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ABSTRACT 
 

PERIODIC ORBIT ANALYTIC CONSTRUCTION IN THE 

CIRCULAR RESTRICTED THREE-BODY PROBLEM 

 
Jay Shriram Suryawanshi  

Old Dominion University, 2019 

Director: Dr. Brett Newman 

 

 

 
      This thesis investigates an approximate analytic construction of halo-type periodic orbits about 

the collinear equilibrium points in the circular restricted three-body problem. The research follows 

a parallel approach to the one used by Ghazy and Newman, but the initial assumptions and utilized 

functions are unique to this thesis. A suppositional base solution constructed using Jacobi elliptic 

functions and satisfying Jacobi's integral equation is at the core of the analytic construction 

framework. The locus of this solution is a circle lying in the plane perpendicular to the line joining 

the primaries. The base solution elicits a closed-form expression for the period in terms of the 

elliptic integral of the first kind and a frequency-like parameter. The base solution satisfies a 

combination of third body equations of motion in the y and z axes, and the equation of motion in 

the x axis is satisfied in an averaged and bounded sense when the vertical plane is located at one 

of the collinear Lagrange points.  

      Because the third body cannot traverse this type of path naturally, an analytic correction 

process is pursued to recover accuracy. An iterated perturbation process is used whereby 

corrections to the base solution along the axis connecting the primaries is considered first, followed 

by correction in the other two directions. The iterated approach is followed to exploit the coupling 

structure inherent in the three-body system to simplify calculations. Linear assumptions are also 

used in these calculations for simplifying reasons. The non-homogeneous solution excitations for 



                                                                                

the x and y corrections are in the form of Fourier series expansions of the Jacobi elliptic functions 

in terms of the nome function. The development assumes the suppositional plane passes through 

one of the collinear Lagrange points. Only homogeneous correction is needed for the z axis. The 

modified solution then consists of the base solution plus first order corrections which can be further 

developed to include second and higher order corrections.  

      The base solution is compared with a 𝐿1 halo orbit example and somewhat rough similarity is 

observed; the period of the base solution being approximately half of the true orbit. An interesting 

result is obtained when the truncated version of the correction forcing signal is compared with the 

exact one. When the frequency-like parameter is greater than or equal to unity, the full and 

truncated forcing signals become almost identical which justifies the use of the truncated forcing 

function for the 𝐿1 halo orbit test case. The initial conditions for the true orbit are substituted in 

the truncated series solution and a new value of the frequency-like parameter is obtained using 

numerical computation depending in which axis is sought. For the test case, a unique value of the 

parameter is obtained from the y axis velocity initial conditions, which when employed in the x, 

y, and z solutions gives improved motion compared to the base one, and the corrected orbit reaches 

closer to the true orbit. The error in the period of this corrected orbit is reduced to zero when 

compared to the true orbit. 
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CHAPTER 1 

INTRODUCTION 

1.1 Problem Motivation 

 

The three-body problem is a classic setting in celestial mechanics (natural bodies) and 

astrodynamics (artificial satellites) dealing with the motion of three bodies under their mutual 

gravitation. The objective of this problem is to predict positions and velocities of all three bodies 

at any given future time when their initial positions and velocities are provided. Examples include 

the combined motion of the Moon and Earth around the Sun, satellite motion in the vicinity of the 

Earth and Moon, or comet-asteroid motion in the Sun-Jupiter system. Although the three-body 

problem has been examined extensively over many decades,1-3  the problem and its solution remain 

of high interest for scientific and engineering purposes.  

Spacecraft for solar observation have been launched and placed around the L1 point of the Sun-

Earth system which lies about 1.5 million kilometers from the Earth. The International Sun-Earth 

Explorer 3 (ISEE 3) launched in 1978 and Solar and Heliocentric Observatory (SOHO) launched 

in 1995 are examples of such missions.4,5 In 2001, to measure cosmic microwave background 

radiation, the Wilkinson Microwave Anisotropy Probe (WMAP) was launched aboard a Delta II 

rocket on a three month journey to the Sun-Earth Lagrange point L2, which also lies 1.5 million 

kilometers from the Earth in the opposite direction from L1.
6 The 6200 kg James Webb Space 

Telescope (JWST), which is the successor of the Hubble Space Telescope (HST), is scheduled to 

launch in 2018 aboard an Arianne 5 and will be flown to an orbit around L2.
7 JSWT will use a 6.5 

m mirror to gather data in the infrared spectrum over a period of 5-10 years. The advantage of such 

missions is that the spacecraft is placed in an almost stable periodic orbit around any of the 

collinear Lagrange points, so that a minimal amount of station-keeping is required, and less fuel is 

expended. In the case of JWST, another advantage is the L2 region provides a better environment 
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for deep space observation due to reduced solar intensity and geo albedo. In studies related to 

exploring the far side of the Moon, Farquhar (1968-1970) found a family of three-dimensional 

almost periodic orbits around the equilibrium point L2 in the Earth-Moon system: the translunar 

collinear libration point. A satellite or space station placed in this orbit has the advantage of 

continuous contact with both the far side of the Moon and the Earth. With control, this type of 

orbiting platform is never blocked from view by the Moon, hence the term "halo" was coined.8 

      Several particular analytic solutions to the three-body problem exist and include Lagrange's 

equilateral triangle solution and libration point solutions. However, the vast majority of situations 

involving time dependent orbits in two or three dimensions do not have analytic solutions. 

Obtaining closed-form periodic solutions, even in an approximate sense for particular cases, is of 

high importance for improved understanding of the evolving motion, orbit determination, 

maneuver planning, and communication tracking. Therefore, this thesis explores an approximate 

analytic construction for the three-body motion problem using Jacobi elliptic functions, which is 

inspired from Ghazy and Newman's 9 analytical theory for high inclination halo orbits, but with 

potential enhancement to the framework. 

1.2 Literature Review 

      Reference 10 provides a thorough discussion of the general and restricted three-body problems, 

with historical and technical aspects. In the general problem, all three bodies are considered to 

have appreciable mass. In the restricted problem, one of the three bodies is treated with negligible 

mass in comparison with the other two bodies. Any review of the three-body problem literature 

must mention the Szebehely text.3 This book gives a large database of knowledge on the three-

body problem subject regarding formulation, reduction, regularization, transformation, equilibria, 
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disturbances, and periodicity, with many extensions and refinements to the assumptions and 

framework.  

      In 1778, Lagrange discovered the first special solution of the general three-body problem, the 

"equilateral triangle solution." He also developed the second and third special solutions denoted 

as the "straight line solution" and the "conic section solution," respectively. Lunar theory was 

studied in the eighteenth century by Euler using the restricted problem of three bodies where the 

Earth and Sun primaries are assumed to revolve in circular orbits around each other. The theory of 

the restricted three-body problem was further developed by Jacobi (1836) and reached its peak in 

the later nineteenth century with the work of Hill (1878) and Poincaré (1892–1899).11 

      For the general three-body problem, eighteen integrals of the motion are required to solve for 

the position coordinates in time, but only ten are known to exist.11  Also, there are no known 

coordinate transformations which would simplify the general problem greatly. For this reason, 

much of the literature focuses on the restricted problem where one of the three masses is regarded 

as negligible in comparison with the other two primaries, which revolve in a circular orbit around 

each other. This problem becomes one of determining the motion of a single body after restricting 

the motion of the other two. Six integrals leading to algebraic relations are needed to solve the 

three second order scalar differential equations to obtain rectangular coordinates in time, but only 

one integral of the motion is known to exist. After introducing a rotating coordinate system moving 

with the primaries and reformulating the governing expressions, the problem is simplified and 

Jacobi's integral equation is derivable. Note this conversion to a rotating frame is a form of 

transformation on the problem variables. With this integral, particular solutions and concepts are 

facilitated like libration points, zero velocity curves, and the rectilinear oscillation solution. 
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      Numerical solutions to the three-body governing relations are often considered in analysis. 

These solutions can be for periodic conditions or general transient orbits that do not repeat. The 

primary strength of numerical solutions is their high level of accuracy, but they can be more costly 

to construct, especially in real-time applications, and they often do not provide a means to better 

understand the dynamic characteristics of the motion. Analytically framed periodic and non-

periodic solutions can complement numerical solutions by giving insights to qualitative and 

quantitative aspects of the motion of the third body.3 For example, any relationship originating 

from an exact integral of the governing equations can be used to characterize boundaries on the 

motion or constraints between the dynamic variables. Pursuits of this type lie within the field of 

dynamical systems theory. To facilitate analytic computations, approximations in the form of 

series expansions are commonly employed. This approach can lead to complete solutions for the 

position and velocity components over time due to initial conditions by trading accuracy for 

solvability. These approaches lie in the field of system dynamics and control. Orbits in the 

neighborhood of approximate analytical solutions are of primary interest in this thesis.   

      Jacobi was the first to find an energy-like integral of the circular restricted problem, namely 

Jacobi's integral equation and the specific "energy" of the third body, which is a constant called 

Jacobi's constant. Jacobi's integral equation was used by Hill and Moulton to create zero velocity 

curves which are bounding curves that decide the permissible two-dimensional motion of the third 

body with a specific initial "energy" level (i.e., the Jacobi constant). Surfaces of zero velocity in 

three dimensions using numerical computation can be found in References 12 and 13. A special 

solution by MacMillan in Reference 14 is the rectilinear oscillation of the third body along a line 

passing through the system mass center and perpendicular to the plane of rotation of the primaries 

(i.e., xy plane), where primaries are of equal mass. In this problem, equations of motion in the x 
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and y axes are satisfied in a trivial manner while the z axis equation becomes the governing 

equation of motion, which can be solved using elliptic functions and the period is also obtained in 

closed-form. Another approach by Battin10 to this solution is to start from Jacobi's integral equation 

and to use elliptic functions which gives the same motion but with different mathematical structure.  

      Periodic solutions are important for multiple reasons.3 Moulton,1 using linear analysis, initiated 

the analytical basis for classifying the periodic orbits about the collinear libration points and 

solving them. Original periodic orbit classes included two-dimensional horizontal orbits, one- 

dimensional vertical orbits, and three-dimensional orbits. These orbits classes were further studied 

and became known as Lyapunov periodic orbits, nearly vertical out-of-plane periodic orbits, and 

three-dimensional periodic but unstable halo orbits.15 These halo orbits were analytically studied 

by Farquhar and Kamel16 using higher order perturbation techniques.  

      Since 1960 with the advent of numerical computational tools, construction of such periodic 

orbits is achieved by investigating appropriate initial conditions such that after propagation 

through a finite time, the orbit closes on itself. Barden and Howell17 have used manifold theory for 

numerical computation. Valtonen and Karttunen 11 discuss both analytical and statistical numerical 

approaches. Richardson18 used the linearized motion equations and their solution about collinear 

libration points as a generating orbit to produce halo orbits through a successive analytical 

approximation technique applied to the full nonlinear equations of motion in which the origin is 

the collinear equilibrium point. A correction in frequency and restriction on the amplitudes of 

coordinates is required. Ghazy and Newman9 used a similar approach as Richardson18 except a 

nonlinear base solution is constructed using the origin of the rotating coordinate system at the 

barycenter. The base solution motion satisfies Jacobi's integral equation. The period and 
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coordinates in time are obtained in closed-form. Successive approximate higher order techniques 

are employed to improve solution accuracy. 

1.3 Research Statement 

      This thesis investigates an iterative analytical procedure for constructing approximate solutions 

for three-dimensional periodic orbits about the collinear libration points in the circular restricted 

three-body problem. The research follows a parallel approach to Reference 9, but the initial 

assumptions and utilized functions are unique to this thesis. The methodology is similar to that 

used to construct the rectilinear oscillation solution in Sitnikov,19 where a certain motion is 

hypothesized and then confirmed or altered for correctness. A base solution is constructed using 

Jacobi elliptic functions in the first step motivated by the observation that the speed of the third 

body along halo orbits is non-uniform. Utilization of Jacobi elliptic functions is one distinguishing 

difference between the thesis research and Reference 9, which utilized regular harmonic functions. 

By exploiting Jacobi elliptic function identities, the base solution is shown to exactly satisfy the 

Jacobi integral equation and the tangential equation of motion, but only approximately satisfies 

the other motion equations. The base solution also elicits a closed-form expression for the period 

in terms of the elliptic integral of the first kind and a constant parameter. This parameter acts like 

the frequency of motion as in the Richardson18   procedure. Two formulations of the base solution 

are possible. The Jacobi sn(τ, k) and cn(τ, k) functions can be used but require the modulus k to be 

an imaginary number. In these functions, variable τ is the temporal argument. Alternatively, the 

Jacobi sd(τ, k) and cd(τ, k) functions can be used and require k to be real. Both sets of functions 

with imaginary and real modulus are used throughout the thesis. 

      Because the base solution does not solve the restricted three-body system exactly, an analytic 

correction process is pursued to recover accuracy. An iterated perturbation process is used whereby 
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corrections to the base solution along the axis connecting the primaries is considered first, followed 

by correction in the other two directions. The iterated approach is followed to exploit the coupling 

structure inherent in the three-body system to simplify calculations. Linear assumptions are also 

used in these calculations for simplifying reasons. The procedure whereby an unknown constant 

in these corrections is determined is another distinguishing difference between the thesis research 

and Reference 9. 

      Objectives of the thesis research include 1) investigation of the iterative analytic solution 

procedure for periodic halo orbits in the restricted three-body problem under new base 

assumptions, 2) evaluation of the solution accuracy for orbit period when using two different base 

assumptions, and 3) evaluation of the solution accuracy for orbit motion when using two different 

base assumptions. The first objective addresses the closed-form solvability of the restricted three-

body problem using an iterative analytic construction procedure with the base solutions founded 

on Jacobi elliptic functions. The primary point is to determine whether or not the procedure 

remains analytically tractable when using more complex functions in the base solution as 

compared to Reference 9. The second and third objectives examine and compare period and orbit 

solution accuracies and characteristics when using more complex functions in the base solution as 

compared to Reference 9. The hypothesis is that initiation of the analytic solution process with a 

more accurate representation of the non-uniform speed along the orbital path will produce 

improved accuracy, or at least solution design freedom to achieve improved accuracy. 

1.4 Thesis Outline 

      Chapter 2 discusses briefly the fundamental theories regarding the gravitational n-body 

problem, the general three-body problem, and the circular restricted three-body problem (CRTBP). 

The third body equations of motion in the CRTBP are derived, Lagrangian and Hamiltonians are 
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then written, followed by discussion of Lagrange points which are also calculated numerically for 

the Earth-Moon system. The Jacobi constant is derived and curves of zero velocity are plotted for 

the Earth-Moon configuration. At the end, the equations of motion are written in dimensionless 

form. 

      The main content of the thesis starts with Chapter 3, which discusses the hypothesized base 

solution and how it satisfies Jacobi's integral equation. A modified but equivalent base solution 

and its derivatives are also written. The period of this suppositional motion is derived and 

determination of the constant parameters of the base solution from initial conditions is worked out.  

Constraints on initial conditions and on the parameters are discussed. The base solution is 

substituted into the third body equations of motion and the extent of the accuracy is checked. 

      Chapter 4 covers the higher order perturbation technique to correct the base solution. Third 

body differential equations are set up in terms of corrections for each axis. The homogeneous and 

non-homogeneous solutions for the corrections are obtained. The development assumes the 

suppositional plane passes through one of the collinear Lagrange points. The complete solution for 

the x, y, and z axes are written. 

      In Chapter 5, the base solution is compared with a 𝐿1 halo orbit example and results are 

discussed.  Initial conditions for the true orbit are substituted in the modified series solution and 

new values of the frequency-like parameter are obtained using numerical computation. Motions in 

all three axes are obtained using a unique updated parameter value. These analytical motions along 

with the periods are compared with the exact numerical true orbit and the results obtained from 

the original harmonic base solution assumption in Reference 9. 

      Chapter 6 briefly summarizes the work completed in Chapters 3, 4, and 5. 
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CHAPTER 2 

MULTI-BODY PROBLEM 

2.1 n-Body Problem Equations of Motion 

      Newton's law of gravity indicates that any two bodies in nature having masses m1 and m2 attract 

each other with a force F proportional to the product of their masses and inversely proportional to 

the square of distance R between them. This law is expressed as 

                                                                           F = 
Gm1m2

R2
                                                         (2.1.1)  

             
where G is the universal gravitational constant. This Newtonian model uses a pseudo-inertial 

coordinate system in local flat space-time. The more complex and accurate model based on general 

relativity, where gravity manifests as curvature of space-time and bodies follow each other on a 

space-time geodesic, is not considered or required in this thesis.  

      Let XYZ be the inertial coordinate system, with origin located at point O. Assume there are n 

point bodies with corresponding masses mi and position vectors Ri (Xi, Yi, Zi) where i = 1, 2, 3,…n. 

From Newton's second law, and using the gravitational force model in Equation (2.1.1), the 

equation of motion in time t for mass "i" is11 

                                                          mi

d
2
Xi

dt2
 = -G mi ∑ mj

Xi-Xj

Rij
3

n

j=1,j≠i

                                      (2.1.2) 

             

                                                                  mi

d
2
Yi

dt2
 = -G mi ∑ mj

Yi-Yj

Rij
3

n

j=1,j≠i

                                        (2.1.3) 

     

                                                                  mi

d
2
Zi

dt2
 = -G mi ∑ mj

Zi-Zj

Rij
3

n

j=1,j≠i

                                         (2.1.4) 
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In the above motion equations, the range Rij between body ''i'' and body ''j'' is  

 

                                                          Rij =  { (Xi-Xj)
2
+(Yi-Yj)

2
+(Zi-Zj)

2
}  

1/2

                           (2.1.5)       

                                                                                                                                                                     
In vector form, the above equations of motion for mass i are represented as 

 

                                                                      mi R̈i = -G mi ∑ mj

Rij

Rij
3

n

j=1,j≠i

                                             (2.1.6) 

                

where position vector of body i with respect to body j is  
 
                                                                            Rij = Ri - Rj                                                                (2.1.7) 

                                                           
      Summing all equations of motion for all n bodies gives 

 

                                                               ∑ mi R̈i

n

i=1

=-G ∑ ∑ mi

n

j=1,j≠i

mj

Rij

Rij
3

                                         (2.1.8)

n

i=1

 

    

              

The right-hand side of Equation (2.1.8) represents all system gravitational forces which are acting 

in pairs with opposite directions and equal magnitudes (Rij = -Rji ), hence all force pairs cancel 

out giving 

 

                                                                   ∑ miR̈i

n

i=1

 = 0                                                                      (2.1.9) 

              

The above equation, when integrated twice with respect to time, gives 

 

                                                                   ∑ miRi 

n

i=1

= At+B                                                              (2.1.10) 

 

where A and B are vector integration constants. According to the definition of center of mass, 

individual position vectors are related by 
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                                                                      ∑ miRi

n

i=1

= mRc                                                              (2.1.11) 

 

                                                               m = ∑ mi

n

i=1

                                                                  (2.1.12) 

                                                         
where Rc is the position vector of the system mass center and m is the system mass. Thus, 

   

                                                                 Rc= 
1

m
( At+B )                                                       (2.1.13) 

    

                 

Equation (2.1.13) indicates the center of mass or barycenter moves with a constant velocity along 

a straight line. This behavior is a consequence of no external forces being applied to the n-body 

system. Also, a non-rotating coordinate system with its origin at the barycenter can be used as an 

inertial frame of reference. 

