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ABSTRACT Accurate reliability estimation for reciprocating seals is of great significance due to their
wide use in numerous engineering applications. This work proposes a reliability estimation method for
reciprocating seals based on multivariate dependence analysis of different performance indicators. Degra-
dation behavior corresponding to each performance indicator is first described by the Wiener process.
Dependence among different performance indicators is then captured using D-vine copula, and a weight-
based copula selection method is utilized to determine the optimal bivariate copula for each dependence
relationship. A two-stage Bayesian method is used to estimate the parameters in the proposed model.
Finally, a reciprocating seal degradation test is conducted, and the proposed reliability estimation approach
is validated by test data. Results show that the proposed model is accurate and effective in estimating the
reliability of reciprocating seals.

INDEX TERMS D-vine copula, dependence analysis, reciprocating seal, reliability estimation.

I. INTRODUCTION
Hydraulic reciprocating seals can prevent leakage, contain
pressure, and exclude contamination during reciprocating
motion. With advantages including low cost, good sealing
performance, high oil resistance, and high thermal resistance,
reciprocating seals are widely used in numerous engineering
applications [1] including in aerospace, medical, marine, and
automotive industries. Reciprocating seal failure can lead to
hydraulic oil leakage and other types of malfunctions which
can cause huge economic loss and potentially catastrophic
consequences. For this reason, reliability estimation of recip-
rocating seals is of great importance and has drawn increasing
attention from scholars.

Obtaining adequate failure data for mechanical compo-
nents with high reliability and a long lifespan is diffi-
cult. In this situation, degradation testing or accelerated
degradation testing is commonly conducted to evaluate the

The associate editor coordinating the review of this manuscript and
approving it for publication was David Flynn.

reliability of various products. Wang et al. studied a step-
stress accelerated degradation test of highly reliable prod-
ucts and proposed the M-optimality criterion to improve
mechanism equivalence [2]. Wang et al. presented an opti-
mal design plan for accelerated degradation testing with
multiple stresses and conducted sensitivity analysis [3].
Zhang et al. [4] classified the reliability estimation method-
ology for degradation testing or accelerated degrada-
tion testing into the three categories of knowledge-based
approaches, physical model-based approaches, and data-
driven approaches. Knowledge-based approaches perform
reliability estimation based on an expert system or a fuzzy
system, and require special knowledge about the particular
components or systems combined with failure data [5], [6].
Physicalmodel-based approaches study the physical behavior
of the degradation process, and carry out reliability esti-
mation for critical physical components using mathemat-
ical or physical models of the degradation phenomenon
(including crack by fatigue, wear, and corrosion) [7], [8].
Data-driven approaches aim at transforming the data
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provided by status monitoring systems into relevant mod-
els which can describe the degradation behavior, and these
approaches include the machine learning method [9]–[11]
and stochastic model-based method [12]–[14]. For recipro-
cating seals, as the failure mechanism is highly complicated
and the operation condition is usually harsh, a comprehen-
sive physical-based degradation model is often difficult to
establish [15]–[17]. In addition, as adequate failure data for
a specific type of reciprocating seal are often hard to obtain,
a data-driven approach is preferable for reliability estimation.

Leakage rate, friction force, and contact temperature are
three important performance indicators for reciprocating
seals which can reflect their operation and degradation sta-
tus. These three performance indicators are also easy to
collect [18], [19], and are preferred in many engineering
applications. This study uses the Wiener process, a com-
monly used data-driven approach, to describe the degradation
process of each performance indicator. For many types of
mechanical components with complex failure mechanisms,
different performance indicators will be statistically depen-
dent due to various commonly shared factors including envi-
ronmental stress, material properties, and various operational
stresses. For reciprocating seals, as illustrated in the following
section, leakage rate and friction force are both affected by
the two failure modes of reciprocating seals: wear and aging.
In addition, contact temperature can reflect the lubrication
status of the contact area. Leakage rate and friction force
are both affected by contact temperature, and vice versa.
Therefore, it is necessary to take the dependence among the
three performance indicators into consideration to formulate
the degradation model for reciprocating seals.

Compared with traditional joint bivariate distribution,
copulas offer more flexibility in capturing the depen-
dence between different marginal distributions. They model
marginal behavior and dependence structure separately,
in which the marginal distributions do not have to belong
to identical distribution families [20]. For this reason, cop-
ulas are widely used in dependence analysis for various
research applications including financial phenomena [21],
[22], energy management [23], [24], accelerated life testing,
and reliability analysis [25], [26]. Copulas have also been
used to describe the dependence between different perfor-
mance indicators of mechanical components. Pan et al. used
two performance indicators governed by the Wiener process,
utilizing Frank copula to describe their dependence and build
a degradationmodel [27]. Chen et al. characterized the failure
dependence between subsystems of mechanical systems and
constructed a reliability improvementmodel based on relative
failure rate [28]. In both studies, the type of copula function
was presumed to be known in advance. In many situations,
however, it is difficult to determine which type of copula is
the most appropriate initially. Various studies have focused
on methods to determine an appropriate copula. Pan et al.
used Akaike information criterion (AIC) to select the best
copula when characterizing the dependence between different
degradation paths of products [29]. Deviance information

criterion (DIC) was used by Zhang et al. to find the optimal
copula and build an accelerated life testing model for solid
lubricated bearings [30].

