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ABSTRACT

A very common problem in Civil Engineering is the analysis and
design of lattice structures. These types of structures generally
consist of repetitive sections and have been utilized in the
erection of transmission and communication towers, space roof trusses,
solar energy collectors, and space platforms. Since lattice structures
consist of a significantly large number of members and subsequently a
large number of nodes, fhe classical discrete technique of analysis can
be very expensive even An today's modern computers. This stydy applies
a rational approach which capitalizes on the repetitive nature of towers
to develop the equivalent continuum model for the lattice structure.
The continuum approach is based on equivalencing the strain and kinetic
energies of the actual latticed tower with that of the equivalent
continuum model. Introducting the kinematic assumption that the strain

- components of the lattice structure have linear variations in the plane
of the tower cross section is the key step in obtaining correct
expressions for the equivélent properties of the continuum model. Pro-
cedures for developing continuum models are presented along with the
constitutive equations and strain expressions. The procedures are
demonstrated by applying the continuum modeling approach to planar
trusses, triangular towers with cons§ant cross sections, triangular
towers with variable cross sections,vand towers with rectangular cross
sections. Numerical results for static deflections and free vibration
analysis of planar trusses and towers with triangular cross sections are
presented and they indicate the high accuracy of the continuum model
solution. In addition, a numerical technique }s developed to obtain

member forces of the actual lattice structure from the continuum model
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results, Moreover, a comparison of computer times using the SAP IV finite
element program to analyze the actual lattice structures versus

the equivalent continuum model is presented. |In general, _the contin-

uum épproach when applied to the analysis of lattice structures
demonstrates a significant savings in computer cost with a relatively

insignificant loss in accuracy.
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CHAPTER |

INTRODUCT ION

1.1 General Remarks

One of the most common types of civil engineering structures used
today is the latticed structure. This popularity stems from the
relatively. large strength to weight ratio possessed by these structures
and their relative ease of fabricatipn and erection as compared with
other structures (1). Indeed, significant interest has been generated
by the potential use of these structures in space as solar energy
collectors, as transmission or communication towers, and as large span
roof structures as shown in Figure (1.1).

A latticed structural system is a network of elements which exhibit
three dimensional load carrying capabilities. The characteristics which
make the analysis and design of latticed structures a special class are
the three dimensional analytical solution required for a complete
description of the structural behavior and the relatively large number
of individual structural members in the structure. These two
characteristics make the attainment of an analytical solution by the
use of direct methods (finite element, finite differences) computationally
very expensive. This is due in part to the large number of algebraic
equations generated by the above techniques. Consequently, approximate
methods of analysis are receiving a significant amount of attention in
an effort to reduce this computational expense while achigving results
which accurately predict the response of the lattice structure.

Another important characteristic of most lattice structures which
permits reducing their dimensionality is that the individual members are

often connected together to form repetitive sections. Capitalizing on
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this characteristic, one can model the three dimensional repeating
section of the struéture into a one dimensional equivalent element having
the equivalent properties of the repeating section (7). The equivalent
element will approximate ;he actual response to the latticed structure
and will reduce the total number of degrees of freedom in the problem,
thereby, producing a reduction in the computational cost. A major
question that remains is how good an approximation is the equivalent
model* solution? Herein lies the,overall objective of the present study
which investigates this approximation as it applies to civil engineering

structures under static loadings as well as free vibration analysis.

1.2 Literature Review

The‘most common procedures used for analyzing lattice structures
can be grouped into three techniques: Direct Methods, Discrete Field
Analysis, and the Equivalent Continuum Method.

Direct Methods as previously mentioned require the solution of a
system of algebraic equations. Equilibrium of compatibility equations
are written at each node. These equations are then solved to obtain
either.the joint displacement (classically referred to as the stiffness
method) or the forces (classically referred to as the flexibility
method). These methods are "exact" (2) in the sense that no simplifying
assumptions are made to the structural element and the mathematical
model utilized involves oniy the usual assumptions associated with
linear elastic structural behavior. Both force and displacement methods
can be highly automated for implementation on digital computers. Even
with the use of efficient numerical computing scﬁemes (substructuring
and sparse matrix techniques), analyzing a large strucfural system

using direct methods requires a very large number of simultaneous
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equations which may overtax present~day computers (3). |In addition,.if
the designer is interested in obtaining a dynamic analysis, the cémp-
utation of the natural frequencies and mode shapes via an eigenvalue
solution can be very expensive.

Discrete field methods are the'mosf commonly used techniques for
analyzing repetitive lattice structures without involving large
numbers of algebraic equations. A summary of the state-of-the-art of
discrete field analysis of lattice structures is given by both Dean (4)
and Avent (5). The discrete field method is divided into two separate
approaches: the micro and macro techniques.

The micro method exploits the repetitive nature of the lattice
structure because the mathematical model is derived by analyzing the
basic lattice element and relating its behavior to that of the adjoin-
ing and connecting elements. Consequently, the force and deformation
characteristics of a small segment of the actual lattice are described
in terms of the field coordinates using finite difference operators.

The finite difference equations can be solved directly or can be
converted into approximate differential equations by replacing the

finite difference operators with the appropriate Taylor series expansion
as employed by Rentoﬁ (6) and Dean (7). However, the solution of the
mathematical model can be written in several forms. One such form is

a set of arbitrary functions whose arguments have a specified dependence
on the field coordinates. Another form of solution is a single trigon-
ometric series of functions of one coordinate with functions of the other
coordinates as coefficients. Another alternative approach is to express

the solution as multiple series of functions of the coordinate having

constant coefficients.
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The macro approach extracts a closed form solution for the entire
lattice structural system without depending on discretizing the
structure. This approach is characterized by the generation of é
mathematical model in the form of a summation equation. The component
members, whose span dimensions correspond to those of the whole. system
as opposed to basic elemgnts as in the micro approach, are analyzed
separately for their behavior at the lattice nodes. These components
are superimposed and compatibility is enforced at the end nodes. The -
solution of the resulting equations is determined using the orthogon-
ality properties of the series functions found in the member analyses.
This technique is particularly well adapted for cases in which lattice
structures are interacting with continuous elements. The micro
approach is more appropriate for analyzing repetitive lattice structures
by the discrete field method. Therefore, Dean (7) applied the micro
approach and obtained closed form solutions for the transverse
displacements of simple planar truss configurations. Renton (6) took
the analysis one step further by deriving an approximate differential
‘equation which includes a shear deformation effect for some trusses.

Equivalent continuum methods of repetitive lattice structures have
the major advantage of providing a practical approach for the analyst
to obtain the solution of the systeﬁ's global response without using a
large number of equations. Therefore, the designer can utilize this
technique to indicate the structural response of a latticed structure
in parametric studies with regards to the structural geometry or
material properties with minimum computer expense. The most common
approaches for developing continuum models are the intutive approach

and the energy equivalence approach. |In the intutive approach, a
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portion of the equivalent continuum is first equivalenced with a portion
of the actual lattice. The continuum stiffness can then be obtained by
introducing‘a unit strain state (7) and taking the stress resultants to
be the equivalent stiffnesses. Timoshenko (8) applied the intutive
approach to the static analysis of single-layer grids. Heki and Saka (9)
introduced tensor transformations to obtain equivalent stiffness for
more general grid configurations. The equivalent continuum approach
has been applied by Sun and Yang (10) in analyzing single-layer grids
with in-plane deformation, free vibration, and wave propagation. The
procedure presented by Noor, Anderson, and Greene (11) is based on
obtaining the strain and the kinetic energies of the repeating element
in terms of the continuum strain and displacement parameters. From
these energies, the constitutive relations, governing differential
equations, and boundary conditions are obtained using a variational
principle. Nayfeh (13) also used the equivalent continuum approach.

In the majority of the studies documented in the literature, the

" focus has been on static analysis. There is a paucity of studies

dealing with free vibration analysis. In addition, the equivalent
continuum approach has not been applied to some important and common
design problems in civil engineering'such as communication and trans-
mission towers. In addition, to the author's knowledge, methods for
the resolution of the forces obtained from the continuum model back
into member forces of the actual structure for design has not been

reported in the literature.

1.3 Objectives and Scope
The present dissertation attempts to bridge the above gaps by

applying a simple, rational energy equivalence approach to analyze
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pin-jointed towers with constant cross sections and towers with variable
triangular cross sections. The dissertation presents a techﬁique to
recover member forces of the actual structure using results obtained
from the equivalent continuum model. Therefore, the objectives of the
present study are to:
1. Apply a rational approach for developing continuum
models for planar trusses, triangular towers with
constant cross sections, and towers with variable
triangular cross sections.
2. Show the reliability and the numerical accuracy of
the continuum models developed by comparing continuum
model results with those obtained from finite element
models using SAP IV Program (12).
3. Develop a technique to allow the designer to calculate
member forces of the actual structure from the results

obtained by the continuum model analysis.

The scope of the present study includes the following:
1. Static and free vibration analysis for planar trusses
using the equivalent continuum approach.
2. Static and free vibration analysis for towers with
variable triangular cross sections.
3. Static and free vibration analysis for towers with

constant triangular cross sections.
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CHAPTER 11

ANALTYICAL DEVELOPMENT OF CONTINUUM MODELS

2.1 The Equivalent Continuum Model

In the formulation of an equivalent continuum model as a substitute
for the actual lattice structure, the first step is the selection of the
repeating element. A repeating element is defined as a collection of
all the members which form the sma[]est possible repetitive pattern. In
addition, these elements can be interchanged without affecting the
original geometry of the lattice structure.

As previously mentioned in Chapter |, an equivalent continuum model
is defined as a mathematical model which possesses the equivalent strain
energy and kinetic energy as the actual lattice structure when both
models are identically deformed. This definition establishes the second
step in the development of the equivalent continuum model. The strain
energy and the kinetic energy of the repeating element are expressed as
functions of the nodal displacements, joint rotations, and nodal velocit=-
ies as well as the geometric and material properties of the individual
members. These energies are summed for all the members of the repeating
element ‘to obtain the equivalent properties of the continuum model.

-Then, the boundary conditions of the actual lattice structure are
simulated in the continuum model by setting the appropriate displacement
parameters or force expressions to their prescribed values as given by
Noor and Anderson (11).

The equivalent continuum model of a lattice structure is character-
ized by its strain energy and kinetic energy. The procedures indicated in (11)

for developing the strain and kinetic energy expressions of the equivalent
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continuum model are summarized as follows:

1. The typical repeating element is isolated from the
lattice structure.

2, The strain energy and the kinetic energy expressions
of the repeating element are obtained by summing the
contributions of.alllmembers of the repeating element.
This leads to energy expressions in terms of nodal
displacement components and their associated velocities.

3. The appropriate kinematic hypothesis to express the
nodal displacement components is introduced in terms of
a selected set of displaceﬁent components for the
equivalent continuum model. For example, in the present
study, the displacement components along pin connected
members of the repeating element are assumed to have a
linear variation. |n addition, the three displacement
components of the lattice structure are assumed to have
a linear variation in the plane of the cross section
which results in the strain parameters being functions
of the axial displacement only.

L, The relationships from step 3 are then substituted into
the energy expressions which produce the stiffness and
the inertia properties of the equivalent continuum model.

The transition from the discrete lattice structure to the continuum ;
model ig accomplished by expanding the strain components in the
coordinate directions in a Taylor series about the centroid of the
repeating element. The number of terms retained in the Taylor series

expansion is dependent upon the complexity of the repeating element
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and should not exceed the total number of degrees of freedom of the
repeating element. |In addition, compatibility at the interface

between any two adjacent repeating elements must be insured so that

the number of continuum strain parameters required in the equivalent
continuum model can be reduced. Furthermore, the continuum model can
still be simplified by negiecting the forces associated with some
secondary strain parameters. This results in a set of algebraic
equations which can be solved in terms of the reduced strain parameters
of the equivalent-continuum model. Numerical studies (11) have indicated
that some of the derivatives of the displacement parameters of the
equivalent continuum can be neglected in the kinetic energy expression
without affecting the accuracy of the lower vibration frequencies. ' This
is of particular importance in the design of typical civil engineering.
structures where the designer is generally concerned with the first few

lower vibration frequencies.

2.2 Development of the Stiffness and Inertia Coefficients of the
Equivalent Continuum Model
The constitutive relationships and the governing differential
equations for the equivalent continuum model can be developed from the
strain energy and the kinetic energy expressions obtained for the
repeating element. The strain energy density function can be expressed
as a quadratic function of the continuum model's strain components. The

mathematical expression for this function is written in the following

form:

u = 172 {e}'[c] {e} (2.1)
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where U is the strain energy per unit length of the equivalent

continuum model;
{e} is the strain vector of the equivalent continuum; and
[C] is the matrix of the continuum stiffness coefficients.

The stiffness coefficients in Equation (2.1) are obtained by
differentiating the strain energy expressions with respect to the
strain parameters. Specifically, the continuum stiffness coefficignts
can be expressed as follows:

32y 5
(2.2) 1

C.. =
t) aeiaej

The kinetic energy is a quadratic function of the continuum
velocity parameters., The expression for the kinetic energy density

function can be expressed as follows:
T = 172 {8 [0 (& (2.3)

Where T is the kinetic energy density function per unit length of the
equivalent continuum model;
{Q}is the vector of velocity parameters;
@ﬂis the equivalent mass matrix coefficients of the
continuum model; and

t denotes transposition-

The equivalent mass coefficients in Equation (2.3) can be obtained
from the appropriate differentiation of the kinetic energy with respect
to the velocity parameters as follows:

327

mij = -a—ai—aaj (2.1'5)
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The governing differential equations of the equivalent continuum
model are derived in a classical manner by applying Hamilton's prinbiple

(16) which can be expressed as follows:

t t
o P e m-vaea] e e =0 25

where V = total potential energy of the system, including both
strain energy and potential energy of any conservative

external forces,

W= work done by non-conservative forces acting on the
system, including damping and any arbitrary external

loads, and
8§ = variation taken during indicated time interval.

The dependent variables in these differential equations are the
generalized displacements of the continuum. For free vibration analysis,
the time derivatives in the governing differential equations are
eliminated by :assuming that the generalized displacements have sinusoidal
variations in time. Therefore, closed form solutions can be obtained for
the continuum models with simple configurations and boundary conditions,
since the governing equations are ordinary differential equations. How-
ever, for more complicated configurations or boundary conditions,
approximate solutions such as the finite element technique or other
Rayleigh = Ritz techniques are practical methods to solve the continuum
model. The finite element method has been selected in this study to

solve the equivalent continuum models.
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2.3 Use of MACSYMA Computérized Smybolic Manipulation in Developing
the Continuum Proéerties
MACSYMA is an interactive computer programing language developed
by the Math Lab Group at Massachusetts Institute of Technology. The
MACSYMA system has numerous capabilities for symbolic algebraic ‘and
calculus computations which eliminate the tedium of algebraic manip-
ulation. The MACSYMA capabilities can be summarized as:
a. Algebraic operations; MACSYMA has the ability to
combine algebraic expressions through ﬁathematical
6perations of addition, multiplication, and exponentiation.
b. Calculus operations; MACSYMA has many built-in
knowledge of the forms of derivative; of most the
commonly used functions. In addition, MACSYMA has the
éébability of solving systems of differential equations
.using Laplace Transforms.
c. Simplification of algebraic expressions; MACSYMA can
do automatic simplification using jreatest common
devisors, replacing of logarithmic and trigonometric
functions with their known values, factoring and
combining terms over a common denominator, ordering
terms according to power of particular variables, etc.
d. Manipulation.of subscripted variables; MACSYMA can
handle subscripted functions and matrices which
encompass matrix addition, multiplication and
inversion,
e. Display of output; MACSYMA displays the numerical

and symbolic expression in two-dimensional format.
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f. Graphical output; MACSYMA also provides graphical
output with charaéter-plotting routines for use with
terminals Qithout 1Tne generating capabilities.

g. Special commands and packages; MACSYMA has built-in
capability for the solution of algebraic equations,
Taylor series expansion, manipulation of trigonoﬁetric
functions, evaluation of both definite and indefinite
integrals in analytic form, and performing vector and

tensor analysis.

