i] <- mean(rnorm(n,mean=mu0*delta[t],sd=1)) 

  s3[i] <- mean(rnorm(n,mean=mu0*delta[t],sd=1)) 

  s4[i] <- mean(rnorm(n,mean=mu0*delta[t],sd=1)) 

  s5[i] <- mean(rnorm(n,mean=mu0*delta[t],sd=1)) 

  s6[i] <- mean(rnorm(n,mean=mu0,sd=1)) 

  s7[i] <- mean(rnorm(n,mean=mu0,sd=1)) 
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  s8[i] <- mean(rnorm(n,mean=mu0,sd=1)) 

  s9[i] <- mean(rnorm(n,mean=mu0,sd=1)) 

  s10[i] <- mean(rnorm(n,mean=mu0,sd=1)) 

 

  arl[i] <- ifelse(s1[i] > UCL | s1[i] < LCL | 

                   s2[i] > UCL | s2[i] < LCL | 

                   s3[i] > UCL | s3[i] < LCL | 

                   s4[i] > UCL | s4[i] < LCL | 

                   s5[i] > UCL | s5[i] < LCL | 

                   s6[i] > UCL | s6[i] < LCL | 

                   s7[i] > UCL | s7[i] < LCL | 

                   s8[i] > UCL | s8[i] < LCL | 

                   s9[i] > UCL | s9[i] < LCL | 

                   s10[i] > UCL | s10[i] < LCL, i, 0) 

} 

 

Big_ARL[t] <- mean(diff(arl[which(arl != 0)])) 

 

} 

 

Big_ARL <- cbind(delta,Big_ARL) 

 

write.csv(Big_ARL,"Meneces_Norm.csv",row.names=F) 

 

rm(list = ls()) 

 

## IC Distribution == UNIF(0,1) ## 

 

m <- 25 

n <- 10 
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c4 <- 0.975 

C <- 10 

Ca <- 5 

L <- 3.33 

delta <- seq(0.25,3,by=0.25) 

 

Big_ARL <- c() 

 

mu0 <- 0.5 

 

samplez <- matrix(nrow = n, ncol = m) 

 

for(i in 1:m){ 

  samplez[,i] <- runif(n,min=0,max=1) 

} 

 

xdbar <- mean(apply(samplez,2,mean)) 

sigma_hat <- mean(apply(samplez,1,FUN=function(x){sd(x)})) 

 

UCL <- xdbar + L*sigma_hat/(c4*sqrt(n)) 

LCL <- xdbar - L*sigma_hat/(c4*sqrt(n)) 

 

## Phase II ## 

 

## Generating Data ## 

 

for(t in 1:length(delta)){ 

   

  sim_size <- 100000 
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  s1 <- matrix(nrow = sim_size, ncol = 1) 

  s2 <- matrix(nrow = sim_size, ncol = 1) 

  s3 <- matrix(nrow = sim_size, ncol = 1) 

  s4 <- matrix(nrow = sim_size, ncol = 1) 

  s5 <- matrix(nrow = sim_size, ncol = 1) 

  s6 <- matrix(nrow = sim_size, ncol = 1) 

  s7 <- matrix(nrow = sim_size, ncol = 1) 

  s8 <- matrix(nrow = sim_size, ncol = 1) 

  s9 <- matrix(nrow = sim_size, ncol = 1) 

  s10 <- matrix(nrow = sim_size, ncol = 1) 

   

  arl <- c() 

   

  for(i in 1:sim_size){ 

    s1[i] <- mean(runif(n,min=0,max=1*delta[t])) 

    s2[i] <- mean(runif(n,min=0,max=1*delta[t])) 

    s3[i] <- mean(runif(n,min=0,max=1*delta[t])) 

    s4[i] <- mean(runif(n,min=0,max=1*delta[t])) 

    s5[i] <- mean(runif(n,min=0,max=1*delta[t])) 

    s6[i] <- mean(runif(n,min=0,max=1)) 

    s7[i] <- mean(runif(n,min=0,max=1)) 

    s8[i] <- mean(runif(n,min=0,max=1)) 

    s9[i] <- mean(runif(n,min=0,max=1)) 

    s10[i] <- mean(runif(n,min=0,max=1)) 