All of the studies discussed have utilized bivariate copulas
which capture the dependence between two marginal distri-
butions. For reciprocating seals, as mentioned above, there
are three commonly used performance indicators, namely,
leakage rate, contact temperature, and friction force. As more
performance indicators containmore information on the oper-
ation and degradation status of the seal [31], a degradation
model which considers three performance indicators and the
dependence among them will likely be more accurate in
estimating reliability. Multivariate copulas including multi-
variable Gaussian copula and t-copula have been utilized
to describe the dependence of multiple variables. However,
multivariate copulas require that each two variables fol-
low the same dependence structure. For reciprocating seals,
the dependence structure of the marginal distributions corre-
sponding to each two performance indicators may not be the
same. In this case, a degradationmodel for reciprocating seals
based on multivariate copula function may not be accurate.

On the basis of bivariate copula function and hierarchical
structure, vine-copula, which is a multivariable modeling
method, offers more flexibility and accuracy for capturing
the dependence of three or more variables [32]. Based on
conditional probability, vine-copula decomposes joint dis-
tribution into a multiplication model consisting of multiple
bivariate copulas along with corresponding conditional prob-
ability [33], [34]. Vine-copula utilizes a topological graph
to illustrate the dependence among variables, and is often
referred to as regular vine (R-vine). D-vine copula is a type
of R-vine copula in which dependence of different pairs of
variables can be described by different types of bivariate
copula. This makes D-vine more flexible and accurate in
capturing the dependence among multiple variables.

Focused on the reciprocating seal, which has high relia-
bility and a long lifetime with multiple performance indica-
tors, this work studies reciprocating seal reliability estimation
and formulates a degradation model. The failure behavior
and degradation process corresponding to each performance
indicator is first described by Wiener process, and rele-
vant marginal distributions are obtained. Secondly, based on
D-vine copula and corresponding hierarchical structure,
bivariate copula functions are used to describe the depen-
dence among the three performance indicators and build a
degradation model. A Bayesian method is also used to select
optimal copula for each bivariate dependence relationship
based on weight calculation. Finally, parameters in the pro-
posed model are estimated based on a two-stage Bayesian
method, and the reliability of reciprocating seals can be
estimated.

The remainder of this paper is organized as follows.
In Section II, the failure mechanism of reciprocating seals
is briefly introduced, and the degradation model based
on D-vine copula is built. Two-stage Bayesian framework
is also constructed to estimate the unknown parameters.
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FIGURE 1. Hydraulic rod seal system including reciprocating seal.

In Section III, degradation testing of reciprocating seals is car-
ried out, and the proposed model is validated based on exper-
imental data. Finally, conclusions are provided in Section IV.

II. MODEL DEVELOPMENT
A. FAILURE MECHANISM OF RECIPROCATING SEALS
A schematic diagram of the application of a reciprocating seal
in a hydraulic actuator is illustrated in Fig. 1. The reciprocat-
ing seal is installed in a specific groove with a preload to the
shaft, and a dust seal is generally used as an auxiliary com-
ponent. In one actuation of the actuator, during the outstroke,
some hydraulic fluid may be adhered to the rod and dragged
out of the cylinder. During the instroke, some fluid is dragged
into the cylinder. If the amount of fluid dragged out of the
cylinder during the outstroke is bigger than that taken into
the cylinder during the instroke, leakage is likely to occur.
During either instroke or outstroke, a sufficient lubricating
film between the seal and the surface of the rod is required,
which can support the seal and prevent exceedingly high
temperature, as well as reduce friction and prevent excessive
wear [19].

For reciprocating seals, friction force, leakage rate, and
contact temperature can be used as performance indica-
tors [31]. When a reciprocating seal is in operation, the mate-
rial of the seal will gradually wear out, and the topography of
the contact surface will also change. Therefore, the sealing
effect will inevitably fluctuate and this will cause a corre-
sponding change in the leakage rate. In addition, topography
changes of the contact surface will also lead to variations in
friction force when the rod is moving [35].

The reciprocating seal is usually made of rubber, and thus
aging is also one of its most significant failure modes. The
elongation and hardness of the reciprocating seal is signifi-
cantly affected by aging. Change to the material properties
of the seal will also lead to the change of topography in the
contact area, and thus affect the leakage rate and friction force
when the reciprocating seal is in operation [31].