In summary, the potential of the MACSYMA computerized symbolic
manipulations is illustrated throughdifferent problems covering wide
range of the structural mechanics areas. Applications (15), include
generation of characteristic arrays of finite elements, evaluation of
effective stiffness and mass coefficients of continuum modeis for
lattice structures, and application of the Rayleigh-Ritz technique to
the free vibration analysis of laminated composite elliptic plates.

The MACSYMA flow chart for the program developed by Nqor and
Anderson (15) is shown in Figure 2.1. This program has been modified
and debuged during the course of the present study in order to analyze
triangular towers with variable cross sections. The listing of the

MACSYMA program used in this study is presented in Appendix C.

2.4 Convergence of the Equilvalent Continuum Solution

It is intuitively expected that as the number of repeating
elements in the lattice structure becomes large, the behavior of the
continuum model approaches that of the actual lattice. Dispussion of

convergence for a simple one-dimensional problem is considered. As
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PART 1

Input characteristics of repeating

element in symbolic form

e coordinates of nodes .

e member properties

PART 2a

e specify displacement

variation in plan of cross section

PART 2b
eevaluate strain components in coordinate

directions

eexpand strain components in coordinate
directions in Taylor series about center
of repeating element

eexpress longitudinal strains in members
in terms of strain components in coordinate
directions

eevaluate contribution of different members
to the thermoelastic strain energy of repeating
element

e evaluate stiffness coefficients of full
continuum theory

PART 4

sevaluate kinetic energy of
repeating element based on
consistent mass approach

eevaluate kinetic energy of
cont inuum beam based on
displacement approximation

eevaluate effective mass
coefficients of continuum
beam model

edisplay mass coefficients
of equivalent continuum
beam model’

PART 3
e set forces associated with strain
gradients equal to zero

e evaluate stiffness coefficients of
continuum model based on engineering
theory

e display stiffness coefficients of
equivalent continuum beam model.

FIGURE 2.1 FLOW CHART FOR MACSYMA PROGRAM USED IN THE
PRESENT ANALYSIS OF LATTICED TOWERS, (15)
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previously mentioned, the stiffness and the mass coefficients must
represent the behavior of the repeating element exactly. Therefore,

the displacement expressions must simultaneously allow local free
deformation to occur and satisfy compatibility between the inter-
connected repeating elements. The total strain energy for the structure
can then be written as a summation over all repeating elements in the

lattice structure as follows:

=

R

u-= (1/2 {e;}t‘ [c]{e;h) -'-h'l-ﬁ (2.6)

™

1

where NR is the total number of repeating elements;
{e} is the strain vector;

[Ca' is the matrix of the stiffnéss coefficients for the
equivalent continuum; and

L is the total length of the lattice structure.

As NR becomes large, the term-%ﬁ-approaches dx, and the vector {ei}
becomes a continuous function {e(x)}. Therefore, the summation over
the total number of repeating elements can then be replaced by the

following integrai:

U= {e(x)® [c] {e(x)} dx (2.7)

Hence, the strain energy of the continuum model converges to that
of the actual lattice structure as the number of repeating elements

increases.
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CHAPTER 111
APPLICATION OF THE CONTINUUM MODEL

TO PLANAR TRUSSES

3.1 General Remarks

The objective of this chapter is to demonstrate the application of
the continuum modeling methodology to the static and dynamic analysis of
planar trusses.

Although the technique presented is ver& general, specific emphasis
is placed on developing a continuum model for the planar truss illustrated
in Figure 3.1. This figure shows a five-bay planar truss with a total
number of twelve joints and twenty-one members. A typical repeating
section (as defined in the previous chapter) is also illustrated in the
same figure along with the sign convention used in the analysis. For

simplicity, the material and section properties are assumed to be constant.

3.2 Kinematic Hypothesis and Displacement Relationship..

The first step in properly representing a two dimensional lattice as
a one dimensional beam model is to establish the kinematic hypothesis.
Since the deformed cross-section of any planar truss can be described by
four displacement parameters {two translations at each of the top and
bottom jo}nts), the displacements in the plane of the cross section of

the equivalent beam model can be assumed as follows:

u=u®+yp° (3.1)
v=vl+y es (3.2)

where u® and v° are the displacements at x = o and y = o respectively,

g° is the rotation of the equivalent beam cross section; and
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FIGURE 3.1 - PLANAR TRUSS AND ASSOCIATED PROPERTIES
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e$ is the extensional strain of the equivalent beam cross section in the

¥y direction.

o » .
All four parameters u , v?, #°, and es are functions of the position
along the centerline of the equivalent continuum beam model. Consequently,

the strain components can be expressed as follows:

du
e == du (3.3)
. (o}
KR 6.
1§ =95 5p° (3.5)
= dv .
ey =3y (3.6)
o o dv°
ey = Gy (3.7)
Yo = ﬂo +-£’-y—o + .d.E$
xy d Y dx
= g% + 2% +y Bes (3.8)

where‘Y‘iy is the shearing strain of the ordinary beam theory;

kg is the curvature change in the x direction; and

_ 3 .
] == is the derivative with respect to x.

Using the expressions defined in Equations (3.1) through
Equation (3.8) with the additional constraint that compatability at the

o
Y

identical at the interface between any two adjacent elements, therefore,

interface of two repeating elements be satisfied (i.e. e® must be

del
E;y must equal to zero), the strain expressions of the kth member of the
repeating element can be expressed as:

e L gy 4o (3.9)
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(k) = ¢°
elk) = & (3.10)
(o)
v,ﬁ';) =g°+-g-;’(— = 8° + 3v° (3.11)

3.3 Strain Energy of the Continuum Model

As previously discussed in Chapter |1, the second step in the
equivalent continuum approach is to write the strain energy equation of
the planar truss in terms of geometric and material properties of the
actual lattice structure. To perform this mathematical procedure, the
axial strains in each member of the repeating element is determined by

the following expression:

2 2
D A F Y N KT

where e(k) is the axial strain in the kth member;
egk) are the strain components evaluated at the center of the
ktP member in the coordinate direction; and

]fk), I}k) are the direction cosines of the k" member.

Therefore, the strain energy of the repeating element can be expressed

as follows:

-1z (k) (k) | (k) ¢ (K)y2
U =5 members E A L (e'™) (3.13)
where e(k) is the axial strain in the kth member ;

E is the elastic modulus;
A is the member cross sectional area; and

L is the length of the member of the repeating element.

The strain energy of the repeating element is obtained by substituting
the strain equation given by (3.12) into equation (3.13). Therefore,

the strain energy expressions for the individual members of the repeating
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element of this particular truss as illustrated in Figure 3.1 can be

written as follows:

(1) _1 o, h ,0y2 -
ult = AL (e +5 KD)

(2) _1 o._.h ,0y2
u —'E-EAL (ex i— kx)

u(3) =L ean (,eg)2 (3.14)

U(h)

-L"- EAh (e°)2

(5) 1 _.= , 0 (L\2 o (hy2 , Lh _o 2
W e f @2+ e B2+ LR D) i

where D, h, L are the diagonaf, height, and the length of the repeating

element, respectively.

Equations 3.14 are quadratic equations of the strain parameters,

which can be expressed in the following matrix form:
1 t
U=g (et [¢)] fe) (3.15)

where [cij] is the matrix of the continuum stiffness coefficients; and

{e} is the strain vector.

However, in order to obtain the stiffness coefficients of the
equivalent continuum, the strain energy expression given by Equation

(3.15) has to be differentiated twice with respect to the associated

strains. “in otherwords, Cij can be expressed as:
42y
C.. = —0m——mn (3.16)
t de; dej

Performing this operation on Equation (3.15) yields the set of
stiffness coefficients for the equivalent continuum beam model. There-

fore, the algebraic equations relating the forces and moments in the
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continuum model to its corresponding strains can be expressed as

follows:
B - - 7T Mo
N ¢ G2 Gz Cun ®x
1O
My Cao  Ca3  Cyy ke
= . . (3.17)
Q_x symmetric C33 C34 ny
(o}
NY cl}h ey

where Nx is the axial force;
M, is the bending moment;
Q, is the transverse shearing force; and
is the force associated with the asymmetric shearing strain

of the continuum.
The values of Cij are listed in Table 3.1.

In general, to reduce the continuum beam theory to represent
ordinary shear deformation beam theory, the continuum theory is further
simplified by eliminating all forces that account for the local member
deformation which must occur freely in the actual structure (11).

The strain energy of the planar truss considered can_be written

in the following functional form:

0 4k° 4gy° d2e°
U=u (2, kK, y2 , €9, dex, x, 2'xy y) (3.18)
x? Tx? Axy? Ty dx dx dx dx2

The underlined terms in this functional relationship are associated with
local member deformation of the planar truss. The forces associated
with these strain components are eliminated by setting the derivative of

the strain energy with respect to these terms equal to zero as follows:
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d2y
C.. = g —
g de; de,
j
Cyq EAL (2 + (L)3)
D
C12 = Cpy 0
Cy3 = C3; | EAH (1)3
p3
Ciy = Cy4y | EA h2 L2
p3
c 1 EAL n2
22 "2
€23 = C3p 0
Cay = Cip 0
2,2
Cy3 EA L2 h
p3
= 33
Cy =Cyy | EA B3 L
D3
Cyy, EAh (1 + (h)3)
D3

TABLE 3.1 - CONTINUUM STIFFNESS COEFFICIENTS FOR
PLANAR TRUSS CONSIDERED
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oU ou ou ou ou

= S a0 T 42e0” 0 (3.19)
2(4%) 5(1%) 3%y a(L%Y) vl
dx dx ‘dx dx Y

(e]
This will result in five equations which express the strain gradients gfx,
dx

. o o 2_0
dk ’ dY&y d ey
dx dx

» T2 and eg in terms of the other three strain components
X

eg, kg, and ng. The resulting strain energy expression can be written

as:

t

1x3 (T3] 305 (3.20)

U=+ ge) (e}

3x1

t . . O 0 _0a..
where {e} "~ is the strain vector [e, Ky ny],

L is the length of the repeating section;
[E}j] 3x3 is the matrix of the equivalent stiffness coefficients

of the continuum model.

Upon completion of this mathematical operation, as presented in

Appendix A, the force displacement relationships can be expressed as

follows:
] [ 1 [ o]
= o
Nx cll 0 0 ey
= o
Mx 0 C22 1] kx (3.21)
- o
Qx 0 0 C33 ny

where E}j is the

27
C33

is the bending stiffness coefficient;

extensional stiffness coefficient;

is the transverse shearing stiffness coefficient of the

equivalent continuum beam model of the parrat truss considered.
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Since the origin of the coordinate axes is chosen at the centroid
of the repeating element, there is né coupling terms between the
equivalent stiffness coefficients. This specific location is found to
be the most suitable and effective location for the origin in all

repetitive lattice structures.

The algebraic values of the equivalent stiffness coefficients for

the planar truss considered are listed in Table 3.2.

3.4 Kinetic Energy of the Equivalent Cont inuum Hoéel

In the free vibration analysis of the lattice structure, it is
necessary to. compute an equivalent mass matrix for the continuum model.
This, as previously discussed in Chapter Il, is developed from the
kinetic energy expression.

The kinetic energy of the equivalent continuum model can be
expressed in terms of the displacement parameters u©, vo, ﬂo

In mathematical form, the kinetic energy can be expressed as:
T=T (u° v°, 8° : (3.22)

Since the kinetic energy is a quadratic function in the displace-
ments and rotational components, it can be written in the following

matrix form:

. =@t 5] @ (3.23)
where {d}' is the velocity vector; and

Eﬁﬂﬂ is the matrix of the equivalent mass coefficients.

The equivalent mass coefficients of the continuum model are obtained

by differentiating the kinetic energy expression twice with respect to
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L = L
op 2 EA
¢, 1 ean?
€33 EALRZ (1 - L3 )
D3 L3 + 203

TABLE 3.2 - ENGINEERING EQUIVALENT STIFFNESS COEFFICIENTS
FOR PLANAR TRUSS CONSIDERED
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the corresponding velocities parameters. This is expressed in mathematical
form as:

c 327 _
"W) (3.24)

)

M. . —

iJor

Based upon a consistent mass approach, the kinetic energy expression

for the repeating element of a planar truss can be expressed according
to Noor and Anderson (11) as follows:

2
)

T =%w2 5p (k) A(_k) I_(k)[(ui)z * gk ("J-

2 o) vy vy r )] (3.25)

where p is the mass density of the kth member which joining node numbers

i and j; w is the natural frequency of vibration.

In order to obtain the eqdivalent mass coefficients, equations (3.1)
and (3.2) are substituted in the kinetic energy expression (3.25). The
inertia terms associated with eg have insignificant effect on the lower
modes of free vibration (11) and are, therefore, neglected. From the
structural point of view, these lower modes do not significantly
contribute to the free vibration analysis of typical civil engineering
structures i.e. towers, buildings, etc.

Therefore, with some algebraic simplificafion, the kinétic energy

of the planar truss continuum model considered can be expressed in terms

of the displacement parameters as:
W = 2 - 02 , = 0,2
T=1 [m; )7 +m,, ()% +m; )] (3.26)

where EHl is the extensional mass density coefficient in the x direction;
Eéz is the extensional mass density coefficient in the y direction;
533 is the density of the mass rotatory inertia coefficient of the
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equivalent beam model; and

L is the length of the repeating element of the planar truss

considered.

These equivalent mass coefficients of the planar truss considered
are listed in Table 3.3. Moreover, the development of these coefficients

is fully presented in Appendix A.

3.5 Work Done by External Forces
The expression for the work done by external forces (11) consistent
with the kinematic hypothesis presented in this chapter can be expressed

as follows:
n’ i i i i
Work = % [Px W+ y' 8% +pP, (Vry'ed)] (3.27)

- i .
where P;, Py are the external nodal load components in x and y directions,

th

respectively, at the i node of the lattice structure.

The total work done by the external nodal forces is obtained by
summing the contributions over the entire lattice structure. A comparison
between the work done by external forces on a discrete lattice structure
and that on the equivalent continuum model indicates very good agreement

between the two models (11).

3.6 Evaluation of Member Forces from Continuum Model Solution of Planar
Truss
One of the problems which the structural designer faces when using
the continuum modeljng approach is the calculation of actual member
forces of the discrete structure from equivalent beam results. This

study presents a simple rational technique to calculate these forces.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



i PA (2 + h + D)
L L
Mgy PA (2 + h +D)

L L

m. -%—pAhZ(1+h+D)

6L

TABLE 3.3 - EQUIVALENT MASS COEFFICIENTS
FOR PLANAR TRUSS CONSIDERED
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The procedures to obtain the member forces from the equivalent

model results can be summarized in the following steps:

1.

From the equivalent continuum model determine the displacement
u, v and @ of the nodes in the equivalent continuum that correspond

to those nodes of the member under consideration.

Substitute these displacements into the following linear displace-

ment relationships for the planar truss:

u, = o +Z; 89 (3.28)
] | - I 1
vi = V? ifi ﬂ? (3-29)

where u?, v?, and 9? are the horizontal displacements, vertical

displacement, and rotational displacement at node i of the

equivalent continuum model; and

Z is the vertical distance from the centroid of the repeating

section to the node under consideration.

The change in length ALij of member (ij) is obtained by:

ALij = l(ui - uj) + m(vi - Vj) (3.30)

where 1 and m are the direction cosines of member (ij) in the x

and y directions, respectively.

The strain in member (ij) is given by:

e, =ALij (3.31)

where Lij is the length of member (ij).
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5. The stress qij of member (ij) is expressed in the classical manner

as:
o;. =E, e, . (3.32)
where Eij is the elastic modulus of member (ij)
6. The force Fij is then determined by the following expression:

Fij =0ij Aij , (3-33)

where Aij is the cross sectional area of member (ij).

A comparative study between member forces obtained from the continuum
model solution and those obtained from the analysis of the actual lattice

structure is presented in the following section.