      The potential energy V of the system is 

 

                                                                     V = -
1

2
G ∑∑

mimj

Rij

n

j=1

  

n

i=1

                                                (2.1.14) 

   

The net gravitational force acting on the ith mass is the negative gradient (-𝛁i) of the potential 

energy of the system, leading to  

                                                                              miR̈i = -∇iV                                                            (2.1.15) 

or  

 

                                                                           mi

d
2
Xi

dt2
= -

∂V

∂Xi

                                                           (2.1.16) 

                                                                           mi

d
2
Yi

dt2
= -

∂V

∂Yi

                                                          (2.1.17) 
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                                                                           mi

d
2
Zi

dt2
= -

∂V

∂Zi

                                                            (2.1.18) 

Taking the dot product on both sides of Equation (2.1.15) with Ṙi , and summing for all masses i 

= 1, 2, 3,…n, yields 

                                                                 ∑ miR̈i∙Ṙi  

n

i=1

= - ∑∇iV ∙

n

i=1

Ṙi                                             (2.1.19) 

                                                          

                   

                                                         = - ∑
dXi

dt

∂V

∂Xi

+
dYi

dt

∂V

∂Yi

+
dZi

dt

∂V

∂Zi

n

i=1

                                           (2.1.20) 

 

                                                                          = -
dV

dt
                                                                 (2.1.21) 

              
Integrating on both sides with respect to time gives 

                                                                 
1

2
∑ miṘi ∙Ṙi = -V + C 

n

i=1

                                                     (2.1.22) 

where C is the integration constant. Note the left-hand side of this equation is the kinetic energy 

of the system, which is denoted here by T, giving 

                                                                              T + V = C                                                                  (2.1.23)                       

Thus, the total energy is conserved in the n-body system.  

      The total angular momentum of the system L is 

                                                                  L = ∑miRi×Ṙi

n

i=1

                                                                (2.1.24) 
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Taking the time derivative gives 

                                                                 L̇ =
d

dt
(∑ miRi×Ṙi

n

i=1

)                                                 (2.1.25) 

                                                                         = ∑ mi

n

i=1

Ṙi×Ṙi  + ∑ mi

n

i=1

Ri×R̈i                           (2.1.26) 

                                                                             = ∑ mi

n

i=1

Ri×R̈i                                                         (2.1.27) 

Using the relation in Equation (2.1.6),  

                                                                        L̇ = -G ∑ ∑ mimj

n

j=1, j≠i

n

i=1

Ri×(Ri-Rj)

Rij
3

                            (2.1.28)  

                                                                             = G ∑ ∑ mimj

n

j=1, j≠i

n

i=1

Ri×Rj

Rij
3

                                    (2.1.29) 

Since a vector product is anticommutative and vector products occur in Equation (2.1.29) occur in 

pairs, the right-hand side of Equation (2.1.29) becomes zero. Thus, 

                                                                                   L ̇ = 0                                                                    (2.1.30) 

This result indicates total angular momentum is conserved in the n-body system and is a constant 

vector denoted by D. 

                                                                                   L = D                                                                    (2.1.31) 

      Summarizing the above discussion on the n-body system, there are three second order 

differential equations for the motion of the ith body given by Equations (2.1.2), (2.1.3), and (2.1.4), 

which requires six integration constants. So, for n bodies, 6n integration constants are required and 

are typically called integrals of the motion. Ten integrals are known beforehand, specifically, one 

energy integral giving constant C from Equation (2.1.23), six integrals representing rectilinear 

motion of the barycenter giving constants A and B from Equation (2.1.10), and three integrals 
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denoting constant angular momentum giving constant vector D from Equation (2.1.31). With 6n 

unknowns and only 10 available integrals, the under determined condition implies the closed-form 

insolvability of the n-body problem. For the complete solution, 6n-10 additional constants are 

required. The missing constants are easily found when n = 2 but for n > 2, no additional 

independent constants are known. In the case of the three- body problem where n = 3, some of the 

special solutions with special initial conditions like Lagrange's equilateral triangle solution are 

available, but there is no general analytic solution which can give the coordinates and velocities of 

any of the three bodies at future times when provided with arbitrary initial conditions.  

2.2 Circular Restricted Three-Body Problem                         

 
      The circular restricted three-body problem is a special case of the general three-body problem. 

In the CRTBP, one of the three masses is negligibly small compared to the other two, so that the 

gravitational influence from the small body on the two primaries is neglected. The primaries move 

in a circular coplanar orbit around each other about their common center of mass. Given the initial 

coordinates and velocities of the third body, the primary objectives are finding its path over time, 

investigating the periodicity of orbits, analyzing the stability of the orbits, and determining 

forbidden and allowed regions of existence. Before proceeding to the geometry of the CRTBP, the 

fundamentals of vector kinematics are discussed next. 
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Figure 1 Coordinate Frames of Reference 

As shown in Figure 1, XYZ is an inertial coordinate system with origin O. Also, xyz is a 

rotating coordinate system attached to the point B which is also the origin. This frame rotates with 

angular velocity vector 𝛚. The position vector of point P is given by 

 
                                                                             Rp = RB+r                        (2.2.1) 

 
where vectors RP, RB and r can all be expressed in the inertial coordinate system or the rotating 

coordinate system. Denote I, J, K as unit vectors in the X, Y, Z inertial coordinate directions, and 

i, j, k as unit vectors in the x, y, z rotating coordinate system directions. The inertial velocity of 

point P, expressed in the two frames, is given by 

 
                                                                         Vp = VXPI+VYPJ+VZPK                                              (2.2.2) 

                                                                                                              
                                                                               = VxPi+VyPj+VzPk                                                  (2.2.3) 

                                            

                                                                               = 
dRP

dt   XYZ

                                                                 (2.2.4) 
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Also, the velocity of point B can be expressed as 

 
                                                                         VB = VXBI+VYBJ+VZBK                                             (2.2.5) 

 
                                                                               = VxBi +VyBj +VzBk                                               (2.2.6)    

                                          

                                                                               =
dRB

dt   XYZ

                                                                 (2.2.7) 

                         
 
Now, the velocities of point P and point B can also be shown to relate as 

 
                                                                VP = VB+ ω×r + v                  (2.2.8) 

 

where 

                                                                   v =
dr

dt    xyz

                                                                  (2.2.9) 

  
Further, the accelerations of point P and point B are related as   
 
                                                  AP = AB + ω̇×r + ω×( ω×r) + 2 (ω×v) + a                (2.2.10) 

 

where 

                                                                           a =
dv

dt    xyz

                                                                    (2.2.11) 

   

An important item to note is all vector quantities on both sides of these expressions should be 

expressed in the same coordinate system, i.e., either in the inertial or rotating systems. 

      Consider the geometry for the CRTBP illustrated in Figure 2. Masses m1 and m2 are the two 

primary bodies moving in circular coplanar orbits around each other. Their common center of mass 

or barycenter is denoted as "cm" in Figure 2. Each of the masses m1 and m2 also traverse in circular 

orbits about the mass center. The third body having mass m3 is inertially negligible, e.g., a 

spacecraft or an asteroid. Mathematically, this means 

                                                                 m1 ≫ m3    ,   m2 ≫ m3                                                       (2.2.12) 
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                        z                                            m3 

                            ↺ ω                                                                       

  

 

                                     

                                                                                        

                                                             r                             ρ2 

 

 

                                ρ1                                                                                                     

                                                                                                     m2 

                                       cm    r2 

                           ↙        r1             

                                                                                                

  x                       m1      

 

      Z 

                                                  

      O                Y 

 

   X 

                                                 y 
 

Figure 2 Geometry of the Restricted Problem 

Frame XYZ is the inertial frame of reference. The rotating coordinate system xyz is attached to 

the system mass center and is rotating with angular velocity ω which is also the rate with which 

masses m1 and m2 revolve around each other. Frame xyz forms a right-handed coordinate system 

and masses m1 and m2 and the cm are aligned along the x axis. Mass m1 is situated in the positive 

direction of the x axis. The xy plane is the plane of rotation of the primaries where angular velocity 

vector ω is directed along the positive z axis. Vectors r1, r2, and r are the position vectors of m1, 

m2, and m3 relative to the cm, respectively. Variables ρ
1
and ρ

2 are the scalar distances of the third 
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body from m1 and m2, respectively. Finally, i, j, k are the unit vectors in the x, y, z directions. 

These various vectors and distances are defined as  

 
                                                                                 ω = ωk                     (2.2.13) 
 
                                                                                 r1 = x1i   , x1 > 0              (2.2.14) 
                                                   
                                                                                 r2 = x2i   , x2 < 0                    (2.2.15) 
                                                   
                                                                                 r = xi + yj + zk              (2.2.16) 
 

                                                                                 ρ
1
= {(x-x1)

2+y2+z2} 
1

2              (2.2.17) 

 

                                                                                 ρ
2
= {(x-x2)

2+y2+z2} 
1

2                   (2.2.18) 

   
       Several relations involving the system period, rotation frequency, and primary coordinates are 

developed next. The distance r12 between the two primaries is denoted as   

                                                                              r12 = x1-x2                      (2.2.19) 

 
The angular velocity ω can also be written as 

 

                                                                       ω =
2π

T
                                                                     (2.2.20) 

               
 

where T denotes period for one revolution of the primaries. 

Period is given by Kepler's law for the two-body problem, or 

                                                     

                                                                          T = 
2π

√μ
r12
3/2                                                                   (2.2.21) 

   

where 

                                                                        μ = G (m1+m2)                                                              (2.2.22) 

 
From Equations (2.2.20), (2.2.21), and (2.2.22), 

 

                                                                        ω2=
G(m1+m2) 

r12
3

                                                             (2.2.23) 
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Now, the mass center of the system, which is also the origin of the xyz frame, is governed by 

 

 
                                                                       0 = m1x1+m2x2                    (2.2.24)  

     
Also introduce parameters π1 and π2 defined as follows, 
 

                                                                              π1 = 
m1

m1+m2

                                                             (2.2.25) 

                     

                                                                              π2 = 
m2

m1+m2

                                                             (2.2.26) 

               
Thus, from Equations (2.2.24), (2.2.25), and (2.2.26)  

 

                                                          x1 = π2r12 ,  x2=-π1r12                      (2.2.27) 
 
      The velocity of the third body can be written as 

 
                                                               Vm3

 = Vcm + ω×r + Vm3/cm                                                 (2.2.28) 

                       
and the acceleration of the third body is thus given by 

 

                                     Am3
 = Acm + ω̇×r + ω×( ω×r) + 2(ω×Vm3/cm) + Am3/cm              (2.2.29) 

 

The quantities on the right side of above equation are now evaluated term by term. The velocity 

Vcm of the mass center is a constant vector, leading to  

 
                                                                              Acm = 0                      (2.2.30) 

 
In other words, Acm is zero and drops out from Equation (2.2.29). The relative velocity of the third 

body with respect to the mass center is 

                                                                  Vm3/cm = ẋi + ẏj + żk              (2.2.31) 

 

Consequently, Am3/cm is the relative acceleration of the third body with respect to the center of 

mass and is given by  

                                                                   Am3/cm = ẍi+ÿj+z̈k                                                             (2.2.32) 
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The angular velocity ω is a constant vector always directed along positive z axis having constant 

magnitude given by Equation (2.2.13). This invariance is because of the exact circular motion of 

the primaries. Therefore,  

                                                                    ω̇ = 0                                                                  (2.2.33)                                                       

 The quantity ω×(ω×r) is evaluated as    
 

ω×(ω×r) = ω (ω∙r) - r (ω∙ω) 

                                                     
                                                                                = ωk (ωz)-ω2 (xi+yj+zk) 
                                                            
                                                                                = -ω2( xi+yj )                      (2.2.34) 

 
Also,  

                                                        2 (ω×Vm3/CM
) = 2 {ωk×(ẋi+ẏj+żk)} 

                                                                                 = 2ẋωj-2ẏωi              (2.2.35) 

Collecting all the terms on the right-hand side of Equation (2.2.29) and separating i, j, k 

components, the absolute (inertial) acceleration of the third body can now be written in terms of 

the components of the non-inertial rotating frame as follows 

                                                 Am3
=(ẍ-ω2x-2ωẏ)i+(ÿ-ω2y+2ωẋ)j+z̈k                      (2.2.36) 

 
The external forces acting on the third body are the gravitational forces due to masses m1 and 

m2. If the forces are written in the rotating coordinate system, then from Newton's second law, 

 

                                                       m3Am3
= -

Gm3m1

ρ
1
3

ρ
1
-
Gm3m2

ρ
2
3

ρ
2
                                                (2.2.37) 

                        
where   

                                                 ρ
1
 = (x-x1)i+yj+zk  ,   ρ

2
= (x-x2)i+yj+zk                                     (2.2.38)                     
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The vectors  ρ
1
 and  ρ

2
 are the position vectors of the third body with respect to the masses m1 and 

m2 and directed towards m3 itself, but gravity being an attractive force, the negative (-) signs are 

introduced in Equation (2.2.37). 

    Introduce gravitational parameters μ
1
 and μ

2
 , or 

     
                                                        μ

1
= Gm1 and μ

2
= Gm2              (2.2.39) 

 

Equation (2.3.37) can now be written as 

 

                                                                 Am3
 = -

μ
1

ρ
1
3

ρ
1
-
μ

2

ρ
2
3

ρ
2
                                                             (2.2.40) 

  

Equating i, j, k components on both sides of Equation (2.2.40), three scalar equations of motion 

of the third body are obtained as  

                                                 ẍ-ω2x-2ωẏ+
μ

1

ρ
1
3
(x-x1)+

μ
2

ρ
2
3
(x-x2) = 0                                               (2.2.41) 

               

                                                       ÿ-ω2y+2ωẋ+
μ

1

ρ
1
3

y+
μ

2

ρ
2
3

y = 0                                                          (2.2.42) 

               

                                                                   z̈+
μ

1

ρ
1
3

z+
μ

2

ρ
2
3

z = 0                                                                 (2.2.43) 

                    

Equations (2.2.41)-(2.2.43) are the second order nonlinear coupled ordinary differential equations 

of motion which govern the dynamics of the third body. 

      Introduce the specific gravitational potential function U 

 

                                                         U =
Gm1

ρ
1

+
Gm2

ρ
2

=
μ

1

ρ
1

+
μ

2

ρ
2

                                                          (2.2.44) 

                      
Partially differentiating the function U with respect to x, y, and z positions yields 

 

                                                                    
∂U

∂x
 = -

μ
1

ρ
1
  2

∂ρ
1

∂x
- 

μ
2

ρ
2
  2

∂ρ
2

∂x
                                                   (2.2.45) 
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∂U

∂y
 = -

μ
1

ρ
1
  2

∂ρ
1

∂y
- 

μ
2

ρ
2
  2

∂ρ
2

∂y
                                                    (2.2.46) 

 

                                                                   
∂U

∂z
 = -

μ
1

ρ
1
  2

∂ρ
1

∂z
- 

μ
2

ρ
2
  2

∂ρ
2

∂z
                                                    (2.2.47) 

  

Hence, from Equations (2.2.41)-(2.2.43) and Equations (2.2.45)-(2.2.47) one can rewrite the third 

body equations of motion as 

 

                                                                        ẍ-ω2x-2ωy ̇=
∂U

∂x
                                                           (2.2.48) 

 

                                                                       ÿ-ω2y+2ωẋ =
∂U

∂y
                                                           (2.2.49) 

 

                                                                               z̈ =
∂U

∂z
                                                                      (2.2.50) 

  

 

      The specific Lagrangian and Hamiltonian functions L and H for the third body can be written 

as 

 

                                            L=
1

2
[(q̇

1

2+q̇
2

2+q̇
3

2)+2ω(q
1
q̇

2
-q

2
q̇

1
)+ω2(q

1
2+q

2
2)]+U                          (2.2.51) 

                       
 

                                                     H=
1

2
(p

1
2+p

2
2+p

3
2)+ω(p

1
q

2
-p

2
q

1
)-U                                             (2.2.52) 

                  
 
where 

                                                                 q
1
= x,  q

2
= y,  q

3
= z                                               (2.2.53) 

              

Also, the specific momenta p
1
, p

2
, p

3
 are given by 

 

                                                                p
1
=

∂L

∂q̇
1

 , p
2
=

∂L

∂q̇
2

 , p
3
=

∂L

∂q̇
3

                                                (2.2.54) 

Hamilton's canonical equations are  

 
dq

1

dt
 = p

1
+ωq

2
            

dp
1

dt
 = ωp

2
+

∂U

∂q
1
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dq
2

dt
 = p

2
-ωq

1
            

dp
2

dt
 = -ωp

1
+

∂U

∂q
2

  

 
dq

3

dt
 = p

3
            

dp
3

dt
 = 

∂U

∂q
3

  

                      (2.2.55) 

This first order differential equation model is equivalent to the second order model in Equations 

(2.2.41)-(2.2.43) 

2.3 Lagrange Points 

 
      Equations (2.2.41)-(2.2.43), which govern the motion of the third body, have no general 

closed-form analytical solution. But five particular solutions exist in the form of Lagrange points 

which are also called libration or equilibrium points. These points are the locations in space where 

the third body would have zero relative velocity and zero relative acceleration. Therefore, all three 

bodies would appear to be at rest with respect to the rotating coordinate system. A body initially 

at one of the Lagrangian points would remain there forever, unless and until disturbed by some 

external force. 

Therefore, for Lagrangian points, 

 
                                                                ẋ = ẏ = z ̇= 0 and  ẍ = ÿ = z ̈= 0                     (2.3.1) 
 
Substituting the conditions mentioned in Equation (2.3.1), into Equations (2.2.41)-(2.2.43), yields 

 

                                                           -ω2x+
μ

1

ρ
1
3
(x-x1)+

μ
2

ρ
2
3
(x-x2) = 0                                                  (2.3.2) 

                  

                                                                    -ω2y+
μ

1

ρ
1
3

y+
μ

2

ρ
2
3

y = 0                                                            (2.3.3) 

                                    

                                                                          
μ

1

ρ
1
3

z+
μ

2

ρ
2
3

z = 0                                                                  (2.3.4) 

                                    
 



24 

 

                                                                                

Equations (2.3.2)-(2.3.4) can also be written in terms of the gravitational potential function U. 