Contact temperature is another important performance
indicator [31], [36], [37]. Heat is generated by friction
between the rod and the seal, and the temperature can affect
the material properties of the seal, affecting the topography
of the contact area. Heat can also affect the viscosity of
hydraulic oil [36]. When the viscosity decreases, the support
ability of the film will decrease, which can result in dry
friction and increase the leakage rate. When the viscosity
rises, the friction force will increase, and the leakage rate will
also be affected [35].

From the discussion above, it is reasonable to conclude that
these three performance indicators are dependent . In addi-
tion, as the dependence between either two performance
indicators could be different, the D-Vine copula is used to
describe the dependence among the three performance indi-
cators and build the degradation model.

B. RELIABILITY FUNCTION FOR EACH PERFORMANCE
INDICATOR OF RECIPROCATING SEAL
As discussed above, friction force, contact temperature, and
leakage rate are three dependent performance indicators of
reciprocating seals which can be used to describe the degra-
dation process. Wiener process is based on Brownian motion
and is applicable for reflecting the cumulative effect of degra-
dation failure. The process is commonly used for describ-
ing the degradation process of various types of mechanical
products in practice [4], [12]. In this work, Wiener pro-
cess is utilized to describe the degradation process for each
performance indicator. Assuming that the number of recipro-
cating seals being tested is N , and the number of measure-
ments for each seal in a pre-defined time interval is M . The
kth performance indicator of the ith seal at the jth measure-
ment is denoted as Yk

(
tij
)
. Here and in the following context,

k = 1, 2, 3, i = 1, 2, . . . ,N , and j = 1, 2, . . . ,M . Based on
Wiener process, the expression of each performance indicator
can be given by

Yk
(
tij
)
= µk3

(
tij
)
+ σkB

(
3
(
tij
))

(1)
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where µk denotes the drift coefficient reflecting the
degradation rate, σk is the volatility parameter, B (·) is the
standard Brownian Motion, and3

(
tij
)
is the time scale func-

tion reflecting the nonlinearity of degradation paths which
is usually monotonic. Specifically, 3

(
tij
)
is assumed to be

3
(
tij
)
= tqkj in this work, where qk is the power exponent in

the time scale function.
The increment of the kth performance indicator of the

ith sample in time interval
[
tj−1, tj

]
can be calculated by

1Yk
(
tij
)
= Yk

(
tij
)
− Yk

(
ti,j−1

)
. In the following context,

we use X1 to denote 1Y1
(
tij
)
, X2 to denote 1Y2

(
tij
)
, X3 to

denote 1Y3
(
tij
)
, and Xk to denote 1Yk

(
tij
)
. Based on the

definition of Wiener process, here 1Yk
(
tij
)
follows normal

distribution, as given by

Xk ∼ N
(
µk

(
tqkij − t

qk
i,j−1

)
, σ 2

k

(
tqkij − t

qk
i,j−1

))
(2)

Using 13
(
tij
)
to denote tqkij − tqki,j−1, then the probability

density function (pdf) of Xk can be expressed as

fk (Xk) =
1√

2πσ 2
k13

(
tij
)
· exp

{
−

(
Xk − µk13

(
tij
))2

2σ 2
k13

(
tij
) }

(3)

The cumulative distribution function of Xk can be given by

Fk (Xk) = 8

Xk − µk13 (tij)
σk

√
13

(
tij
)
 (4)

A pre-specified threshold level for each performance indi-
cator is dk , and the failure time Tk , which represents the
first passage time (FPT) over the threshold, can be given by
Tk = inf {t : Yk (t) ≥ dk}. The FPT follows inverse Gaussian
distribution, i.e. Tk ∼ IG (δk , λk). With δk = dk/µk and
λk = (dk/σk)2, the reliability function corresponding to the
kth performance indicator can be given by

Rk (t) = Φ
[
dk − µk3(t)

σk
√
3(t)

]
− exp

(
2µkdk
σ 2
k

)
Φ

[
−
dk + µk3(t)

σk
√
3(t)

]
(5)

C. RELIABILITY ESTIMATION FOR RECIPROCATING SEALS
BASED ON D-VINE COPULA
1) MULTIVARIATE DEGRADATION MODEL ESTABLISHMENT
When there is correlation among different performance indi-
cators, copula function is an effective method to combine
marginal distributions of each performance indicator and
build the coupling model of degradation behavior. When the
number of marginal distributions is more than two, based on
the Sklar’s theorem [38], multivariate copula function, such
as multivariate Gaussian copula or t-copula, can be used to
construct the joint distribution, as given by

F (x1, x2, x3) = C (F1 (x1) ,F2 (x2) ,F3 (x3)) (6)

However, the number of available multivariate copulas is
limited. A multivariate copula also assumes that the depen-
dence structure of each pair of its marginal distributions is
the same, which might not be the case for the three perfor-
mance indicators of reciprocating seals. Combining bivariate
copula function with hierarchical structure, D-vine copula
utilizes a topological graphmodel to illustrate the dependence
between different marginal distributions, and decomposes
joint distribution into a multiplication model which consists
of multiple bivariate copulas and corresponding conditional
probability [32]. For three-dimensional variables, the joint
probability density function can be decomposed as

f (x1, x2, x3) = f1 (x1) · f2|1 (x2|x1) · f3|1,2 (x3|x1, x2) (7)