3.7 Numerical Studies of Planar Truss

The purpose of this section is to assess the-accuracy of the
equivalent continuum model approach in predicting static as well as free
vibration analysis of the planar trusses considered. A comparison is

made between three individual static loadings:which can be summarized as

follows:
an axial load;

a transverse shear load; and

a bending moment load.

Figure 3.2 illustrates the applications of these different loads on the
two end bays of the planar truss considered. Figure 3.3 shows how the
planar truss is simulated into an equivalent beam model along with its
correspanding sign convention. |In addition, Figure 3.3 demonstrates the

application of the equivalent static loadings applied at the end node of
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the equivalent beam centerline. Included in this figure is a table
summarizing the forces and associated displacements of the équivalent
beam model. Since the interior battens geometric properties are assumed
to be shared equally between the two adjacent repeating elements, the
vertical batten member ét the free end of the planar truss is considered
to have one-half of the geometric properties of the interior battens.

SAP 1V (12), a standard finite element computer program, is used in
this study to analyze the actual structural and the equivalent continuum
beam model. The key step in performfng the numerical analysis Is the
simulation of the equivalent properties of the continuum model for input
into the SAP IV program. In the case of the planar truss considered, the
equivalent properties which accommodate SAP (1V) input data can be
extracted from the equivalent continuum stiffness and mass coefficients
as follows:

Equivalent axial area
=2EA - 9 (3.34)
Equivalent moment of inertia

ko

]

%Ah2 (3.35)
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Equivalent shear area

C
Ash=_G3_3

2 3
= AT ) (e ) (3.36)

p3 13 4+ 2p3
where G is the shear modulus; and

v is poisson's ratio.
Equivalent translational mass coefficient in x-direction
Fleo), =m, T (3.37)
Equivalent translational mass coefficient in y-direction
"(eQ), =7y, T | (3.38)

Equivalent rotational inertia in the plane of the cross section of

the equivalent beam model

33

Comparison of the displacement results under the three static loading
conditibns between the equivalent continuum model and the finite element
solution indicates a very high degree éf reliability. Specifically, the
nodal displacements for the axial-loading conditions are in excellent
agreement to within .001%. These results are illustrated in Table 3.4,
The displacement results obtained by the continuum method under a |
transverse loading (refer to Table 3.5) are also in excellent agreement
with those obtained by the finite element method. Specifically, the end

nodal displacement agreed to within 0.30%. The results of the third load

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



36

NODE NO. ugq (FT.) upet (FT.)
1 0.00 0.00 ‘
2 0.14993x10™% | 0.14993x107*
3 0.29985x10~% 0.299855x10f"
t; 0.44978x107% | 0.44978x1074
5 0.59971x10™% | 0.59971x1074
6 0.74964x10™% | 0.749635x107%

EXACT DISPLACEMENT AT FREE END = PL

TABLE 3.4 -

[1]4

PL
AE CT]

= 0.74964x10"4  FT.

ACCURACY OF DISPLACEMENTS OBTAINED BY THE
EQUIVALENT BEAM MODEL FOR PLANAR TRUSS
CONSIDERED DUE TO UNIT AXIAL LOADING.
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NODE NO. VEQ(FT.) VacT (FT.)

1 0.00 0.00

2 0.11728x10"2 | 0.11772x1072
3 0.38449x10"2 | 0.38596x1072
! 0.76415x10"2 | 0.76664x1072
5 0.12188x10™1 | 0.12223x10”"
6 0.17109x10™" | 0.17154x10"]

EXACT DISPLACEMENT AT FREE END = PL3 41[qu dx
L GA

3El
=R+ L
'E' o—
22 C33

0.17108x10”1 FT.

n

TABLE 3.5 - ACCURACY OF DISPLACEMENTS OBTAINED BY THE
EQUIVALENT BEAM MODEL FOR PLANAR TRUSS
CONSIDERED DUE TO A UNIT SHEAR LOADING.
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case - unit bending moment exemplifies further the excellent reliability
of the continuum model. The results of this analysis shown in Table
3.6 indicate, as in the other loadings, a very high degree of accuracy.
Specifically, the results of the continuum analysis are precisely the
same. In addition, as illustrated in Tables 3.4 through 3.6, a structural
analyst can obtain excellent approximate deflection by simple manual
calculations using exact expressions for the deflection of cantilever
beam and the equivalent geometric and material properties obtained by
the continuum modeling approach. This will be of a considerable assistance
to the structural designer in preliminary phases of the design process.
Although the high accuracy of the results obtained by the continuum
model«ana]ysiS'is of great importance, neverless of more significance is
the computational efficiency of the continuum model approach versus the
classical finite element method. Specifically, the computer time (as
measured by CPU time units on a DEC 10 computer) for the equivalent
continuum analysis was 1.18 seconds; whereas, for the more axact finite
element solution the CPU time was 1.31 seconds. This represents a 10%
approximate savings in computer time. Another example of a ten-bay planar
truss was considered in the present study and its static analysis
indicates over 20% approximate saving in computer time. Therefore, it
should be noted that computer time saving will increase significantl& as
tHe number of repeating elements increases in the problem considered.
This fact is also demonstrated by Noor and Anderson (11) throughout their
numerical studieﬁ. In addition to this savings in computer time, there
will be an additional savings in man-hours during the preparation of input

data when using the equivalent continuum modeling technique.
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NODE NO. vgq (FT) vacT (FT)

1 0.00 0.00

2 0.18741x10~4 | 0.18740x10™4

3 0.74964x10"% | 0.74962x10™4

4 0.16867x10~% | 0.16867x10™4

5 0.29985x10™3 | 0.29985x10™3

6 0.46852x10~3 | 0.46852x1073
EXACT DISPLACEMENT AT FREE END = ML2 = M2

———

2E1  2Cpp

n

0.46852x10™> FT.

TABLE 3.6 - ACCURACY OF DISPLACEMENTS OBTAINED BY THE
EQUIVALENT BEAM MODEL FOR PLANAR TRUSS
CONSIDERED DUE TO UNIT BENDING MOMENT LOADING.
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The results for the free vibration anaiysis of the planar truss,
using the continuum model compared to the analysis using the finite
element technique are illustrated in Table 3.7. This table specifically
compares the natural frequencies using the two methods for the first five
modes of vibrations. The difference in natural frequencies between the
two methods for the first two modes is less than 0.5%, whereas, this
difference increases to 1.4% for the third mode and to 4.85% for the fifth
mode. It would appear from these results that the continuum modeling
approach poorly represents the energies in the higher modes. However, in
the analysis of free vibration response for nearly all civil engineering
structural problems, special attention is given primarly to the first
fundamental mode of vibration. Thereby, the continuum mpdeling approach
is a very reliable method of analysis for the free vib(ation response
of repetitive structures,

Figure 3.4 illustrates the first three bending mode shapes as
obtained from the continuum model analysis. This figure shows the first
three mode shapes of the equivalent continuum model which in general
represents the first‘three mode shapes of a cantilever beam. In addition,
depicted in Figure 3.5 is a comparison of natural frequencies ratios of
the first three extensional modes along with the first three bending
modes. As previously mentidned, the error.increases going from the
fundamental mode to the higher modes.

As with the static analysis, there is considerable computational
efficiency in using the continuum modeling approach versus the classical
finite element technique. Specifically, the computer time for the
continuum solution was 1.48 seconds; whereas, for the finite element

solution it was 1.78 seconds. This savings will increase as the size of
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MODE NO. e RAD/SEC wpcy RAD/SEC A%
1 32.28 32.34 0.18
2 144,70 145.30 0.41
3 297.40 301.60 1.39
4 393.60 406.90 L.4o
5 417.50 438,80 4,85
CPU (SEC) 1.48 1.78

TABLE 3.7 - NATURAL FREQUENCIES AND COMPUTER TIME COMPARISON
BETWEEN FINITE ELEMENT AND EQUIVALENT BEAM MODEL
OF PLANAR TRUSS CONSIDERED
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Wy = 32.34 rad/sec
FIRST MODE. SHAPE

~ wy = 145.30 rad/sec

SECOND MODE SHAPE

= 301.60 rad/sec

@3
THIRD MODE SHAPE

FIGURE 3.4 - FREE VIBRATION MODE SHAPES FOR FIVE BAY"
CANTILEVERED PLANAR TRUSS
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BAR GRAPH DISPLAYING COMPARATIVE ACCURACY OF
LOW FREQUENCIES OBTAINED BY THE EQUIVALENT
BEAM MODEL FOR THE PLANAR TRUSS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



bl

the problem increases as was indicated from the analysis of the ten-bay
planar truss considered herein, and aiso as the studies cqnducted by
Noor and Anderson (11) have concluded.

To illustrate the accuracy of the continuum model results in
calculating actual member forces of the structure, different members
of the planar truss illustrated in Figure 3.1 are analyzed. Following
the procedures outlined in Section 3.6, the force in the upper chord mem=-
ber 13 connecting joints (2) and (3) due to the application of 1.0 kip

axial load is calculated as follows:

b b

u, = 0.14993 x 107" ft, , ug = 0.29985 x 107" ft.

AL = (U, - Ug)cos o = 0.14992 x 1071 ft.

e =5'i. = 0.14992 x 1075

0 =eE = 0.14992 x 1072 x 4176000
= . 6.2507 ksf

F =Av = 0.#599 kips

Actual force in member 13 from finite element results is 0.5 kips.
This result shows 0.02% difference between the two solutions.. The force
in the vertical member connecting joints (5) and (6) due to unit moment

at the free and can be obtained in a similar fashion as:

vg = 0.74964 x 10'4 ft ; B3 = 0.7496 x 1072 rad.
V6=V3+fﬂ3
= ,74964 x 1074 + 2 (L7496 x 1075)

= .89956 x 10°% ft.
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Similarly:

4

7496 x 107 - 2(.7496 x 10°°)

M

0.60026 x 1074 ft.

AL = (vg - vs)cos 90

* Therefore, e =0 = F = 0

In otherwords, this parficular member is a zero member under this
condition of loading as the actual finite element results exactly
indicated.

In summary, the results of static and free vibration analyses of the
truss considered have illustrated the high accuracy of the equivalent
continuum approach. This approach is a wery attractive technique for
structural engineers in obtaining accurate responses for lattice type

structures at a significant saving in computational cost and man hours.
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CHAPTER 1V
APPLICATIONS TO TOWERS WITH TRIANGULAR

CROSS SECTIONS

4.1 General Remarks

The purpose of this chaptef is to present the application of the
continuum model approach to towers with constant triangular cross
sections aswell as towers with variable triangular cross sections.
Chui and Taoka (17) conducted theoretical and gxperimental studies
for an actual three legged tower using direct methods for the static
analysis and modal superposition for a forced response dynamic analysis.
The objective of their study was to find out the critical modes of
vibration for the free standing triangular tower. The assumptions

used in their analysis can be summarized as follows:

1. The tower is a linear elastic space truss;

2. Motion in any two orthogonal horizontal directions
are uncoupled;

3. Masses are concentrated at nodal points;

L4, Loads are applied only at panel points;

5. Vertical motions and secondary stresses are
negligible; and

6. Tower base is assumed to be rigid.

The conclusion of their studies was that the fundamental mode of
vibration predominates other modes of vibration in case of free stand-
ing triangular towers. In addition,.their analysis indicated that the
free standing triangular tower has fairly low damping ratio for the

fundamental mode of vibration. Based on these findings, structural
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damping has been neglected and the first three modes of free vibration
have been considered in the present study.

As previously mentioned, this chapter is dealing with free standing
triangular towers as illustrated in Figure 4.1 and Figure 4.2, but with
a completely different approach from Chui and Taoka. As was discussed
in Chapter |1, this approach is based on equivalencing the strain and
the kinetic energies of the actual repetitive structure to those of the
equivalent continuum model, Static ahd free vibration analyses of free
standing triangular towers with constant and variable cross sections
are presented in this chapter along with results obtained indicating the
effectiveness and the accuracy of the continuum solution. The finite
element technique was successfully employed to make a compérison
between the actual tower and the equivalent continuum model for both

static and free vibration responses.

4.2 Characteristics of Free Standing Towers with Triangular Cross

Sections

The configurations of free standing towers for which the equivalent
continuum properties are developed are shown in Figure 4.1 and Figure
4.2. Nomenclature similar to those of planar truss is used to describe
the three dimensional towers considered in the present study. The
single bay double laced repeating section as depicted -in Figure 4.3 and
Figure 4.4 are the most commonly used for tower structures such as
transmission and communication :towers. Thfs type of configuration is
characterized by having no joints at midpoints of the core members
which ultimately results in reducing the degree of complexity of the
analysis. Other cases where intermediate nodes are present in the core

members, theiranalysis indicated that these kindsof trusses cannot be
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FIGURE 4.3 - REPEATING ELEMENT OF DOUBLE LACED TRIANGULAR TOWER WITH
' CONSTANT CROSS SECTION AND ASSOCIATED MEMBER PROPERTIES.
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Number of Repeating Element (NR) = 5

E = 29000000.0 psi :
P= Py =Py = 0.283 1b/in3
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FIGURE ‘4.4 - REPEATING ELEMENT OF DOUBLE LACED TRIANGULAR TOWER WITH
VARIABLE CROSS SECTION AND ASSOCIATED MEMBER PROPERTIES.
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analyzed as a classical space truss with pin joints due to instability
problems. This will occur because beﬁding stiffness of the axial core
members is required to maintain the overall stability of the repeating
element assembly. In additfon, a desirable feature of the single bay
double laced configuration is that it exhibits no peculiar coupling
between the different modes of deformation éuch as bending and shear
coupling. Furthermore, the double lacing in the core adds redundancy

to the structure, thus failure of a single member will not cause

failure of the overall structure due to redistribution of loading among
the other members of the lattice. This makes the double laced configura-
tion a very attractive structural configuration and as such it is

highly recommended for free sfanding towers from the practical eﬁgineering
design perspective.

The continuum model approach reduces the three dimensional repeating
element into a one dimensional equivalent beam element in which the
displacement variation is assumed to be linear in the longitudinal
direction of the repeating element.

In the present study, the continuum model approach has been applied
to towers with sloping legs (thus, a variable triangular cross
section), Special considerations are made to count for the effect of
the sloping legs of the free standing triangular tower on its overall
behavior. The displacement variation is considered to be linear in the
plane of the cross section as well as along the members of the repeating
element of the double laced triangular tower. Therefore, the stiffness
and mass coefficients of the equivalent continuum are obtained as
functions of the geometric and material properties as well as the

sloping angle of the tower legs. Subsequently, as a result of introducing
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the linear slope of the tower legs, bending-shear coupling terms appear
in the equivalent stiffness coefficients. However, numerical studies
conducted herein have indicated that these coupling terms do not have
significant effect on the overall response of the tower and will not
affect the final design of individual tower members. This result is

important because classical finite element programs such as SAP IV do

not provideentry for these coupling terms in the standard beam bending

element.

4.3 Kinematic Assumptions and Displacement Relationships

The selection of necessary displacement functions for a free
standing tower with triangular cross sections begins with a consideration
of theAdisplacements in the plane of the cross section. Therefore,
since each of the displacement components has a linear variation along
the pin-connected members of the repeating element, the three components
of the double laced triangular tower are assumed to have a linear
variation in the plane of the cross section. Based on this assumption,
the displacement variation in the plane of the cross section can be

expressed as given by Noor and Anderson (11) as follows:

ulx, y, 2) = u-yp,+ 28 (4.1)
v (x,y,2) = V? + yeg + z (esz - 8,) (4.2)
w(x, vy, z2) = wl + y (egz + 0x) + zecz’ (l}.3?

where u®, v°, w°® are the displacement components at the centroid of

the repeating section i.e. at y = z = 0;

By, ﬂy, and @, are the rotational components;

[0/

ey

and eg are the extensional components; and
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e®_ is the shearing strain in the plane of the tower cross

Yz

section.

