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ABSTRACT

A very common problem in C i v i l  Engineering is the an a ly s is  and 

design o f  l a t t i c e  s t ru c tu re s .  These types o f  s t ru c tu re s  g e n e ra l ly  

co n s is t  o f  r e p e t i t i v e  sections and have been u t i l i z e d  in the  

e re c t io n  o f  transm ission and communication towers, space ro o f t russes ,  

s o la r  energy c o l le c t o r s ,  and space p la t fo rm s . Since l a t t i c e  s tru c tu re s  

co n s is t  o f  a s i g n i f i c a n t l y  la rg e  number o f  members and subsequently a 

la rg e  number o f  nodes, the c la s s ic a l  d is c r e te  technique o f  a n a ly s is  can 

be very expensive even on to day 's  modern computers. This stydy a p p lies  

a ra t io n a l  approach which c a p i t a l i z e s  on the r e p e t i t i v e  n a tu re  o f  towers 

to  develop the e q u iv a le n t  continuum model fo r  the l a t t i c e  s t ru c tu re .

The continuum approach is based on eq u iva lenc ing  the s t r a in  and k in e t ic  

energ ies  o f  the actual l a t t i c e d  tower w ith  th a t  o f  the e q u iva len t  

continuum model. In tro d u c t in g  the k inem atic  assumption th a t  the s t r a in  

components o f  the l a t t i c e  s t ru c tu re  have l in e a r  v a r ia t io n s  in the plane  

o f  the tower cross sec tio n  is the key step in o b ta in in g  c o rre c t  

expressions fo r  the e q u iv a le n t  p ro p e r t ie s  o f  the continuum model. Pro­

cedures fo r  developing continuum models a re  presented along w ith  the  

c o n s t i t u t iv e  equations and s t r a in  express ions . The procedures are  

demonstrated by app ly ing  the continuum modeling approach to  p lanar  

t ru s s e s ,  t r ia n g u la r  towers w ith  constant cross s e c t io n s ,  t r ia n g u la r  

towers w ith  v a r ia b le  cross sec t io n s ,  and towers w i th  rec tan g u la r  cross 

s e c t io n s .  Numerical re s u lts  fo r  s t a t i c  d e f le c t io n s  and f re e  v ib ra t io n  

a n a ly s is  o f  p lanar trusses and towers w ith  t r ia n g u la r  cross sections are  

presented^ and they in d ic a te  the high accuracy o f  the continuum model 

s o lu t io n .  In a d d i t io n ,  a numerical technique is developed to  o b ta in  

member fo rces o f  the ac tu a l l a t t i c e  s t ru c tu re  from the continuum model
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re s u lts .  Moreover, a comparison o f  computer times using the SAP IV f i n i t e  

element program to analyze  the ac tu a l l a t t i c e  s tru c tu re s  versus 

the equ iva lent continuum model is presented. In g e n e ra l ,  the c o n t in ­

uum approach when app lied  to  the a n a ly s is  o f  l a t t i c e  s tru c tu re s  

demonstrates a s ig n i f ic a n t  savings in computer cost w ith  a r e l a t i v e l y  

in s ig n i f ic a n t  loss in accuracy.
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Tab le  5.1

v -  Poisson's  r a t i o

[5] -  t ran s fo rm atio n  m atr ix  s p e c if ie d  in
expression ( B. k)
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CHAPTER I 

INTRODUCTION

1.1 General Remarks

One o f  the most common types o f  c i v i l  eng ineering  s tru c tu re s  used 

today is the l a t t i c e d  s t ru c tu re .  This p o p u la r i ty  stems from the  

r e la t iv e ly ,  large  s tren g th  to  weight r a t io  possessed by these s tru c tu re s  

and t h e i r  r e la t i v e  ease o f  fa b r ic a t io n  and e re c t io n  as compared w ith  

other s tructures  ( l ) .  Indeed, s ig n i f i c a n t  in te r e s t  has been generated  

by the p o te n t ia l  use o f  these s tru c tu res  in space as so la r  energy 

c o l le c to rs ,  as transm ission or communication tow ers , and as la rg e  span 

roof s tructu res  as shown in Figure ( 1 . 1 ) .