In addition, based on the condition probability formula
and Sklar’s theory, f2|1 (x2|x1) and f3|1,2 (x3|x1, x2) can be
composed in a further form as follows

f2|1 (x2|x1) =
f (x1, x2)
f1(x1)

=
c12 (F1 (x1) ,F2 (x2)) · f1 (x1) · f2 (x2)

f1 (x1)
= c12 (F1 (x1) ,F2 (x2)) · f2 (x2) (8)

f3|1,2 (x3|x1, x2) =
f1,3|2 (x1, x3|x2)
f1|2(x1|x2)

= c1,3|2
(
F1|2 (x1|x2) ,F3|2 (x3|x2)

)
·f3|2 (x3|x2)

= c1,3|2
(
F1|2 (x1|x2) ,F3|2 (x3|x2)

)
·c23 (F2 (x2) ,F3 (x3)) · f3 (x3) (9)

In (9), F1|2 (x1|x2) and F3|2 (x3|x2) are conditional distri-
bution functions, and can be expressed by

F1|2 (x1|x2) =
∂C12 (F1 (x1) ,F2 (x2))

∂F2 (x2)
(10)

F3|2 (x3|x2) =
∂C23 (F2 (x2) ,F3 (x3))

∂F2 (x2)
(11)

Then f (x1, x2, x3) in (7) can be decomposed as

f (x1, x2, x3) = f1 (x1) · f2 (x2) · f3 (x3)

·c12 (F1 (x1) ,F2 (x2))

·c23 (F2 (x2) ,F3 (x3))

·c1,3|2
(
F1|2 (x1|x2) ,F3|2 (x3|x2)

)
(12)

Based on (12), the joint probability density function can be
calculated by three marginal distributions, i.e. f1 (x1), f2 (x2)
and f3 (x3), and three bivariate copula functions, i.e. C12, C23
and C13|2. Subscripts c12, c23 and c13|2 are density functions
corresponding to C12, C23 and C13|2, respectively.
The decomposition procedure of joint probability density

function can be illustrated using a hierarchical structure,
as shown in Fig. 2. In this figure, Layer 1 shows the three
marginal probability density functions of the three perfor-
mance indicators. As discussed above, during the operation
process, temperature variation in the contact zone could be
caused by the friction force, and temperature variation could
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FIGURE 2. Hierarchical dependence structure of the three performance indicators based on D-vine
copula.

result in a change of material properties, thus affecting the
degradation of friction. In addition, the change of material
properties could also affect the status of lubricating film and
the leakage rate. Therefore, contact temperature is placed in
the second position in Layer 1 of Fig. 2, and is connected
to the other two performance indicators, friction force and
leakage rate. Layer 2 represents the dependentmodel between
adjacent performance indicators by using bivariate copulas
C12 and C23. Subscript C12 describes the dependence rela-
tionship between friction force and contact temperature, and
C23 describes the dependence relationship between contact
temperature and leakage rate. In Layer 3, conditional bivari-
ate copulaC13|2 describes the conditional correlation between
performance indicators 1 and 3 given performance indica-
tor 2. Without loss of generality, friction force and leakage
rate are also placed into the second position in Layer 1 of
Fig. 2 respectively, and the corresponding results are calcu-
lated and used as comparison.

The degradation model for reciprocating seals considering
the dependence among three performance indicators can then
be formulated as

Xk ∼ N
(
µk13

(
tij
)
, σ 2

k13
(
tij
))

Yk
(
tij
)
=

j∑
s=0

1Yk (tis)

f (X1,X2,X3)

=

3∏
k=1

f (Xk ;αk)

·c12 (F1 (X1) ,F2 (X2) ; θ12)

·c23 (F2 (X2) ,F3 (X3) ; θ23)

·c13|2
(
F1|2 (X1|X2) ,F3|2 (X3|X2) ; θ13|2

)
(13)

where αk = (µk , σk , qk) represents the unknown parame-
ters corresponding to the marginal distribution of each per-
formance indicator, and θ12 , θ23, and θ13|2 are the depen-
dence parameters of the corresponding copula function,
respectively.

With the pre-specified thresholds for the three performance
indicators, the reliability function can be given by

R (t) = P (Y1 (t) < d1,Y2 (t) < d2,Y3 (t) < d3) (14)

The reliability can then be obtained by Monte Carlo
method, and the meantime to failure (MTTF) can be
calculated by

E (T ) =
∫
∞

0
R (t) dt (15)

Combining degradation data and corresponding parameter
estimation method, this model could be utilized to describe
the degradation process of reciprocating seals and obtain
related reliability information.