The sign convention for the displacement and rotation component
along with forces and associated displacements of the continuum model
are depicted in Figure 4.5. Therefore, the nine parameters u®, v©°, wo,

By» ﬂy, ﬂz, es, eg, and e?z are functions of the displacement along the
centerline of the repeating element. For towers with triangular cross

sections, the deformed position of any cross section is completely

specified by the three displacement components of each node of the

triangular cross section. |In addition, each of the displacement

components has a linear variation in the y and z plane of the cross

section. Since there are a total of nine free parameters in the displace-

ment expressions,.this will provide an actual representation of the dis-
placement field for the triangular towers depicted in Figure 4.1 and Figure 4.2,

As a consequence of the kinematic assumptions, the strain components
also have a linear variation in the plane of the cross section. They

can be expressed as the following functions of x as indicated in (11):

(Note all partials are with respect to x, i.e. 9 =-§;)
exx T 3x
= o _
= Qu y 98, + z Bﬂy
Therefore;
exx = €YK +zk; (h.4)
Similarly;
= OV . g0
eyy 3y ey (4.5)
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ez = S= = e - (4.6)
e. = _au_ +.a—v

xy ay 9X

O_ O o _
ov g, +vy aey + z (aeyz amx)

Therefore;

1
= o o — 0y .
Zexy 2exy +y Bey + 2 (2 3(26yz) kt) (4.7)

Similarly;

_ du ow
®xz = 3z T Bx

ﬂy + ow® + y (38, + 3332) + 2z Seg

Therefore;

= o (1 o
2exp = 2e,, + 20, +y (3(2e0 ) + k) (4.8)

Similarly;

ow ov
E e e
eyz ay Bz
_ 0
= 2eyz (4.9)
where eg is the extensional strain of the centerline of the

repeating element;

o . . .
ky, kg are the curvature changes in the y and z directions;

kg is the twist due to torsion about x axis;

o] . .
2312 and 2e°_ are the transverse shear strains in the plane

of the cross section of the equivalent continuum

model.

. N (o] (o) o (o) (s} (s] (o} (o]
The nine strain measures (ex, ey, ez, 2exy, Zexz’ 2eyz, kt’ kZ and

kg) are functions of x only. Therefore, the axial strain in each member
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of the repeating element is expressed in terms of the strain components

in the coordinate directions as:

(k)

e

g (k) (k) (k) (4.10)

- £
=1 =1 S i

Hence, the axial strain in the kth member of the repeating element

can be expressed in matrix form as follows:

B e, | 1]
€xx Sxy ®xz
(k) _
e = [l m n] eyx Sy  Syz m (5.11)
Lezx ezy ezz._ _n'_

where e(k) is the axial strain in the kth member of the repeating

element;

e§§) are the strain components of the kth member in the

coordinate directions evaluated at the centroid of that

member;

(k) (k)

1 ,m ", and n

(k)

are the direction cosines of the kth member.

In order to represent the strain expressions of the discrete
system in the continuum model, the strain components in the coordinate
directions are expanded in a Taylor series about the centroid of the

repeating element. This Taylor series expansion about that point can be

expressed as:

e(k) = eg + y(k) kg + z(k) k: + x(k) (Bez - y(k) Bkg

XX

+2(K) 3k9) (4.13)
eét) . e$ + x(K) Beg (4.14)
eég) = eg + x (k) aeg (4.15)
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el 2y oy a4 1 a, - Mg <
a(2e3) + v 3% + 2K (3260, - 52 (4.16)
Zeig) = 289, + y(k)akg + y(k) 3332 + z(K) 32
x(k) (3262 + y(K) (akQ + 5%5,) + 2(K) 3% (4.17)
2e{K) ~ 25, + x(0) 5(2e9,) (4.18)
where x(k), y(k), and z(k) are the coordinates of the center of the

kt" member of the repeating element.

To satisfy compétibility between repeafing elements of the continuum
model, the strain components in the plane of the cross sections of any
two adjacent elements (eyy, ez, and 2eyz) must be identical at their
interface. This is satisfied when the underlined derivatives in
Equations (4.13) through Equation (4.18) are set equal to zero. In

otherwords, . this can be expressed in mathematical form as:

dey =dey = d(20,) = 0 (4.19)

For lattice structures with single bay double laced repeating element
such as the towers shown in Figure 4.1 and Figure 4.2, there are twelve
independent modes of deformation that correspond to the zeroth-order
terms in Taylor series expansion. On the other hand, there are three
compatibility conditions as given by Equation (4.19). Therefore, the
total number of strain.components used in this Taylor series expansions

given by Equations (4.13) through (4.18) reduces to nine components.

o

This is equivalent to assuming a uniform state of strain e, kg, k2, 2ey,
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kz, eg, e2, 2egz, 2e§y within each repeating element.
4.4 Strain Energy and Stiffness Coefficients of Equivalent Continuum
Model
Fol]owihg the development procedures outlined in Chapter |l, and
as previously discussed in Chapter 111, the strain energy of the repeat-

ing element can be expressed as follows:

memiers E(k) A(k) L(k) (e(k))2 ~ (4.20) .

u=1

2

where e(k) is the axial strain of the kth member of the repeating
element;

k) is the modulus of elasticity of the kth member of the

E(
repeating element;
A(k) is the cross sectional area of the kth member of the

repeating element; and

L(k) is the length of the kth member of the repeating element.

When e(k) in Equation (4.20) is replaced by the different strain
components as given by Equation (4.10) and Equations (4.13) through
(4.18), then the strain energy of the repeating element can be written
as a function of the strain gradients as well as the strain components
of the equivalent continuum beam mo&el. The strain gradients must be
included to obtain correct stiffnesses for more complicated configurations
as indicated by Noor and Anderson (11).

As previously mentioned in Chapter 1!l, local deformation should
be allowed to occur freely; therefore, the forces associated with these
local deformations must be set equal to zero. This can be accomplished

by setting the strain energy derivatives with respect to the strain

gradients equal to zero. In mathematical form, this can be expressed
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as follows:

U ou ou aU au
d2e) 20k  2(KD) T 3(3(2Q )) T a((2e))

U ou oU au

20) (%Y 20%Y)  2(02(2ep,))

0 (4.21)

To reduce the continuum theory as close to an engineering theory,
the forces associated with the strain components in the plane of the

triangular cross section are set equal to zero. That is,

CL) ou au

o ~ oy - o
Bez a(Zeyz) aey

=0 (l‘022)

Equations (4.21) and (4.22) are used to express the strain gradients

and the strain components eg, eg, 2e$z‘in terms of other strain

components; thereby, reducing the strain energy to a quadratic function

in the strain components €2 k° k° 2e v’ 2e°z, and k2. The resulting

Y

expression of the strain energy can be wrltted as:

x’

U=t (et [c]{e) (4.23)
where {e}t [e° k° k° Zeg 2e%, k ]
‘L is the length of the repeating element; and

[C] is the six by six matrix of the equivalent stiffness

coefficients.

The elements of the equivalent stiffness coefficients were obtained
analytically by using MACSYMA symbolic manipulation programing
capabilities (14) as discussed in Chapter I1. The program used is
listed in Appendix C. The equivalent stiffness coefficients listed in

Table 4.1 are functions of the geometric and material properties of the
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3
Cn ..3_. (El AI}\ +2_L. Ed Ad)
) 03
_ 2 3
Ca2 = C33 B (Ep A A +L° E A
2\ 2D3
Chy = C 3B2L E,A . ,
Ly 55 iy d "d
p3
c B*. E, A
66 - = *d °d
4p3
283 E, A
A =1+—§— d d
D3 E, A,

TABLE 4.1- EQUIVALENT STIFFNESS COEFFICIENTS FOR THE
TRIANGULAR TOWER WITH CONSTANT CROSS SECTIONS, (11).
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repeating element. In this table, the Cl] coefficient refers to the

extensional stiffness of the equivalent continuum model; C__ and C33 are

22
the bending stiffness coefficients about the y and z axes, respectively;
th and C55 are the transverse shear stiffnesses in the plane of the cross
section; and Cgg is the torsional stiffness of the equivalent continuum
model about the x axis. |In the case of single bay double laced towers
with a constant triangular cross section, there are no moment~shear
coupling terms between the equivalent stiffness coefficients. This is
dug to the‘fact that the Taylor series expansions were taken about the
centroid of the repeating section. However, in the case of towers with
variable triangular cross sections, the equivalent stiffness coefficients
are functions of the geometric and material properties of the repeating
element as well as the angle, B, of the sloping legs of the tower. The
coefficients for a sloping tower are listed in Table 4,2, Besides the
six common stiffnesses which are analogous to those of the ordinary
beam shear deformation theory, there are two additional bending-shear
coupling terms which appear because of the linear slope of the tower legs
and the Taylor series expansion being performed about the mid-height
point of the repeating section.

A classical beam theory is obtained from the shear deformation beam

theory by setting the transverse shear strains equal to zero. That is,

(4.24)

o
ov- - @,

1]
o

1]

(o}
2exy

]

(4.25)

]
o

A Zegz owl + ﬂy

This approximation will result in an equivalent beam which does not
account for in-plane shearing strains, thus will yield more simplified
stiffness coefficients which will fit into classical finite element

programs.
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EQUIVALENT STIFFNESS COEFFICIENTS FOR THE TRIANGULAR
TOWER WITH VARIABLE CROSS SECTION

27 (2 Ay Ag Ey Eq L Cos3 B tan® 8 + 24, Ay E Eq B L3

- bAj Ag Ey E, B2 L2 Cos3 B tan? B + 2A, Ay E, E, B* Cos3p
+ Ay Ay Ey E BD3 Cos3g) / (2 Ay Ey LY tank B + 12 A4 E,
B2 L2 tan2 B + 16 AJE;LD3  tanB + 18 A, E, B

+ 9 Ay Ep D3) ‘

l'3+16

\
3(2a% €2 L9 tanbp - 4% £ B2 L7 tan
Ay Ag Ey Eq D38 Cos3 B tanb B + 2.A% E2 BY L5 tan2B
+ 9 Ay Ay Ep Eq B L5 D3 tan2B- 20 Aj Ay E, Eq B2 03 L"
Cos3 B tan* B +34A A E E;B31303 -84 A E E,
B* 12 D3 cos3 8 tan2 B + 12 A, Ay E, E, B6 D3 Cos3 B

4

+6 A A E, E B3 D6 Cos3 )/ {kD3 (2AgEqL" tantp

b 1
+ 12 Ay Eq B2 L2 tan? B + 16 Ay E; LD3 Cos3 B tan* B

+ 18 Ay E4 BY + 9 A, Ep B D3)}

9 B tan (A% E3 L7 tan* B - 2 A% E2 B2 L5 tan?B

+2 Ay Ag Ey Eg LY D3 Cos3 8 tan® B + A E3 BY L3

+ 2 Ay Ay Ep Eg B L3 D3 - 4 Aj Ay Eq Eq B2 LZ D3 Cos3 B

tan? B + 2 A, Ay E, E, B* D3 Cos3 B + A, A E, E_ 80P
Cos3B) / (D3 (2 Ay Eg L tan® B + 12 A4 E4 B2 L2 tan? B

+16 A, E, LD3 Cos3tanig+ 18 Ay E4 B" + 9 A E_ BD3)
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(6 AZ €2 82 L5 tan® B + 4 A, Ay E; Ey D3 L¥ Cos3B tanB

(]
E
L

O

12 A2 €2 BY L3 tan2 g + A, Ay E, E4 BL3 D3 tan2 B

8 Ay Ay Eq Eg B2 D312 Cos38 tan® B + 6 A7 E] 86 L

3 p3 4 3 3 2
3AbAdEbEdB D L+14A1AdE1 Eq B D? Cos” B tan®B

+

+2 A A E E B DS Cos3 B tan2B ) / D3 (2 A  E, L tan''B

+12 A Eg B2 L2 tanz B + 16 A, E, b3 cos3 B tan® B

+

18 Ay Ey BY + g Ay E B D3)

C53 = “Cuz
Cs5 = Cuy
Ceg Ag Eq L (L tan? B - B) (L tan® B +B) / 2 D3

TABLE 4.2 - EQUIVALENT STIFFNESS COEFFICIENTS FOR THE TRIANGULAR
TOWER WITH VARIABLE CROSS SECTION
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4,5 Kinetic Energy and Mass Coefficients of Equivalent Continuum Model
As previously discussed in Chapter I1l, in free vibration analysis
of lattice structures, it is necessary to compute the equivalent mass
matrix for the continuum model using the kinetic energy. Based on the
consistent mass approach, the kinetic energy of the repeating element

as given by Noor and Anderson (11) can be expressed as follows:

T =_;_m2 T p(k) A(k) L(k) (u? + uiuj + u2 + v? + v.'v.

members iJ
2 2 2
+ v +owp o+ Wiw; + wj) (4.26)
where p(k) is the mass of member k between nodes i and j;
w is the natural frequency of vibrations;

L(k) and A(k) are the length and the cross sectional area of the

kth member, respectively.

The kinetic energy of the repeating element is obtained in terms
of the material and geometric properties of the tower by substituting
the expressions for the nodal displacements and rotations given by
Equations (4.1) through (4.3), into the following kinetic energy

expression (11):

T =-%_ 2 k£1 {d}t [;(k)]t [M(k)] [C(k)] {d} (b.27)

Kth

where M(k) is the elemental consistent mass matrix of the member;

{d} ' is the displacement vector;
[t(kU is the transformation matrix of the kth member of the

[t(kn repeating element as given in Appendix B.

Numerical studies by Noor and Anderson (11) indicate that the
. o
inertia terms associated with the strain components ee, e, and 2e° can

yz
be neglected without affecting the natural frequencies of the lower modes.
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Therefore, the kinetic energy expression of the equivalent beam model

can be expfessed in the following form:
T =% Lw? [my, (% + o2 + w02) + 2my, (WO8, - uO8)
.+ 2m, 5 (u®8y - vo8,) - 2my3 B, 8, + my, (6& + 92)
+ myy (82 + 92) ] (4.28)

The final expressions for the mass coefficients of the equivalent
beam model for the towers considered are listed in Table 4.3 and Table
4.4, for constant ana variable triangular cross sectional towers.

These equivalent mass coefficients are obtained analytically by
using MACSYMA symbolic manipulation programing capabilities (14). In
Tables (4.3) and (4.4), the coeffiﬁient Eﬁ] represents the extensional
inertia of the equivalent beam model; whereas, EéZ’ 533 represent the
rotary inertia in the plane of the cross section of the equivalent
continuum model. There is no coupling between the inert}a terms of the
equivalent continuum due to the symmetry of the repeating element about

its centroidal axis.

k.6 Work Done by External Forces on Three Dimensional Towers

As previously mentioned in Chapter lIl, the work done by external
forces on the equivalent continuum is required in the static analysis.
Consistent with the kinematic assumptions given by Equations (4.1)
through (4.3), the expression for the work done by external forces can

be expressed as follows (11):

n
Work = ;I [P; (W - y's, +2'8)) +P) (YO +y el +2' (9, -8))

+ P, (W0 4yl (8, + €2 )t yi &) ] (4.29)
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m 3P, A +38 B A +6D PyAy
L L
Ty B2 (; Py Ay + B P A+ D 0y Ay
L 2L
— 2
m B (p, A, + B p A + D p,A)
= — —= Py R4
33 - R N T

TABLE 4.3- EQUIVALENT MASS COEFFICIENTS FOR THE TRIANGULAR
TOWER WITH CONSTANT CROSS SECTION, (11)
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™9

m)p=M33

L L CosB

5 py Ay DL tan2g + 1 Py Aq pB2 +
6 2L

1 p A B3 +3 p A BLtan? B +p A g2

4L 4 2 Cos B

+ py Ay L2 tan?p.

6 CosB

TABLE 4,4~ EQUIVALENT MASS COEFFICIENTS FOR THE TRIANGULAR

TOWER WITH VARIABLE CROSS SECTIONS
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where P;, P;, and P; are.the external load components at the ith node

in the coordinate directions, and the summation extends only over

the nodal points where the external forces are applied.