A la t t ic e d  s t ru c tu r a l  system is a network o f  elements which e x h ib i t  

th ree  dimensional load carry in g  c a p a b i l i t i e s .  The c h a r a c te r is t ic s  which 

make the an a ly s is  and design o f  l a t t i c e d  s tru c tu re s  a specia l c lass  are  

the three dimensional a n a ly t ic a l  so lu t io n  requ ired  f o r  a complete 

descrip t io n  o f  the s t ru c tu ra l  behavior and the r e l a t i v e l y  la rg e  number 

of in d iv idua l s t r u c tu r a l  members in the s t r u c tu r e .  These two 

c h a ra c te r is t ic s  make the atta inm ent o f  an a n a ly t ic a l  so lu t io n  by the  

use o f  d i re c t  methods ( f i n i t e  element, f i n i t e  d i f fe re n c e s )  com p uta tiona lly  

Very expensive. This is  due in p a r t  to  the la rg e  number o f  a lg e b ra ic  

equations generated by the above techniques. Consequently, approximate  

methods o f  an a ly s is  a re  rece iv ing  a s ig n i f i c a n t  amount o f  a t te n t io n  in 

an e f f o r t  to reduce th is  computational expense w h i le  ach iev ing  re s u lts  

which accu ra te ly  p re d ic t  the response o f  the l a t t i c e  s t ru c tu re .

Another important c h a r a c te r is t ic  o f  most l a t t i c e  s tru c tu re s  which 

permits reducing t h e i r  d im en s io na lity  is  th a t  the in d iv id u a l  members are  

o ften  connected together  to  form r e p e t i t i v e  s e c t io n s .  C a p i ta l iz in g  on
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th is  c h a r a c t e r is t ic ,  one can model the th ree  dimensional repeating  

section o f  the s t ru c tu re  in to  a one dimensional e q u iv a le n t  element having 

the e q u iv a le n t  p ro p e r t ie s  o f  the rep eating  section  ( 7 ) .  The e q u iva len t  

element w i l l  approximate the ac tua l response to  the l a t t i c e d  s t ru c tu re  

and w i l l  reduce the t o t a l  number o f  degrees o f  freedom in the problem, 

thereby, producing a reduction  in the  computational c o s t .  A major 

question th a t  remains is  how good an approximation is  the  e q u iv a le n t  

model' so lu t io n?  H erein  l i e s  th e ,o v e r a l l  o b je c t iv e  o f  the present study 

which in v e s t ig a te s  t h is  approximation as i t  ap p l ie s  to  c i v i l  eng ineering  

s truc tu res  under s t a t i c  loadings as w e ll  as f re e  v ib r a t io n  a n a ly s is .

1.2 L i t e r a tu r e  Review

The most common procedures used fo r  an a lyz ing  l a t t i c e  s tru c tu re s  

can be grouped in to  th re e  techniques: D ire c t  Methods, D is c re te  F ie ld

A nalys is , and the E qu iva len t Continuum Method.

D ire c t  Methods as p re v io u s ly  mentioned re q u ire  the s o lu t io n  o f  a 

system o f  a lg e b ra ic  eq u atio n s . E q u il ib r iu m  o f  c o m p a t ib i l i t y  equations  

are w r i t te n  a t  each node. These equations are  then solved to  o b ta in  

e i t h e r . t h e  j o i n t  displacem ent ( c l a s s ic a l ly  re fe r re d  to as the s t i f fn e s s  

method) o r  the  fo rces  ( c la s s ic a l l y  re fe r re d  to as the f l e x i b i l i t y  

method). These methods are  "ex ac t"  (2) in the sense th a t  no s im p l i fy in g  

assumptions a re  made to  the s t ru c tu ra l  element and the mathematical 

model u t i l i z e d  invo lves  on iy  the  usual assumptions assoc ia ted  w ith  

l in e a r  e l a s t i c  s t r u c tu r a l  b ehav ior. Both fo rce  and displacement methods 

can be h ig h ly  automated fo r  implementation on d i g i t a l  computers. Even 

w ith  the use o f  e f f i c i e n t  numerical computing schemes (s u b s tru c tu r in g  

and sparse m a tr ix  te c h n iq u e s ) ,  an a lyz in g  a la rg e  s t ru c tu ra l  system 

using d i r e c t  methods re q u ire s  a very la rge  number o f  simultaneous
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equations which may o vertax  present-day computers ( 3 ) .  In a d d i t io n ,  i f  

the designer is  in te re s te d  in o b ta in in g  a dynamic a n a ly s is ,  the comp­

u ta t io n  o f  the  n a tu ra l  frequencies  and mode shapes v ia  an e igenvalue  

so lu tio n  can be very  expensive.

