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Abstract 

High intensity electromagnetic radiation has been 
demonstrated to  be a source of computer upsets in 
commercially available digital flight control systems. 
In this paper we introduce an electromagnetic distur- 
bance model whicli can be used for stability analysis 
and augmentation of any such digitally implemented 
control law. The model is composed of a Markovian 
exosystem supplying radiation events to a discrete 
time jump linear system which models how the ra- 
diation interferes ,with the nominal operation of the 
closed-loop system. We discuss how this model can 
be used to characterize stability and how it can be 
parameterized andl validated in an experimental set- 
ting. 

1 Introduction 

With the introduction of fly-by-wire systems in civil- 
ian aviation, the problem of designing, implement- 
ing, testing and certifying highly reliable computer 
control systems has become a major challenge to the 
industry and the ]?AA [5, 161. Aside from the usual 
problems of plant uncertainty, sensor and actuator 
failures, and environmental uncertainties, avionic sys- 
tems are also subject to  electromagnetic disturbances 
from both natural and man-made sources [ll]. Such 
electromagnetic disturbances can introduce transient 
signals on analog sensor and actuator lines, change 
data values on digital input-output buses, or even 
produce logic changes in the CPU (see [2, 3, 111 and 
the references therein). The result of these so called 
computer upsets is the introduction of some degree of 
degradation in the quality of the control signal rang- 
ing from a perturbation error over a few sample peri- 
ods to a permanent error mode or computer failure. 
While the area of fiiult tolerant computing is a well es- 
tablished field of study, the classical focus has been on 
either compensating for sensor and actuator failures, 
detecting and/or correcting for abrupt changes in the 
plant due to subsystem failure or developing meth- 
ods for incorporating redundancy to protect against 
wide scale computer failure [6, 7, 151. In the worst 

case scenario, electromagnetic disturbances are capa- 
ble of introducing all three types of failures, but the 
more likely situation is where intermittent or tran- 
sient errors are introduced into the control calcula- 
tion. While they may not cause an immediate failure 
of the system, these disturbances still can have some 
aggregate effect on closed-loop stability. This prob- 
lem has received significantly less attention theoreti- 
cally and experimentally, but it is no less important 
in ensuring controller reliability. 

The main approaches addressing this problem to  
date fall into three general categories: improved 
shielding for the sensor/actuator lines and flight com- 
puters, control law enhancement, and fault detection 
(for isolation and correction). The latter two ap- 
proaches are currently in an arral~sis phase; design 
methodologies are largely nonexistent or ad hoc. In 
this paper we take a first step toward developing a 
design methodology by considering how to model an 
electromagnetic disturbance with the specific intent 
of using this model for stability augmentation. Im- 
plicit in the approach taken here is the assumption 
that the upset condition is mild enough to prevent 
the system from going into a permanent error mode. 
Hence, the error in the control signal as a result of 
electromagnetic interference might be modeled as a 
structural perturbation of the ideal control law, an 
additive noise disturbance to the ideally computed 
control law, or perhaps some combination of both. 
The most comprehensive approach to  this problem 
appears in [8, 141. (A somewhat related continuous- 
time problem appears in [12].) In this work the up- 
set/non upset condition is modeled using a Markov- 
chain derived by assuming that the arrival times of 
the interference have a Poisson distribution and the 
durations of each disturbance have an exponential 
distribution. (The probability of two events overlap- 
ping is tacitly taken to be zero.) When the upset state 
is entered, a stochastic perturbation to  the control law 
is introduced into the closed-loop system. The aggre- 
gate model becomes a homogeneous stochastic linear 
difference equation for which the mean dynamics are 
computed and a stability analysis is performed. 

Using a Markov-chain to switch between a set of 
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linear closed-loop models is not a new concept in hult 
tolerant computing. These so-called jump linear sys- 
tems and their stability properties have been studied 
by several researchers (see, for example, [4,9,12,13]). 
An obvious problem in using these models is deriving 
estimates for and/or validating the state and transi- 
tion probabilities, especially if these parameters are 
both environment and system dependent. An even 
more difEcult problem for this application is deter- 
mining a model that accurately reflects the way the 
disturbance interferes with the normal operation of 
the system, i.e., the nature of the perturbation to the 
control signal. The complexity of the typical flight 
control system makes it impossible to derive such a 
model from physical principles. Furthermore, even if 
it were possible, all models would be hardware and 
software dependent. Changing a line of code in the 
flight computer could theoretically change its electro- 
magnetic susceptibility. 