Hence, for libration points,  

 

                                                                              -ω2x = 
∂U

∂x
                                                                  (2.3.5) 

              

                                                                              -ω2y = 
∂U

∂y
                                                                  (2.3.6) 

  

                                                                                   0 =
∂U

∂z
                                                                    (2.3.7) 

     
 

From Equation (2.3.4), it is clear that z = 0 because the quantity 
μ1

ρ
1
3 +

μ2

ρ
2
3  is always positive. So, 

all libration points lie in the xy plane or in the plane of the rotation of the primaries. Obvious 

relations include, 

 
                                                               π1+π2 = 1,        π1μ = μ

1
,      π2μ = μ

2
                        (2.3.8) 

 
Also, from Equation (2.2.23) 

 

                                                                                  
ω2

μ
=

1

r12
3

                                                                    (2.3.9) 

     
 
Now, dividing Equation (2.3.2) and (2.3.3) throughout by μ and using Equations (2.3.8) and 

(2.3.9), and doing some algebraic manipulations with case y ≠ 0, yields 

                                                                        ρ
1
 = ρ

2
 = r12                                                           (2.3.10)                                               

Using Equation (2.3.10) along with z = 0 gives 

 

                                                                            x = (π2-
1

2
) r12                                                         (2.3.11) 

                                                  

                                                                           y = ±
√3

2
r12                                                                (2.3.12) 
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Thus, the coordinates of the Lagrangian points L4 and L5 are 

 

                                                          L4 ≡ ( (π2-
1

2
) r12 , +

√3

2
r12 , 0)                                              (2.3.13) 

                       

                                                          L5 ≡ ((π2-
1

2
) r12  , -

√3

2
r12 , 0)                                               (2.3.14) 

               

Observe that, both L4  and L5 form an equilateral triangle with the two primary masses. The other 

case of y = 0 with z = 0 allows the remaining Lagrange points to be found. In that case ρ
1
=|x-

x1|  and ρ
2
=|x-x2| . Also, Equations (2.3.3) and (2.3.4) vanish and substituting values of ρ

1
 and ρ

2
 

in the only remaining Equation (2.3.2), yields 

 

                                                    -ω2x+
μ

1

|x-x1|3
(x-x1)+

μ
2

|x-x2|3
(x-x2) = 0                                      (2.3.15) 

              

Three values of the x coordinate that will satisfy Equation (2.3.15) can be obtained. These roots 

are denoted by (ξ
1
,ξ

2
,ξ

3
). These three values correspond to Lagrange points L1, L2 and L3. 

 

L1 = ( ξ
1
, 0 , 0) 

 

L2 = (ξ
2
, 0 , 0) 

 

 L3 = (ξ
3
 , 0 , 0) 

             (2.3.16) 

 
L1, L2 and L3  lie along the x axis or along the line joining the primaries. 

 

      If the third body is initially situated at one of the equilibrium points and is given a small 

disturbance or nudged out of its position, one primary question is whether it will drift away forever 

or return to its equilibrium position. This outcome is determined by whether the Lagrange point is 

stable or unstable.20 If the third body is initially at a stable Lagrange point, then a small perturbation 
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will result in oscillation (small orbit) of the body about the equilibrium point. But, if the point is 

unstable then the third body initially oscillates in the divergent fashion, then it permanently drifts 

away. L1, L2 and L3 are always unstable for any CRTBP configuration. L4 and L5 can be stable or 

unstable depending upon the CRTBP configuration. If the ratio 
m1

m2
+

m2

m1
  exceeds 25, then the points 

are stable. For the Earth-Moon configuration this ratio is around 81.3, but L4 and L5 are 

destabilized by the Sun's gravity.  

      An example which calculates the libration points for the Earth-Moon configuration is discussed 

next. First, the primary masses are defined. 

Earth mass = m1 = 5.974×1024    kg 

Moon mass = m2 = 7.348×1022   kg 

Next, the distance between the Earth and the Moon is defined. 

                                           Earth-Moon distance = r12 = 3.844*105 km 

Various parameters of the system are then computed. 

                                        π2 =
m2

m1+m2

 = 0.01215                     x1 = π2r12 = 4670 km 

 
                                        x2 = -π1r12 = -(1-π2)r12 = -379730 km            xcm=0 

 

                                       (π2-
1

2
) r12 = -187530 km                    

√3

2
r12=332900 km 

 
Lagrange points L4 and L5 are computed next. 

 

                                          L4 ≡ (r12π2-
r12

2
 , +

√3

2
r12 , 0) ≡ (-187530, 332900 , 0) km 

 

                                          L5 ≡ (r12π2-
r12

2
 , -

√3

2
r12 , 0) ≡ (-187530,- 332900 , 0) km 

 
To get L1, L2, L3 requires finding the roots of Equation (2.3.15) 
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                                                               L1 ≡ (-321711, 0 , 0) km 

 
                                                               L2 ≡ (-444243, 0 , 0) km  
 
                                                               L3 ≡ (386345,  0 , 0) km 

 

Figure 3 illustrates these Lagrange point results for the Earth-Moon system. 

 
 

Figure 3 Lagrange Points of the Earth-Moon System 

 

2.4 Jacobi Constant  

The specific energy of the third body is constant in the CRTBP problem,20 given by 

 

                                                              C*
=

1

2
V2-

1

2
ω2(x2+y2)-

μ
1

ρ
1

-
μ

2

ρ
2

                                               (2.4.1) 

                  
where V is the magnitude of velocity of m3 in the rotating coordinate system. 
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                                                                 V2 =  |Vm3/cm|
2
= ẋ2

+ẏ2+ż2                                                   (2.4.2) 

                  
 

The term 
1

2
V2 represents kinetic energy, and -

1

2
ω2(x2+y2) can be thought of as potential energy 

induced by rotation of the reference frame, while -
μ1

ρ1

-
μ2

ρ2

  is the gravitational potential energy, all 

being energies per unit mass of the third body. 

If the Jacobi function J is defined as 

 

                                                                 J =
1

2
ω2(x2+y2)+

μ
1

ρ
1

+
μ

2

ρ
2

                                                       (2.4.3) 

  

then it is obvious that  

                                                                             C*
=

1

2
V2-J                                                                     (2.4.4) 

  

Multiplying both sides of this relation by -2 gives  

 

                                                                      -2C
*
 = 2J-V2 = C                                                             (2.4.5) 

                  
 

Parameter C is called the Jacobi constant. Note the equations of motion of the third body can be 

represented in terms of the Jacobi function as follows. 

                                                                           ẍ-2ωy ̇=
∂J

∂x
                                                                     (2.4.6) 

                

                                                                           ÿ+2ωẋ=
∂J

∂y
                                                                     (2.4.7) 

                      

                                                                             z̈ =
∂J

∂z
                                                                            (2.4.8) 

                 
2.5 Curves of Zero Velocity 

    From Equation (2.4.5)  

 

                                                                            2J-C = V2                                                                      (2.5.1) 

                  
which upon expanding gives  
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                                                        ω2(x2+y2)+
2μ

1

ρ
1

+
2μ

2

ρ
2

-C = V2                                                  (2.5.2) 

  

or  

 

                                     ω2(x2+y2)+
2μ

1

{(x-x1)
2
+y2+z2}

1
2

+
2μ

2

{(x-x2)
2
+y2+z2}

1
2

-C = V2                     (2.5.3) 

                        
 
If the motion of the third body is restricted to lie in the plane of the primaries, i.e., substituting 

z = 0 in Equation (2.5.3), the expression becomes 

                                       ω2(x2+y2)+
2μ

1

{(x-x1)
2
+y2}

1
2

+
2μ

2

{(x-x2)
2
+y2}

1
2

-C = V2                                   (2.5.4) 

                        
 

The quantity on the right-hand side of Equation (2.5.4) is the velocity squared, which is always 

positive. So, the quantity on the left-side when equated to zero renders the zero velocity curves. 

For a particular value of C, these curves create a region where the third body motion would cease 

to exist. For the third body possessing a specific energy in the CRTBP system corresponding to C, 

the body will not enter the forbidden regions lying on the other side of the zero velocity curve 

boundary. 

      Figure 4 shows the zero velocity curves for the Earth-Moon system. Starting from the Jacobi 

constant C = 3.6 and gradually reducing its value, interesting patterns are observed for the allowed 

and forbidden regions of motion. For C = 3.6, the allowable regions are essentially circles 

surrounding both the Earth and the Moon. Spacecraft possessing this specific energy located near 

the Earth cannot reach the Moon because of the large annular shaped forbidden region lying 

between the two attractors. For C = 3.347, the regions meet exactly at the Lagrange point L1, and 

it becomes just possible to reach the Moon through a narrow corridor. Similarly, for C = 3.3298, 
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escape from Earth-Moon system can be just achieved. For C = 3.1624, a lot of freedom exists for 

the spacecraft around the moon and the points L1 and L2, but L3 become just possible to reach with 

zero velocity while forbidden region still exists around L4 and L5.  Around C = 3.14 almost the 

entire space is available except narrow regions around L4 and L5. For C = 3.136, spacecraft can 

now reach the L4 and L5, and there is no forbidden region for this energy level. Here, the decrease 

in the value of the Jacobi constant C means an increase in the value of C* which is the actual 

specific energy, as they are related by -2C
*
= C according to Equation (2.4.5). Here, it should be 

remembered that the larger mass m1, i.e., the center of the Earth is in the positive x direction. The 

Lagrange point L1 is defined to lie in between the Earth and the Moon, L2 being on the far side of 

the Moon, and L3 on the far side of the Earth. L4 and L5 of course lie in between the two primaries, 

L4 defined to have positive y coordinate. The mass center or barycenter is located at the origin. 
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Figure 4 Zero Velocity Curves for the Earth-Moon System 
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2.6 Equations of Motion in Dimensionless Form 

 
      The circular restricted three-body problem and the equations of motion discussed so far can 

also be put in the dimensionless form for simplicity.  Non-dimensional units are chosen such that 

the following quantities are equal to unity: the universal gravitational constant G, the angular 

velocity of the rotating frame ω, the distance between the primaries r12, and the sum of the masses 

of the primaries m1+m2.  

 

                                                                   ω2 =
G(m1+m2) 

r12
3

 ⇒1=1                                                        (2.6.1) 

                  
Also, renaming the quantity π2 as μ gives  

 

 μ =
m2 

m1+m2

= m2   

 
                                                                         m1 = 1-μ = π1 

                        (2.6.2) 

Then, the Jacobi function is 

 

                                                               J =
1

2
(x2+y2)+

1-μ

ρ
1

+
μ

ρ
2

                                                            (2.6.3) 

                  
 
where 

ρ
1
= { (x-μ)2+y2+z2 } 

1
2 

  

  ρ
2
= {(x+1-μ)2+y2+z2} 

1
2 

                        (2.6.4) 

 
Note in these expressions, coordinates x, y, z are now dimensionless having been normalized by 

r12. Likewise velocities ẋ, ẏ, ż and accelerations ẍ, ÿ, z̈ are now dimensionless, having been 

normalized by r12ω and r12ω2, respectively. Hence, the dimensionless equations of motion of the 

third body can be represented in the terms of the Jacobi function as follows. 
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                                                        ẍ-2ẏ=
∂J

∂x
      ÿ+2ẋ=

∂J

∂y
         z̈=

∂J

∂z
                                              (2.6.5) 

                           
or the general dimensionless form is 

 

                                                       ẍ-x-2ẏ+
1-μ

ρ
1
3

(x-μ)+
μ

ρ
2
3
(x+1-μ) = 0                                               (2.6.6) 

                         

                                                                 ÿ-y+2ẋ+
1-μ

ρ
1
3

y+
μ

ρ
2
3

y = 0                                                        (2.6.7) 

                  

                                                                       z̈+
1-μ

ρ
1
3

z+
μ

ρ
2
3

z = 0                                                              (2.6.8) 

 

2.7 Halo Orbits 

      The three-body problem periodic halo orbit is geometrically more complex than the two-body 

problem periodic elliptic orbit. Halo orbits are closed three-dimensional, twisted curves that do not 

lie in a single fixed plane. These orbits can be described as "egg" shaped ovals that are three-

dimensionally distorted. Although the curves are not describable by simple elementary functions 

like harmonic sine and cosine, the curves do exhibit symmetry about the xz plane. In Figure 5, 

suppose times t = t + and t = t – represent points along the orbit positioned on opposing sides of the 

xz plane. If position, velocity, and acceleration values x (t +), y (t +), z (t +) ; ẋ (t +) , y ̇(t +) , 

ż (t +) ; and ẍ(t +), ÿ(t +), z̈(t +) solve the three-body problem equations of motion in Equations 

(2.2.41)-(2.2.43), then corresponding values indicated below  

    x (t -) = + x (t +) , y (t -) = - y (t +),  z (t -) = +z (t +)  

                                            ẋ (t -) = - ẋ (t +) ,  ẏ (t -) = + ẏ (t +),  ż (t -) = - ż (t +)                            (2.7.1)  

   ẍ (t -) = + ẍ(t +),  ÿ(t -) = -ÿ(t +),      z̈(t -) = + z̈(t -) 
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also satisfy the equations of motion, confirming the symmetric nature of halo orbits.  

 
Figure 5 Symmetric Halo Orbit Geometry 

Reference 15 contains a large database of initial condition triples {x (t 0), ẏ (t 0), z (t 0)} = {x0 , ẏ0
, 

z0} and corresponding periods T for various families of halo orbits about the L1, L2 , and L3  

Lagrange points for a generic three-body system that approximates the Earth-Moon system where 

t 0 denotes initial time. One specific L1 halo orbit from Reference 15, also used by Ghazy and 

Newman in Reference 9, is generated from non-dimensional initial condition and period values of 

 x0 = 0.723268,  ẏ
0
 = 0.198019,  z0 = 0.040000  

                                                                                                                                                 (2.7.2) 

                                                 T = 2(1.300177),  t 0 = 0,   μ = 0.04  

This orbit will be used in an example in this thesis also, and will represent the true halo orbit to 

compare analytic approximations with. 
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      After solving the non-dimensional equations of motion with nonlinear simulation using the 

fourth order Runge-Kutta numerical integration algorithm with a time step of ∆t = 0.0001, the 

position and velocity error in exact periodicity is  

          ∆x = x (T) - x (0) = - 5.568454057873762e-04 

       ∆y = y (T) - y (0) = 1.670398000067595e-04 

        ∆z = z (T) - z (0)  = 2.488929981720595e-05 

                                                                                                 (2.7.3) 

   ∆ẋ = ẋ (T) - ẋ (0) =  - 0.001629620221659 

         ∆ẏ = ẏ (T) - ẏ (0) =  6.381568099895763e-04 

       ∆ż = ż (T) - ż (0) = 1.479102133680319e-04 

Values at t = T were obtained by linear interpolation between the simulation output values. Initial 

condition precision of 10-8 (see Equation (2.7.2)) and position-velocity periodicity error of only 

10-3 (see Equation (2.7.3)) is inconsistent. Discrepancies could be due to different computational 

resources available in 198415 vs. today, truncation in reported initial condition values (z0 = 0.04),15 

typographical error in published literature (μ = 0.04),15 or some other reason. Therefore, initial 

condition values in Equation (2.7.2) were updated with a differential correction process15 whereby 

x0 is fixed at Equation (2.7.2) value and ẏ
0
 , z0 , T are allowed to vary until 10-8 periodicity error 

is achieved. Updated initial condition values are      

x0 = 0.723268,  ẏ
0
 = 0.198019,  z0 = 0.039993891964  

                (2.7.4) 

T = 2(1.300177),  t 0 = 0,   μ = 0.04  

 Corresponding position and velocity errors after one period are now  

       ∆x = x (T) - x (0) =  8.906621662418957e-09 

       ∆y = y (T) - y (0) = -1.092678937368887e-05 

     ∆z = z (T) - z (0) = 4.799122386989208e-08 
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                      (2.7.5) 

      ∆ẋ = ẋ (T) - ẋ (0) =  -9.000247425235077e-06 

      ∆ẏ = ẏ (T) - ẏ (0) =  -6.104191499489708e-08 

   ∆ż = ż (T) - ż (0) = 1.008889975478254e-05 

      Figures 6-9 show the resulting halo orbit and typical characteristics of this type of orbit. A 

three-dimensional perspective view and three sectional views are provided in Figures 6-9. The xy 

and yz sectional views illustrate the symmetric nature of the halo orbit and the ''egg'' shaped oval 

characteristic. The xz sectional view exhibits the distortion of motion within a single plane to a 

fully three-dimensional motion behavior. The orbit in Figures 6-9 and described by Equations 

(2.6.6)-(2.6.8) is an exact solution to the three-body problem and will be used as a truth reference 

to compare against. 

 

 
Figure 6 Three-Dimensional Perspective View of Halo Orbit 
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Figure 7 xy Sectional View of Halo Orbit 

 
Figure 8 yz Sectional View of Halo Orbit               
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Figure 9 xz Sectional View of Halo Orbit 
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CHAPTER 3 

SUPPOSITIONAL CIRCULAR MOTION  
3.1 Introduction 

 
      The third body equations of motion given by Equations (2.2.41)-(2.2.43) are second order 

coupled nonlinear ordinary differential equations whose closed-form analytic solution is not 

known to exist. Some special solutions are available like Lagrange points, the Jacobi integral 

equation, and the zero velocity curves which were discussed in the previous chapter. Another 

special solution is the rectilinear oscillation of the third body along a line passing through the mass 

center and perpendicular to the plane of the rotation of the primaries (i.e., xy plane), where 

primaries are of equal mass. In this problem, equations of motion in the x axis and y axis are 

satisfied in a trivial manner while the z axis equation becomes the governing equation of motion, 

which can be solved using elliptic functions and the period is obtained in closed-form.14 Another 

approach by Battin10 is to start from Jacobi's integral equation and to use elliptic functions which 

gives the same motion but with different mathematical structure. In this chapter, an attempt to 

analytically construct a periodic orbit around collinear Lagrange points is investigated. A 

suppositional or base solution is constructed using Jacobi elliptic functions and following a similar 

approach as conducted in the case of the rectilinear oscillation solution, this base solution is 

employed into the Jacobi integral equation.   

      Ghazy and Newman9 proposed a suppositional vertical circular orbit for the third body in a 

plane which is perpendicular to the line joining the primaries and is offset by a constant distance 

dx from the yz plane of the rotating coordinate frame. The y coordinate and the z coordinate of the 

base solution were selected as the sin and cosine functions of the angle the radius vector to the 

third body makes with the "vertical" axis. Note this selection leaves the time variation of angular 

coordinate undetermined. The base solution from Reference 9 was 
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                                                          x(t) = dx               (3.1.1) 

                                                          y(t) = a sin(θ(t))               (3.1.2)  

                                                                z(t) = a  cos(θ(t))                                                          (3.1.3)                                                       

This assumption satisfies Jacobi's integral equation. Further, upon integrating Jacobi's integral 

equation again, the period is obtained in closed-form which uses the complete elliptic integral of 

the first kind K(k), where k is the modulus of the elliptic functions. Angular velocity  θ̇(t) is also 

analytically obtained as a function of the time. These findings from Reference 9 are   

                                                                      T =
4kK(k)

ω
                                                                          (3.1.4) 

                                               θ̇(t)=
ω

k
 dn (-

ω

k
(t-t0)+F (

π

2
-θ0 ,k) ,k)                                                 (3.1.5) 

                                            cos(θ(t)) = sn (-
ω

k
(t-t0)+F (

π

2
-θ0 ,k) ,k)                                         (3.1.6) 

                                             sin(θ(t)) = cn (-
ω

k
(t-t0)+F (

π

2
-θ0 ,k) ,k)                                          (3.1.7) 

      The motion obtained after integrating Jacobi's integral equation roughly captures the non-

uniform speed characteristic exhibited by periodic halo orbits obtained though numerical 

integration.9 The base solution was shown to satisfy the third body equation of motion in the x axis 

in the bounded and averaged sense, while the other two motion equations are approximately 

satisfied. The tangential equation of motion was shown to be exactly satisfied. These findings and 

progress inspired the hypothesis that the incorporation of non-uniform speed behavior in the base 

solution at the initial step of the construction would induce more accurate behavior in the base and 

corrected solutions. In the thesis research, Jacobi elliptic functions sn(∙) and cn(∙) having arguments 

as linear functions of time, are utilized in the base construction. This step is a distinguishing feature 

of the thesis work when compared with Reference 9.  
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3.2 Vertical Circular Orbit 

 

      Consider Figure 10 for the CRTBP, with center of mass at the origin of the right-handed 

rotating coordinate system xyz, and larger primary mass m1 in the positive direction of the x axis 

for consistency of analysis. A new plane y'z' perpendicular to the x axis at a distance dx from the 

yz plane is constructed. Let the third body exactly traverse a circle in this new y'z' plane. This  

 

Figure 10 Suppositional Vertical Circular Orbit 

type of motion is not exactly allowed by the third body governing dynamics in the CRTBP, but, it 

is hoped that a higher order correction or perturbation technique in the form9 of Fourier series can 

approximate closely the exact numerical solution of the governing three-body equations. The 

radius of this circle is denoted by ''a'', while  x1, x2, ρ
1
, ρ

2
 have their usual meaning. 