D isc re te  f i e l d  methods a re  the most commonly used techniques fo r  

analyzing r e p e t i t i v e  l a t t i c e  s tru c tu re s  w ith o u t  in vo lv ing  la rg e  

numbers o f  a lg e b r a ic  equations . A summary o f  the s t a t e - o f - t h e - a r t  o f  

d is c re te  f i e l d  a n a ly s is  o f  l a t t i c e  s tru c tu re s  is given by both Dean (A) 

and Avent ( 5 ) .  The d is c re te  f i e l d  method is  d iv id ed  in to  two separate  

approaches: the m icro and macro techniques.

The micro method e x p lo i ts  the r e p e t i t i v e  n atu re  o f  the l a t t i c e  

s tru c tu re  because th e  mathematical model is der ived  by a n a lyz in g  the  

basic l a t t i c e  element and r e la t in g  i t s  behavior to  th a t  o f  the  a d jo in ­

ing and connecting elem ents. Consequently, the  fo rce  and deformation  

c h a r a c te r is t ic s  o f  a small segment o f  the ac tu a l l a t t i c e  a re  described  

in terms o f  the f i e l d  coord inates  using f i n i t e  d i f fe r e n c e  o p e ra to rs .

The f i n i t e  d i f f e r e n c e  equations can be solved d i r e c t l y  or can be 

converted in to  approximate d i f f e r e n t i a l  equations by re p la c in g  the  

f i n i t e  d i f fe r e n c e  o p era to rs  w ith  the  a p p ro p r ia te  T ay lo r  s e r ie s  expansion 

as employed by Renton (6 ) and Dean ( 7 ) .  However, the s o lu t io n  o f  the  

mathematical model can be w r i t t e n  in several forms. One such form is  

a set o f  a r b i t r a r y  fu n c t io n s  whose arguments have a s p e c i f ie d  dependence 

on the f i e l d  c o o rd in a te s .  Another form o f  s o lu t io n  is a s in g le  t r ig o n ­

om etric  s e r ie s  o f  fu n c tio n s  o f  one coord inate  w ith  fu nction s  o f  the o th er  

coordinates as c o e f f i c i e n t s .  Another a l t e r n a t i v e  approach is  to express  

the so lu t io n  as m u l t ip le  s e r ie s  o f  functions o f  the c o o rd in a te  having 

constant c o e f f i c i e n t s .
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The macro approach e x tra c ts  a closed form s o lu t io n  fo r  the e n t i r e  

l a t t i c e  s tru c tu ra l  system w ith ou t depending on d is c r e t iz in g  the  

s tru c tu re .  This approach is  c h a ra c te r iz e d  by the generation o f  a 

mathematical model in the form o f  a summation eq uatio n . The component 

members, whose span dimensions correspond to those o f  the whole, system 

as opposed to basic elements as in the micro approach, are  analyzed  

sep ara te ly  fo r  t h e i r  behavior a t  the l a t t i c e  nodes. These components 

are superimposed and c o m p a t ib i l i t y  is  enforced a t  the end nodes. The • 

so lu t io n  o f  the re s u l t in g  equations is determined using the orthogon­

a l i t y  p ro p ert ies  o f  the s e r ie s  fu nctio ns  found in the member analyses.  