In this paper we introduce an electromagnetic dis- 
turbance model which is also based on a Markovian 
process, but with several fundamental differences over 
what has been done before: 

1. Our primary concern is in developing a model 
that can be parameterized and validated using 
only experimental data from an actual flight con- 
trol computer system. (The authors have ex- 
perimental access to a fault tolerant flight con- 
troller mounted in an electromagnetic test cham- 
ber developed by the HIRF Laboratory at the 
NASA Langley Research Center in Hampton, 
Virginia[2].) 

2. The disturbance, when present, will be modeled 
by a noise injection into the closed-loop system 
and/or a deterministic perturbation to the digi- 
tally implemented control law. 

3. The probability of two or more disturbances be- 
ing present during a given sample period is not 
necessarily zero. 

As will be explained in later sections, these innova- 
tions are somewhat interrelated. 

The paper is organized as follows. In Section 2, we 
fmt introduce the basic structure of our disturbam 
model. Then in two subsections we outline the basic 
theory behind each of the two main components of 
the model: the exosystem and the interference model. 
In the final section we summarize our findings and 
propose future research. 

F 

2 The Disturbance Model 

_____, 
Aircraft X 

In general there are two basic parts in any distur- 
bance model for a control problem: a model for the 
emsystem (any part of the system which is not the 
plant, sensors, controller or actuators) and an inter- 
ference model which describes exactly how the ex- 
osystem interferes with the normal operation of the 
closed-loop system. Motivated by the work in [8], 
we examine two Markovian models for the exosystem 
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Figure 1: A typical closed-loop flight control system 
with the proposed electromagnetic disturbance model 

and relate them to classic queuing models. We then 
show that the model in [8] is simply a special case 
of one of these queuing models. The proposed in- 
terference model consists of a signal injection system 
and/or a control law perturbation, predicated on the 
fact that all model parameters must be derived from 
input-output data taken from an electromagnetic test 
chamber. The overall system is represented in Figure 
1. Each part of the disturbance model is now consid- 
ered in more detail below. 

The Exosvstem 

The typical flight control computer operates in a 
complex electromagnetic environment consisting of 
radiation at many different frequencies, powers, and 
angles of incidence. A drastically simplified model for 
this environment is to enumerate the number of active 
electromagnetic disturbances at any specific time in- 
stance t E IR, call this integer N(t). In this model, the 
i-th disturbance is characterized by its arrival time, 
ti, and its total duration, di. We make the following 
initial assumptions concerning the sources and nature 
of these disturbances: 

(Al) The random variables ti are defined by a Pois- 
son process with constant parameter A. 

(A2) The random variables di have an exponential 
distribution with parameter p .  

(A3) The process N(t) is assumed to be a memo- 
ryless (Markovian) continuous-time random pro- 
cess, that is, for any small At > 0 it follows that 

P { N ( t  + At) 5 klN(~), T 5 t }  M 
P{N( t  + At) 5 klN( t ) } .  
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Figure 2: The Marklov chain for a typical birth-death 
process with corresponding birth and death rates P k  
and 6k, respectively. 

The assumed distribution functions are typical in the 
vast literature on point processes and renewal p r e  
cesses. They represent in some sense the most random 
scenario when large populations are interacting with 
limited resources [ lo] .  The Markovian assumption de- 
scribes the higher order statistics of ti and di, and is 
somewhat heuristically justified by the fact that the 
set of all possible radiation sources (radio transmit- 
ters, radar stations, inicrowave communication anten- 
nas, etc.) is usually not coordinated/correlated in any 
long term fashion. !30 for the purposes of near term 
prediction of N ( t ) ,  the present knowledge about the 
number of active disturbances is as good as a com- 
plete history of the clisturbance activity. But the p r e  
cise way in which siich a prediction can be made is 
not k e d .  For example, let (k 2 0) and 6 k  (k > 0) 
be the Markovian tr ,wition probability rates defined 
by 

P { N ( t  + A t )  = k f lIN(t)  = k }  
P { N ( t  + A t )  = k - l / N ( t )  = k }  

M P k  A t  ( 1 )  
M 6k A t .  (2) 