The suppositional circular motion is defined as   
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                                                                        x(t) = dx                                                                            (3.2.1) 

            
                                                                        y(t) = a  sn(λτ, k )                                                           (3.2.2) 

 
                                                                        z(t) = a  cn(λτ, k )                                                           (3.2.3) 

     
where τ = t-ϕ is the transformed time and t is the actual time of the motion. Note there is no physical 

angle in the argument of the elliptic functions, in contrast to the Reference 9 assumptions. Also 

note parameter ϕ plays the role of a phase angle offset, while λ is a frequency of motion. Parameters 

a, λ, and ϕ are all constants and k is the modulus of the elliptic functions. An important 

characteristic of this motion is that the sum squares of the varying y and z coordinates is constant 

and is shown from an elliptic function identity. 

                                                         (sn(λτ, k ))
2
+(cn(λτ, k ))

2
= 1                                                    (3.2.4) 

 

                                          (y(t))
2
+(z(t))

2
= a2 ((sn(λτ, k ))

2
+(cn(λτ, k ))

2
) = a2                        (3.2.5) 

   
These relations show that the locus of the third body is a circle of radius a lying in the plane y'z'. 

 

The relative distances to the third body ρ
1
 and ρ

2
 are given by 

 

                                                                     ρ
1
   =  {(dx-x1)

2+a2} 
1
2                                                       (3.2.6) 

                                                                      ρ
2
    = {(dx-x2)

2+a2} 
1

2                                                       (3.2.7) 

 
                  
In other words, ρ

1
 and ρ

2 both are constants and independent of time for the supposed motion. 

 
As τ = t-ϕ, and ϕ being a constant, 

  

                                                                      dτ = dt    (3.2.8) 
 
Differentiating Equations (3.2.1)-(3.2.3) with respect to the actual time of the motion t and noting 

dτ = dt , yields 

                                                                      ẋ(t) = 0                                                                                (3.2.9) 
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                                                                      ẏ(t) = aλ cn(λτ, k ) dn (λτ, k )                                      (3.2.10) 
 
                                                                      ż(t) = -aλ sn(λτ, k ) dn(λτ, k)                                     (3.2.11) 

       
 
      Now, from Jacobi's integral equation, 

 

                                                                         C = 2J-V2                                                      (3.2.12) 

 
For the suppositional motion, the Jacobi constant is  

 

                                                          C = ω2 (dx
2
+a2(sn(λτ, k ))

2
) +2

μ
1

ρ
1

+2
μ

2

ρ
2

-V2                      (3.2.13) 

     

 

where ρ
1
 and ρ

2
are given by Equations (3.2.6) and (3.2.7),  and the quantity V2 is  

 

                                                      V2 = (ẋ(t))
2
+(ẏ(t))

2
+(ż(t))

2
= a2λ

2(dn(λτ, k ))2                   (3.2.14) 

     
 
Hence, the Jacobi constant can now be written as, 

 

                                           C = ω2 (dx
2
+a2(sn(λτ, k ))

2
) +2

μ
1

ρ
1

+2
μ

2

ρ
2

-a2λ
2(dn(λτ, k ))2           (3.2.15) 

    

The value of C at time  t = ϕ, i.e. when τ = 0 is given as 

 

                                                           Cτ=0  = ω2(dx
2)+2

μ
1

ρ
1

+2
μ

2

ρ
2

-a2λ
2                                            (3.2.16) 

                       
Since C is constant throughout the motion, 

 
                                                                       Cτ=0 =  Cτ=τ = C                                                              (3.2.17) 

                
Thus, equating Equation (3.2.15) and Equation (3.2.16) yields 

 

ω2 (dx
2
+a2(sn(λτ, k ))

2
) +2

μ
1

ρ
1

+2
μ

2

ρ
2

-a2λ
2(dn(λτ, k ))

2
=ω2(dx

2)+2
μ

1

ρ
1

+2
μ

2

ρ
2

-a2λ
2
 

              (3.2.18) 

Cancelling out common terms on both sides, 

 

                                                 ω2a2(sn(λτ, k ))
2
-a2λ

2(dn(λτ, k ))
2
= -a2λ

2
                                  (3.2.19) 

               

Inserting the relation,21  k2(sn(λτ, k ))
2
+(dn(λτ, k ))

2
 = 1 , into Equation (3.2.19) yields 
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                                                ω2a2(sn(λτ, k ))
2
+k

2
a

2
λ

2(sn(λτ, k ))
2
 = 0                                     (3.2.20) 

             
or   

                                                         a2(sn(λτ, k ))
2
(ω2+k

2
λ

2) = 0                                                   (3.2.21) 
               

Now, in Equation (3.2.21), a2 ≠ 0 and (sn(λτ, k ))
2
≠ 0 (since, a finite radius circle is assumed and 

the y coordinate is assumed to be a function of time). This observation gives  

 

                                                                            ω2 + k2
λ

2 = 0                                                              (3.2.22) 

 

                                                                                 k = ±
ω

λ
i                                                                  (3.2.23) 

   

where "i" is the imaginary number i = √-1.      

      Thus, to satisfy Jacobi's integral equation, the elliptic modulus in the suppositional base 

solution should be taken as an imaginary number given by Equation (3.2.23). The negative 

complex value for k is theoretically consistent, but in applications to engineering and physics, 

positive roots are conventionally selected, and this choice would match the usual case where 

0 < k < 1 for real modulus frameworks. So, retaining only the positive complex number value for 

k in Equation (3.2.23) gives  

 

                                                                                  k = 
ω

λ
i                                                                    (3.2.24) 

               
 

      Now, starting the suppositional process again with the base solution having k taken as  
ω

λ
i 

yields 

 
                                                                             x(t) = dx                                                                     (3.2.25)        

     

                                                                            y(t) = a sn (λτ, 
ω

λ
i  )                                               (3.2.26) 
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                                                                           z(t) = a cn (λτ, 
ω

λ
i)                                                (3.2.27) 

               
Satisfaction of Jacobi's integral equation by this new but equivalent form of the supposition can 

be verified. This result may sound like an obvious fact but it is not, because now an imaginary 

modulus is present in the analysis. However, all the formulas and derivatives for real modulus 

elliptic functions remain valid for imaginary modulus arguments also.21 

Conversion of the imaginary modulus formulation to an equivalent real modulus formulation 

is possible and considered next. Re-express the above suppositional equations in terms of a real 

modulus by using the transformation equations from imaginary modulus to real modulus as21 

 

                                                           sn(u, ik) = k1
'
 sd (u√1+k

2
 , k1)                                              (3.2.28) 

                  

                                                             cn(u, ik) = cd (u√1+k
2
 , k1)                                                 (3.2.29) 

               
Thus, elliptic functions sn(∙) and cn(∙) with imaginary modulus ik get transformed to elliptic 

functions sd(∙) and cd(∙) with real modulus k1 where k1 is given by    

                                                                     k1=
k

√1+k
2
                                                                         (3.2.30) 

 

and k1
'
  is the complementary modulus of  k1 defined by 

 

                                                           k1
'
= √1-k1

2
 = 

1

√1+k
2

                                                                (3.2.31) 

 
Now, the base solution given by Equations (3.2.1)-(3.2.3) can be expressed in the form of elliptic 

functions sd(∙) and cd(∙) using the above format.  

Using Equations (3.2.28)-(3.2.31),  

u = λτ 

k =
ω

λ
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                                                                                                                                               (3.2.32) 

k1=

ω
λ

√1+ (
ω
λ
)

2
=

ω

√λ
2
+ω2

  and  k1
'
 =

1

√1+ (
ω
λ
)

2
=

λ

√λ
2
+ω2

  

              

The transformed base solution is thus obtained as follows. 

 
                                                                        x(t) = dx                                                                           (3.2.33)  

 
            
                                                               y(t) = a sn(u, ik  )                                                                  (3.2.34) 

                                                            = ak1
'
sd (u√1+k

2
 , k1)                                                             (3.2.35) 

                                            =
aλ

√λ
2
+ω2

  sd (λτ  √1+ (
ω

λ
)

2

 , 
ω

√λ
2
+ω2

)                                          (3.2.36) 

                                                =
aλ

√λ
2
+ω2

  sd (τ  √λ
2
+ω2 , 

ω

√λ
2
+ω2

)                                              (3.2.37) 

 

                                                                   z(t) = a cn(u, ik  )                                                              (3.2.38) 

                                                                   = a cd (u√1+k
2
 , k1)                                                         (3.2.39) 

                                                      = a cd (λτ  √1+ (
ω

λ
)

2

 , 
ω

√λ
2
+ω2

)                                              (3.2.40) 

                                                           = a cd (τ  √λ
2
+ω2 , 

ω

√λ
2
+ω2

)                                                 (3.2.41) 

   

Now, using an identity for elliptic functions21 

        (y(t))
2
+(z(t))

2
=a2 ((k1

' )
2
(sd (u√1+k

2
 , k1))

2

+ (cd (u√1+k
2
 , k1 ))

2

) = a2            (3.2.42) 
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This relation confirms the same suppositional circle is present. To be consistent with analysis, re-

verify that this formulation satisfies the Jacobi integral equation. 

      Differentiating Equations (3.2.33), (3.2.37), and (3.2.41) with respect to time t. 

                                                                             ẋ(t) = 0                                                                       (3.2.43)  

 

                                         ẏ(t) =
d

dt
[ 

aλ

√λ
2
+ω2

  sd (τ  √λ
2
+ω2 , 

ω

√λ
2
+ω2

)  ]                                (3.2.44) 

      =
aλ

√λ
2
+ω2

 cn (τ  √λ
2
+ω2 , 

ω

√λ
2
+ω2

)  (nd (τ  √λ
2
+ω2 , 

ω

√λ
2
+ω2

))

2

√λ
2
+ω2  

dτ

dt
      (3.2.45) 

                          = aλ cn (τ  √λ
2
+ω2 , 

ω

√λ
2
+ω2

)  (nd (τ  √λ
2
+ω2 , 

ω

√λ
2
+ω2

))

2

                   (3.2.46) 

 

                                            ż(t)=
d

dt
[ a cd (τ  √λ

2
+ω2 , 

ω

√λ
2
+ω2

)  ]                                              (3.2.47) 

       = -a(k1
' )

2
 sn (τ  √λ

2
+ω2 , 

ω

√λ
2
+ω2

)  (nd (τ  √λ
2
+ω2 , 

ω

√λ
2
+ω2

))

2

√λ
2
+ω2  

dτ

dt
       (3.2.48) 

             =
-aλ

2

λ
2
+ω2

  sn (τ  √λ
2
+ω2 , 

ω

√λ
2
+ω2

)   (nd (τ  √λ
2
+ω2 , 

ω

√λ
2
+ω2

))

2

 √λ
2
+ω2   

dτ

dt
 

             (3.2.49) 

                    =
-aλ

2

√λ
2
+ω2

 sn (τ  √λ
2
+ω2 , 

ω

√λ
2
+ω2

)   (nd (τ  √λ
2
+ω2 , 

ω

√λ
2
+ω2

))

2

              (3.2.50) 

The quantity V2 becomes, 

                                                   V2 = (ẋ(t))
2
+(ẏ(t))

2
+(ż(t))

2
                                                         (3.2.51) 



48 

 

                                                                                

 

  = 0+a2λ
2
 [cn (τ  √λ

2
+ω2 , 

ω

√λ
2
+ω2

)]

2

[nd (τ  √λ
2
+ω2 , 

ω

√λ
2
+ω2

)]

4

 

                          +
a2λ

4

λ
2
+ω2

[sn (τ  √λ
2
+ω2 , 

ω

√λ
2
+ω2

)]

2

[nd (τ  √λ
2
+ω2 , 

ω

√λ
2
+ω2

)]

4

             (3.2.52) 

  

The Jacobi constant is  

C = ω2 (dx
2
+ [

aλ

√λ
2
+ω2

  sd (τ  √λ
2
+ω2 , 

ω

√λ
2
+ω2

)]

2

) +2
μ

1

ρ
1

+2
μ

2

ρ
2

 

 

                           -a2λ
2 [cn (τ  √λ

2
+ω2 , 

ω

√λ
2
+ω2

)]

2

[nd (τ  √λ
2
+ω2 , 

ω

√λ
2
+ω2

)]

4

 

                          -
a2λ

4

λ
2
+ω2

[sn (τ  √λ
2
+ω2 , 

ω

√λ
2
+ω2

)]

2

[nd (τ  √λ
2
+ω2 , 

ω

√λ
2
+ω2

)]

4

             (3.2.53) 

                
 
The value of C at the time t = ϕ, i.e., when τ = 0, is given by  

 

                                                           Cτ=0 = ω2(dx
2)+2

μ
1

ρ
1

+2
μ

2

ρ
2

-a2λ
2                                              (3.2.54) 

               
       Now, to show that the Jacobi's integral equation is satisfied, the condition Cτ=0 =  Cτ=τ = C must 

be satisfied, i.e., it must be shown that the value of C at any time is equal to the one given by 

Equation (3.2.54). Simplifying the expression for C given by Equation (3.2.53) 

 

C = ω2 (dx
2
+ [

aλ

√λ
2
+ω2

  sd (τ  √λ
2
+ω2 , 

ω

√λ
2
+ω2

)]

2

) +2
μ

1

ρ
1

+2
μ

2

ρ
2
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                 -a2λ
2 [nd (τ  √λ

2
+ω2 , 

ω

√λ
2
+ω2

)]

4

(

  
 

[cn (τ  √λ
2
+ω2 , 

ω

√λ
2
+ω2

)]

2

+
λ

2

λ
2
+ω2

[sn (τ  √λ
2
+ω2 , 

ω

√λ
2
+ω2

)]

2

)

  
 

 

                   (3.2.55) 

   

Now, the last bracketed term on the right-hand side of Equation (3.2.55) can be simplified using 

the relations21                                                                                                               

                                                           (k1
' )

2
sn2(∙) + cn2(∙) = dn

2
(∙)                                                  (3.2.56) 

                                                                            nd(∙)=
1

dn(∙)
                                                                (3.2.57) 

C now becomes              

 C = ω2 (dx
2
+ [

aλ

√λ
2
+ω2

  sd (τ  √λ
2
+ω2 , 

ω

√λ
2
+ω2

)]

2

) +2
μ

1

ρ
1

+2
μ

2

ρ
2

 

 

                                                    -a2λ
2 [nd (τ  √λ

2
+ω2 , 

ω

√λ
2
+ω2

)]

2

                                              (3.2.58) 

                                 
Also, simplifying further using the relation21 

                                                                 (k1)
2sd

2
(∙)+1= nd

2
(∙)                                                           (3.2.59) 

The final value for C is obtained as 

    

                                                     C = ω2(dx
2)+2

μ
1

ρ
1

+2
μ

2

ρ
2

-a2λ
2                                                        (3.2.60) 

               
 
Thus, the new formulation given by Equations (3.2.33)-(3.2.41) with real elliptic modulus satisfies 

the Jacobi integral equation.  
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3.3 Determination of Constants from Initial Conditions 

 
      Rewrite the base solution and its derivative with respect to time. 

 
                                                                  x(t) = dx                                                                                  (3.3.1) 

 
 

                                              y(t) =
aλ

√λ
2
+ω2

  sd (τ  √λ
2
+ω2 , 

ω

√λ
2
+ω2

)                                         (3.3.2) 

                       

                                               z(t) = a cd (τ  √λ
2
+ω2 , 

ω

√λ
2
+ω2

)                                                       (3.3.3) 

                
 
                                                                          ẋ(t) = 0                                                                            (3.3.4)  

                      ẏ(t) = aλ cn (τ  √λ
2
+ω2 , 

ω

√λ
2
+ω2

)  (nd (τ  √λ
2
+ω2 , 

ω

√λ
2
+ω2

))

2

                 (3.3.5) 

                   ż(t) =
-aλ

2

√λ
2
+ω2

 sn (τ  √λ
2
+ω2 , 

ω

√λ
2
+ω2

)   (nd (τ  √λ
2
+ω2 , 

ω

√λ
2
+ω2

))

2

         (3.3.6) 

                  
The constants a, λ, and ϕ are to be determined from the initial conditions, i.e., when t = 0 or τ = -ϕ. 

Denoting τ0 = -ϕ, initial condition now corresponds to t = 0 or τ = τ0 . Suppose, a set of initial 

coordinates and velocities of the third body are provided as  

 
                                                                                 x(0) = x0                                                                  (3.3.7) 

 
                                                                                 y(0) = y

0
                                                                   (3.3.8)  

                                                                                 z(0) = z0                                                                   (3.3.9)  

 
                                                                                 ẋ(0) = ẋ0                                                                (3.3.10)   

                                                                                 ẏ(0) = ẏ
0
                                                                (3.3.11)  
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                                                                                 ż(0) = ż0                                                                 (3.3.12)  

   

These six conditions are not completely arbitrary. Some restrictions exist on choosing the initial 

conditions. The third body cannot have velocity in x direction. So ẋ must be zero initially, although 

initial x can be chosen arbitrarily, which remains constant throughout the motion on the 

suppositional circle.    

Also, from Equations (3.3.2), (3.3.3), (3.3.5), and (3.3.6), the following relation is obtained  

 

                                                                           
y(t)

z(t)
 = -

ż(t)

ẏ(t)
                                                             (3.3.13) 

which also holds true for initial conditions.  

                                                          
y(0)

z(0)
 = -

ż(0)

ẏ(0)
  or  

y
0

z0

 = -
ż0

ẏ
0

                                                    (3.3.14) 

Thus, any three initial values out of y
0
, z0, ẏ

0
, and ż0 can be chosen with freedom while the fourth 

initial condition gets automatically fixed, which is a restriction on the choice.                                                           

      If the base solution and its derivatives are considered only for the y and z coordinates, and 

when considering Equation (3.3.14), there are only three independent equations with three 

constants a, λ, and ϕ. This observation indicates the values of all the constants can be derived from 

the three independent initial conditions. This outcome is necessarily true if the equations are linear, 

but in the case of nonlinear equations, constants are not always obtainable in analytic form. 