4,7 Evaluation of Member éorces From the Continuum Model Solution of

Three Dimensional Towers

As previously discussed in Chapter 111, membér forces are of
prime interest to the designer of tower problems. The following procedures
outline the methodology involved in ‘the evaluation of actual member
forces of the tower from the equivalent continuum model results. These
procedures are similar to the procedures outlined for the planar truss

and can be summarized as follows:

1. Substitute the displacements and rotations obtained from
the continuum solution for the two nodes connecting the

member under consideration into the following displacement

relationships.
u, = uf + 7, 83, (4.30)
vi =v§ £ Z; 0, (4.31)
=W+ 7
wp = wy * Z; 82, (4.32)

where u;, v;, and w; are the displacements in the
coordinate directions of node i of the
repeating section;
(u?, v?, w?) and (ﬂZE’ ﬂsi, ﬂgi) are the
centerline displacements and rotations of
node i of the equivalent continuum in the

coordinate direction;
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Z. is the vertical distance between the centerline

of the repeating element of the actual lattice and

the it

h

node.

2. Determine the change in length ALij of member ij

connecting node i to node j as follows:

oL, . = (u; = Vj) 1+ (v; - vj) m + (wi - wj) n (4.33)

1

where 1, m, and n are the direction cosines of

member ij of the repeating element in the

coondinate directions.

3. Calculate the strain in member ij as follows:

where Li

e, =2k (4.34)
J
Lij

is the actual length of member ij.

L4, Evaluate the stress 0jj of member ij as:

where Ei

Uij = Eijeij (ll.35)

j is the modulus of elasticity of member ij.

5. Determine the force Fij of member ij as follows:

where Aij is the cross sectional area of member ij of

the repeating element.

4.8 Numerical Studies of Triangular Towers

i

The objectives of the numerical studies presentea in this chapter

are to demonstrate the effectiveness of the continuum model solution

and to assess the accuracy of the continuum modeling approach in

analyzing towers.

Static deflection and free vibration comparison are
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made between results obtained by the continuum model solution and those
obtained by analyzing the actual towers using the classical finite

element technique. The results of the free vibration analysis as well

as severél static analyses for a five bay double laced cantilevered

towers as illustrated in Figures 4.1 and 4.2, are presented in this section.
Figure 4.6 illustrates the different static loading conditions applied

at the free end of the triangular towers considered. In Figure 4.6a,

(the case of pure axial loading) a concentrated load of%}is applied at
eachAnode of the free end. This will bé equivalent to applying a ;
concentrated axial load equals to N at the free end of the equivalent |
beam model. The case of transverse shear is illustrated in Figure 4.6b.
This :type of loading is obtained by applying a concentrated load equals
to.gE or.gz in each direction of the triangular cross section at each

node of the free end. This is equivalent to applying a concentrated

load equals Q, or Qy in the plane of the cross section of the equivalent
beam model. The twisting moment loading combination as shown in Figure
h.6c is equiQalent to applying a torque T in the plane of the cross

section of the equivalent beam model. Finally, the bending moment

loading condition illustrated in Figure 4.6d is equivalent to applying

a moment M, or My about the z or y axes of the equivalent beam hodel.

For simplicity, the material properties of the.repeating element is
assumed to be constant for all five bays of the towers. As previously
discussed in Chapter 1ll, the geometric properties of the end batten
members are taken to be ong-half those of the interior batten members.

A comparison éf the results for the axial load case obtained by the
equivalent continuum beam model to those obtained by the finite element
technique is illustrated in Table 4.5. As shown in this table, the

static deflection for the continuum approach is within 1.82 percent of
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a) AXIAL FORCES b) TRANSVERSE SHEAR FORCES
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c) TWISTING MOMENT d) BENDING MOMENT M, M,

FIGURE 4.6 - STATIC LOADING SYSTEMS USED IN THE ANALYSIS OF TOWERS CONSIDERED

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



NODE NUMBER YeQ (FT) UACT (FT)-
1 0.00 0.0

2 -.77429x10™" -.788h2x10-h

3 -. 155421073 -.15905x1073

k -.23398x10™3 -.23895.1073

5 -.31311x10"3 -.31892x1073

-.3928x10"3 -.39884x10™>
CPU (SEC) 1.52 2.97

TABLE 4.5 - AXIAL DISPLACEMENTS AND CPU TIME COMPARISON
OF THE TOWER SHOWN IN FIGURE L4.1.DUE TO PURE
AX1AL LOADING.
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the more exact results obtained using the finite element methodology.
For the sake of brexity, the résults from the other load case are not
presented; howeve}, considering all the load cases, the maximum
difference between the two solutions was less than 2.5 percent. Using
the deformations calculated from the continuum beam model, the forces
in certain select members were evaluated according to the procedure
outlined in section 4.7. The results, in general, demonstrated an
accuracy of less than0.3 percent error when comparing the two techniques.
This error is consistent with the error found in the deflection
calculation. It should be noted that this errors isnot very large for
actual design of most civil engineering structures.

Albeit the stress and deflection are a very important criteria in
evaluating the performance of this approximate solution, more significant,
however, is the computional efficiency of this technique. Specifically,
the CPU time for the equivalent continuum model and for the finite
element technique was 1.52 seconds and 2.97 seconds, respectively. This
represents a 49 percent savings in computer time.

The results from the free vibration analysis of the continuum model
as compared to the more exact finite element technique is shown in Table
4.6. Specifically, this table presents the first three natural frequencies
in rad/sec for both techniques. As can be seen, the two results are in
excellent agreemenf. Specifically, the maximum difference is less than
0.1 percent. Figure 4.7 illustrates the ratio of the natural frequencies
for the first two extensional, bending, and torsional modes. Here, as
was in the case of planar truss, it appears that the continuum model'
represents the energies in the lower modes better than in the higher
modes (error in frequencies increase in the higher modes). In addition,

it is noteworthy that the error difference in the bending modes is less
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MODE NUMBER ®EQ RAD/SEC WACT RAD/SEC
1 0.1176x103 0.1165x103
2 0.1183x103 0.1172x103
3 0.185L4x103 0.1846x103

CPU  (SEC) 1.53 4.0k

TABLE 4.6 - NATURAL FREQUENCIES OF VIBRATIONS AND CPU TIME
COMPARISON OF THE TOWER SHOWN IN FIGURE 4.1
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= ith EXTENSIONAL MODE
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E(i)
B(j) = it BENDING MODE
T(iy = ith ToRS10NAL MODE
A
1.05 T~
®E.q. E(z) .
“Act. Ea)y  mf (2)
1.00 | M | - E{i{' NE
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NN
N
0.85 \ _

FIGURE .4,7 - BAR GRAPH DISPLAYING COMPARATIVE ACCURACY
OF LOW VIBRATION FREQUENCIES OBTAINED BY
EQUIVALENT CONTINUUM FOR CANTILEVERED
TRIANGULAR TOWER WITH CONSTANT CROSS SECTION.
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than the extensional or torsional mode. It would appear that the
continuum model may represent the bending or flexure energy better than
the other types of energies. Figure 4.8 depicts the shapes for the
first three modes.. The results of both technique agreed quite closely.

As in the.static analyses, there was a significant computational’
savings in computer time using the continuum modeling technique.
Specifically, the CPU time for the equivalent model approach was 1.53
seconds; whereas, for the finite element technique. the CPU time was 4,0k
seconds. This represents a saving of approximately 63 percent.

Similiar analyses on a five bay double laced tower with variable
triangular cross (see Figure 4.2) produced similar results and conclus=
ions as those of the previously described tower. Results of the static
load cases indicate very good agreement between the continuum modeling
technique and the finite element technique. The maximum difference
between any of the load case was less than 3.2 percent. The results of
the free vibration analysis (illustrated in Table 4.7) indicated a 0.12
percent difference in the fundamental natural frequency and less than
0.5 percént for the other two frequencies. Figure 4.9 depicts the ratio
of the natural frequencies calculated by the continuum model to those
calculated by the finite element technique. As .in previous results, the
bending mode appears to give better results than the other two modes.

In the case of the free vibration analysis of this tower, signifi~
cant computer time was saved when comparing the continuum modeling
technique to the classical finite element methodology. Specifically, the
CPU time for the continuum model approach was 1.58 seconds and for the
finite element technique, the CPU time was 4.13 seconds. This représents

an approximate saving of 62 percent in computer time.
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&(J)EQ = 18.717 HZ

m(])ACT? 18f542 HZ

= 18.828 HZ

m(Z)EQ

m(Z)ACTT 18.656 HZ.

m(3)EQ = 29.507 HZ

®(3)acTT 29-380 HZ

FIGURE 4.8 - VIBRATION MODE SHAPES FOR THE CANTILEVERED
TRIANGULAR TOWER WITH CONSTANT CROSS SECTION.
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MODE NUMBER

WEQ RAD/SEC

WACT RAD/SEC

79

1 .1619x103 0.1617x103
2 .1625x103 0.1620x103
3 .2349x103 0.2339x103
4 .3852x103 0.3843x103
CPU (SEC) 1.58 4.13

TABLE 4.7 - NATURAL FREQUENCIES OF VIBRATIONS AND CPU
TIME FOR THE TOWER SHOWN IN FIGURE 4.2
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ith EXTENSI10MAL MODE
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FIGURE 4.9 - BAR GRAPH DISPLAYING COMPARATIVE ACCURACY OF LOW
VIBRATION FREQUENCIES OBTAINED BY THE EQUIVALENT
CONTINUUM MODEL FOR THE CANTILEVERED TOWER WITH
VARIABLE TRIANGULAR CROSS SECTIONS -
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In summary, this chapter has clearly demonstrated the accuracy of
the continuum modeling technique in the analyses of both the constant
cross-section and variable cross-section three dimensional towers. In
addition to the accuracy being well within télerable limits for design,
the continuum modeling technique has exhibited significant computer
savings. This savings coupled with the potential man~hours saved in
preparing inpht data make the continuum modeling technique a very

* '

attractive analytical tool. for design purposes.
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CHAPTER V
APPLICATIONS TO TOWERS WITH RECTANGULAR

CROSS SECTIONS

5.1 General Remarks

Recent development in the construction and fabrication of large
repetitive rectantular gowers has stimulated interest in the use of
approximate techniques for analyzing these types of structures. The
continuum model approach provides a practical and effective method for
predicting the response and comparing the stiffnesses of towers and lattices
with different geometric and material properties. The purpose of this
chapter is to apply and attempt to model the equivalent properties of
rectangular cross sectional towers in a classical finite element program (12).

The major difference in the development of the equivalent continuum
model for towers with rectangular cross sections and those with triangular
cross sections as discussed in Chapter IV is the inclusion of the effect
of warping and shear deformation in the plane of the rectangular cross
sections. Therefore, the zquivalent continuum theory presented in
Chapter 1V must be modified to account for this warping and shear deformation

in the plane of the cross section as indicated by Noor (15).

5.2 Kinematic Assumptions

For the rectangular cross sectional tower illustrated in Figure
5.1, the deformed position of a cross section is completely specified
by twelve displacement parameters. In otherwords, three displacement
components are specified at each corner node. Each displacement
component is assumed to have a linear variation along the pin-connected
members of the repeating element, and a bilinear variation in the

(Y - Z) plane of the cross section. Hence, an accurate representation
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FIGURE 5.1 - FIVE-BAY DOUBLE LACED TOWER WITH CONSTANT
RECTANGULAR CROSS SECTION
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(15) of the displacement field in the plane of the cross section can be

expressed as:
us=ul - yﬂy + yzu (5.1)

v=vl+y eg + z (esz - B0+ yzv (5.2)

(o}
Yz

o)

W= w + ﬂx) +z e2 + yzw (5.3)

+y (e 2
where u®, v°, w® are the displacement components at y = z = 0;

By, By, B, are the rotational components;

es, eJ are ithe extensional strains in the plane of the cross

section;

esz is half the shearing strain in the y - z plane;

u, v, w are warping and distortion parameters of the cross

section about x, y, and z axes, respectively.

)
The twelve parameters (namely u®, ©, w, ﬂx, ﬂy, g,, eg, eg,

esz, U, v and w) are functions of the axial coordinate x only. The
repeating element of the rectangular tower considered is depicted in
Figure 5.2 along with the associated sign convention. The equivalent
continuum beam model and its sign copvention is shown in Figure 5.3.
Based on the kinematic hypothesis given by Equation (5.1) through

Equation (5.3), the strain components have a bilinear variation in the

plane of the cross section as follows (15):

ey = eg - yks + zkg + yz6° (5.4)
ey = ey + 2v (5.5)
e, = eg + yw (5.6)
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FIGURE 5.2 - REPEATING ELEMENT OF DOUBLE LACED RECTANGULAR TOWER WITH
CONSTANT CROSS SECTION
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FIGURE 5.3 EQUIVALENT CONTINUUM SIGN
CONVENTION FOR THE TOWER SHOWN
IN FIGURE 5.1
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Zexy = zegy + y8e$ +z (k - k?) +yzv (5.7)

2e,, = 28, +y (K + Kkg) + 20e2 + yzdw (5.8)
= 2.0 v + 20

2e,, = 260, + YV + Zw (5.9)

where eg = 3u® is the extensional strain of the centerline;
kS = 3% is the curvature change in the y - direction;
kg = 3@, is the curvature change in the z - direction;

Y

kg = 3f is the twist about the x - direction;

X
Ze?(y = (3v° - ﬂ3) is the transverse shear strain in the x-y plane;
ZegZ = (3w° + ﬁz) is the transverse shear strain in the x-z plane;

8° = 9u and k = are strain parameters due to the warping

o
€yz

of the cross section.

}The strain measures namely eo, ks, kg, egz, egy, k?, 8° and k are
assumed to be only a function of the axial deformation of the longitudinal
axis of the tower. As previously discussed, the axial strain in each
member of the repeating element is replaced by its expression in terms
of the strain componentg in the coordinate direction as given by
Equation (4.10). The strain components in the coordinate directions
are expanded in a Taylor series about the centroid of the repeating
element to conduct the transformation ,from the discrete structure to the
equivalent continuum. Using Equations (5.4) through (5.9) and retaining

the first two terms of Taylor series, the following approximation for

the strains are obtained: by Noor and Anderson (15) as:
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eik) = ef - y (k) kg + 2K kg + y(k) 2(k) go
+ x (k) (9e? - y(k) Bkg + z(K) kY + y(k) (
2(K) 360)) | (5.10)

eék) « 242K 7y ) (e + z(K) 37)  (5.11)

R

ez(k) ed + y(k) W+ x (K (€2 + y (k) ow)  (5.12)

R

2e)£';) 262, + y) 560 + 2(K) (k- k:)‘-i- () ¢

z(k) ov)+ x(k? B(Zegy) + y(k) 82 ecz’ + z(k)
(3k - 3k}) + y (k) 2(k) 32 5 (5.13)

2e£:) = zezz + y(k) (k‘: + ) + , (k) 20 + y(k) (

2 5+ x0) 3(2e,) + y(K) (3% + k)
+ z(K) 52 e + y(k) z(k) 02 W (5.14)

ZeSZ‘) = Ze;'fz + y(k) v+ z(k) W+ x(k) (y(k) dv

+3(29,) + 2(k) 3w (5.15)
where 'w(k), y(k), z'(k) are the coordinates of the center of the kth
member of the repeating element;

2
3 =.%; and 32_-:% are partial derivatives with respect to x.

To satisfy the compatibility requirements between repeating
elements of the continuum model, the two strain components ey and e,
in the plane of the cross section at the interface of any ‘two adjacent
elements have to be identical. This condition is satisfied if the odd-

order derivatives of these strain components are set equal to zero as
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follows:
el = e = av=103w=0 (5.16)

5.3 Strain Energy and Stiffness Coefficients of the Equilvalent

Continuum Model

The strain energy of the repeating element of the rectangular tower
is given by Equation (4.20). If e(k) in Equation (4.20) is replaced by
its expressions in terms of the strain expansions given by Equations
(5.10) through (5.15), the strain energy of the repeating element can
be expressed as a quadratic function of the strain components and strain
gradients (refer to Equation 4.23).