These so called birth and death rates determine the 
probability of adding or removing a disturbance in 
the near future given the current number of distur- 
bances. The remaining transition probability rates 
are taken to be zero so that the set of all transition 
rates can be represented by a tridiagonal matrix A 
(see Figure 2 ) .  Now from ( A l ) ,  it follows directly 
that P k  = X for all k 2 0. But the death rate, for 
example, could either be k e d  and independent of k 
(6k = 6), in which came the number of current distur- 
bances does not affect the probability that another 
will be removed in the near future, or the death rate 
might be proportional to IC (6k = k S), then a dis- 
turbance is more likely to be removed in the near 
future when k is large. The first scenario may seem 
more heuristically appealing for our application, but 
we will conjecture shortly that the second may agree 
better with the observed phenomenon. The follow- 
ing theorem from queuing theory is well known and 
applicable here [ 4. 
Proposition 2.1 The random process N ( t ) ,  where 
t E Et+, is equivalent to the state of a (MIMI1) queue 

if P k  = for k > 0 and 
equivalent to the state of a (MIMloo) queue if ,f3k = X 
and 6 k  = k p for all k 2 0.  

for  k 2 0 and 6 k  = p + 

This proposition asserts that N ( t )  is stochastically 
equivalent to a queue with either one server or an in- 
finite number of servers, depending on the way the 
higher order statistics of di are specified through 
the death rate parameters. It should be noted that 
in queuing theory, the second 'M' in the Kendall 
notation (MIMln) corresponds to exponentially dis- 
tributed services times rather than total system time 
(or durations di as specified in (A2)).  These are dis- 
tinct concepts when n is finite. When n = 1 it can 
be shown that if the arrival times and durations are 
as in ( A l )  and (A2), then the defacto service times 
will be exponentially distributed with parameter p+X 
[lo]. It is also equally well known that the equilibrium 
state probabilities bk : k 2 0) of a (MIMI1) queue 
are geometrically distributed, while for a (M)Mloo)  
queue they are Poisson distributed (see Table 1). In 
our case, the (MIMI1) is also ergodic since p < 1, 
while the (MIMlco) queue is known to always be er- 
godic [l]. 

In order to relate the exosystem process, N ( t ) ,  
to the Markovian model in [8], define the (state) 
events disturbance absent and disturbance exists, re- 
spectively, as 

A := { N ( t ) = O }  
E := { N ( t )  > 0} ,  

and the corresponding transition events 

A e E := 
E ++ A := 

{ N ( t  + A t )  > OIN(t) = 0) 
{ N ( t  + A t )  = OIN(t) > 0). 

The equilibrium state probabilities are trivially de- 
termined and shown in Table l .  The transition prob- 
ability rates can be shown to be: 

AAE = PO 
AEA = 61 - 

which reduce to the expressions given in Table 2 for 
the specific processes we are considering. Now in 
the event that disturbances are raw, we can assume 
that the disturbance arrival density X is small rela- 
tive to the average duration of a disturbance p. We 
denote the corresponding state and transition prob- 
ability rates with either a superscript or subscript T .  
In the case of the (MIMI1) queue it turns out that 
the rare event assumption does not provide any addi- 
tion simplification (approximations), but it does clar- 
ify the (MlMIoo) case a bit. As can be seen in Tables 
1 and 2, the two queue models are virtually identi- 
cal for rare events, but as X increases the (MIMloo) 
queue is less likely to be in the E state, as is expected. 
A comparison of these results to those in [8] reveals 
that their exosystem model (the non 'burst model' 

Pl 
1 -" 
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Table 1: Equilibrium state probabilities associated 
with the singleserver and infiniteserver queues. 

Table 2: Transition probability rates associated with 
the singleserver and infinite-server queues. 

variety) is an (MIMI1) queue. The problem in us- 
ing such a model is that the notion of service time in 
our application has no obvious interpretation or rele 
vance. The disturbances applied to a flight controller 
are not being serviced by the computer, and thus sys- 
tem time and service time should be synonymous. It 
is for this reason that we conjecture that the statis- 
tics of N ( t )  are more likely to be equivalent to those 
of a (MIMloo) queue, where indeed service time and 
system time are always equivalent. 