2) BAYESIAN COPULA SELECTION
Once the degradation model of reciprocating seal is built
based on D-vine copula, suitable bivariate copula functions
must be determined. This work uses a Bayesian method to
locate the optimal copulas for C12, C23, and C13|2, respec-
tively, then the copula candidate which has the largest pos-
terior probability is selected [39]. In this approach, values
of parameters in the proposed degradation model are not
required for copula selection.
Let C = (C1,C2, . . . ,CL) denote the set of copula candi-

dates, and Hl represents the event of the given sample data D
coming from copula Cl (Cl ⊂ C, 1 ≤ l ≤ L). The posterior
probability P (Hl |D) is the probability that it satisfiesHl with
the given data D. Using Kendall’s τ , the posterior probability
can be expressed as [39]

P (Hl |D, I ) =
∫ 1

−1
P (Hl, τ |D, I ) dτ

=

∫ 1

−1

P (D|Hl, τ, I ) · P (Hl |τ, I ) · P (τ |I )
P (D|I )

dτ

(16)

where P (D|Hl, τ, I ) is the likelihood function, P (Hl |τ, I )
is the prior probability that Hl is valid, P (τ |I ) is the prior
probability for Kendall’s τ , I represents other relevant infor-
mation, and P (D|I ) is the normalization constant. In (16),
P (D|Hl, τ, I ) is dependent on Kendall’s τ , and can be calcu-
lated by [39]

P (D|Hl, τ, I ) =
M∏
j=1

cl
(
uj, vj|τ

)
(17)

where cl
(
uj, vj|τ

)
is the density of copula function Cl .
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The prior information in (16) includes P (Hl |τ, I ) and
P (τ |I ). Here I represents other relevant information, and is
defined as follows:

(1) I1: The prior on τ is additional knowledge regarding
the dependence between two performance indicators. In this
case, τ belongs to set 2, and each outcome of τ ∈ 2 is
equally likely. In this work, no prior information is available,
so 2 can be simply assumed to be [-1,1], providing

P (τ |I1) =

{
1

λ(2)
, τ ∈ 2

0, τ /∈ 2
(18)

where λ (2) denotes the Lebesgue measure of 2.
(2) I2: For a given τ , all copula families satisfying τ ∈ �l

are equally probable. Here, �l is the domain of Kendall’s τ
for the lth copula Cl .
Eq. (18) can then be further expressed as

P (Hl |D, I ) =
1

P (D|I )

∫ 1

−1

M∏
j=1

cl
(
uj, vj|τ

)
·P (Hl |τ, I2) ·

1
λ (2)

dτ

=

(
1

P (D|I )
· P (Hl |τ, I2) ·

1
λ (2)

)
·

∫
�l∩2

M∏
j=1

cl
(
uj, vj|τ

)
dτ (19)

where P (D|I ) and P (Hl |τ, I2) are both constant.
Let

Wl =
1

λ (2)
·

∫
�l∩2

M∏
j=1

cl
(
uj, vj|τ

)
dτ (20)

and the weight Ql for each copula function Cl in the set of
copula candidates C can be expressed as

Ql =
Wl∑L

m=1Wm
(m = 1, 2, . . . ,L) (21)

The copula function Cl in the set of copula candidates C
with the largest weight can then be selected for C12, C23 and
C13|2, respectively.

3) BAYESIAN INFERENCE
Unknown parameters αk = (µk , σk , qk), θ12, θ23, and θ13|2
in (13) are estimated by degradation data, then the reliability
function can be obtained, and mean time to failure (MTTF) as
well as other indices regarding reliability can be calculated.
Based on (13), the log-likelihood function can be derived,
as given by

lnL =
3∑

k=1

N∑
i=1

M∑
j=1

ln [fk (Xk) ;αk ]

+

N∑
i=1

M∑
j=1

ln [c12 (F1 (X1) ,F2 (X2)) ; θ12]

+

N∑
i=1

M∑
j=1

ln [c23 (F2 (X2) ,F3 (X3)) ; θ23]

+

N∑
i=1

M∑
j=1

ln
[
c13|2

(
F1|2(X1|X2) ,F3|2 (X3|X2)

)
; θ13|2

]
(22)

Generally, the maximum likelihood estimates (MLEs) of
unknown parameters

(
α, θ12, θ23, θ13|2

)
can be obtained by

maximizing the log-likelihood function. However, as the
dimension of the parameter space in the proposed model
is high, obtaining the estimated value by traditional MLE
method may be difficult. This work utilizes inference
functions for margins (IFM) method as proposed by Joe
[40], which is a computationally attractive alternative to
MLE for estimating parameters in multivariate copula mod-
els. This approach mainly divides the log-likelihood func-
tion into two parts: the contribution denoted by Lm from
the log-likelihood of each marginal distribution Lk , k =
1, 2, 3, and the contribution denoted by Lc from the
dependence structure in data represented by copula. This
provides

lnLm =
3∑

k=1

N∑
i=1

M∑
j=1

ln [fk (Xk) ;αk ] (23)

lnLc =
N∑
i=1

M∑
j=1

ln [c12 (F1 (X1) ,F2 (X2)) ; θ12]