     

    arl[i] <- ifelse(s1[i] > UCL | s1[i] < LCL | 

                       s2[i] > UCL | s2[i] < LCL | 

                       s3[i] > UCL | s3[i] < LCL | 

                       s4[i] > UCL | s4[i] < LCL | 

                       s5[i] > UCL | s5[i] < LCL | 
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                       s6[i] > UCL | s6[i] < LCL | 

                       s7[i] > UCL | s7[i] < LCL | 

                       s8[i] > UCL | s8[i] < LCL | 

                       s9[i] > UCL | s9[i] < LCL | 

                       s10[i] > UCL | s10[i] < LCL, i, 0) 

  } 

   

  Big_ARL[t] <- mean(diff(arl[which(arl != 0)])) 

   

} 

 

Big_ARL <- cbind(delta,Big_ARL) 

 

write.csv(Big_ARL,"Meneces_Unif.csv",row.names=F) 

 

rm(list = ls()) 

 

## IC Distribution == Laplace(1,1) ## 

 

library(rmutil) 

 

m <- 25 

n <- 10 

c4 <- 0.975 

C <- 10 

Ca <- 5 

L <- 3.33 

delta <- seq(0.25,3,by=0.25) 

 

Big_ARL <- c() 
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mu0 <- 1 

 

samplez <- matrix(nrow = n, ncol = m) 

 

for(i in 1:m){ 

  samplez[,i] <- rlaplace(n,m=mu0,s=1) 

} 

 

xdbar <- mean(apply(samplez,2,mean)) 

sigma_hat <- mean(apply(samplez,1,FUN=function(x){sd(x)})) 

 

UCL <- xdbar + L*sigma_hat/(c4*sqrt(n)) 

LCL <- xdbar - L*sigma_hat/(c4*sqrt(n)) 

 

## Phase II ## 

 

## Generating Data ## 

 

for(t in 1:length(delta)){ 

   

  sim_size <- 100000 

   

  s1 <- matrix(nrow = sim_size, ncol = 1) 

  s2 <- matrix(nrow = sim_size, ncol = 1) 

  s3 <- matrix(nrow = sim_size, ncol = 1) 

  s4 <- matrix(nrow = sim_size, ncol = 1) 

  s5 <- matrix(nrow = sim_size, ncol = 1) 

  s6 <- matrix(nrow = sim_size, ncol = 1) 

  s7 <- matrix(nrow = sim_size, ncol = 1) 
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  s8 <- matrix(nrow = sim_size, ncol = 1) 

  s9 <- matrix(nrow = sim_size, ncol = 1) 

  s10 <- matrix(nrow = sim_size, ncol = 1) 

   

  arl <- c() 

   

  for(i in 1:sim_size){ 

    s1[i] <- mean(rlaplace(n,m=mu0*delta[t],s=1)) 

    s2[i] <- mean(rlaplace(n,m=mu0*delta[t],s=1)) 

    s3[i] <- mean(rlaplace(n,m=mu0*delta[t],s=1)) 

    s4[i] <- mean(rlaplace(n,m=mu0*delta[t],s=1)) 

    s5[i] <- mean(rlaplace(n,m=mu0*delta[t],s=1)) 

    s6[i] <- mean(rlaplace(n,m=mu0,s=1)) 

    s7[i] <- mean(rlaplace(n,m=mu0,s=1)) 

    s8[i] <- mean(rlaplace(n,m=mu0,s=1)) 

    s9[i] <- mean(rlaplace(n,m=mu0,s=1)) 

    s10[i] <- mean(rlaplace(n,m=mu0,s=1)) 