However, in this problem, the constants are obtainable in closed-form.  

      Substituting τ = τ0 and initial values given by Equations (3.3.7)-(3.3.12) into Equations (3.3.1) 

- (3.3.6), yields 

                                                                               x0 = dx                                                                       (3.3.15)   
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                                                 y
0
=

aλ

√λ
2
+ω2

  sd ( τ0 √λ
2
+ω2 , 

ω

√λ
2
+ω2

)                                       (3.3.16) 

                       

                                                     z0 = a cd (τ0  √λ
2
+ω2 , 

ω

√λ
2
+ω2

)                                                (3.3.17) 

 
 
                                                                              ẋ0 = 0                                                                         (3.3.18)  

                      ẏ
0
= aλ cn ( τ0 √λ

2
+ω2 , 

ω

√λ
2
+ω2

)  (nd (τ0  √λ
2
+ω2 , 

ω

√λ
2
+ω2

))

2

                (3.3.19) 

               ż0 =
-aλ

2

√λ
2
+ω2

 sn (  τ0 √λ
2
+ω2 , 

ω

√λ
2
+ω2

)   (nd (  τ0 √λ
2
+ω2 , 

ω

√λ
2
+ω2

))

2

        (3.3.20) 

                   
Circle radius a can be obtained as follows. 

                                                                         a2 = y
0

2+z0
2                                                                (3.3.21) 

To obtain frequency λ, 

                                             (
ẏ

0

z0

)

2

= λ2 (nd (τ0  √λ
2
+ω2 , 

ω

√λ
2
+ω2

))

2

                                      (3.3.22) 

                                       (
ωy

0

a
)

2

= 
ω2λ

2

λ
2
+ω2

  (sd ( τ0 √λ
2
+ω2 , 

ω

√λ
2
+ω2

))

2

                               (3.3.23) 

 

(
ẏ

0

z0

)

2

- (
ωy

0

a
)

2

= λ2 (nd (τ0  √λ
2
+ω2 , 

ω

√λ
2
+ω2

))

2
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                                                 -
ω2λ

2

λ
2
+ω2

  (sd ( τ0 √λ
2
+ω2 , 

ω

√λ
2
+ω2

))

2

                                     (3.3.24) 

  Using the relation written in Equation (3.2.59), 
 

(
ẏ

0

z0

)

2

- (
ωy

0

a
)

2

= λ2 (
ω2

λ
2
+ω2

(sd (τ0  √λ
2
+ω2 , 

ω

√λ
2
+ω2

))

2

+1) 

                                       -
ω2λ

2

λ
2
+ω2

  (sd ( τ0 √λ
2
+ω2 , 

ω

√λ
2
+ω2

))

2

                                                (3.3.25) 

                                                                                  = λ2                                                                         (3.3.26) 

                        

Hence, frequency λ is given by 

                                                          λ = ±√(
ẏ

0

z0

)

2

- (
ωy

0

a
)

2

                                                               (3.3.27) 

The remaining constant τ0 = -ϕ   can be calculated using 

 

                                                z0 =a cd (τ0  √λ
2
+ω2 , 

ω

√λ
2
+ω2

)                                                     (3.3.28) 

 
3.4 Constraints on Frequency and Elliptic Modulus  

      Two values for λ with opposite signs were obtained in Equation (3.3.27). The constant τ0 

obtained from z0 in Equation (3.3.28) can also take two values, because cd(∙) is an even function. 

On the other hand sd(∙) is an odd function and in the expression for y
0
 in Equation (3.3.16),  λ is a 

multiplier. Thus, there are four combinations of choices for λ and τ0 out of which two are valid 

depending on the sign of y
0
. The following table is provided for clarity. 
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Table 1 Possible Values of λ and τ0 

τ0 λ y
0
 

+ + +P 

- + -P 

+ - -P 

- - +P 

 
Three observations are made. 

1. Depending on whether the provided value for y
0
 is +P or -P where P is the magnitude of y

0
 ,         

there are two choices for selecting the combination of λ and τ0 . In the case where τ0 = 0, 

then ẏ
b
(0) = aλ. So, the value of ẏ(0) determines the sign of λ. 

2. Frequency λ cannot be a complex number, because in that case, the motion outputs are obtained 

as complex numbers. Therefore, the quantity (
ẏ0

z0
)

2

- (
ωy0

a
)

2

 should always be a positive number, 

i.e., 

(
ẏ

0

z0

)

2

> (
ωy

0

a
)

2

 

which is another constraint on the initial conditions. The equality condition is excluded to avoid 

zero frequency.  

3. Also, frequency λ cannot be zero, because then k1 =1 and K (1) = ∞, which means the solution 

for period (see Section 3.5) T is infinite. 

3.5 Periodicity 

      The period of the elliptic functions sd (u, k1) and cd (u, k1) is 4K (k1) . Equations (3.3.16) 

and (3.3.17) for the base solution indicate argument u is given by τ √λ
2
+ω2  

Thus, the period T of the base solution is 

                                                                         T =
4K(k1)

√λ
2
+ω2

                                                                     (3.5.1) 
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If k and λ are used interchangeably, i.e., k =
ω

λ
,  then the period T can also be written as  

                                                                         T =
4kK(k1)

ω√1+k
2

                                                                    (3.5.2) 

Although Equation (3.5.2) is a valid expression, it may not be fully appropriate here because 

elliptic modulus, usually denoted by symbol k, lies between 0 and 1. However, in this development 

k equals 
ω

λ
 which can be greater than 1. Remember that k does not really play a role in this 

development nor it is required because the actual modulus is k1, which always is between 0 and 1 

as mentioned before. Modulus k1 depends only on λ for a specific CRTBP according to Equation 

(3.2.32). So, λ seems to be the sole important parameter for determining period T. 

      Figure 11 demonstrates the non-dimensional period T against various values of  λ. Considering 

non-dimensional forms for the equations of motion and taking the value of ω equal to one, the plot 

obtained is true for any case of the circular restricted three-body problem. As the value of λ  (which 

is dependent on the initial condition) increases, the non-dimensional time for the third body to 

complete one revolution on the suppositional circle decreases. Likewise, as λ decreases, the T 

increases.   
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Figure 11 Period T of Base Solution Against frequency λ 

3.6 Base Solution Accuracy 

 
      The base solution is now substituted into the third body equations of motion. For that, the 

second order derivatives of the base solution are needed and writing them and substituting in real 

modulus form becomes overly complicated. So, the complex modulus form of the base solution is 

considered when taking the first and second order derivatives. 

 
                                                                                x(t) = dx                                                                    (3.6.1) 

 

                                                                      y(t) = a sn (λτ, 
ω

λ
i  )                                                        (3.6.2) 

 

                                                                       z(t) = a cn (λτ, 
ω

λ
i)                                                         (3.6.3) 
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From the Section 3.4, λ can be any real number except zero. The first derivatives are  

 
                                                                              ẋ(t) = 0                                                                         (3.6.4) 

 

                                                   ẏ(t) = aλ cn (λτ, 
ω

λ
i  )  dn (λτ, 

ω

λ
i  )                                               (3.6.5) 

 

                                                   ż(t) = -aλ sn (λτ, 
ω

λ
i)  dn (λτ, 

ω

λ
i  )                                                (3.6.6) 

     
 
And the second order derivatives are 

 
                                                                              ẍ(t) = 0                                                                        (3.6.7) 

 

                ÿ(t) = aλ
2

(

 
 

cn (λτ, 
ω

λ
i  ) ((

ω

λ
)

2

sn (λτ, 
ω

λ
i) cn (λτ, 

ω

λ
i  ))

+dn (λτ, 
ω

λ
i  ) (-sn (λτ, 

ω

λ
i) dn (λτ, 

ω

λ
i  ))

)

 
 

                                    (3.6.8) 

 

                 z̈(t) = -aλ
2

(

 
 

sn (λτ, 
ω

λ
i  ) ((

ω

λ
)

2

sn (λτ, 
ω

λ
i) cn (λτ, 

ω

λ
i  ))

+dn (λτ, 
ω

λ
i  ) (cn (λτ, 

ω

λ
i) dn (λτ, 

ω

λ
i  ))

)

 
 

                                  (3.6.9) 

    

 
Using shorthand notations "sn", "cn", "dn" and substituting these into third-body equations of 

motion 

             0-ω2dx-2ωaλ cn dn+
μ

1

((dx-x1)2+a2)
3
2

(dx-x1)+
μ

2

((dx-x2)2+a2)
3
2

(dx-x2) = 0                  (3.6.10) 

                           

aλ
2 (cn ((

ω

λ
)

2

sn cn) +dn (-sn dn)) -ω2a sn+
μ

1
a sn

((dx-x1)2+a2)
3
2

+
μ

2
a sn

((dx-x2)2+a2)
3
2

 = 0             (3.6.11) 

                                 
                                                                                                                                               

           -aλ
2 (sn ((

ω

λ
)

2

sn cn) +dn (cn dn)) +
μ

1
a cn

((dx-x1)2+a2)
3
2

+
μ

2
a cn

((dx-x2)2+a2)
3
2

 = 0                (3.6.12) 
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Multiplying Equation (3.6.11) by cn and Equation (3.6.12) by sn and subtracting yields 

 

  

                                    aλ
2 (cn ((

ω

λ
)

2

sn)) -ω2a sn cn = 0                                     

or 

                                                                                      0 = 0                      (3.6.13) 
   
This result shows that suppositional motion satisfies the combination of second and third equations 

of motion (i.e., the transverse equation of motion). However, the y and z motion equations might 

not get satisfied individually. The first equation can also be written as  

 

                       -2ωaλ cn dn = -
μ

1

((dx-x1)2+a2)
3
2

(dx-x1)-
μ

2

((dx-x2)2+a2)
3
2

(dx-x2)+ω2dx              (3.6.14) 

                        
                

In Equation (3.6.14), the left-hand side represents a term variable with time while the right-hand 

side is a constant, which implies this relation cannot be correct for a finite segment of time as cn(∙) 

and dn(∙) are continuously changing in value.  

However, Equation (3.6.14) can be shown to be satisfied in an averaged sense if the plane y'z' is 

selected to pass through one of the collinear Lagrange points.If dx = representing Lagrange points 

L1, L2, L3 and   a ≪ (dx-xi), for i=1,2,  then the radius can be neglected and the right-hand term in 

Equation (3.6.14) becomes zero, approximately. Now the left-hand side term -2ωaλ cn dn is a 

finite zero mean oscillating perturbation. To show this, the term is averaged by integrating with 

respect to time over a general whole orbit. 

                           [-2ωẏ] 
avg

= 
-2ωaλ

T
 ∫ cn dn

τ0+T

τ0

 dτ = 
-2ωaλ

T
[sn]τ0

τ0+T
= 0                                   (3.6.15) 

 

[-2ωẏ] 
avg

= 
-2ωaλ

T
 ∫ cn dn

τ0+T

τ0

 dτ = 
-2ωaλ

T
[

λ

√λ
2
+ω2

  sd (τ  √λ
2
+ω2 , 

ω

√λ
2
+ω2

)]

τ0

τ0+T

= 0  
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              (3.6.16) 

 
Both the sn(∙) and sd(∙) functions are periodic and when evaluated at the indicated limits produce 

a value of zero.  

Also, the term -2ωaλ cn dn is bounded and this property can be shown by differentiating the 

term and equating it to zero to find maxima and minima and the time corresponding to them. 

                                                                   
d

dt
[-2ωẏ]    = -2ωÿ                                                               

 

                            = -2ωaλ
2

(

 
 

cn (λτ,
ω

λ
i  )((

ω

λ
)

2

sn (λτ,
ω

λ
i) cn (λτ,

ω

λ
i  ))

+dn (λτ,
ω

λ
i  ) (-sn (λτ,

ω

λ
i) dn (λτ,

ω

λ
i  ))

)

 
 

                 

   
 

                          = -2ωaλ
2
 sn (λτ,

ω

λ
i)  ((cn (λτ,

ω

λ
i  ))

2

(
ω

λ
)

2

- (dn (λτ,
ω

λ
i  ))

2

 )               (3.6.17) 

   
 

Using the relation, dn
2 = 1-k

2
sn2 = 1-k

2
+k

2
cn2 and putting  k =

ω

λ
i 

 

                     
d

dt
[-2ωẏ] = -2ωaλ

2
 sn (λτ,

ω

λ
i)  (2 (cn (λτ,

ω

λ
i  ))

2

(
ω

λ
)

2

-1- (
ω

λ
)

2

 )                 (3.6.18) 

                  

Applying the condition for an extremum results in 

 

                                                        
d

dt
[-2ωẏ] = 0 ⇒ sn (λτ,

ω

λ
i) = 0                                                  (3.6.19) 

Or equivalently 

                                            
λ

√λ
2
+ω2

  sd (τ  √λ
2
+ω2 , 

ω

√λ
2
+ω2

) = 0                                             (3.6.20) 

 
This condition occurs i.e when τ = 0 or t = ϕ . The other condition for extremum is  

 

 

     

           (2 (cn (λτ,
ω

λ
i  ))

2

(
ω

λ
)

2

-1- (
ω

λ
)

2

 ) = 0 ⇒      cn (λτ,
ω

λ
i  )  = ±

√λ
2
+ω2

√2ω
                    (3.6.21) 
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or 

                                                  cd (τ  √λ
2
+ω2 , 

ω

√λ
2
+ω2

) = ±
√λ

2
+ω2

√2ω
                                        (3.6.22) 

 

This second condition occurs when τ =
1

√λ
2
+ω2

 cd

-1

(±
√λ

2
+ω2

√2ω
 , 

ω

√λ
2
+ω2

) 

      

Since, cn(∙) and dn(∙) are actually cd(∙) and nd(∙) functions with real modulus, then at τ = 0, both 

of them are equal to unity. Evaluating the term -2ωẏ  at  τ = 0  gives the maximum and minimum 

for the first condition, or 

 
                                                                        [-2ωẏ] 

τ=0
 = -2ωaλ                                                        (3.6.23) 

              
Now consider the relation, 

 

                                                                      (k1)
2cd

2
+(k1

' )
2
nd

2

= 1                     (3.6.24) 

 
If the value for cd(∙) is known from Equation (3.6.22), then the value for nd(∙) can be obtained as  

                                                   nd (τ  √λ
2
+ω2 , 

ω

√λ
2
+ω2

) = ±
√λ

2
+ω2

√2λ
                                        (3.6.25) 

Hence, 

 

[-2ωẏ] 
τ = 

1

√λ
2
+ω2

 cd
-1

(
√λ

2
+ω2

√2ω
 , 

ω

√λ
2
+ω2

)

= -2ωaλ (±
√λ

2
+ω2

√2ω
)(±

√2λ

√λ
2
+ω2

) 

 

                                                                          = ± 2aλ
2
                                                              (3.6.26) 

              

 

Thus, the maximum and minimum values for the term -2ωy ̇ are finite and equal to +2aλ
2
  and -2aλ

2
  

respectively. 
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In summary, the first equation of motion (x) is satisfied in an averaged and bounded sense 

when the suppositional circle lies in the y'z' plane passing through the collinear libration points. 

Further, a combination of the second (y) and third (z) equations of motion are satisfied precisely, 

but not individually. Thus, the base solution , though exactly not correct, partially satisfies the 

second and third equations of motion and the first equation can be approximately correct in the 

special case of halo orbits around L1, L2, L3 in the indicated sense. To improve on accuracy, a 

correction process is considered in the next chapter.  
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CHAPTER 4 

FIRST ORDER CORRECTION TO THE BASE SOLUTION 

      The correction procedure in this chapter is similar to that in Ghazy and Newman.9 The third 

body equations of motion (2.2.41)-(2.2.43) can be used to correct the suppositional motion results 

using an iterative analytic approximate procedure. Assuming a motion for the x axis, motion in the 

y and z axes is solved using the second and third equations of motion respectively. These results 

constitute the base solution:  xb, yb
(t), zb(t) . Now, the base solutions in the y and z axes are used 

to solve for a correction to the x axis base solution, i.e., xc1(t). The total solution can now be 

expanded as the base plus first correction, some approximations being invoked in doing so. Then 

for a first order correction in the y and z axes, i.e., y
c1

(t) and zc1(t), the x axis first correction is 

used in equations for the y and z axes. The procedure can be iterated for higher order corrections. 

This correction procedure outlined in this chapter is also general and does not pertain to any 

specific three-body problem. Table 2 outlines the correction procedure. 

 
Table 2 Outline of Higher Order Correction to Base Solution.   

 
  xb→y

b
(t), zb(t)  (base solution) 

 
 
                                      xc1 (t)                                  yc1 (t), zc1 (t) (first correction) 

 
                                                                                                       xc2 (t) → yc2 (t), zc2 (t)            

                                                                                                           (second correction) 

 
                                                                                                                                                          …………. 

 
  Base solution:                           x(t) ≈ xb 

                                                   y(t )≈ y
b
(t) 

                                                          z(t) ≈  zb(t)  

 
  First correction:                        x(t) ≈ {xb}+ xc1(t)  
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                                                     y(t) ≈ {y
b
(t)} + y

c1
(t)  

                                                     z(t) ≈ {zb(t)} + zc1(t)  

 

   Second correction:                    x(t) ≈  {xb + xc1(t)} + xc2(t) 

                                                     y(t) ≈ { y
b
(t)+ y

c1
(t)} + y

c2
(t) 

                                                     z(t) ≈ { zb(t) + zc1(t)} + zc2(t) 

 
      First, a correction to xb is discussed. Substituting x(t) = xb+ xc1(t) , y(t) = y

b
(t) , and z(t) = 

zb(t)   into Equation (2.2.41) yields 

 

   ẍc1(t)-2ωẏ
b
(t) = ω2[xb+ xc1(t)]-

Gm1

[(xb+ xc1(t) - x1)2+(y
b
(t))

2

+ (zb(t))2]
3/2

(xb+ xc1(t)-x1)    

        

              -
Gm2

[(xb+ xc1(t) - x2)2
 +(y

b
(t))

2

+ (zb(t))2]
3/2

(xb + xc1(t)-x2)                                              (4.1) 

 

Expanding the nonlinear gravitational terms about the base solution in Equation (4.1), yields 

 

                            ẍc1(t)-2ωẏ
b
(t) = ω2[xb+ xc1(t)]-Gm1 [

xb-x1

ρ
1
3

+ {
1

ρ
1
3

-
3(xb-x1)

2

ρ
1
5

} xc1(t)+…] 

 

                                              -Gm2 [
xb-x2

ρ
2
3

+ {
1

ρ
2
3

-
3(xb-x2)

2

ρ
2
5

} xc1(t)+…]                                               (4.2) 

    

 
Selecting dx as one of the collinear libration points, i.e., dx= 𝜉1 , 𝜉2 , or 𝜉3  and cancelling out the 

embedded (approximate bounded averaged) base solution ( a ≪ (dx - xi) , i = 1,2) and deleting 

higher-order terms in xc1(t)  (|xc1(t)|≪ ρ
i
 for i =1,2) , one finds 

 

       ẍc1(t) + [-ω2+G {m1 (
1

ρ
1
3

-
3(xb-x1)

2

ρ
1
5

) + m2 (
1

ρ
2
3

-
3(xb-x2)

2

ρ
2
5

)}] xc1(t) = 2ωẏ
b
(t)                  (4.3) 

       
  

          ẍc1(t) + G {m1 (
1

ρ
1
3

-
3(xb-x1)

2

ρ
1
5

-
1

r12
3

) + m2 (
1

ρ
2
3

-
3(xb-x2)

2

ρ
2
5

-
1

r12
3

)} xc1(t) = 2ωẏ
b
(t)           (4.4) 
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Depending on the sign of the gravitational coefficient, Equation (4.4) represents a stable-unstable 

forced second order linear time invariant dynamic system. Only the unstable case is considered 

further. 