The strain gradients account for the local deformation which must
occur freely within the repeating element. Therefore, they should be
included to obtain correct stiffness for complicated latticed
configurations (15). Hence, to allow for these local deformations to
occur, the forces associated with them should be equal to zero. The
derivatives of the strain energy expressi&ns with respect to these

strain gradients must be set equal to zero that is:

3U au au au ell
3(3e) 3 (3kY) 3 (3k2) 3 3(2ep,) 3 3(2e2,)
au v au au
3 (3ky) 3(36°) 3 (3%) 3(32 €2)
3U au au 517
= = s ——— =0 (5.17
3(a2 Q) 3(32 V) 3(32 W)

Moreover, in order to obtain an engineering beam theory similar

. to the thin-walled beam theory which does not account for shear
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deformation in the plane of the cross section, :the forces associated
. . o o — -
with the strain components ey, €5, V and w are set equal to zero that

is:

d )
i . : o (5.18)

= = = = 0

In general, the forces associated with the remaining strain

parameters cannot be neglected in arder to obtain accurate results. In

yz

is necessary to obtain correct warping response of towers with ]

addition, the inclusion of the two strain parameters namely k and 2 e

rectangular cross sections especially those with unstiffened batten
members.

Equations (5.17) and (5.18) can be used to express the strain

e]

20 v and w in terms of

gradient as well as the strain components es, e

the other strain components, and thereby reduces the strain energy to a

quadratic form in the nine strain components (namely e, k3, kg, 2egy,

2e%,, k2, 8°, k and Ze‘;,’z .

as given by Equation (3.16) are obtained by the aid of MACSYMA computarized

The equivalent stiffness coefficients cij

symbolic program (15), and the corresponding equivalent stiffness

expressions for the tower shown in Figure 5.1 are given in Table 5.1.

‘ These coefficients agreed with those obtained by Noor and Anderson (15).

5.4 Kinetic Energy and Mass Coefficients of the Equivalent Continuum Model

The kinetic energy of the repeating element when the consistent
mass approach is used is given by Equation (4.26). However, when the
constitutive relationships given by Equations (5.1) through (5.3) are
used and the inertia terms associated with the strain components 93’
eg, Vv and w are neglected, the kinetic energy of the equivalent continuum

model for the rectangular tower shown in Figure (5.1) can be expressed
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3
Ci4 4E, Ay +8 L3E, A,
Q b3
= 2 3
€257C33 B (E; A, +_l__£§ Eq Ag)
Q; D
Cyy=Cgs 4 B2 Ey Ay
D3
4
Ces 2 BYL Ey Ay
D3
€77 B A
4
A
Cag 2 B*L E4 Ay
03
Cog 1B B A
/2 L
where 3
283 E, A E; A -1
Q=1+ d d (1 1 A
D3 Ep Ay Epb Apr2
3
o= 1 283 E4 A4

TABLE 5.1- EQUIVALENT STIFFNESS COEFFICIENTS FOR THE CONTINUUM
MODEL OF THE RECTANGULAR TOWER SHOWN IN FIGURE 5.1, (15)
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ase
T =-%-L w? ["Hl (u°)2 + (v°)2 + (w°)2 + (m22 + m33)

2 o 2 o 2
ﬂx + (eyz) + ﬂx (m22 + m33) (2eyz) + m, ﬂz

+m

33 82+ myypy U] (5.19)

where L is the length of the repeating element;
w is the circular frequency of vibration of the equivalent
continuum model; ‘
m,. is the extensional inertia;

1"

Moy and m33 are mass rotary inertia about y and z axes,
respective, and

m2233 is the mass density parameter for warping - shear modes.

The equivalent mass coefficients given by Equation (3.24) were cbtained
by using MACSYMA computarized sumbolic program (15). However, the
equivalent continuum mass coefficients of the rectangular tower shown

in Figure 5.1 are given in Table 5.2.

5.5 General Discussions and Findings

The continuum approach presented herein to predict the static and
free vibration responses of large repetitive towers with rectangular
cross sections is based on replacing the original lattice structure by
an equivalent continuum beam model which accounts for warping and shear
deformation in the plane of the cross section. This warping effect
occurs because the rectangular tower cross section does not remain plane
during deformation. The equivalent elastic material and geometric
properties of towers with constant rectangular cross section were

obtained and these coefficients are listed in Table 5.1 and Table 5.2.
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™ bley A +B (o Ay + 1 oy A+ 2D oy Ay
L /2 L
2 .
Myg=M33 B[ Py A +£(pbAb+ lp]A])+_1£pdAd]
3L 2/2 3L
m B oy A, + B (p, Ay + 3 Ay ) + 2D pg Ag
2233 __[ | 2 £ ]
4 3L /2 3L

TABLE 5.2 - EQUIVALENT MASS COEFFICIENTS FOR THE CONTINUUM
MODEL OF THE RECTANGULAR TOWER SHOWN IN FIGURE 5.1, (15)
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An attempt to develop the equivalent elastic propertie§ of rectangular
towers with sloping legs was made, but the expressioné for the equivalent
stiffness coefficients were extremely long and coupling terms appeared
which made the modeling of such problem extremely complicated and
impractical from the engineering design point of view. Moreover, even
for the rectangular towers with constant cross section, results of
numerical studies conducted herein indicated that it is impossible to
accurately model the equivalent continuum in most classical finite
element programs or even SAP 1V, the program uséd in the present study.
However, Noor and Anderson {15) have conducted some numerical studies
and compared the closed form solution of the equivalent beam model with
exact solution based on direct analysis of the actual lattice structure.
The nuﬁerical studies indicated some difference in the first six

dfstinct frequencies obtained by the reduced theory in which the transverse

shear strains Zegy, Zegz and the strain parameter k are set equal to zero.
A difference of 15% was indicated between the two solutions for a ten bay
single-bay-double laced beam, and this difference reduced to 4% when the
number of repeating elements increased to twenty bays. It is found that
the reduced theory over estimates the bending frequencies, and it also
over estimates the warping-shear frequencies due to neglecting of k and
m2233. It was found that the first two fundamental modes are warping-
shear modes. Therefore, it is necessary to include the effect of the

warping and shear deformation in the plane of the cross section in order

to predict these warping-shear modes and obtain accurate results.
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

6.1 Summary

For economical reasons, large towers and complex space lattice
structures are usually designed such that individual elements are joined
in @ regular geometrical pattern. This regularity renders the system
tractable for rational field analysis. However, the application of
these rational field techniques for discrete systems remains as a
relatively undeveloped field to this date while the closed-form analysis
of the analogous continuous systems, a much narrower class of problems,
is quite well developed. This study applies the continuum modeling
methodology as a rational approach for analyzing repetitive types of
structures.

The equivalent continuum models applied in this study have
demonstrated the versatility and the flexibility of the equivalent
energy approach for determining the continuum properties of the repeat-
ing element of repetitive truss structures. The equivalent energy
approach i's based on'equating the strain and kinetic energies in the
repeating element of the actual structure to those energies of the
continuum model. The strain and kinetic energies of the equivalent
continuum are obtained by making displacement or strain assumptions,
then calculating the strain and kinetic energies of the repeating element
in terms of the displacement or strain parameters as well as geometric and
material properties of the latticed structure. The key step to obtaining
accurate cquivalent coefficients is the selection of the appropriate
kinematic hypothesis which includes all possible deformation modes of the

repeating element. In addition, the total number of displacement
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parameters in the repeating element provides an upper bound on the number
of terms that should be retained in Taylor series expansions which relate
the displacements or strains in the discrete system to those of the
equivalent, continuum model.

The accuracy and the effectiveness of the continuum models applied
in the present study for analyzing civil engineering problems under
different static loading conditions as well as predicting the free
vibration response have been demonstrated by numerical examples. The
equivalent continuum models for towers of constant and variable triangular
cross sections have been developed. In addition, the development of
general procedures to obtain the member forces of the actual latticed
structure from the equivalent continuum results is presented. Moreover,
a computer time comparison between the equivalent continuum solution and
the actual structure solution using finite element program SAP jV, for

the planar truss and three dimensional towers is presented.

6.2 Conclusions

From the present study, the following conclusions are drawn:

1. The numerical studies have demonstrated the accuracy of
the solution obtained by the continuum model fgr.repetitive
structures even when the number of repeating elements is
low. For example, analysis of a planar truss indicated
less than 1% difference .in the static deflections and mem-
ber forces between the two solutions, The free vibration

1R

analysis of a planar truss also indicated less than 1.%%
difference for the lower fundamental frequency; in the
case of towers with constant and variable triangular cross

sections, the results indicate approximately 2% difference
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in static deflections,0.3% difference in the member forces,
.95% difference in the fundamental vibration frequency and
less than 4% difference between the two solutions for
higher vibration modes.

Rotary inertia was found to have a small effect on the
lower vibration frequencies of the continuum model for
towers.

Bending-shear coupling terms Cy, and C53 of the equivalent
stiffness coefficients for the triangular tower with
variable cross sections can be neglected without signifi- -
cant effect on the accuracy of the response.

Simulating the equivalent continuum properties by a shear
deformation beam model referred to as engineeriﬁg beam
model was found to be adequate for predicting the static
deflections and the lower natural frequencies of pin
jointed latticed structures.

Warping-shear deformation of towers with rectangular cross
section has a significant effect on their static and
dynamic responses. Therefore, the shear-warping parameters
and their effects must be considered in the analysis for
accurate responses. This cannot be done using the
standard beam element of a classical finite element program
as was found from this study.

The savings in computational cost and computer time by
using continuum models is significant (49% for the static
analysis and approximately 62% for the dynamic analysis

of the five bay triangular tower considered).
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6.3 Recommendation for Future Studies
The equivalent continuum modeling approach is a very attractive
design tool to the professional engineer. Hence, the equivalent energy
apprbach for determining the equivalent properties of repetitive
latticed structures appears to offer considerable potential for future
development. As there is a limitless variety of latticed structures with
different shapes and boundary cénditions, the subject of future studies
is extreme, broad and limitéd only by the imagination of the investigator
or the designer. The following are some suggestions and aspects of
continuum modeling that deserve further attention:
1. Complete studies to identify the sensitivities of static,
free vibration and forced vibration responses to variations
in material and geometfic properties of the repetitive
lattice structures,
2: Development and improvement of the continuum theory to
' study the effect of joint eccentricities and member imper-
. fections on the response characteristics of towers and
other lattice structures.
3. Development of modeling techniques to count for geometric
and material nonlinearities in lattice structures.
4, Development of broad techniques for transforming models
and solutions along with member design from one lattice

connectivity pattern to another of similar shape.
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APPENDIX A
Equivalent Stiffness and Mass Coefficients

of Planar Trusses

A.1 Derivation of the Equivalent stiffness coefficients of Planar Truss

As previously discussed in Chapter 11|, the general form of the

constitutive relationships can be expressed as follows:

Ny Ci1 G2 Gz Cyy ex
My C2 C23 Cyy k3
Q, symmetric  C33  C3y 'ng (A.1)
N Cl_m e
[ Y L R LY

Equations (A.1) are further simplified to match the ordinary shear
deformation beam theory by solving for e3 in terms of the other strain
parameters eg, kg, and ng. This can be accomplished by considering the
case of axial load only i.e. set M =0Q, = Ny = 0 which yields to the

following expression:

(EAL) es = 0 (A.2)

o
b4

words, the compatibility is satisfied at the interface of any two

Since (EAL) cannot be zero, therefore, e must be zero. |In other

adjacent elements.

Substituting back into Equation (A.1), and solving for N, vields

the following:
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Ny = (Cq7 = Cy3 ) e + €15 K3 | (A.3)

where Cij expressions are listed in Table 3.1, therefore

= L3 . L3 L4y o
N, = [EAL (2 +) EAh )7 ] €
- (*) =
= (2 EAL) e} = Cqy e
Tp= f1 = 2en ~(A.H)
L

where EHI is the extensional stiffness of the equivalent continuum

beam model.

In 1ike manner, consider the case of pure bending i.e. Mx # 0 and set

Nx = Qx = Ny = 0, the following expression can then be obtained;
= o o o o
M, = C2q eg + Cyp K3 + Ca3 Yy *+ Coy ey (A.5)

Substitute the expressions of cij from Table 3.1 and e;’ = 0,

Equation (A.5) yields:

=1 2 y°
M —ZEALh Kx

X
o
= Cyp Ky
Therefore;
= _ 1 a2 ’
Cop = 'y EAh (A.6)

where Ezz; is the equivalent bending stiffness coefficient of the

equivalent continuum model.
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Similarly, in the case of pure shear i.e. Q, # 0, and

set N, = M, = Ny = 0, the following expression is obtained
Q, = EALZh2 (1 --—"-3——) Yo (A.7)
ST L3+ 203 XY '
D
- o
=033 Yy
Therefore;
_ 2 3
C33 = EAL b (1- Lt ) (A.8)
p3 L3 + 2p3

where 333 is the equivalent shear stiffness coefficient of the
equivalent continuum model.
Therefore, equation (A.1) can then be expressed in its final

matrix form as follows:

- ~ - )
3 (o}
Nx Cl] 0 0 ex
- i (o]
M =0 C,, O Ky (A.9)
Q 0 0 C o
| ] | 3 el

where the values of Eﬁj are listed in Table 3.2

A.2 Derivation of the Equivalent Mass Coefficients of Planar Truss

The kinetic energy of the continuum beam model, as:dfscussed
previously in Chapter 111, can be expressed in terms of the nodal

displacement parameters as:

2
1= z PAL (u% + uj +ul + v%
6 Memb. J
2
+ v, vij + vj) (A.10)
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where the nodal displacement u and v can be obtained from the

kinematic hypothesis as follows:

u = u+y° (A.11)
— (o] o
v = v +Y ey (A.12)

By direct substitution into Equation (A.10), the expressions of

kinetic energy for the planar truss considered become,

T= 1 02 oL [ +5897 + (2] (A:13)
T2=-;— w2 pAL [ (u° -—;‘-ﬂ°)2 + (v9)2] (A.14)
=Ty =1 o ean [ ()2 +—:'l: (8°)2

+ ()2 ] (A.15)
TS:-;— @2 pAD [(u°)2 + _ih—z @) + (v°)2]  (A.16)

Based on a consistent mass approach, the kinetic energy expression of

the equilvalent continuum model can be written in matrix form as:

— —_ - ] [ o]
My M2 M3 u
2 — —
T=i;- [W© v 8°] Myy  Mys v° (A.17)
. . - o
symmetric  mg -ﬂ ]
- 2
where m; =—%_— (a°T )
adiad
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The centroid of the repeating element has been chosen as the origin
of the section, and the inertia terms associated with es as well as its
derivatives have been neglected. This results in eliminating the
coupling terms of the equivalent mass matrix coefficients, that is
My = Mg = Mg = 0. The extentional mass density coefficient myq and

m,, in the x and y directions respectively along with the rotary mass

inertia coefficient 5%3 are presented in Table 3.2 for the planar truss

studied in this dissertation.
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APPENDIX "'B"
STRAIN ENERGY AND KINETIC ENERGY OF

THE THREE DIMENSIONAL TOWERS

The expressions for the strain energy of a pin connected tower with

triangular cross sections can be expressed as follows:

n
U= 2

; _%. @t [ (kW] [zK] w1 (B.1)
-1

where {d} is the nodal displacements vector of a typical member defined
in space by -the nodal point i and j.
The expression for the nodal displacement vector of a pin connected

element is given by:
(@t = [l V) ) G G G) le (82

The elemental stiffness matrix K(k) of a typical truss element k

in the local coordinated system is given by

[K(k)] = AE [ L "] | (8.3)
L -1 1
2x2

The transformation matrix & for a pin-jointed bar element
oriented arbitrary in space (which relates the displacements in local

coordinates to those in global coordinate;) is expressed as follows:

1 m n o o o
= oA
[t] [o o o 1 m nl (6-4)
x6

where 1, my, and n are the direction cosines of a typical truss element.
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The global stiffness matrix of a typical truss element is given

by:

[®%7 = (a2 [k L] (5.5)

Substituting of Equation (B.3) into Equation (B.5) leads
to the elemental global stiffness matrix [K(k)]which can be

expressed as follows:

121m 1n =12 -1m-1n

ml m2 mn - ml - m2 - mn

—(k) nl nm n? - nl - am - n?
[RK] - EA ) (8.6)

L “12-Im=1n 1 Im 1In

=ml -m2 -mn ml mé  mn

-nl -nm-n2 nl nm n2

6x6

The kinetic energy expression, based on a consistent mass

formulation, is given by

el o2 g @t[e®1E ®] 0] @ (6.7
2
k=1

where

[M(k)] is the elemental consistent mass matrix of a typical

member k;
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[§(k)] is the element transformation matrix;
{d} nodal displacements vector; and
© is the natural circular frequency of vibration.