+

N∑
i=1

M∑
j=1

ln [c23 (F2 (X2) ,F3 (X3)) ; θ23]

+

N∑
i=1

M∑
j=1

ln
[
c13|2

(
F1|2 (X1|X2) ,F3|2(X3|X2)

)
; θ13|2

]
(24)

The IFM approach estimates the parameters of each
marginal distribution and each copula function in two stages.
In the first stage, the parameters regarding each marginal
distribution, i.e. αk = (µk , σk , qk), are estimated from the
corresponding Lk . In the second stage, the parameters of cop-
ula function are obtained through Lc. The estimated parame-
ters regarding the marginal distribution in the first stage are
used to calculate input in the second stage. For comparison,
a full Bayesian joint estimation is also calculated, which has
only one stage and does not divide the parameters into two
groups.
Stage 1. Estimation of parameters regarding the

marginal distribution
In each marginal distribution for the performance indi-

cators of reciprocating seals, the unknown parameters
are the corresponding parameters in Wiener process. The
likelihood function of the kth performance indicator is

130750 VOLUME 7, 2019
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given by

Lk =
N∏
i=1

M∏
j=1

[fk (Xk)]

=

N∏
i=1

M∏
j=1

1√
2πσ 2

k13
(
tij
)

· exp

{
−

(
Xk − µk13

(
tij
))2

2σ 2
k13

(
tij
) }

(25)

Then, the log-likelihood Lm can be given by

lnLm =
3∑

k=1

N∑
i=1

M∑
j=1

ln [fk (Xk) ;αk ]

= −
1
2

3∑
k=1

N∑
i=1

M∑
j=1

ln
(
2πσ 2

k13
(
tij
))

−
1
2

3∑
k=1

N∑
i=1

M∑
j=1

(
Xk − µk13

(
tij
))2

σ 2
k13

(
tij
) (26)

The parameter set αk = (µk , σk , qk) of marginal distribu-
tion can be estimated by Bayesian method. In the Bayesian
approach the unknown parameters are treated as random
variables and their probabilistic models are illustrated by
posterior distributions. The posterior distribution of α can be
given by

π
(
α|1Y

(
tij
))
∝ lnLm

(
1Y

(
tij
)
|α
)
· π (α) (27)

whereπ (α) denotes the prior distribution of unknown param-
eters. In this study, non-informative prior distribution is uti-
lized for αk in which lnLm

(
1Y

(
tij
)
|α
)
is the log-likelihood

of the degradation model and π
(
α|1Y

(
tij
))

denotes the
posterior distribution. Markov chain Monte Carlo (MCMC)
method is used here to construct a Markov chain, which con-
structs the stationary distribution as the prior distribution and
produces samples of the posterior distribution through this
chain. The parameter estimation process based on MCMC is
carried out in the software OpenBUGS.

Stage 2. Estimation of parameters regarding copula
function

In the first stage, the parameters ofWiener process for each
performance indicator have already been obtained, and will
be used in the second stage to calculate sample data of Fk

(
tij
)

for each performance indicator. The likelihood function Lc
denotes the dependence structure in data represented by
D-vine copula, as shown in (24). Subscripts θ12, θ23 and
θ13|2 are the parameters reflecting the dependent relationship
in copula functions C12, C23, and C13|2, respectively. Here,
θ12 is taken as an example to illustrate the parameter estima-
tion process in Stage 2. The unknown parameters are also
estimated by Bayesian approach. The log-likelihood func-
tion corresponding to the dependence between performance

FIGURE 3. Flowchart of parameter estimation based on D-vine copula.

indicators 1 and 2 can be given by

lnLc12 (θ12) =
N∑
i=1

M∑
j=1

ln[c12 (F1 (X1) ,F2 (X2)) ; θ12] (28)

The posterior distribution of θ12 can be expressed as

π (θ12|F1 (X1) ,F2 (X2))

∝ lnLc12 (F1 (X1) ,F2 (X2) |θ12) · π (θ12) (29)

where π (θ12) denotes the prior distribution of θ12. In this
work, non-informative prior distribution is utilized for θ12.
Here, ln Lc12 (F1 (X1) ,F2 (X2) |θ12) is the log-likelihood of
the degradation model and π (θ12|F1 (X1) ,F2 (X2)) denotes
the posterior distribution. The parameter estimation process
is also based on MCMC and is carried out in the software
OpenBUGS.
The calculation process for estimating θ23 is similar. When

estimating θ13|2, F1|2 (X1|X2), and F3|2 (X3|X2) can be calcu-
lated by F1 (X1), F2 (X2), and F3 (X3) based on (10) and (11),
after the optimal copulas of C12 and C23 are determined.
Non-informative prior distribution is also utilized for θ23
and θ13|2. The remaining calculation process is also similar to
the estimation process of θ12 and θ23, and the entire parameter
estimation process is shown in Fig. 3.
Once the parameters have been estimated, reliability func-

tion can be calculated by (14) with Monte Carlo simula-
tion, and MTTF can be obtained by (15). Other indices
regarding reliability of reciprocating seals can also be
determined.
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FIGURE 4. Test rig of reciprocating seals (a) photo of equipment; (b) schematic.