 

                                                         ẍc1(t)-λc1
2

 xc1(t) = 2ωẏ
b
(t)                                                               (4.5) 

       
 

                                 λc1
2

 = ω2-G {m1 (
1

ρ
1
3

-
3(xb-x1)

2

ρ
1
5

) + m2 (
1

ρ
2
3

-
3(xb-x2)

2

ρ
2
5

)} > 0                         (4.6) 

        
      The forcing function in Equation (4.5) is  

 

                  2ωẏ
b
(t) = 2ωaλ cn (τ  √λ

2
+ω2 , 

ω

√λ
2
+ω2

)  (nd (τ  √λ
2
+ω2 , 

ω

√λ
2
+ω2

))

2

             (4.7) 

    

This forcing can also be written as 

 

                 2ωẏ
b
(t) = 2ωaλ cd (τ  √λ

2
+ω2 , 

ω

√λ
2
+ω2

)  (nd (τ  √λ
2
+ω2 , 

ω

√λ
2
+ω2

))                (4.8) 

        
In terms of the nome expansion, the forcing function becomes 

 

                       2ωẏ
b
(t) = 2ωaλ [

2π

k1K(k1)
∑ (-1)

m q
m+

1
2

1-q2m+1
cos {

(2m+1)π

2K(k1)
τ√λ

2
+ω2}

∞

m=0

] ⦁ 

 

                         [
π

2K(k1)k1
'

+
2π

K(k1)k1
'
∑ (-1)

p+1 qp+1

1+q2(p+1)
cos {

(p+1)π

K(k1)
τ  √λ

2
+ω2}

∞

p=0

]                     (4.9) 

       
where 

                                        k1=
ω

√λ
2
+ω2

 , k1
'
= 

λ

√λ
2
+ω2

 ,     q = e
-πK'

K                                                      (4.10) 

In the above expressions , K(k1) is the is the complete elliptic integral of the first kind 

corresponding to elliptic modulus k1, K'(k1
' ) the complete elliptic integral of the first kind  
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corresponding to elliptic modulus k1
'
 and q = e

-πK'

K  is the nome. Substituting the expressions of k1 

and k1
'
 into Equation (4.9), forcing term 2ωẏ

b
(t) can also be written as  

 

                         2ωẏ
b
(t) = 2ωaλ [

2π √λ
2
+ω2

ωK(k1)
∑ (-1)

m q
m+

1
2

1-q2m+1
cos {

(2m+1)π

2K(k1)
τ√λ

2
+ω2}

∞

m=0

] ⦁ 

                           [
π√λ

2
+ω2

2λK(k1)
+

2π√λ
2
+ω2

λK(k1)
∑ (-1)

p+1 qp+1

1+q2(p+1)
cos {

(p+1)π

K(k1)
τ  √λ

2
+ω2}

∞

p=0

]              (4.11) 

    
Simplifying further, 

 

                               2ωẏ
b
(t) = cQ [∑ Q

m
cos{ωmτ}

∞

m=0

+4 ∑∑ Q
mp

∞

p=0

cos{ωmτ}cos{ωpτ}

∞

m=0

]               (4.12) 

      
where  

cQ=
2π2a (λ

2
+ω2)

(K(k1))
2

  

       

                                     Q
m

=(-1)
m q

m+
1
2

1-q2m+1
 ,        Q

mp
=(-1)

m+p+1 q
m+

1
2

1-q2m+1
 

qp+1

1+q2(p+1)
                       (4.13) 

 

ωm=
(2m+1)π

2K(k1)
√λ

2
+ω2  ,     ωp=

(p+1)π

K(k1)
√λ

2
+ω2    

                   
  
      The homogeneous solution to Equation (4.5) is  

 
                                                           xc1H(t) = A1eλc1t+A2e-λc1t                                                             (4.14) 

     
whereas the non-homogeneous solution can be written as 

 

                                                    xc1NH(t) = cQ  ∑
Q

m

-ωm
2-λc1

2
cos{ωmτ}

∞

m=0

 

+ 4cQ ∑∑
Q

mp

2 [-(ωm-ωp)
2
-λc1

2 ]
cos{(ωm- ωp)τ}

∞

p=0

∞

m=0
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                                              + 4cQ ∑∑
Q

mp

2 [-(ωm+ωp)
2
-λc1

2 ]
cos{(ωm+ωp)τ}

∞

p=0

                               (4.15)

∞

m=0

 

   
So, the complete solution for the x axis first correction is  

 

            xc1(t) = A1eλc1t+A2e-λc1t+ cQ ∑
Q

m

-ωm
2-λc1

2
cos{ωmτ}

∞

m=0

                      

+ 4cQ ∑∑
Q

mp

2 [-(ωm-ωp)
2
-λc1

2 ]
cos{(ωm- ωp)τ}

∞

p=0

∞

m=0

 

                                              + 4cQ ∑∑
Q

mp

2 [-(ωm+ωp)
2
-λc1

2 ]
cos{(ωm+ωp)τ}

∞

p=0

                               (4.16)

∞

m=0

 

 

      Determining A1 and A2 requires the initial values for xc1 and ẋc1. 

 

So, differentiating xc1(t) with respect to time t gives 

 

ẋc1(t) = λc1A1eλc1t - λc1A
2
e-λc1t + cQ ∑

Q
m

ωm

-ωm
2-λc1

2
(-sin{ωmτ})

∞

m=0

 

      + 4cQ ∑∑
Q

mp
(ωm-ωp)

2 [-(ωm-ωp)
2
-λc1

2 ]
(-sin{(ωm-ωp)τ})

∞

p=0

∞

m=0

   

                                            + 4cQ ∑∑
Q

mp
(ωm+ωp)

2 [-(ωm+ωp)
2
-λc1

2 ]
(-sin{(ωm+ωp)τ})

∞

p=0

∞

m=0

                            (4.17) 

    

 
Let the initial conditions be  

            

                                                        xc1(0) = xc10  and ẋc1(0) = ẋc10           (4.18) 
 
Substituting these values into Equation (4.16) and (4.17) respectively and noting at t = 0, or τ = τ0  

 

  xc1(0) = xc10 = A1+A2+ cQ ∑
Q

m

-ωm
2-λc1

2
cos{ωmτ0}

∞

m=0
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+ 4cQ ∑∑
Q

mp

2 [-(ωm-ωp)
2
-λc1

2 ]
cos{(ωm- ωp)τ0}

∞

p=0

∞

m=0

 

                                  

                                            + 4cQ ∑∑
Q

mp

2 [-(ωm+ωp)
2
-λc1

2 ]
cos{(ωm+ωp)τ0}

∞

p=0

                                          

∞

m=0

 

 
                                                                          = A1+A2+β

x
                                                                     (4.19) 

   

ẋc1(0) =  ẋc10 = λc1A1 - λc1A
2
 + cQ ∑

Q
m

ωm

-ωm
2-λc1

2
(-sin{ωmτ0})

∞

m=0

 

+ 4cQ ∑∑
Q

mp
(ωm-ωp)

2 [-(ωm-ωp)
2
-λc1

2 ]
(-sin{(ωm-ωp)τ0})

∞

p=0

∞

m=0

 

                               + 4cQ ∑∑
Q

mp
(ωm+ωp)

2 [-(ωm+ωp)
2
-λc1

2 ]
(-sin{(ωm+ωp)τ0})

∞

p=0

∞

m=0

                               

  

                                                                = λc1A1 - λc1A
2
+β

ẋ
                                                                   (4.20) 

 
Now, from Equations (4.19) and (4.20),  A1 and  A2 can be obtained as follows 

 

                                   A1=
λc1x

c10
+ẋc10-λc1β

x
-β

ẋ

2λc1

   ,     A2=
λc1x

c10
-ẋc10-λc1β

x
+β

ẋ

2λc1

                        (4.21) 

      
      For a general set of initial conditions, and when xc1(t) is added to xb, the third body will deviate 

from the suppositional y'z' plane with a combined multi-frequency oscillatory and aperiodic 

nature,9 at least initially, when the variation from the plane is not excessive according to Equation 

(4.16). A special class of solution of Equation (4.16) giving unstable periodic orbits is also possible 

for certain initial conditions sets, for example libration point halo orbits. To do so, homogeneous 

coefficients A1 and A2 are to be nulled. An initial condition set satisfying this requirement from 

Equation (4.22) is  

                                                                xc10 = β
x
 ,    ẋc10 = β

ẋ
                   (4.22) 
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      Corrections to  y
b
(t) and zb(t) will be discussed now assuming the form of the solutions as  

 
                  x(t) =  xb + xc1(t)              y(t) = y

b
(t) + y

c1
(t)              z(t) = zb(t) + zc1(t)            (4.23)                                  

    
Substituting this form into Equations (2.2.42) and (2.2.43) 

 

                                                  ÿ
b
(t)+ÿ

c1
(t)+2ωẋc1(t) = ω2[y

b
(t)+ y

c1
(t)] 

 

                                       - 
Gm1 (y

b
(t)+y

c1
(t))

[(xb+ xc1(t) - x1)2 + (y
b
(t)+y

c1
(t))

2

+ (zb(t)+ zc1(t))
2

]

3
2

    

 

                              −  
Gm2 (y

b
(t)+y

c1
(t))

[(xb+ xc1(t) - x2)2 + (y
b
(t) + y

c1
(t))

2

+(zb(t)+ zc1(t))
2

]
3/2

                       (4.24) 

      
 

                             z̈b(t) + z̈c1(t) = -
Gm1(zb(t)+zc1(t))

[(xb+ xc1(t)-x1)2+(y
b
(t)+y

c1
(t))

2

+(zb(t)+ zc1(t))
2

]

3
2

    

 

                                  - 
Gm2(zb(t)+zc1(t))

[(xb+ xc1(t)-x2)2+(y
b
(t)+y

c1
(t))

2

+(zb(t)+ zc1(t))
2

]
3/2

                           (4.25) 

      
 

Gravitational expansion of these relations about the base solution provides  

 

                                                     ÿ
b
(t)+ÿ

c1
(t)+2ωẋc1(t) = ω2[y

b
(t)+ y

c1
(t)] 

 

- Gm1 [
y

b
(t)

ρ
1
3

-
3(xb-x1)y

b
(t)

ρ
1
5

xc1(t)+ {
1

ρ
1
3

-
3y

b
2(t)

ρ
1
5

}  y
c1

(t)-
3y

b
(t)zb(t)

ρ
1
5

 zc1(t)+…] 

 

 - Gm2 [
y

b
(t)

ρ
2
3

-
3(xb-x2)y

b
(t)

ρ
2
5

xc1(t)+ {
1

ρ
2
3

-
3y

b
2(t)

ρ
2
5

}  y
c1

(t)-
3y

b
(t)zb(t)

ρ
2
5

 zc1(t)+…] 

     (4.26) 

 

z̈b(t)+z̈c1(t) = -Gm1 [
zb(t)

ρ
1
3

-
3(xb-x1)zb(t)

ρ
1
5

xc1(t)+ {
1

ρ
1
3

-
3zb

2(t)

ρ
1
5

}  zc1(t)-
3y

b
(t)zb(t)

ρ
1
5

 y
c1

(t)+…] 
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- Gm2 [
zb(t)

ρ
2
3

-
3(xb-x2)zb(t)

ρ
2
5

xc1(t)+ {
1

ρ
2
3

-
3zb

2(t)

ρ
2
5

}  zc1(t)-
3y

b
(t)zb(t)

ρ
2
5

 y
c1

(t)+…] 

     (4.27) 

 
Proceed analytically by canceling out the embedded (approximate banded) base solution and delete 

higher order terms in  xc1(t),  y
c1

(t),  zc1(t) (|xc1(t)|, |y
c1

(t)|, |zc1(t)|≪ ρ
i
 for i = 1,2).9 

                                 ÿ
c1

(t)+ [-ω2+G {m1 (
1

ρ
1
3

-
3y

b
2(t)

ρ
1
5

) +m2 (
1

ρ
2
3

-
3y

b
2(t)

ρ
2
5

)}] y
c1

(t)  

                                                  + [-3G {m1

y
b
(t)zb(t)

ρ
1
5

+m2

y
b
(t)zb(t)

ρ
2
5

}]  zc1(t)   

                                    = -2ωẋc1(t)+ [3G {m1

(xb-x1)y
b
(t)

ρ
1
5

+m2

(xb-x2)y
b
(t)

ρ
2
5

}]  xc1(t)                 (4.28) 

    

                                         z̈c1(t) + [G {m1 (
1

ρ
1
3

-
3zb

2(t)

ρ
1
5

) +m2 (
1

ρ
2
3

-
3zb

2(t)

ρ
2
5

)}] zc1(t) 

 

                                                + [-3G {m1

y
b
(t)zb(t)

ρ
1
5

+m2

y
b
(t)zb(t)

ρ
2
5

}]  y
c1

(t) 

 

                                             = [3G {m1

(xb-x1)zb(t)

ρ
1
5

+m2

(xb-x2)zb(t)

ρ
2
5

}]  xc1(t)                             (4.29) 

      
      Equations (4.29) and (4.30) represent two coupled forced second order linear time varying 

dynamic systems. Assuming y and z axis base solutions are small in comparison to the third body 

relative position magnitudes (|y
b
(t)|, |zb(t)| ≪ ρ

i
5/2 for i =1,2), Equations (4.29) and (4.30) 

simplify to uncoupled time invariant systems. 9 

ÿ
c1

(t)+ [-ω2+G {
m1

ρ
1
3

+
m2

ρ
2
3
}] y

c1
(t) = -2ωẋc1(t) 

or 

 

                                 ÿ
c1

(t)+G {m1 (
1

ρ
1
3

-
1

r12
3

) +m2 (
1

ρ
2
3

-
1

r12
3

)} y
c1

(t) = -2ωẋc1(t)                            (4.30) 
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                                                               z̈c1(t)+G {
m1

ρ
1
3

+
m2

ρ
2
3
} zc1(t) = 0                                                 (4.31) 

    

  

The sign of the gravitational coefficient in Equation (4.31) decides whether the y axis system is 

stable or unstable.9 The coefficient is positive when ω2y < -
∂U

∂y
 , i.e., the gravitational acceleration 

component in the y direction is greater than the centripetal component in the y direction (assuming 

y > 0). Small radius orbits located between the primary and secondary bodies tend to be y axis 

stable, such as small L1 halo orbits. Small radius orbits lying well outside the CRTBP system (small 

L2, L3 halo orbits) or large radius orbits located anywhere along the x axis tend to be unstable. Only 

the stable y axis case is explored further. The z axis system in Equation (4.32) is always stable. 

Further note the z axis system is Coriolis unforced. Equations (4.31) and (4.32) can be rewritten 

as 

 
                                                             ÿ

c1
(t)+ωc1y

2 y
c1

(t) = -2ωẋc1(t)                                                    (4.32)

      

                                                               ωc1y
2  = -ω2+G {

m1

ρ
1
3

+
m2

ρ
2
3
} > 0                                                   (4.33) 

 
                                                                  z̈c1(t)+ωc1z 

2 z
c1

(t) = 0                                                             (4.34) 

    

                                                                   ωc1z 
2 = G {

m1

ρ
1
3

+
m2

ρ
2
3
} > 0                                                      (4.35) 

 

Finally, the forcing function in Equation (4.33), making use of the x axis first correction in 

Equation (4.16), is  
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     (4.36) 

 
The homogeneous solution to Equation (4.32) is  

 
                                                     y

c1H
(t) = C1sin(ωc1yt) + C2cos(ωc1yt)     (4.37) 

 
whereas the non-homogeneous solution is 

     

                 = -2ω {
λc1A1

λc1
2

+ωc1y
2

e

λc1t

-
λc1A

2

λc1
2

+ωc1y
2

e-λc1t+cQ (∑
Q

m
ωm

-ωm
2-λc1

2
(

-sin{ωmτ}

-ωm
2+ωc1y

2
)

∞

m=0

      

+ 4 ∑ ∑
Q

mp
(ωm-ωp)

2 [-(ωm-ωp)
2
-λc1

2 ]
(

-sin{(ωm-ωp)τ}

-(ωm-ωp)
2
+ωc1y

2
)  

∞

p=0

∞

m=0

+ 4 ∑ ∑
Q

mp
(ωm+ωp)

2 [-(ωm+ωp)
2
-λc1

2 ]
(

-sin{(ωm+ωp)τ}

-(ωm+ωp)
2
+ωc1y

2
)

∞

p=0

∞

m=0

)}                                       (4.38) 

      
Introduce constants D1 and D2 

 

                                              D1 = 
-2ωλc1A1

λc1
2

+ωc1y
2

   and  D2 = 
2ωλc1A

2

λc1
2

+ωc1y
2

                                                (4.39) 

      
so that y

c1NH
(t) can also be represented as  

 

                                           = D1eλc1t+D2e-λc1t -2ωcQ (∑
Q

m
ωm

-ωm
2-λc1

2
(

-sin{ωmτ}

-ωm
2+ωc1y

2
)

∞

m=0

+ 4 ∑ ∑
Q

mp
(ωm-ωp)

2 [-(ωm-ωp)
2
-λc1

2 ]
(

-sin{(ωm-ωp)τ}

-(ωm-ωp)
2
+ωc1y

2
)

∞

p=0

∞

m=0

+ 4 ∑ ∑
Q

mp
(ωm+ωp)

2 [-(ωm+ωp)
2
-λc1

2 ]
(

-sin{(ωm+ωp)τ}

-(ωm+ωp)
2
+ωc1y

2
)

∞

p=0

∞

m=0

)                                          (4.40) 
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Thus, the complete solution to y
c1

(t) is  

 

 y
c1

(t) = C1 sin(ωc1yt) +C2 cos(ωc1yt) +D1eλc1t+D2e-λc1t -2ωcQ (∑
Q

m
ωm

-ωm
2-λc1

2
(

-sin{ωmτ}

-ωm
2+ωc1y

2
)

∞

m=0

+ 4 ∑ ∑
Q

mp
(ωm-ωp)

2 [-(ωm-ωp)
2
-λc1

2 ]
(

-sin{(ωm-ωp)τ}

-(ωm-ωp)
2
+ωc1y

2
)

∞

p=0

∞

m=0

+ 4 ∑∑
Q

mp
(ωm+ωp)

2 [-(ωm+ωp)
2
-λc1

2 ]
(

-sin{(ωm+ωp)τ}

-(ωm+ωp)
2
+ωc1y

2
)

∞

p=0

∞

m=0

)                                           (4.41) 

    

Note that in Equation (4.42), the values of D1 and D2 are already known, because they depend on 

A1 and A2 whose values are known from the initial values of xc10 and ẋc10.    