The equivalent mass matrix for a pin-jointed member can be obtained
by applying Hamilton's Principle which results in the following expression

for the elemental mass matrix

[u(K)] - eAL [21 I (B.8)

6 I 21]6x6

The (B.8) expression is invariant with respect to the selected
set of axes. In the special case when only motion along the bar is

considered, the expression (B.8) reduces to:
PAL
[m}= — [2 '] (.9)
6 1 2]2x2

where p is the mass density per unit length of the member; and

(1]in equation (B.8) is three by three identity matrix.
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APPENDIX (C)
LISTING OF MACSYMA PROGRAM FOR THE ANALYSIS
OF TOWERS WITH VARIABLE TRIANGULAR CROSS SECTIONS
/% PART 1: INPUT DATA
LBAR = LENGTH OF REPEATING ELEMENT */$

LBAR: L

/%  COQRDINATES OF NODES OR REPEATING ELEMENT AS FUNCTION OF THE
INCLINATION ANGLE (BETA) OF TOWER LEGS */$
H: B/2 *SQRT (3) $
xx {1} ¢ Xx {2}: xx {3}: - L/2 $
XX {4}: XX {5}: xx{&: L/2 $
YY {1}: YY{3}: (B + L * TAN (BETA)) * SQRT (3)/6 §
YY {2}: -2*% (8 + L * TAN (BETA)) #SQRT (3)/6 $
yy{4}: vYv{6}: (B - L * TAN (BETA)) * SQRT (3)/6 &
yy{5}: - 2% (B - L * TAN ( BETA)) * SQRT (3)/6 $
zz{1}: - (B + L * TAN (BETA))/2 $
zz{}: 2z{5}: 0 $
Zz{3}: (B + L * TAN (BETA))/2 $
2Z{4}: - (B - L * TAN (BETA))/2 §$

2z} (B - L * TAN (BETA))/2 $

/*  CHARACTERISTICS OF THE MEMBERS OF THE REPEATING ELEMENT;
THE PROPERTY LIST CONTAINS NODAL CONNECTIVITIES, YOUNG'S MODULUS,
CROSS SECTIONAL AREA, LENGTH, MATERIAL DENSITY, AND THE COEFFICIENT

OF THERMAL EXPANSION FOR EACH MEMBER. */$
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FIGURE C.1 - REPEATING ELEMENT OF TOWER WITH VARIABLE
TRIANGULAR CROSS SECTION USED IN MACSYMA PROGRAM
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PROP: {
(1,2, EB, AB/2, B + L * TAN (BETA), RHOB, ALPB),
(2, 3, EB, AB/2, B + L * TAN (BETA), RHOB, ALPB),

(3, 1, EB, AB/2, B + L * TAN (BETA), RHOB, ALPB),

(4, 5, EB, AB/2, B - L * TAN (BETA), RHOB, ALPB),

(6, 4, EB, AB/2, B - L * TAN (BETA), RHOB, ALPB),
(1, 4, E1, A1, L/COS (BETA), RHO1, ALP1),

(2, 5, E}, A1, L/COS ( BETA), RHO1, ALP1),

(3, 6, E1, A1, L/COS (BETA), RHO1, ALP1),

(1, 6, ED, AD, D, RHOD, ALPD),

(4, 3, ED, AD, D, RHOD, ALPD),

(4, 2, ED, AD, D, RHOD, ALPD),

(5, 1, ED, AD, D, RHOD, ALPD),

(6, 2, ED, AD, D, RHOD, ALPD),

(5, 3, ED, AD, D, RHOD, ALPD) } $

/% PART 2; THERMOELASTIC STRAIN ENERGY & STIFFNESS AND THEMAL

COEFFICIENTS OF THE FULL THEORY  */

DEPENDS ( {EPS 10, EPS20, EPS30, TEPS120, TEPS130, TEPS230,
UBAR, VBAR, WBAR, PSI0, KAP20, KAP30, KAPBAR, KAPTO, UO, VO,
W0, PH11, PHI3, TO}, X1) §

RATFAC: TRUE $

SHOWTIME: TRUE §

/* EXACT REPRESENTATIONS OF THE DISPLACEMENT FIELDS U, V, W AS

FUNCTIONS OF X1 ARE GIVEN BY THE FOLLOWING EXPRESSION */$
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DISPLACEMATRIX: MATRIX (
{uvo, - PHI3 , PHI2},
{vo, EPS20 , - PHI1 + TEPS230/2},

{ wo, PHIT + TEPS230/2, EPS30 )} §

/% EPS = LIST OF ENGINEERING STRAIN COMPONENTS EPS 11, EPS22,

EPS33, TEPS12, TEPS13, TEPS23 =*/§

U: DISPLACEMATRIX. TRANSPOSE ({1, X2, X3, X2 * X3}) $§
U: TRANSPOSE (U) {1} $
TRANSPOSE (U) ;
EPS: {
DIFF (U {1}, X1),
DIFF (U {2}, X2),

DIFF (U {3}, X3),

DIFF (U {1}, X2) + DIFF (U {2}, X1),

DIFF (U {2}, X3) + DIFF (U {3}, X2) §
SUBLIST: {

'DIFF (U0, X1) = EPSI10,

'DIFF (vOo, X1)

TEPS120 + PHI3,

'DIFF (WO, X1) = TEPS130 - PHI2,

'DIFF (PHI1, X1) = KAPTO,
'DIFF (PHI2, X1) = KAP30,
'DIFF (PHI3, X1) = KAP20};

EPS: EXPAND (SUBST (SUBLIST, EPS)) $

TRANSPOSE (EPS) $

/% STRAINS AT X1 # 0 ARE FOUND BY TRUNCATED TAYLOR SERIES ABOUT
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X1 = 0 BEING THE CENTER OF THE REPEATING ELEMENT

CALCULATE THE STRAIN ENERGY UU */

bs: o $
FOR K THRU LENGTH (PROP) DO (
LX1: XX {PROF (K,1)},
LYI: YY {PROP (K,1)},
LZi: 2zZ {PROP (K,1)},
LXJd: XX {PROP (K,2)},
LYJ: YY {PROP (K,2)},
LzJ: ZZ {PROP (K,2)1},
/% LEN 1S THE LENGTH OF MEMBER K
L1; L2;, L3 ARE THE DIRECTION COSINES OF MEMBER K */
L1: (LXJ - LX!) /LEN,
L2: (LYK - LYI) /LEN,
L3: (LZJ - LZY) /LEN,
/% EVALUATE THE STRAINS AT THE CENTER OF MEMBER K  #/
CENTER: {XX1 = (LX! + LXJ) /2, X2 = (LYI + LYJ) /2, X3 - (LZt + LZJ)/2},
EPS 11: SUBST (CENTER, EPS {1} ),
EPS: SUBST (CENTER, EPS{2}),
EPS33: SUBST (CENTER, EPS {3} ),
TEPS12: SUBST (CENTER, EPS {4} ),
TEPS13: SUBST (CENTER, EPS {5} ),
TEPS23: SUBST (CENTER, EPS {6} ),
TEMPERATURE: SUBST (CENTER, TO + X2 * T2 + X3 * T3 + X2 * X3 * T23),
/% AXIAL STRAINS IN MEMBERS AS A FUNCTION OF THE STAIN COMPONENTS IN

COORDINATE DIRECTIONS %/
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EPSMEM: EPS11 * L1 % L1 + EPS22 * L2 * L2 * EPS33 * L3 * L3 + TEPS 12
% L1 X L2 + TEPS13 * L1 % L3 + TEPS23 % L2 * L3 ,
EPSMEM: RATSIMP (EPSMEM) - PROP {K,7} * TEMPERATURE,
UU: UU + PROP {K,3} * PROP {K,4} * PROP {K,5}* EPSMEMA2/2 ) $
/¥ ° LIST OF VARIABLES AND DERIVATIVES CONTAINED IN UU */
SHOWRATVARS (UU);
/% THE TERMS IN UU CONTAINING THE QUANTITIES DIFF (TEPS230,X1), DIFF
(EPS20, X1), DIFF (EPS30,X1) WILL BE IGNORED BECAUSE THESE QUANTITIES
MUST BE ZERO TO HAVE COMPATIBILITY BETWEEN REPEATING ELEMENT  */
VARLIST: {EPS10, KAP20, DAP30, TEPS120, TEPS130, KAPTO, TEPS230,
EPS20, EPS30, TO, T2, T3.};
NUMBERVARS: LENGTH (VARLIST);
/% COMPUTE THE STIFFNESS AND THRMAL COEFFICIENTS cC {1,J} OF THE FULL
THEORY
FOR | THRU NUMBERVARS DO (
(1: DIFF (UUILBAR, VARLIST{ 1} ),
FOR J THRU | DO (
cc {1,4} = DIFF (CI, VARLIST {J} ),
cc {1,J} + EXPAND (RATSIMP (CcC {1,J} )) )) $
KILL (ALLBUT (LBAR, PROP, XX, YY, ZZ, VARLIST, NUMBERVARS,,

CC, DISPLACEMATRIX, DEPENDENCIES));

/% PART 3; STIFFNESS AND THERMAL COEFFICIENTS OF ENGINEERING THEORY. */
NND: 6
NNU: NUMBERVAR §

NNL: NNU-3 $
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FOR | THRU NNU DO FOR J THRU | DO
IF ¢cc {1,J} =0 THEN |
C {1,J} + ¢ {J4,1} = F {1,9} = F {J,1'} : O ELSE
F {1,d} «: F {J,1} : mw §
/% MATI IS AMATRIX WHICH INDICATES BY 0'S OR *'S WHICH ELEMENTS OF
¢ {1,J} ‘ARE ZERO OR NONZERO */
MATI: GENMATRIX (F,NNU,NNU) $
FOR I: NNL STEP-1 THRU NND + | DO FOR J THRU 1-1 DO
UFC {1,J} #0 THEN ( ' |
FOR K:I THRU J DO C {J,K} : € {J,K} =-¢C {I,K} *
c {1,3}:-/¢ {1,1},
FOR L: NNL +! THRU NNU DO € {L,J} : C {L,d} =-C {L,}}
*C {.J9 /¢ {, ) §
/% COMPUTE AND DISPLAY THE STIFFNESS. COEFFICIENTS C {l,J} FOR

THE ENGINEERING THEORY */

FOR | THRU NND DO FOR J THRU | DO
IFC {1.J} # 0 THEN
c {t.J} : suBsT (c=cCc,C 1,0 ),
¢ .0} : ev(c {1,0} , EVAL),
¢ {t.y}: ¢ {J4.1} : FACTOR (RATSIMP (C {1.J41 ),
DISPLAY (C {1,J} ) ) $
CCC: GENMATRIX (C,6,6) $
/%  COMPUTE AND DISPLAY THE THERMAL COEFFICIENTS C 1,J FOR
ENGINEERING THEORY.  */
FOR 1: NNL + | THRU NNU DO FOR J THRU NND DO

IFC {1,J} #0 THEN (
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/%

c {1,d} : suBsT (c=cC, C {I,J} ),

c {1,4} : -ev (c {1,8} , EVAL),

C {J.1} = ¢ {J.1} : FACTOR (C {i,J} ) ) $
CCT: GENMATRIX (C,6,NNU,1,NNL+!).

{T0, 'DIFF (TO, X2), 'DIFF (TO, X3), 'DIFF (TO, X2,1,X3,1)}
KILL (LABELS, C,CC,F,MATI) § :
{VALUES, ARRAYS, FUNCTIONS};

PART 4; KINETIC ENERGY AND EFFECTIVE MASS COEFFICIENTS %/

MASSMATRIX: MATRIX (

{ Mo , MO2, MO3},

{ MO2 , M22, M23},

{ MO3 , M23, M33}) "$

TT: (OM 2 % LBAR/2) * (MO * (UO * UD + VO * VO + WO * WO)
+2% MO2 * (WO * PHI1 - UO * PHI3)
+2% MO3 * (U0 + PHI2 - VO * PHI1) - 2 % M23 * PHI2 * PHI3
+ M22 * (PHI1 A2 + PHI3A 2)
+ M33 % (PHITA2 + PHI2A2) );

TT = KINETIC ENERGY OF EQUIVALENT CONTINUUM BEAM WHERE OM IS THE

CIRCULAR FREQUENCY OF VIBRATION

TTT = KINETIC ENERGY OF REPEATING ELEMENT 5/ §

TTT: 0§

FOR K THRU LENGTH (PROP) DO (

Al: {1,YY {PROP {K,1}} , ZZ {PROP {.K,I} > YY {PROP {K,I1} *

{22} PROP {K,I}} }
AJ: {1, Yy {PrROP {K,21}}, zz {PROP {K,Z'}}, YY {PROP {K,2}}*

ZZ{ PROP{ K, 1}} },
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VELLI: OM*DISPLACEMATRIX. TRANSPOSE (Al),
VELJ: OM*DISPLACEMATRIX. TRANSPOSE (AJ),
TTT: TTT + (PROP {K,4} * PROP {K,5} * PROP{ K,6} /6) %
(VELI. VELI + VELI. VELJ + VELJ. VELJ) ) $
VARLIST: LIST OF VARS (DISPLACEMATRIX) §$
NUMVARS: LENGTH (VARLIST);
FOR | THRU NUMVARS DO (
Ml: DIFF (TT-TTT) / (LBAR * OM 2), VARLIST 1 ),
FOR J THRU | DO (
M{1,J} : DIFF (MI, VARLIST {J}),
M{1,J} : M{J,i} : RATSIMP (M {1,J} ) )) §$
LIST: LIST OF VARS (MASSMATRIX) §
GLOBALSOLVE: .TRUE $
FOR | THRU NUMVARS DO FOR J THRU | DO (
MM {t,J} « EV (M {1,0 }, EVAL),
FOR K IN LIST DO
IF NOT FREEOF (K,MM{ 1,J} ) THEN LINESOLVE (MM {1,J}, K) ) $
FOR VAR IN LIST DO
IF (TEMP: EV (VAR, EVAL)) # O THEN DISPLAY (VAR = EXPAND (TEMP)) $
NONZERO DISPLAY (SYMMETRICMATRIX): = BLOCK ( { MAT, TEMP} ,
MAT: EV (SYMMETRICMATRIX), .
FOR | THRU LENGTH (MAT) DO
FOR J THRU | DO
IF (TEMP: EXPAND (MAT {1,J:})) #0
THEN DISP (ARRAYMAKE (SYMMETRICMATRIX, {1,J} = TEMP)) §

NONZERO DISPLAY ('M) §
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< START )

READ
N, I, EQUIVALENT
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4 STIFFNESS AND MASS COEFFICIENTS
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s N=2 3
o o
=z .EVALUATE AND WRITE EQUIVALENT w
Vv STIFFNESS AND MASS COEFFICIENTS o
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=
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sy

+.EVALUATE AND WRITE EQUIVALENT
STIFFNESS AND MASS COEFFICIENTS
OF RECTANGULAR TOWERS WITH
CONSTANT CROSS SECTION.