The Interference Model 

can be modeled by the sampled-data system 
We assume the aircraft in a specific flight regime 

~ ( i  + 1) = Az( i )  + Bu(i) 
g ( i )  = Cx(i) ,  

where A E Rnxn, B E Rnxm and C E R p x n .  When 
no radiation is present, the nominal closed-loop sys- 
tem with U = T - Fx will be denoted by (Ao,B,C).  
Now define the interference mapping as 

z : 2+l+JEtmxnxlRmxm x P,11 
: k I+ (AFk,Gk,&), 

where Z+ := {0,1,2,. ..} and AFk denotes the per- 
turbation to the nominal state space gain matrix ap- 
plied with probability p i  when N(t) = k. The ma- 
trix Gk is a weighting of the disturbance sequence 
{rd(i) : i E Z+} that is injected into the closed-loop 
also with probability p i .  (For our linear plant model, 
closed-loop stability will not be affected by this noise 
injection.) Let O ( i )  denote the sampled exosystem 

state N(t ) ,  i.e., B ( i )  = N(iT) ,  where T is the sam- 
pling period. If T is small then this discretetime 
Markov process can be characterized by the transi- 
tion probability matrix P = ehT M I + AT. Now 
when N ( t )  = k ,  the probability of an upset condi- 
tion is p i .  Thus we can define a second discretetime 
Markov process {8( i )  : i E Z + }  consisting of two 
states for each state of { O ( i )  : i E Z + } .  We use the 
convention that 

I odd E Z+ : upset and O(i) = '+ ' 

It can be easily verified that the corresponding tran- 
sition probability matrix is 

even e E Z+ : no upset and e( i )  = e(i) = 

ij= ( P @ & )  * d i U g ( l  -'&,&,1 - p : , p ~ , . . . ) ,  

where @ denotes the Kronecker product and IIz E 
is a matrix with a one in every entry. With 

this setup, the closed-loop input assumes the form 

yielding a family of closed-loop systems 

where for l E Z+:  

A - B F  : l even 
Ae = { A - B ( F + A F t )  : l o d d  

0 : l even 
Be = { BGe : lodd. 

The following stability definition and related t h e e  
rems for this particular class of systems have been 
adapted from [4] assuming that: 

(A4) &i) M 8 ( i ) ,  a finite state Markov chain with i 
states, transition probabilities P and initial dis- 
tribution v. 

(A5) The initial state x(0) = 3 is a second-order 

(A6) {rd(i) : i E Z+} is a second-order independent 
wide sense stationary sequence of random vari- 
ables with mean T and covariance matrix R. 

(A7) The random variables 3 and {8 ( i )  : i E Z + }  
are independent of { r d ( i )  : i E Z + } .  

The approximation in (A4) is in the following sense: 
if the equilibrium probability of having N(t) > k is 
small for some k > 0 then truncating the state space 
to the first k states, including the zero state, yields 
approximately the same model stochastically. Note 
P is equivalent to the upper left (22 x 22) submatrix 
of where E = 2k. 

random variable. 
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Definition 2.1 The system (3) with r(t)  E 0 is 
mean square stable if for any initial condition XO, 
initial distribution U, and input disturbance {rd(i) : 
i E Z+} satisfying (A4)-(A7) there exists a matrix 
Q E RnXn not depending on x, such that 

IlQ(i) - QII + 0 as i + 00, 

where Q( i )  := E(x(i)xT(i)). 

Theorem 2.1 If th<e system (3) with r ( t )  E 0 is 
mean square stable then there exists a vector q E Etn 
such that 

Ilq(i) - qll + 0 as i + 00, 

where q(i)  := E(x(i):). 

Theorem 2.2 The homogenous version of system 

~ ( i  -I- 1) = A,j(i)~(i) 
(3) 

is almost surely convergent to 0, i.e., x ( i )  + 0 w.p. 1 
a s i + o o .  

Theorem 2.3 The ~tystem (3) with r ( t )  = 0 is mean- 
square stable if and only if the spectral radius of 

A1 :=(PT@Ina)diag(&@Ao, A1QDA1,. . , AZ-iBAz-1) 

is strictly less than one. (Ina is the n2 x n2 identity 
matrix.) 

These results clearly illustrate the advantages of using 
the mean square stalility concept. It is easy to test 
for, it implies stability of the mean dynamics, and 
it yields almost sure asymptotic stability of the zero- 
input state space trajectories. These ideas are further 
illustrated in the following simple example. 

Example 2.1 We consider the rare event scenario 
discussed in the previous section, where X is taken to 
be small relative to p. According to Table 1, pk M 0 
for k > 1, and thus the finite state Markov chain 8(i)  
has J? = 2A = 4 states. In Kronecker notation, the 
corresponding transition probability matrix is 

1 - A T  AT I@[ i i ] )  ' = ([ pT 1 - p T  
diag(:L - P&P& 1 - P;,P;). 