This technique is p a r t i c u la r l y  w ell  adapited fo r  cases in which l a t t i c e  

s tru c tu res  are  in te ra c t in g  w ith  continuous e lem ents. The micro  

approach is  more ap p ro p r ia te  fo r  ana lyz ing  r e p e t i t i v e  l a t t i c e  s tru c tu res  

by the d is c re te  f i e l d  method. T h e re fo re ,  Dean (7 ) app lied  the micro  

approach and obtained closed form so lu t io n s  fo r  the transverse  

displacements o f  simple p lanar truss  c o n f ig u ra t io n s .  Renton (6 ) took  

the a n a lys is  one step f u r th e r  by d e r iv in g  an approximate d i f f e r e n t i a l  

equation which includes a shear deform ation e f f e c t  fo r  some trusses .

Equivalent continuum methods o f  r e p e t i t i v e  l a t t i c e  s tru c tu re s  have 

the major advantage o f  p rov id ing  a p r a c t ic a l  approach fo r  the an a lys t  

to o b ta in  the so lu tion  o f  the system’ s global response w ithout using a 

la rg e  number o f  equations. T h e re fo re ,  the designer can u t i l i z e  th is  

technique to  in d ica te  the s t ru c tu ra l  response o f  a l a t t i c e d  s tru c tu re  

in param etric  studies w ith  regards to  the s t r u c tu r a l  geometry or  

m a ter ia l  p roperties  w ith  minimum computer expense. The most common 

approaches fo r  developing continuum models a re  the in tu t iv e  approach 

and the energy equivalence approach. In the in t u t i v e  approach, a
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port ion  o f  the e q u iv a le n t  continuum is  f i r s t  equivalenced w ith  a po rt io n  

o f  the ac tu a l l a t t i c e .  The continuum s t i f f n e s s  can then be obtained by 

in troducing  a u n i t  s t r a in  s ta te  ( 7 ) and tak in g  the s tre s s  re s u lta n ts  to  

be the e q u iv a le n t  s t i f f n e s s e s .  Timoshenko (8 ) app lied  the  in t u t iv e  

approach to  the s t a t i c  a n a ly s is  o f  s in g le - la y e r  g r id s .  Heki and Saka (9) 

introduced tensor transform ations  to o b ta in  e q u iv a le n t  s t i f f n e s s  fo r  

more general g r id  c o n f ig u ra t io n ? .  The e q u iv a le n t  continuum approach 

has been ap p lie d  by Sun and Yang (10) in an a lyz in g  s in g le - la y e r  g r id s  

w ith  in -p la n e  de form ation , f re e  v ib r a t io n ,  and wave p ropagation . The 

procedure presented by Noor, Anderson, and Greene (11) is  based on 

ob ta in in g  the  s t r a in  and the k in e t ic  energies o f  the rep ea tin g  element 

in terms o f  the continuum s t r a in  and displacement param eters . From 

these e n erg ies , the c o n s t i tu t iv e  r e la t io n s ,  governing d i f f e r e n t i a l  

equations, and boundary con d it ion s  are  obtained using a v a r ia t io n a l  

p r in c ip le .  Nayfeh (13) a lso  used the e q u iv a le n t  continuum approach.

In the m a jo r i ty  o f  the s tud ies  documented in the l i t e r a t u r e ,  the 

focus has been on s t a t i c  a n a ly s is .  There is  a p au c ity  o f  stud ies  

dealing  w ith  f re e  v ib r a t io n  a n a ly s is .  In a d d i t io n ,  the e q u iv a le n t  

continuum approach has not been app lied  to some im portant and common 

design problems in c i v i l  eng ineering  such as communication and t ra n s ­

mission towers. In a d d i t io n ,  to  the a u th o r 's  knowledge, methods fo r  

the re s o lu t io n  o f  the forces obtained from the continuum model back 

in to  member fo rces  o f  the ac tua l s t ru c tu re  fo r  design has not been 

reported in the l i t e r a t u r e .

1.3 O b jectives  and Scope

The present d is s e r ta t io n  attempts to  bridge the above gaps by 

applying a s im ple , ra t io n a l  energy equivalence approach to  ana lyze
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p in - jo in te d  towers w ith  constant cross sections and towers w ith  v a r ia b le  

t r ia n g u la r  cross s e c t io n s .  The d is s e r t a t io n  presents a technique to  

recover member fo rces  o f  the  ac tu a l s t ru c tu re  using re s u l ts  obta ined  

from the e q u iva len t  continuum model. T h e re fo re ,  the o b je c t iv e s  o f  the  

present study are  to :

1. Apply a r a t io n a l  approach fo r  developing continuum  

models f o r  p la n a r  tru s s e s ,  t r i a n g u la r  towers w ith  

constant cross s e c t io n s ,  and towers w ith  v a r ia b le  

t r ia n g u la r  cross s e c t io n s .