FIGURE 5. Plots of the three performance indicators of four samples.

III. MODEL VALIDATION
A. INTRODUCTION TO THE EXPERIMENT
Degradation testing of a certain model of reciprocating seal
was carried out to verify the proposed model. The test rig
is shown in Fig. 4(a), and a schematic of the test rig is
provided in Fig. 4(b). For this experiment, the servo valve
controls the driving cylinder which drives the test cylinder.
The driving cylinder and the test cylinder were vertically
installed and individually powered by the hydraulic pressure
generated by different hydraulic circuits. The test cylinder
reciprocated on the sliding guide rail, while the rod of the test
cylinder remained stationary. A high precision displacement
sensor was installed in the driving cylinder to control the
displacement. The temperature and pressure of the hydraulic
oil in the test cylinder chamberweremeasured by temperature
and pressure sensors. An electrical resistance strain gauge
(a force sensor) was used to measure the friction force of
the reciprocating seal, and a micro temperature sensor was
utilized to monitor the temperature on the contact surface.
The leaked hydraulic oil was collected in a measuring cup
under the test cylinder.

Friction force, contact temperature, and leakage rate signal
were collected and used to assess the degradation process of
the reciprocating seals. After being conditioned by a signal
conditioning module, the signal was collected by a data col-
lection system. Data collection and processing software was
programmed in National Instruments LabWindows CVIr,

TABLE 1. Operating condition of test sample.

and data collection was automatically performed every four
hours. For friction force and contact temperature signal,
the sample rate was 200 Hz and each collection lasted for
20 seconds. The failure of each reciprocating seal being
tested was manually judged by test operators based on fric-
tion force, contact temperature, and leakage rate. Once a
reciprocating seal failed, it was dismantled from the test rig.
A new seal was then installed and the test was resumed.
The operating condition of the test sample is provided
in Table 1.

B. ESTIMATION OF PARAMETERS REGARDING EACH
PERFORMANCE INDICATOR
Eight samples were tested in the experiment, and the test
lasted for 500 hours. Plots of the three performance indicators
of four samples are provided in Fig. 5.

As discussed in Section II.B, Wiener process is utilized
to describe the degradation process of the three performance
indicators of reciprocating seals, as shown in (1). Parameters
in αk = (µk , σk , qk) in theWiener process must be estimated
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FIGURE 6. Gelman-Rubin ratio results of the parameters regarding the three performance indicators.

TABLE 2. Mean value of unknown parameters of the three performance
indicators.

in the first stage of IFMmethod. The prior distributions of αk
are set as non-informative prior distribution, and the posterior
distributions of these parameters are computed by Open-
BUGS. When the MCMC simulation starts, the Gelman-
Rubin ratio is utilized to check if the distribution has come
to convergence from the sampled values of posterior distribu-
tion. Three Markov chains start with different initial values
and the number of iterations is 100,000. Plots of Gelman-
Rubin ratio are provided in Fig. 6. It can be observed in
the figure that the Gelman-Rubin statistics of all parameters
quickly become stable and converge after 500 iterations.
A total of 80,000 iterations, i.e. from 20001 to 100000, are
used to calculate the mean value of the unknown parameters
in αk .

Posterior distributions of the parameters in αk for the three
performance indicators are shown in Fig. 7, and the mean
value and the standard deviation for each parameter are shown
in Table 2 and Table 3, respectively. Using this information,
the marginal distributions of the three performance indicators
and conditional cumulative distribution functions can then be
calculated based on (3), (10) and (11), which are used as the
input in the second stage of Bayesian inference.

C. ESTIMATION OF PARAMETERS REGARDING
DEPENDENCE AND COPULA DETERMINATION
Copula functions are used to describe the dependence
among the three performance indicators and Bayesian copula

TABLE 3. Standard deviation of unknown parameters of the three
performance indicators.

TABLE 4. Weight calculation results for copula selection and
corresponding ranking.

selection method is utilized to choose the most suitable cop-
ula function. In this work the copula candidates include Clay-
ton, Gumbel, Gaussian, and Farlie-Gumbel-Morgenstern
(FGM) copulas. Clayton copula and Gumbel copula belong
to Archimedean copula family, and Gaussian copula belong
to elliptical copula family. As FGM copula does not belong
to Archimedean or elliptical copula family, these four copula
candidates are typical. The calculation results of weights and
corresponding ranking for C12, C23, and C13|2 are shown
in Table 4. It can be seen that for C12, Clayton copula has the
highest weight, so Clayton copula is adopted to describe the
dependence between friction force and contact temperature.
For C23, Gaussian copula has the highest weight, so Gaussian
copula is used to describe the dependence between contact
temperature and leakage rate. For C13|2, Clayton copula also
has the highest weight, and it is used to describe the depen-
dence between the two conditional cumulative distribution
functions, i.e. F1|2 (x1|x2) and F3|2 (x3|x2).
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FIGURE 7. Plots of posterior distributions of the parameters in Wiener process for three performance
indicators.