We next make the simplifying assumptions that p$ = 
0, p;  = 1, and A0 = .41 = A2, so that 

(1 - XT)(.Ao @ Ao) (1 - XT)(Ao @O Ao) 
0 
0 A1 = 

Now consider the first order case, n = 1, where := 
A0 and a3 := A3. A direct calculation of the spectrum 
of dl (again assuming that T2 M 0) gives 

o(d1) = { O , O ,  (1 - AT)&, (1 - pT)a;}.  

Hence the spectral radius of d1 is 

r , ( d l )  = max ((1 - XT)a& (1 -@)a:} .  

Since by design we normally have (1 - XT)ai M 4 < 
1, it follows from Theorem 2.3 then that the closed- 
loop system will be mean square stable if and only 
if 

or equivalently, 

(1 - p q u :  < 1, 

P ( E I + E ) M ~ - ~ T < - - .  1 
4 

(Here we have defined the event E I+ E = { N ( t  + 
7') > OIN(t) > O } . )  If a3 is stable then there is no 
upperbound on the persistence of the radiation from 
sample to sample. But in the case of an unstable per- 
turbation, there is clearly an inverse relationship b e  
tween how unstable the perturbed system can be and 
the average duration of rare radiation events. Such 
a relation could obviously be exploited to  robustify 
the stability of the closed loop system to this type of 
phenomenon. 

In an experimental setting like the one that exists 
at the NASA Langley Research Center, the exosys- 
tem can be completely controlled by the test cham- 
ber operator. That is, the event arrivals, durations, 
and intensities are routinely preprogrammed into a 
test run. As mentioned in the introduction, some 
statistical characterization of radiation events in the 
atmosphere exists in the literature, though not quite 
in the direct form required for parameterizing our ex- 
osystem model. For example, one may think of ra- 
diation intensity (as measure by the field strength) 
to be some measure of the number of active sources 
(Le, N(t)), but in practice the intensity is more con- 
tinuous in nature, so that our queue states act as a 
quantization of the actual phenomenon. However, in 
a controlled laboratory environment, discrete radia- 
Cion levels are easily programmed. So from the point 
of view of the exosystem model development, the real 
open question is how to take existing environmental 
data (or create new data) and map it over to some 
realistic laboratory test configuration. Of course, an 
advantage of the laboratory setting is that severe ra- 
diation environments can also be created to  test the 
upperbound on the electromagnetic susceptibility of 
a given component even though such environments 
are not likely to be found in nature. 

Parameterizing the interference model is a consid- 
erably more difficult problem. This is mainly due to 
the fact that getting direct access to  internal com- 
puter data, frame by frame, and computing control 
law perturbation statistics is a very formidable task. 
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At best, current test fixtures can only record input- 
output data from the flight controller, and the vol- 
ume of data stored is virtually unmanageable. For 
this reason, we have steered away from introducing 
stochastic perturbation models, as done in [SI. What 
we envision instead is a kind of worst case determin- 
istic analysis of how much control law perturbation 
can be tolerated given a particular radiation environ- 
ment before instability sets in. Our stability margins 
will be conservative, but they do not required us to  
guess about the statistical nature of unobserved in- 
ternal data perturbations. 

3 Conclusions and Future Research 
In this paper we developed a mathematical model 
which can be used for stability analysis and augmen- 
tation of a digitally implemented control law. The 
model was composed of a Markovian exosystem sup- 
plying radiation events to a discrete-time jump lin- 
ear system which models how the radiation interferes 
with the nominal operation of the closed-loop system. 
It was proposed that the exosystem model is equiv- 
alent to an (MIMloo) queue with appropriately set 
transition probability rates. The interference model 
mapped each queue state to an appropriate deter- 
ministic perturbation of the control law which was 
introduced with a certain probability, also a function 
of the queue state. (There was also a corresponding 
noise injection system, but for linear plant models, 
closed-loop stability is not affected by additive noise.) 
It was then demonstrated by example that the notion 
of mean square stability could be used in conjunction 
with this model to  develop a relationship between sta- 
bility bounds on the perturbed system and character- 
istics of the radiation. Much future work remains to  
be done. At present, simulation platforms and ex- 
perimental testbeds are being developed to put this 
theory to the test. Furthermore, the simple example 
from the previous section is being generalized to give 
systematic stability robustness measures for more re- 
alistic systems. This work will be reported in future 
publications. 
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