2 .  Show the r e l i a b i l i t y  and the numerical accuracy o f  

the continuum models developed by comparing continuum 

model re s u l ts  w i t h  those obta ined  from f i n i t e  element 

models using SAP IV Program (1 2 ) .

3. Develop a technique to  a l lo w  the designer to  c a lc u la te  

member fo rces  o f  the ac tua l s t ru c tu re  from the re s u lts  

obtained by the continuum model a n a ly s is .

The scope o f  the present study includes the fo l lo w in g :

1. S ta t ic  and f r e e  v ib r a t io n  a n a ly s is  f o r  p lan ar  trusses  

using the e q u iv a le n t  continuum approach.

2 .  S ta t ic  and f r e e  v ib r a t io n  a n a ly s is  f o r  towers w ith  

v a r ia b le  t r i a n g u la r  cross sec tio n s .

3. S t a t ic  and f r e e  v ib r a t io n  a n a ly s is  f o r  towers w ith  

constant t r i a n g u la r  cross sec tio n s .
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CHAPTER I I

ANALTYICAL DEVELOPMENT OF CONTINUUM MODELS

2.1 The Equivalent Continuum Model

In the form ulation  o f  an e q u iv a le n t  continuum model as a s u b s t i tu te  

fo r  the actua l l a t t i c e  s t r u c tu r e ,  the f i r s t  step is the s e le c t io n  o f  the  

repeating element. A repeating  element is  de f in ed  as a c o l le c t io n  o f  

a l l  the members which form the sm alles t p o ss ib le  r e p e t i t i v e  p a t te rn .  In 

a d d it io n ,  these elements can be interchanged w ith ou t a f f e c t in g  the 

o r ig in a l  geometry o f  the l a t t i c e  s t r u c tu re .

As prev iously  mentioned in Chapter I ,  an e q u iv a le n t  continuum model 

is defined as a mathematical model which possesses the e q u iva len t s t r a in  

energy and k in e t ic  energy as the ac tu a l l a t t i c e  s t ru c tu re  when both 

models are id e n t ic a l ly  deformed. This d e f i n i t i o n  e s tab lish es  the second 

step in the development o f  the e q u iv a le n t  continuum model. The s t r a in  

energy and the k in e t ic  energy o f  the repeatin g  element a re  expressed as 

functions o f  the nodal d isplacem ents , j o i n t  r o ta t io n s ,  and nodal v e l o c i t ­

ies as w ell as the geometric and m a te r ia l  p ro p e r t ie s  o f  the in d iv id u a l  

members. These energies a re  summed fo r  a l l  the members o f  the repeating  

element to obta in  the e q u iv a le n t  p ro p e r t ie s  o f  the continuum model.

-Then, the boundary cond it ions  o f  the ac tu a l l a t t i c e  s t ru c tu re  are  

simulated in the continuum model by s e t t in g  the a p p ro p r ia te  displacement 

parameters or force expressions to  t h e i r  p rescribed  values as given by 

Noor and Anderson (1 1 ) .

The eq u iva len t continuum model o f  a l a t t i c e  s tru c tu re  is  c h a ra c te r ­

ized by i t s  s t ra in  energy and k in e t i c  energy. The procedures ind icated  in (11) 

fo r  developing the s t r a in  and k in e t ic  energy expressions o f  the e q u iva len t
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continuum model are  summarized as fo l lo w s :

1. The ty p ic a l  repeating  element is  is o la te d  from the  

l a t t i c e  s t ru c tu re .

2. The s t ra in  energy and the k in e t ic  energy expressions  

o f  the repeating  element are  obtained by summing the 

c o n tr ib u t io n s  o f . a l l  members o f  the repeating  element.

This leads to  energy expressions in terms o f  nodal 

displacement components and t h e i r  associated v e lo c i t i e s .