      To calculate C1 and C2 , two equations with two initial values of y
c1

and ẏ
c1

are required. Hence 

differentiating Equation (4.42) with respect to time t gives  

   

                                                               ẏ
c1

(t) = C1ωc1y cos(ωc1yt) -    

 

                                        C2ωc1y sin(ωc1yt) +D1λc1eλc1t-λc1D
2
e-λc1t  

-2ωcQ (∑
Q

m
ωm

2

-ωm
2-λc1

2
(

-cos{ωmτ}

-ωm
2+ωc1y

2
)

∞

m=0

                          

+ 4 ∑ ∑
Q

mp
(ωm-ωp)

2

2 [-(ωm-ωp)
2
-λc1

2 ]
(

-cos{(ωm-ωp)τ}

-(ωm-ωp)
2
+ωc1y

2
)                                         

∞

p=0

∞

m=0

+ 4 ∑ ∑
Q

mp
(ωm+ωp)

2

2 [-(ωm+ωp)
2
-λc1

2 ]
(

-cos{(ωm+ωp)τ}

-(ωm+ωp)
2
+ωc1y

2
)

∞

p=0

∞

m=0

)                                         (4.42) 

    

  
Let the initial conditions be 

 

                                                y
c1

(0) = y
c10

  and ẏ
c1

(0) = ẏ
c10

     (4.43) 

 
Substituting these values into Equation (4.41) and (4.42) respectively and noting at t = 0, or τ = τ0 

yields 
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y

c1
(0) = y

c10
 = C2+D1+D2  

                 -2ωcQ  (∑
Q

m
ωm

-ωm
2-λc1

2
(

-sin{ωmτ0}

-ωm
2+ωc1y

2
)

∞

m=0

                       

+ 4 ∑ ∑
Q

mp
(ωm-ωp)

2 [-(ωm-ωp)
2
-λc1

2 ]
(

-sin{(ωm-ωp)τ0}

-(ωm-ωp)
2
+ωc1y

2
)

∞

p=0

∞

m=0

+ 4∑∑
Q

mp
(ωm+ωp)

2 [-(ωm+ωp)
2
-λc1

2 ]
(

-sin{(ωm+ωp)τ0}

-(ωm+ωp)
2
+ωc1y

2
)

∞

p=0

∞

m=0

) 

 
 
                                                                 = C2+D1+D2+δy     (4.44)  

  
 

ẏ
c1

(0) = ẏ
c10

 = C1ωc1y+D1λc1-λc1D
2
 -2ωcQ (∑

Q
m

ωm
2

-ωm
2-λc1

2
(

-cos{ωmτ0}

-ωm
2+ωc1y

2
)

∞

m=0

+ 4 ∑ ∑
Q

mp
(ωm-ωp)

2

2 [-(ωm-ωp)
2
-λc1

2 ]
(

-cos{(ωm-ωp)τ0}

-(ωm-ωp)
2
+ωc1y

2
)

∞

p=0

∞

m=0

+ 4∑∑
Q

mp
(ωm+ωp)

2

2 [-(ωm+ωp)
2
-λc1

2 ]
(

-cos{(ωm+ωp)τ0}

-(ωm+ωp)
2
+ωc1y

2
)

∞

p=0

∞

m=0

) 

 
 
                                                           = C1ωc1y+D1λc1-λc1D

2
+ δẏ     (4.45) 

 
 
Now, from Equations (4.44) and (4.45), C1 and  C2 can be obtained as follows 

 

                                C1 = 
ẏ

c10
-D1λc1+λc1D

2
- δẏ

ωc1y

      ;  C2 = y
c10

-D1-D2-δy                                       (4.46) 

    

Thus, the values of C1 and C2 are known from the initial conditions, which when substituted into 

Equation (4.41), the complete solution for y
c1

(t) is known. 

      For a general set of initial conditions, and when y
c1

(t)  is added to  y
b
(t), the third body will 

deviate from the suppositional y'z' circle with a combined multi-frequency oscillatory and 
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aperiodic nature,9 at least initially when the variation from the circle is not excessive according to 

Equation (4.41). A special class of solution of Equation (4.41) giving unstable periodic orbits is 

again possible for certain initial conditions. This motion is possible when the non-homogeneous 

coefficients D1 and D2 are zero, i.e., when A1 and A2 are zero. This condition is achieved by 

Equation (4.23). Finally, a further special class of unstable periodic orbits with no homogeneous 

frequency content occurs when C1 and C2 are zero. This condition is achieved when  

 
                                                                        y

c10
 = δy   , ẏ

c10
 = δẏ          (4.47) 

 
      Being unforced in the Coriolis sense, the z axis first correction solution is much simpler, having 

only the homogeneous component, or 

 
                                                            zc1(t) = F1 sin(ωc1zt) +F2 cos(ωc1zt)     (4.48) 
 
where 

 

                                                                          ωc1z
2 =G {

m1

ρ
1
3

+
m2

ρ
2
3
}                                                    (4.49) 

 
Differentiating Equation (4.48) with respect to time, 

 
                                             żc1(t) = F1ωc1z cos(ωc1zt) -F2ωc1z sin(ωc1zt)     (4.50) 
 
Substituting the initial conditions  zc1(0) = zc10 and żc1(0) = żc10  into Equations (4.48) and (4.50) 

respectively, F1 and F2 can be obtained as follows. 

 

                                                                      F1=
żc10

ωc1z

   ,    F2 = zc10                                                 (4.51) 

 

For a given set of initial conditions, and when zc1(t) is added to zb(t), the third body will again 

move off from the supposition circle but with a single frequency oscillatory nature, 9 assuming the 
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initial conditions are not excessively large, according to Equation (4.48). This homogeneous 

motion is the only motion allowed in the z axis first correction under the stated assumptions. 

This iterative procedure can be extended in a systematic fashion for higher orders, but a 

solution through the first correction will be sufficient here. The overall analytical approximate 

solution for the third body motion is thus   

 
                       x(t) =  xb(t)+ xc1(t),        y(t) = y

b
(t)+ y

c1
(t) ,             z(t) = zb(t)+ zc1(t)          (4.52)                          

 
where xb(t), y

b
(t), zb(t)  are listed in Equations (3.2.33)-(3.2.41) and  xc1(t),  y

c1
(t),  zc1(t)  are 

listed in Equations (4.16), (4.41), and (4.48).  
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CHAPTER 5 
 

COMPARISON TO NUMERICAL SOLUTIONS 

      The analytical base and first order correction solutions developed so far are evaluated 

numerically and compared with the exact numerical solutions in this chapter. One periodic halo 

orbit around the L1 point is used as the test case. Initially, the base orbit is compared with the true 

orbit and errors are evaluated. Following this, a similar analysis is carried out for the first order 

corrected solution. A truncated version of the x axis forcing function is considered and validated 

to simplify analysis. Further, an updated process to determine the frequency parameter is 

considered. This process is different from that studied in Reference 9, and provided improved 

orbital accuracy. Finally, a more careful analysis and comparison between the thesis base solution 

and that used in Reference 9 revealed the two suppositional orbits are exactly equivalent.  

5.1 Comparison of Base and True Orbits  

 
      A periodic L1 halo orbit with the mass ratio μ

2
 = 0.04 in Reference 15 is considered for 

comparison. The same orbit was mentioned in Section 2.7. The coordinate system used in 

Reference 15 is used throughout Chapter 5. The initial conditions for position and velocity of the 

third body in orbit are given below. The non-dimensional formulation is used in Reference 15 

(similar to the one discussed in Section 2.6). The dimensional values can be obtained by 

multiplying the non-dimensional values for position coordinates by r12 , for velocity coordinates 

by ωr12 , for the period by  
1

 ω
,  and for the Jacobi constant by ω2r12

2 . Subscript "h" denotes values 

for the exact halo orbit to be distinguished from subscript "b" denoting base solution values.  

                                                    xh0 = 0.723268 r12         ẋh0 = 0         
 
                                                    y

h0
 = 0                            ẏ

h0
 = 0.198019 ωr12             (5.1.1) 

 
                                                    zh0 = 0.039993891964  r12   żh0 = 0         
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                                                      T = 2.600354/ω                        C = 3.329168 ω2r12

2       
  

With these initial conditions, the nonlinear simulation of the third body equations of motion gives 

an exact or true periodic orbit symmetric about xz plane, which is computationally generated in 

the same manner as described in Section 2.7.  

      This orbit is compared now with the orbit of the base solution. The initial conditions for the 

exact numerical orbit in Equation (5.1.1) are mapped into the initial conditions for the base 

solution. The dx value of the base solution is not xh0 but taken as the x coordinate of the L1 point, 

as this value provides a correct averaged x axis motion as discussed in the Section 3.6. The other 

five initial state values are identical to the corresponding true halo orbit values. All values are 

indicated below, along with base solution parameters a, λ, ϕ = -τ0, k1, K(k1), k and T.     

xb0 = dx = 0.74090984286 r12           yb0
 = 0           zb0 = 0.039993891964 r12     

 
ẋb0 = 0          ẏ

b0
 = 0.198019 ωr12         żb0 = 0   

 

a = (y
b0

2+zb0
2)

1
2 = 0.039993891964 r12       

 

                                                λ = ±√(
 ẏ

b0

zb0

)

2

- (
ωy

b0

a
)

2

=  ± 4.95123 ω                                            (5.1.2) 

τ0 = 0,  i.e.,  t = τ and ϕ = 0 

 

k1 = 
ω

√λ
2
+ω2

 = 
1

√(± 4.95123)2+1
 = 0.198 ,    K(k1)=1.5865            

 

k =
ω

λ
= ± 0.202     

 

T =
4K(k1)

√λ
2
+ω2

 = 1.2566/ω 
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Note the base solution period is 1.2566/ω, which is only approximately half of the true solution 

period of 2.6003/ω. Out of the two values for λ , the positive value of 4.95123ω  gives the proper 

matching of the initial time rate of change of y (See Figure 14). Recall ẏ
b
(0) = aλ and since ẏ

b
(0) 

and a are positive, then should be chosen as positive.  

      The figures 12-17 show the overlay plots of the x, y, and z axis motion against time for base 

and exact solutions. Also, the deviations from the exact motion against time are shown. The motion 

is plotted for one complete orbital period of the exact solution. 

       In Figure 12, the two-dimensional suppositional motion lying in the plane passing through 

libration point L1 is exhibited by the constant base solution. From Figure 13, the maximum x 

positional error magnitude is 0.0274 r12. The y and z motions in Figures 14 and 16 exhibit 

significant differences from the exact motions regarding frequency of oscillation, originating from 

the period differences. The maximum y and z position error magnitudes are 0.10125 r12 and 0.0753 

r12 , respectively, from Figures 15 and 17. Table 3 summarizes these differences between the base 

and true solutions for x, y, z, T and give a percent difference also. These differences clearly indicate 

the need for the correction solution.      

Table 3 Comparison between the True and Base Orbits 

 

 

 

 

 

 True Base Percentage 

Maximum x Axis 

Error 

0 0.0274 r12 2.74 

Maximum y Axis 

Error 

0 0.10125  r12 10.125 

Maximum z Axis 

Error 

0 0.0753 r12 7.53 

Period 2.603/ω 1.2566/ω 51.725 
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Figure 12 x Motion Against Time t, Base vs. True 

 

 

Figure 13 x Error Against Time t, Base vs. True 
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Figure 14 y Motion Against Time t, Base vs. True 

 

Figure 15 y Error Against Time t, Base vs. True 
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Figure 16 z Motion Against Time t, Base vs. True 

 

Figure 17 z Error Against Time t, Base vs. True 
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      For additional insights, both true and base orbits are shown in three-dimensional and two-

dimensional views in Figures 18-21. Remember that these x, y, and z coordinates with respect to 

the rotating frame. The orbital tracks clearly show the base solution must be modified to include 

out-of-plane motion (See Figure 20) and an expanded amplitude in the y axis (See Figure 21), 

without corrupting the z axis amplitude (see Figures 20, 21).   

 

  
Figure 18 Perspective View, Base vs. True 
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Figure 19 xy Sectional View, Base vs. True 

 
Figure 20 xz Sectional View, Base vs. True 
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                                       Figure 21 yz Sectional View, Base vs. True 

      Non-dimensional acceleration errors in the three differantial equations of motion after 

substituting the base solution are shown in Figures 22-24. Note the errors are plotted for one period 

of the base solution, i.e.,1.2566/ω. As discussed in Section 3.6, the first equation of motion gets   

 

 
Figure 22 First Equation of Motion Error 
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satisfied in the averaged and bounded sense when the suppositional plane is taken at one of the 

collinear libration points. Figure 22 shows that the first equation of motion residual is averaged 

and bounded. The average error is approximately zero, meaning the area under the curve 

accounting for positive and negative values, equals zero approximately. Further, the residuals are 

bounded. The maximum positive error occurs at t = 0, which is consistent with the analysis in 

section 3.6. The magnitude of error at t = 0 should be approximately 2ωaλ = 0.396, see Section 

3.6, which is roughly the value seen in Figure 22. Errors in the second and third equation of motion 

are shown in Figures 23 and 24. 

 

Figure 23 Second Equation of Motion Error 
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                  Figure 24 Third Equation of Motion Error 

5.2 Excitation Simplification and Frequency Update                       

                                                              

      This section addresses two objectives. First, the coriolis forcing term 2ωẏ
b
(t) in the x axis 

correction analysis is an infinite series but only the first few terms are significant. Simplification 

of this forcing term is the first objective. Second, the base solution frequency parameter predicted 

by Equation (3.3.27) requires improved accuracy. Procedure for updating tha value of λ within the 

framework of the three-body problem analytic solution is the second objective. 

      The coriolis forcing term 2ωẏ
b
(t)  given by Equation (4.9) will not be considered in the full 

form, rather a truncated version consisting of nome terms for m = 0, 1 and p = 0 will be expanded 

for further analysis. Thus, 
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                2ωẏ
b
(t) = 

2π2a (λ
2
+ω2)

(K(k1))
2

[ 
q

1
2

1-q
cos {

π √λ
2
+ω2 τ

2K(k1)
} +

q
3
2

q3-1
 cos {

3π √λ
2
+ω2 τ

2K(k1)
}   

+
4 q

3
2

(q-1)(1+q2)
 cos {

π √λ
2
+ω2 τ

2K(k1)
} cos {

π √λ
2
+ω2 τ

K(k1)
}

+
4 q

5
2

(1-q3)(1+q2)
 cos {

3π √λ
2
+ω2 τ

2K(k1)
} cos {

π √λ
2
+ω2 τ

K(k1)
}  ]                                     (5.2.1) 

      

Introduce the simplifying term   

 

                                                                       
π √λ

2
+ω2 τ

2K(k1)
 = υ(t)                                                    (5.2.2) 

so that 

 

2ωẏ
b
(t) =

2π2a (λ
2
+ω2)

(K(k1))
2

[ 
q

1
2

1-q
cos{υ(t)}+

q
3
2

q3-1
 cos{3υ(t)} +

4 q
3
2

(q-1)(1+q2)
   cos{υ(t)} cos{2υ(t)}        

+
4 q

5
2

(1-q3)(1+q2)
 cos{3υ(t)}cos{2υ(t)}]                                                                    (5.2.3) 

    

 
Using the trigonemetric identities, 

 

 cos{υ(t)} cos{2υ(t)} =
1

2
[cos{υ(t)}+cos{3υ(t)}] 

    (5.2.4) 

cos{3υ(t)} cos{2υ(t)} =
1

2
[cos{υ(t)}+cos{5υ(t)}] 

    

 
Equation (5.2.3) becomes 

 

2ωẏ
b
(t) =

2π2a (λ
2
+ω2)

(K(k1))
2

[ 
q

1
2

1-q
cos{υ(t)}+

q
3
2

q3-1
 cos{3υ(t)} +

2 q
3
2

(q-1)(1+q2)
 [cos{υ(t)}+cos{3υ(t)}]   

+
2 q

5
2

(1-q3)(1+q2)
[cos{υ(t)}+cos{5υ(t)}] ]                                                                 (5.2.5) 

    

Finally , 2ωẏ
b
(t) can be written as 
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            2ωẏ
b
(t) =

2π2a (λ
2
+ω2)

(K(k1))
2

[ (
q

1
2

1-q
+

2 q
3
2

(q-1)(1+q2)
+

2 q
5
2

(1-q3)(1+q2)
)  cos{υ(t)}

+ (
q

3
2

q3-1
+

2 q
3
2

(q-1)(1+q2)
) cos{3υ(t)}+ (

2 q
5
2

(1-q3)(1+q2)
) cos{5υ(t)}]                 (5.2.6) 

    
This truncated version of the Fourier series for the forcing function is an accurate representation 

of the exact signal if the value of λ is equal to or greater than one. As value of λ decreases below 

one , the deviation from the exact signal begins to increase. Figure 24 shows the forcing signal 

2ωẏb
(t)

2π2a
 plotted against the dimensionless time for various values of λ. The red curves represent the 

forcing approxiamation while blue ones represent the exact forcing. For the halo orbit example  

with λ = 4.95123, there is no apparent difference beetween the exact and approxiamate forcing. In 

general, for any L1 halo orbit whose initial conditions allow the value of λ to go beyond one, the 

simplified expression for the forcing signal given by Equation (5.2.6) will suffice instead of the 

full form. One reason behind using Equation (5.2.6) is to simplify orbit propogation calculations. 

Another reason is to simplify calculations reagrding update to the value of λ for thr first order 

correction, which is considered next. 
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Figure 25 Approximate and Exact Forcing Signals for Family of Frequency Values 
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As the forcing function 2ωẏ
b
(t) now consists of finite number of terms, the non-homogeneous 

parts of the first order corrections to the base solution in x axis will also consist of finite number 

of terms. This can be readily seen from the analysis done in chapter 4. First order correction to the 

x axis base solution is written in Equation (5.2.7). In Equation (5.2.7), the terms having coefficients 

A1 and A2 are homogeneous part of the correction while terms consisting of coefficients Dx , Ex , 

Fx are non-homogeneous part of the correction.   