     

    arl[i] <- ifelse(s1[i] > UCL | s1[i] < LCL | 

                       s2[i] > UCL | s2[i] < LCL | 

                       s3[i] > UCL | s3[i] < LCL | 

                       s4[i] > UCL | s4[i] < LCL | 

                       s5[i] > UCL | s5[i] < LCL | 

                       s6[i] > UCL | s6[i] < LCL | 

                       s7[i] > UCL | s7[i] < LCL | 

                       s8[i] > UCL | s8[i] < LCL | 

                       s9[i] > UCL | s9[i] < LCL | 

                       s10[i] > UCL | s10[i] < LCL, i, 0) 

  } 

   



166 
 

 
 

  Big_ARL[t] <- mean(diff(arl[which(arl != 0)])) 

   

} 

 

Big_ARL <- cbind(delta,Big_ARL) 

 

write.csv(Big_ARL,"Meneces_Laplace.csv",row.names=F) 

 

rm(list = ls()) 

 

## IC Distribution == EXP(1) ## 

 

m <- 25 

n <- 10 

c4 <- 0.975 

C <- 10 

Ca <- 5 

L <- 3.33 

delta <- seq(0.25,3,by=0.25) 

 

Big_ARL <- c() 

 

mu0 <- 1 

 

samplez <- matrix(nrow = n, ncol = m) 

 

 

for(i in 1:m){ 

  samplez[,i] <- rexp(n,rate=mu0) 

} 
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xdbar <- mean(apply(samplez,2,mean)) 

sigma_hat <- mean(apply(samplez,1,FUN=function(x){sd(x)})) 

 

UCL <- xdbar + L*sigma_hat/(c4*sqrt(n)) 

LCL <- xdbar - L*sigma_hat/(c4*sqrt(n)) 

 

## Phase II ## 

 

## Generating Data ## 

 

for(t in 1:length(delta)){ 

   

  sim_size <- 100000 

   

  s1 <- matrix(nrow = sim_size, ncol = 1) 

  s2 <- matrix(nrow = sim_size, ncol = 1) 

  s3 <- matrix(nrow = sim_size, ncol = 1) 

  s4 <- matrix(nrow = sim_size, ncol = 1) 

  s5 <- matrix(nrow = sim_size, ncol = 1) 

  s6 <- matrix(nrow = sim_size, ncol = 1) 

  s7 <- matrix(nrow = sim_size, ncol = 1) 

  s8 <- matrix(nrow = sim_size, ncol = 1) 

  s9 <- matrix(nrow = sim_size, ncol = 1) 

  s10 <- matrix(nrow = sim_size, ncol = 1) 

   

  arl <- c() 

  for(i in 1:sim_size){ 

    s1[i] <- mean(rexp(n,rate=mu0*delta[t])) 

    s2[i] <- mean(rexp(n,rate=mu0*delta[t])) 
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    s3[i] <- mean(rexp(n,rate=mu0*delta[t])) 

    s4[i] <- mean(rexp(n,rate=mu0*delta[t])) 

    s5[i] <- mean(rexp(n,rate=mu0*delta[t])) 

    s6[i] <- mean(rexp(n,rate=mu0)) 

    s7[i] <- mean(rexp(n,rate=mu0)) 

    s8[i] <- mean(rexp(n,rate=mu0)) 

    s9[i] <- mean(rexp(n,rate=mu0)) 

    s10[i] <- mean(rexp(n,rate=mu0)) 

     

    arl[i] <- ifelse(s1[i] > UCL | s1[i] < LCL | 

                       s2[i] > UCL | s2[i] < LCL | 

                       s3[i] > UCL | s3[i] < LCL | 

                       s4[i] > UCL | s4[i] < LCL | 

                       s5[i] > UCL | s5[i] < LCL | 

                       s6[i] > UCL | s6[i] < LCL | 

                       s7[i] > UCL | s7[i] < LCL | 

                       s8[i] > UCL | s8[i] < LCL | 

                       s9[i] > UCL | s9[i] < LCL | 

                       s10[i] > UCL | s10[i] < LCL, i, 0) 

  } 

   

  Big_ARL[t] <- mean(diff(arl[which(arl != 0)])) 

   

} 

 

Big_ARL <- cbind(delta,Big_ARL) 

write.csv(Big_ARL,"Meneces_Exp.csv",row.names=F) 
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