FIGURE 8. Scatterplots among the indicators and marginal distributions.

The scatterplots among the indicators and F1|2 (x1|x2) and
F3|2 (x3|x2) are shown in Fig. 8. It can be seen from Fig. 8 that
the dependence between friction force and contact tempera-
ture has lower tail dependence, and the dependence between
F1|2 (x1|x2) and F3|2 (x3|x2) also has lower tail dependence.
While the dependence between contact temperature and leak-
age does not have any tail dependence. These scatterplots are
consistent with the copula selection results.

The parameters in copula functions C12, C23, and C13|2 are
estimated in the second stage of IFM method. The prior dis-
tributions of θ12, θ23, and θ13|2 are all set as non-informative
prior distribution, and the posterior distributions of these
parameters are computed by OpenBUGS. In this process,
the Gelman-Rubin ratio is also utilized to check whether
the distribution has come to convergence, and the results are
shown in Fig. 9, along with the posterior distribution of the
three parameters. The mean value and standard deviation of
θ12, θ23, and θ13|2 are provided in Table 5.
Akaike information criterion (AIC) is then used to ver-

ify the accuracy of Bayesian copula selection method. The
results are shown in Table 6, where it can be seen that
Clayton copula, Gaussian copula, and Clayton copula are
also selected as the optimal copula for C12, C23, and C13|2,
respectively. The selection results are the same as the results
based on Bayesian copula selection method. However, the

TABLE 5. Mean value and standard deviation of parameters in Copula
function.

TABLE 6. AIC calculation results for copula selection and corresponding
ranking.

parameters θ12, θ23, and θ13|2 in all copula candidates must
be estimated in advance in order to obtain corresponding
AIC value, which could be time consusming.

D. RELIABILITY ESTIMATION FOR RECIPROCATING SEALS
BASED ON D-VINE COPULA
When all unknown parameters in Wiener process and Cop-
ula functions are estimated, the reliability function can be
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FIGURE 9. Gelman-Rubin ratio results of the parameters regarding the copula function and their posterior
distribution.

TABLE 7. MTTFs under different dependent situations.

TABLE 8. MTTFs when different performance indicator is placed into
the second position in Layer 1.

calculated and the mean time to failure (MTTF) can be
obtained. The reliability function when the three performance
indicators are independent and the reliability function when
the dependence among the three performance indicators are
described by three-variable Gaussian copula function are also
calculated. Comparison of the three reliability functions is
provided in Fig. 10. It can be seen from the figure that the
reliability when dependence among the three performance
indicators are described by three-variable Gaussian copula
function is a little higher than that when the three perfor-
mance indicators are independent, while the reliability when
the dependence among the three performance indicators are
described by D-vine copula is lower than that when the three
performance indicators are independent.

Comparison of MTTFs obtained in the three situations are
shown in Table 7. It can be observed that when the depen-
dence among the three performance indicators is described
by D-vine copula, MTTF is closer to that provided from
manufacture than those under the other two situations. The
MTTF results when friction force and leakage rate are placed
into the second position in Layer 1 of Fig. 2 respectively are
also calculated and compared with the MTTF result when
contact temperature is placed into the second position in
Layer 1 of Fig. 2, as shown in Table 8. The results show that
theMTTFwhen contact temperature is placed into the second
position in Layer 1 of Fig. 2 is the most accurate. For full
Bayesian joint estimation, the prior distribution has much
effect on the convergence speed, and the final MTTF result is

FIGURE 10. Comparison of reliability function.

1830.1 hours, which has bigger error than the results obtained
by the two-stage Bayesian method.

IV. CONCLUSION
A reliability estimation model for reciprocating seals based
on multivariate dependence analysis was presented in this
paper. Degradation behavior corresponding to each perfor-
mance indicator of reciprocating seals was described by
Wiener process. The dependence among the three perfor-
mance indicators was then described by D-vine copula func-
tion, and a Bayesian copula selection approach was proposed
to determine the optimal copula and build a degradation
model. Parameter estimation was conducted based on a two-
stage Bayesian method. Degradation testing for reciprocating
seals was then carried out and validation based on test data
was conducted. Validation results show that the proposed
model is effective in estimating the reliability of reciprocating
seals and can achieve a superior goodness of fit. Sugges-
tions for future work include using time-varying copulas to
describe the dependence and locating appropriate functions
as evolution parameters in the copula function.
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