< STOP )

FIGUREC.2- FLOW CHART OF FORTRAN 1V PROGRAM USED
IN THE PRESENT STUDY TO EVALUATE THE
EQUIVALENT CONTINUUM PROPERTIES OF
DIFFERENT LATTICED STRUCTURES
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FORTRAN 1V PROGRAM TO EVALUATE THE EQUIVALENT
CONTINUUM PROPERTIES FOR DIFFERENT MATERIAL

PROPERTIES AND CONFIGURATION OF TOWERS

c STIFF, AND MASS COEFF. FOR TOWERS WITH CONSTANT AND VARIABLE CROSS SECTIONS
c M=NUMBER OF SECTION PROPERTIES SETS

M=30

DO 10 I=1,M

READ (5,*) N,B s L »AB »AD ,Al ,EB »2ED

»,E1 »RHOB » RHOD »RHO1, U ,BETA

c N IS CROSS SECTIONAL IDENTIFICATION NUMBER

c N=1 (TRIANGULAR CROSS SECTION TOWERS WITH VARIABLE CROSS SECTIONS)
c N=2  (RECTANGULAR CROSS SECT!ONAL TOWERS)

c N=3 (CONSTANT TRIANGULAR CROSS SECTIONAL TOWERS)

TAN(BETA)=S IN (BETA) /COS (BETA)

D=SQRT (L##2 ,+(B-L*TAN (BETA) ) ##2.)

G=E1/(2.+2.%U)

IF (N.EQ.0) GO TO 200

IF (N.EQ.2) GO TO 20

IF (N.EQ.3) 60 TO 15

C11=27.% (2. *AT#AD#* (COS (BETA) ) #%3 % (TAN (BETA) ) ¥k  #E1XED*L#%4,

1 +2,*AB*AD*B*EBXED*L**3, -4 *A1*AD*B**2,* (COS (BETA) ) **3,* (TAN(BETA))
1 %%2 XEVTXEDAL#*%2 42 . %A1*ADXB**k ,*E1%ED* (COS (BETA) ) #%3,

1 +A1*AB#*B*D**3 *E1*EB* (COS (BETA) )**3,)/ (2. AD*ED*L**h *

1 (TAN((BETA))**h,=12,%AD*B%%2 *¥ED*L**2, % (TAN (BETA) ) %2+

1 16.%A1%(COS (BETA) )**3,% (TAN(BETA) ) ¥k, *D**3 *E1%L+18, *AD*B*%k,
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1 *ED+9,*AB*B*EB*D**3,)
C22=3.% (2. ¥DA%#2 HED*#2, kL9, % (TAN (BETA) ) #46. -4  #AD**2, *Bi#2,

1 *ED#*%2 *L*%7 % (TAN(BETA) ) %%4 . +16 . XA 1#AD*D**3, XE | *ED*L*%6

1 *(C0OS (BETA) )**3.% (TAN (BETA) ) #*6,+2. #AD#%2 , #B&kly , XED*%2 , k| 45,

1 *(TAN(BETA) )*%2,+9, *AB*AD#B#D** 3, XEB*ED*L**5, * (TAN (BETA) )

1 #%2,-20,%A1*AD*B*%2 , %D%*3, kE1XEDXL*%L % (COS (BETA) ) ##3 . %
(TAN(BETA) ) %L .+3, *AB*AD*B#*3 , *EBXED*L*%3 , -8, *A1*AD#B#+4,

1 *D**3 ,*E1%ED* (COS (BETA) ) *%3.% (TAN(BETA) ) #%2 %2 ,*L**2 ,+12

1 *A1*AD*
1 B#%6,*D#*3, XE1*ED* (COS (BETA) ) #%3 46, *A1*AB*B#*3, xD#%E %

1 E1*EB*(COS(BETA))**3,)/ (4.%D**3,%(2,*AD*ED*L**4 % (TAN(BETA))

1 #%b,+12,%AD%B**2 ,*ED*L*%2, % (TAN (BETA) )##2.+16 , *AT*E 1%L
2 D#*3.%(COS (BETA)) ##3. % (TAN (BETA) ) ##4, +18 XADXED#B#+r ,+9.
2 *ABAB*D*%3,%EB))
Chb=9.% (6, %AD*%2 , XED#*2 , XED*%2 . AL*%5 % (TAN (BETA) ) *#4 ,+4 . *A1*AD*

1 D#*%3,%E1*ED*L*%k, % (COS (BETA) ) #%3,% (TAN (BETA) ) #%6.-12 , *AD%#2, *

1 B&xh % (TAN(BETA) ) #%2 %

1 ED*#%2,%L*%3,+AB*AD*B* (TAN (BETA) ) #*2 , *D**3 *EBXED*L**3, -8

1 A1*AD%*B**2,%(COS (BETA) ) **3,% (TAN (BETA) ) #*4  %D**3, E1*ED*

2 L%%2 .46, %AD*%2, *B¥*6 , XED**2 , *L+3, *ABXAD*B**3,

2 *D**3, XEBFED*L+4, *AT

1 AD*B#*k4 *(COS (BETA) ) **3,* (TAN(BETA) ) %%2 , %D**3 *E1*ED+2 , *A1*AB*
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B#*(COS (BETA) ) #%3,%D**6 , *E 1%EB* (TAN (BETA) ) *%2,)/ (D**3 %
(2.*AD* (TAN (BETA) ) *#4
ED*L*%x4,+12.*AD.*AD*B#%2,% (TAN(BETA) ) %*2 , *ED*L**2 ,+16.*A1* (COS

(BETA))##3,% (TAN(BETA) ) il , #D%3. *E1%L+18. KAD*Bi k) XED+
9. *%AB*B*D#*#3,%EB))
C66=AD*ED*L* (L*TAN (BETA) ) **2,+B**k,) /2, ,D**3,)
Ch2=9.*B*(TAN(BETA) ) * (AD ((2.* (TAN(BETA) ) %L  %ED**2 *L%%7,

=2 ,*AD**2 ,%B*%*2,% (TAN (BETA) ) **2 ,%ED**2, , *L**5 +2,%A1%AD* (COS

- (BETA) ) #%3 % (TAN (BETA) ) %L ,%D**3,  *E1*ED*L**L  +AD*%2  *B%k}  *ED

xk2, KLA*3, 42, SABHAD*BAD*%3, KEBXEDAL#X2, =L, XATXAD*BH#2 %

(COS (BETA) ) ##3,% (TAN (BETA) ) ##2 , 5D##3  XE 1 ED*L#%2  +2, SA1*AD*B*
k% (COS (BETA) ) %3, %D%*3 , XE1*ED*+A1%AB*B* (COS (BETA) ) #+3,#D%6.

XE1%EB)/ (D*%3,% (2. %AD* (TAN(BETA) ) k4 , XED*L#*L . +12 . %AD
#B##2, % (TAN (BETA) ) #%2 , *ED#L%*2,+16 . %A1* (COS (BETA) ) %3 %

(TAN (BETA) ) #*k4, %D**3  %E1%L+18. *AD*B**L , XED+9, *AB*B*D**3,*EB) )

AM1=6.*AD*D*RHOD/L+3.*AB*B*RHOB/L+3.A1%*RHO1/C0S (BETA)

AM22=5,*AD* (TAN(BETA) ) #*2 . %D*L*RHOD/6 , +AD*B**2 ,*D*RHOD/ (2.%L)

+3.%AB*B* (TAN (BETA) ) %2, *L*RHOB/4 , +AB*B*#3 , *RHOB/ (L. *L)
+A1%* (TAN (BETA) ) %52, %L#*2, *RHO1/ (6. (COS (BETA))
)+A1%B#*%2,%RHO1/ (2.* (COS (BETA) )

AEQ=C11/E1

ASEQ=ChL/G

AJEQ=C66/G
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20

CONTINUE »

PROPERTIES OF CONST. RECTANGULAR CROSS SECTION
DO 13 K=1,M

D=SQRT (B**2 ,+L*%2,)

G=E1/(2.+2.*%U)

EL=EB

AL=AB

RHOL=RHOB

ANU=1,+(2,*B**3,*ED*AD/ (D**3 ,*EB*AB) ) / (1.+EL*AL/ (EB*AB*SQRT(2.)))

ANI1=1,+2,%B**3 *ED*AD/ (D**3 ,*EB*AB)
C11=h.*E1*A1+8,%L*%3 *EDXAD/ (ANU*D**3,)

C22=B*#%2, *E1%A1%B%%2 %L X3 *EDXAD/ (ANU1%D**3)

Chl=h *B*%2 . *L*ED*AD/D**3,

C66=2, *B*%L, #*L*ED*AD/D*%3,

C42=0.0

AM1=k ,*RHO1%A1+4. *B*RHOB*AB/L+k . *B*RHOL*AL/ (L*SQRT (2.) )+
8.%D*RHOD*AD/L

AM22=B*%2  *RHO1%A1+2,%B**3 ,*RHOB*AB/ (3.*L)+B**3  *RHOL*AL*

(3.*%L*SQRT (2. ) )+4,*B**2 *D*RHOD*AD/ (3.*L)

AM23=B**k4 %RHO1*A1/4 . +B**5 %*RHOB*AB/ (12, %L )+B**5 *RHOL*A
(4.%L*SQRT(2.))

+B#**4, %*D*RHOD*AD/ (6 .*L)

AEQ=C11/E1

AIEQ=C22/E1

ASEQ=CLL/G

AJEQ=C66/G
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Reproduced

AMIL=AM1%L/2,
AM22L=AM22%L/2,
WRITE (5,100) C11,C22,C44,C66,C42,AM1,AM22
WRITE (5,300) AEQ,A1EQ,ADEQ, AMIL,AM22L,AJEQ
GO TO 10

TRIANGULAR PROPERTIES OF CONST . SECT.
DO 12 J=1,M
D=DQRT (B*#*2,+L**2.)
G=E1/(2.42.%V)
AMU=1,+(2,*B**3,*ED*AD) / (D**3,*EB*AB)

C11=3,*E1%A1+6,%L*%3 *EDXAD/*AMU*D**3, )

C22=0.5%B**2 ,*E1*A1+B#*2, *L**Z.*ED*AD/ (4.*AMU*D**3.)

Chh=3, *B##2 (L XED*AD/D%*3,

C66=0, 5#B#*4 , xL*ED*AD/D**3,

C42=0.0
AM1=3.*(THO]*AI+B*RHOB*AB/L+2.*D*RHOD*AD/L)

AM22=(B**2,/2.)* (RHO1*A1+0, 5*B*RHOB*AB/L*D*RHOD*AD/L)

AEQ=C11/E1
AIEQ=C22/E1

ASEQ=Ch4/G

AJEQ=C66/G

AMIL=AM1#L/2,

AM22L=AM22+%L/2.

WRITE (5,100) C11,C22,Ch4,C66,C42,AM1,AM22
WRITE (5,300) AEQ,AIEQ,ASEQ,AMIL,AM22L,AJEQ

GO TO 10
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AMIL=AM1*L/2.
AM22L=AM22*L/2.
WRITE (5,150) AM23
© WRITE (5,100) C€11,C22,Ch4,C66,C42,AMT,AM22

WRITE (5,300) AEQ,AlEQ,ASEQ,AMIL,AM22L,AJEQ
GO TO 10

13 CONTINUE

10 CONTINUE

150 FORMAJ(//,lox,'Mzi33-',3x,515,6,///)

100 FORMAT(10X,//,10X,'STIFFNESS COEFFICIENTS',///,10X,'C11=",3X,

E15.6,/,10X,'C22=',3X,E15.6/,10X, 'Chk=",3X,E15.6,
/,10X,'c66=",3X,E15.6,/,10X, 'Ch2=",3X,E15.6,

//,10X,'MASS COEFFICIENTS',//,10X,'MO=",3X,

N WwW oy v

E15.6,/,10X,'M22=",3X,E15.6,/// )
300 FORMAT(10X,//,10X,'EQUVALENT COEFFICIENTS',//,10X,

1 'EQ. AXIAL AREA =',3X,E15.7,//,10X,'EQ. MOM. OF INERTIA=;

2 3X,E15.7.//,10X,'EQ. SHEAR AREA=',3X,E15.7,//,10X,
3 'EQ. EXTENTIAL INERTIA =',3X,E15.7,//,10X,

L 'EQ. ROTARY INERTIA =',3X,E15.7,//,10X, 'EQ.TORSIONAL INERTIA=',

5 3X,E15.7,///)

200 STOP
RETURN
END
c EQUIVALENT MASS AND STIFF, COEFF. FOR A PLANAR TRUSS
c M=NUMBER OF SECTION PROPERTIES SETS
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M=30
DO 10 I=1,M

READ (5,*) B,L,A,E,RHO,U
D=SQRT (B*#2 ,+L*%2,)

G=E/ (2.+2.%*U)

C11=2.*E*A
C22=E*A*B#%2,/2,

CUU=EXARL*BR*2, [D#%3, ~EXARL kL %xBH%2, / (D¥#3, *Lk*3, 42, %DH46, )

AM1=RHO*A*(2,+B/L+D/L)
AM22=RHO*A*B**2,/2 .+ (RHO*A%*B**3 ,+RHO*A*D*B**2,) /12 %L
AEQ-C11/E
A1EQ=C22/E
ASEQ=ChL/G
AJEQ=C66/G
AMTL=AM1*L
AM22L=AM22%*L
WRITE (5,100) C11,C22,ChL4,C66,CL2,AM1 ,AM22
WRITE (5,300) AEQ,AIEQ,ASEQ, AM1L,AM22L,AJEQ
TO TO 10
10 CONTINUE
100 FORMAT (10X,//,10X,'STIFFNESS COEFFiCIENTS',///,10X,'C11=',3X,

9 E15.6,/,10X,'C22="',3X,E15.6,/,10X, 'Chh=",3X,E15.6,
6 /,10X,'C66=",3X,E15.6,/,10X,'Cli2="',3X,E15.6,

9 //,10X,"MASS COEFFICIENTS',//,10X,'M0=",3X,
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7 E15.6,/,10X,'M22=",3X,E15.6,/// )
300 FORMAT(10X,//,10X,'EQUVALENT COEFFICIENTS',//,10X,

1 'EQ. AXIAL AREA =',3X,E15.7,//,10X,'EQ. MOM. OF INERTIA=',

2 3X,E15.7,//,10X,'EQ. SHEAR AREA=',3X,E15.7,//,10X,
3 'EQ. EXTENTIAL INERTIA =',3X,E15.7,//,10X,
4 'eQ. ROTARY INERTIA =',3X,E15.7,//,10X,'EQ. TORSIONAL INERTIA=',

.

5 3X,E15.7,///)
RETURN

END

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



AUTOBIOGRAPHICAL STATEMENT

Khaled A. Obeid was born in Alexandria, Egypt on May 16, 1948.
After graduatibn from high school, he enrolled in Alexandria
University, Egypt and graduated in June of 1971 with a Bachelor of
Science degree with Honor in Civil Engineering. After which, he
taught Civil Construction, Civil Drawings, and Hydraulics as a full
time assistant professor in Alexandria University, Egypt.

In January of 1974, he entered the University of Southwestern
Louisiana, Laffaygtte, Louisiana where he was awarded his Master of
Science degree in Civil Engineering in May of 1975. While at the
University of Southwestern Louisiana, he served as graduate research
assjstant and wrote his Master's thesis entitled '""Rotary lnertia and
Shear Effects on Dynamics of Frames'!. Upon finishing his Master's
degree, he enrolled in Louisiana State University in August of 1975 at
which he was awarded a research assistantship in Civil Engineering
Department.

In August of 1976, he enrolled at 01d Dominion University as a
full time Doctoral student in Civil Engineering working in structural
dynamics as his major and soil mechanics as his minor. During the first
three years of his Doctoral study program, he serves as graduate
teaching assistant in which he taught Materials, Hudraulics, and Soil
Mechanics Laboratories. In the summer of 1977, he was involved in a
crash analysis program conducted by NASA Langley Research Center in
Hampton, Virginia.

- Thé author has been a Professional Engineer in the State of Virginia
since April of 1978. He is a member of the American Concrete Institute,

American Society of Civil Engineers, the Engineers Club of Hampton Roads,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and the Virginia Society of Professional Engineers. He is presently
associated with Glenn-Rollins and Associates Consulting Engineers in
Norfolk, Virginia as a Senior Project Engineer.

He is married to the former Helen Ruth Barras of Lafayette,
Louisiana and they have been blessed with two lovely children;
Mohamed and Yasmin. Presently, they are residing in Virginia Beach,

Virginia.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



	Continuum Modeling Methodology for Dynamic Behavior of Towers
	Recommended Citation

	tmp.1573050314.pdf.VAFqX