 

                            xc1(t)=A1eλc1t+A2e-λc1t+Dxcos{υ(t)}+Excos{3υ(t)}+Fxcos{5υ(t)}                     (5.2.7) 

    

  

where 

                   Dx = 
2π2a (λ

2
+ω2)

(K(k1))
2

 [
q

1
2

1-q
+

2 q
3
2

(q-1)(1+q2)
+

2 q
5
2

(1-q3)(1+q2)
]

[
 
 
 
 
 

1

- (
π√λ

2
+ω2

2K(k1)
)

2

-λc1
2

]
 
 
 
 
 

    (5.2.8) 

 
    

   

 

                                   Ex = 
2π2a (λ

2
+ω2)

(K(k1))
2

 [
q

3
2

q3-1
+

2 q
3
2

(q-1)(1+q2)
]

[
 
 
 
 
 

1

- (
3π√λ

2
+ω2

2K(k1)
)

2

-λc1
2

]
 
 
 
 
 

            (5.2.9) 

 

 
    

 

                                    Fx = 
2π2a (λ

2
+ω2)

(K(k1))
2

 [
2 q

5
2

(1-q3)(1+q2)
]

[
 
 
 
 
 

1

- (
5π√λ

2
+ω2

2K(k1)
)

2

-λc1
2

]
 
 
 
 
 

                   (5.2.10) 
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&  λc1
2

 is given by Equation (4.6). Since the periodic orbit is of interest, the non-periodic terms 

containing A1 and A2  should be eliminated. i.e.,  A1 = A2 = 0 

The expression for xc1(t) is now written as 

 

                                                    xc1(t) = Dxcos{υ(t)}+Excos{3υ(t)}+Fxcos{5υ(t)}                        (5.2.11)                    
              

Differentiating Equation (5.2.11) with respect to time 

 

ẋc1(t) = - 
π √λ

2
+ω2 

2K(k1)
 Dx sin{υ(t)}-3

π √λ
2
+ω2 

2K(k1)
Exsin{3υ(t)}  -5

π √λ
2
+ω2 

2K(k1)
Fx  sin{5υ(t)}  (5.2.12) 

   

Multiplying Equation (5.2.12) by -2ω 

 

                           -2ωẋc1(t) = 
2ωπ √λ

2
+ω2 

2K(k1)
 Dx sin{υ(t)}+

6ωπ √λ
2
+ω2 

2K(k1)
 Ex sin{3υ(t)}  

                                                   +
10ωπ √λ

2
+ω2 

2K(k1)
 Fx sin{5υ(t)}                                                        (5.2.13) 

              

Forcing function  -2ωẋc1(t) given by Equation (5.2.13) also consists of finite number of terms, 

hence the non-homogeneous parts of the first order corrections to the base solution in y axis will 

also consist of finite number of terms (see Chapter 4) . First order correction to the y axis base 

solution is written in Equation (5.2.14). In Equation (5.2.14), the terms having coefficients C1 and 

C2 are homogeneous part of the correction while terms consisting of coefficients Dy , Ey , Fy are 

non-homogeneous part of the correction.   

y
c1

(t) = C1 sin(ωc1yt) +C2 cos(ωc1yt) +Dy sin{υ(t)}+Ey sin{3υ(t)}+Fy sin{5υ(t)}                (5.2.14) 

 

Considering a further special class of periodic orbits in which  C1 and C2 are equated to zero, 

Equation (5.2.14) can be written as  

           

   y
c1

(t) =    
2ωπ √λ

2
+ω2 

2K(k1)
 

1

ωc1y
2 - (

π√λ
2
+ω2

2K(k1)
)

2
 Dx sin{υ(t)} 
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                                           +
6ωπ √λ

2
+ω2 

2K(k1)
 

1

ωc1y
2 - (

3π√λ
2
+ω2

2K(k1)
)

2
  Ex sin{3υ(t)}+ 

                                                
10ωπ √λ

2
+ω2 

2K(k1)
 

1

ωc1y
2 - (

5π√λ
2
+ω2

2K(k1)
)

2
 Fx sin{5υ(t)}                      (5.2.15) 

                 

  

In Equation (5.2.15), the coefficients of terms  sin{υ(t)}, sin{3υ(t)}, sin{5υ(t)} are Dy,  Ey, Fy 

respectively. Equation (5.2.15) is now written as  

         y
c1

(t) = Dy sin{υ(t)}+Ey sin{3υ(t)}+Fy sin{5υ(t)}                      (5.2.16)                                

 

Differentiating Equation (5.2.15) with respect to time 

 

ẏ
c1

(t) = 
π √λ

2
+ω2 

2K(k1)
 Dy cos{υ(t)} + 3

π √λ
2
+ω2 

2K(k1)
 Ey cos{3υ(t)}    + 5

π √λ
2
+ω2 

2K(k1)
 Fy cos{5υ(t)} 

                   (5.2.17) 

  

      The primary inaccuracy noted from the comparison of the base and true solutions lies in the 

period T, which is ultimately determined by the frequency λ. Currently the value of  λ is determined 

by Equation (3.3.27), which is founded entirely on the base solution. Fortunately, the corrected 

solution provides two options to explore for the purpose of updating the λ value.    

      Recall the exact halo orbit solution is defined by the six initial values  xh0, y
h0

, zh0 , ẋh0, ẏ
h0

, 

żh0 given in Equation (5.1.1). Note only three of these values are non-trivial being xh0 , ẏ
h0

 , zh0 . 

Also recall the base halo orbit solution is defined by the non-trivial values xb(0) = dx ≠ xh0 , 

ẏ
b
(0) = ẏ

h0
 , zb0= zh0. In some sense, the corrected solution adds several degrees of freedom to the 

initial condition analysis, specifically, the initial values xc10 , ẏ
c10

 ,  zc10 . However, since F2 from 

Equation (4.52) is not a function of λ and F2 = 0 implying  zc10 = 0, this leaves only the non-trivial 

terms xc10  and ẏ
c10

 for frequency updating. 
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      The first option for frequency updating is based on xc10. Equation (4.22) requires 

                                                                               xc10 = β
x
                                                                   (5.2.18) 

where xc10= xh0 - xb0 = -0.0176418 r12 and β
x
 is defined from Equation (4.19) and depends on the 

value of λ. The equality in Equation (5.2.18) is not satisfied numerically for λ = 4.95123ω. 

Therefore, the first option is to calculate a new value for λ that satisfies the equality numerically. 

Using the simplified nome expression, β
x
 is obtained by substituting t = 0 in Equation (5.2.11).  

                                                                        β
x
 = Dx+Ex+Fx                                                              (5.2.19) 

  where Dx,Ex, and Fx are given by Equation (5.2.8), (5.2.9), and (5.2.10) respectively.  

The updated values of λ is then computed from the expression  

                                                          f (λ) = xc10 - βx
(λ) = 0                                                        (5.2.20) 

  

Figure 26 First Option Function Behavior 



94 

 

                                                                                

Note the determined λ may satisfy Equation (5.2.20) exactly or it may only minimize the residual 

of Equation (5.2.20). Figure 26 shows function f (λ) plotted against λ. There is no value of  λ that 

achieves f (λ) = 0. However, the value of λ = ± 3.44ω minimizes f (λ). The updated positive value 

is an improvement in that the period T will be larger, but the accuracy is still considered 

insufficient. Note this correction was considered in Reference 9. The second option for frequency 

updating is based on ẏ
c10

. Equation (4.47) requires  

                                                                             ẏ
c10

 = δẏ                                                                      (5.2.21) 

where ẏ
c10

 =  ẏ
h0

- ẏ
b0

 and  δẏ is defined from Equation (4.45) and depends on the value of  λ. 

Currently, ẏ
b0

 is selected to equal ẏ
h0

 (See Equation (5.1.2)) or ẏ
h0

= ẏ
b0

= 0.198019ωr12 leading to 

ẏ
c10

 = 0. The equality in Equation (5.2.21) is not satisfied numerically for λ = 4.95123ω. Therefore, 

the second option is to calculate a new value for λ that satisfies the equality numerically. A slightly 

modified approach will be considered, however. Returning to Equation (3.3.19) for τ0 = 0, a new 

selection for ẏ
b0

= aλ. Therefore, the corrected initial rate to be used in Equation (5.2.21) is 

ẏ
c10

= 0.198019ωr12- aλ where a equals the value given in Equation (5.1.2). After using the 

simplified nome expression to compute ẋc1(t) which determines y
c1

(t) i.e., substituting t = 0 in 

Equation (5.2.17),  δẏ is given by 

                                        δẏ = 
π √λ

2
+ω2 

2K(k1)
 Dy +3

π √λ
2
+ω2 

2K(k1)
 Ey +5

π √λ
2
+ω2 

2K(k1)
 Fy                     (5.2.22) 

 The updated value of λ is then computed from the expression       

                                                       g(λ) = ẏ
c10

(λ)- δẏ(λ) = 0                                                        (5.2.23) 

Again, the determined value of λ may satisfy Equation (5.2.23) or it may only minimize the 

residual of Equation (5.2.23). Figure 26 shows function g(λ) plotted against λ. Several values of λ 

can be found that achieve g(λ) = 0 and include λ = -2.1252ω , -0.4199ω ,+0.4190ω , +0.1036ω, 
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+2.3082ω, +4.1910ω. Of these six values, λ = +2.3082ω is the best choice. This update value 

significantly improves the period T and the corrected orbit accuracy. This correction process was 

not considered in Reference 9 and is a distinguishing feature of the thesis research.   

 

Figure 27 Second Option Function Behavior 

5.3 Comparison of Corrected and True Orbits 
 

      When λ = 2.3082 is substituted into  xc1(t),  y
b
(t), y

c1
(t),  and zb(t), first order corrected orbit 

reaches closer to the true orbit. The period of corrected motion is 2.603/ω. Thus, the error in period 

gets reduced to zero. The corrected and true motion plots for x, y, and z coordinates against time 

are shown in figures 28, 29, and 30 respectively. The blue curve represents true while red curve 

represents corrected motion. The plot of y axis motion against the time and the plot of z axis motion 

against time for corrected orbit are significantly similar to that of true orbit. The magnitude of 

maximum y positional error is 0.0025 r12 and that of maximum z positional error is 0.0045 r12. 

The value of  λ = 2.3082 takes the initial x coordinate of the base solution closer to the true initial 
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x coordinate. The error in initial x coordinate is reduced from 0.0176418 r12 to 0.007 r12 while the 

magnitude of maximum x positional error is 0.0167 r12.These results are shown in Table 4. The 

percentage errors in x, y, and z axes are reduced to good extent as compared to the errors for base.  

Table 4 Comparison between the True, Base, and Corrected Orbits 

 

 

 

 

 

 

 

Figure 28 y Motion Against Time, True vs. Corrected 

 True Corrected Percentage  

Maximum x Axis 

Error 

0 0.0167 r12 1.67 

Maximum y Axis 

Error 

0 0.0025 r12 0.25 

Maximum z Axis 

Error 

0 0.0045 r12 0.45 

Period 2.603/ω 2.603/ω 0 
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Figure 29 z Motion Against Time, True vs. Corrected 

 
 
 

 

 

Figure 30 x Motion Against Time, True vs. Corrected 
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For additional insights, both true and corrected orbits are shown in three-dimensional and two-

dimensional views in Figures 31-34. The orbital tracks clearly show the corrected solution is closer 

to the true solution as compared to the base solution. From figure 33, it can be seen the out-of-

plane motion is improved and corrected xz plot is aligned in the direction of true xz plot. Figure 

31 shows that amplitude in the x axis is expanded without disturbing z axis. In figure 32, the 

constant coordinate of x axis of base solution is expanded and the overall corrected xy plot is trying 

to capture true xy plot roughly. The corrected three-dimensional perspective view is in much better 

shape now as seen in figure 34. The quantitative data can be found in Table 4.    

 

 
Figure 31 yz Sectional View, True vs. Corrected 
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Figure 32 xy Sectional View, True vs. Corrected 

 

Figure 33 xz Sectional View, True vs. Corrected  
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Figure 34 Perspective View, True vs. Corrected 

 

5.4 A Further Discussion on the Base Solution 

      The same halo orbit test case as in Reference 9 was considered for analysis in this chapter. The 

updated value of the modulus of elliptic functions k in Reference 9 is chosen from the initial 

conditions on x coordinate, while in this thesis it is chosen from initial conditions on the derivative 

of y coordinate.  The period of the base solution obtained for the test case is same for this thesis 

and for Reference 9. Also the motion in x, y and z axes with time is same in both cases. Hence, 

the new base solution and the base solution in Reference 9 are comparably the same in accuracy 

with which they are capturing non-uniform speed of the third body along halo orbits as shown in 

the Figure 35. It is to be remembered that the period of the base solution in both cases is 

approximately half of the true orbit. 
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Figure 35 Velocity Magnitude against the Time 

But after the first order correction, the non-uniform speed characteristic along the halo orbit is 

more accurately captured as seen from the Figure 36.    

 

Figure 36 Velocity Magnitude against the Time 
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      Analytical expressions for the base solution in the thesis and in Reference 9 are now compared. 

The modulus of elliptic functions in the thesis is 

                                                            kT = 
ω

√λ
2
+ω2

                                                                  (5.4.1) 

while in the reference 9, this modulus is calculated as 

                                                         k9 = 
ω

√ω2 cos2(θ0)+θ̇0

2

                                                          (5.4.2) 

                                                         k9 = 
ω

√ω2 {1- sin
2(θ0)}+θ̇0

2

                                                       (5.4.3) 

Comparing Equation (5.4.2) with Equation (5.4.3) gives  

                                                                λ2 = θ̇0

2
 - ω2 sin

2(θ0)                                                                (5.4.4) 

From Reference 9 

                                      y
0
 = a sin(θ0) ;     ẏ

0
= a cos(θ0) θ̇0 ;        z0 = a cos(θ0)                             (5.4.5) 

Using Equation (5.4.5), the right-hand side of Equation (5.4.4) can also be written as 

                                                  θ̇0

2
 - ω2 sin

2(θ0) = (
ẏ

0

z0

)

2

- (
ω y

0

a
)

2

                                                    (5.4.6) 

But from Equation (3.3.27) in the thesis 

                                                                 λ2
 = (

ẏ
0

z0

)

2

- (
ω y

0

a
)

2

                                                            (5.4.7) 

This concludes 
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                                                                               kT = k9                                                                        (5.4.8) 

Thus, for the same initial conditions, modulus of the elliptic functions k in the Reference 9 and the 

modulus k1 of the thesis give same numerical value. 

The y and z coordinates of the base solution in Reference 9 are  

                                            y(t) = a cn ( -
 ω

  k
 (t-t0) + F ( 

π

2
 - θ0 ,k)  , k)                                          (5.4.9) 

                                       z(t) = a sn ( -
ω

k
 (t-t0) + F (

π

2
 - θ0 , k) ,   k)                                       (5.4.10) 

Taking t0 = 0, Equations (5.4.9) and (5.4.10) can be rewritten as 

                                           y(t) = a cn ( -
 ω

  k
 (t) + F ( 

π

2
 - θ0 ,k)  , k)                                             (5.4.11) 

                                      z(t) = a sn ( -
ω

k
 (t) + F (

π

2
 - θ0 , k) ,   k)                                             (5.4.12) 

The y and z coordinates of the base solution in the thesis are  

                                 y(t) =
aλ

√λ
2
+ω2

  sd ((t-ϕ) √λ
2
+ω2 , 

ω

√λ
2
+ω2

)                                           (5.4.13) 

                                   z(t) = a cd ((t-ϕ) √λ
2
+ω2 , 

ω

√λ
2
+ω2

)                                                     (5.4.14) 

A special set of initial conditions from Reference 15 is taken into consideration at the beginning 

of Chapter 5. These initial conditions when substituted into Equation (5.4.5) yields 

                                                                       θ0 = 0                                                                                 (5.4.15) 

This value when substituted into Equations (5.4.11) and (5.4.12) gives 

                                            y(t) = a cn ( -
 ω

  k
 (t) + F ( 

π

2
 , k)  , k)                                                   (5.4.16) 

                                       z(t) = a sn ( -
ω

k
 (t) + F (

π

2
, k) ,   k)                                                     (5.4.17) 

Since, 
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                                                                     F ( 
π

2
 , k) = K (k)                                                       (5.4.18) 

Equations (5.4.16) and (5.4.17) become 

                                            y(t) = a cn ( -
 ω

  k
 (t) + K (k)  , k)                                                           (5.4.19) 

                                       z(t) = a sn ( -
ω

k
 (t) + K (k),   k)                                                           (5.4.20) 

But from Reference 20 

                                                              sn (u+K) = cd (-u)                                                             (5.4.21) 

                                                      cn (u+K) = k
'
 sd (-u)                                                        (5.4.22) 

Hence, Equations (5.4.19) and (5.4.20) become 

                                                            y(t) = ak
'
sd ( 

 ω

  k
 (t)  , k)                                                   (5.4.23) 

                                                         z(t) = a cd ( 
ω

k
 (t),   k)                                                   (5.4.24) 

      Now, the special set of initial conditions mentioned earlier, when substituted into Equations 

(5.4.13) and (5.4.14), yields       

                                                                                   ϕ = 0                                                                      (5.4.25) 

Using Equations (5.4.1) and (5.4.25), the y and z coordinate of the base solution in the thesis i.e. 

Equations (5.4.13) and (5.4.14) for these special initial conditions can be written as 

                                                                    y(t) = akT
'
sd ( 

 ω

  k
 (t)  , kT)                                         (5.4.26) 

                                                          z(t) = a cd ( 
ω

k
 (t),   kT)                                             (5.4.27) 

 But from Equation (5.4.8), kT = k9 which indicates 

                                                                   y
T
(t) = y

9
(t)                                                                  (5.4.28) 

                                                                   zT (t) = z9(t)                                                                (5.4.29) 
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Thus, for the special initial conditions, i.e. when θ0 = 0 and ϕ = 0, the base solution in this thesis 

and in the Reference 9 are mathematically the same thing.  

      Similarly, using numerical calculations, it can be shown that for any other set of initial 

conditions, the base solution used in this thesis and in Reference 9 are representing the same 

hypothetical motion of the third body but with different mathematical structures. For any physical 

non-zero angle θ0 , there exists a non-physical and non-zero constant ϕ such that the plots of base 

solution are exactly the same. In the same manner, for any non-physical and non-zero constant ϕ, 

there exists a physical angle θ0.           
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CHAPTER 6 

CONCLUSIONS 

      A suppositional base solution satisfying the Jacobi's integral equation in circular restricted 

three-body problem is discussed in the thesis. The locus of this solution is a circle lying in the 

plane perpendicular to the line joining the primaries. The Jacobi functions sn and dn are used with 

the complex elliptic modulus which get transformed to sd and cd functions with real modulus. This 

real modulus inherently is in between 0 and 1. The period is obtained in closed form in the terms 

of a constant λ which acts like frequency modulator and with somewhat restricted arbitrariness, 

the initial conditions can be mapped into the parameters like circular orbit radius a, constant λ, the 

plane location dx and reference time τ0. The base solution satisfies the third body equation of 

motion in the x axis in bounded and averaged sense when plane location is at one of the collinear 

libration points. Also, the combination of second and third equations of motion in y and z axes is 

satisfied but the accuracy in individual equations is limited. 

      This base solution is then compared with an L1 halo orbit example and somewhat rough 

similarity is observed; the period of the base solution being approximately half of the true orbit, 

which demands further correction in the base solution. The third body differential equations are 

set up in terms of correction in axes. The non-homogeneous solutions for the corrections are in the 

form of perturbations which are Fourier series expansions of the Jacobi's elliptic functions in the 

terms of nome. The development is done assuming the suppositional plane passes through one of 

the collinear Lagrange points. Only homogeneous correction is obtained for z axis. The modified 

solution now consists of base solution plus first order corrections which can be further worked out 

to include second and higher order corrections.  
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An interesting result is obtained when the trimmed version of forcing signal is compared with the 

exact one. When constant λ ≥1, they both become almost identical which justifies the use of the 

truncated forcing function for the same 𝐿1 halo orbit taste case.  

      The initial conditions for true orbit are again substituted in the modified series solution and a 

new value of  λ is obtained using numerical computation depending on which axis it is sought. For 

the taste case a unique value of λ is obtained from y axis velocity initial conditions, which when 

employed into y and z axis complete solution gives improved motion over the true one and 

corrected orbit reaches closer to the true orbit. The error in the period of this corrected orbit is 

reduced to zero. 
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