3. The app rop ria te  k inem atic  hypothesis to  express the  

nodal displacement components is introduced in terms o f  

a selected set o f  displacement components fo r  the 

eq u iva len t continuum model. For example, in the present  

study, the displacement components along pin connected 

members o f  the rep eatin g  element are  assumed to  have a 

l in e a r  v a r ia t io n .  In a d d i t io n ,  the th re e  displacement 

components o f  the l a t t i c e  s t ru c tu re  a re  assumed to  have 

a l in e a r  v a r ia t io n  in the plane o f  the cross section  

which re s u lts  in the s t r a in  parameters being functions  

o f  the a x ia l  displacement o n ly .

4. The re la t io n s h ip s  from step 3 a re  then su b s t i tu te d  in to  

the energy expressions which produce the s t i f fn e s s  and 

the in e r t ia  p ro p e r t ie s  o f  the e q u iv a le n t  continuum model.

The t r a n s i t io n  from the d is c r e te  l a t t i c e  s t ru c tu re  to the continuum ; 

model is accomplished by expanding the s t r a in  components in the  

coord inate  d ire c t io n s  in a T a y lo r  s e r ie s  about the cen tro id  o f  the 

repeating element. The number o f  terms re ta in ed  in the Tay lor s e r ies  

expansion is dependent upon the com plexity  o f  the repeating element
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and should not exceed the  t o t a l  number o f  degrees o f  freedom o f  the  

repeating elem ent. In a d d i t io n ,  c o m p a t ib i l i t y  a t  the in t e r fa c e  

between any two ad jacen t repeating  elements must be insured so th a t  

the number o f  continuum s t r a in  parameters requ ired  in the e q u iv a le n t  

continuum model can be reduced. Furthermore, the continuum model can 

s t i l l  be s im p l i f ie d  by n eg lec t in g  the forces associated  w ith  some 

secondary s t r a in  param eters . This re s u lts  in a set o f  a lg e b ra ic  

equations which can be solved in terms o f  the reduced s t r a in  parameters  

o f  the equ iva len t-continuum  model. Numerical stud ies  (11) have in d ica ted  

th a t  some o f  the  d e r iv a t iv e s  o f  the displacement parameters o f  the  

equ iva len t continuum can be neglected in the k in e t ic  energy expression  

without a f f e c t in g  the  accuracy o f  the lower v ib r a t io n  fre q u e n c ie s .  Th is  

is o f  p a r t ic u la r  importance in the design o f  ty p ic a l  c i v i l  eng ineering  

stru ctu res  where the designer is g e n e ra l ly  concerned w i th  th e  f i r s t  few 

lower v ib ra t io n  fre q u e n c ie s .

2 .2  Development o f  the S t i f fn e s s  and In e r t i a  C o e f f ic ie n ts  o f  the

Equ iva len t Continuum Model

The c o n s t i t u t iv e  re la t io n s h ip s  and the  governing d i f f e r e n t i a l  

equations fo r  the e q u iv a le n t  continuum model can be developed from the  

s t ra in  energy and the  k in e t i c  energy expressions obta ined  f o r  the  

repeating elem ent. The s t r a in  energy d en s ity  fun ction  can be expressed 

as a q u ad ra t ic  fu n c t io n  o f  the continuum model's s t r a in  components. The 

mathematical expression fo r  th is  func tio n  is  w r i t t e n  in  the fo l lo w in g  

form:

U = 1 /2  ( e ) t [ c j  { e }  (2 . 1)
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where U is  the s t r a in  energy per u n i t  length o f  the e q u iva len t  

continuum model;

{ e }  is  the s t r a in  v ec to r  o f  the e q u iv a le n t  continuum; and

[c ] is  the m a tr ix  o f  the continuum s t i f f n e s s  c o e f f i c ie n t s .

The s t i f f n e s s  c o e f f ic ie n t s  in Equation ( 2 .1 )  a re  obtained by 

d i f f e r e n t i a t i n g  the  s t r a in  energy expressions w ith  respect to  the  

s t r a in  parameters. S p e c i f i c a l l y ,  the  continuum s t i f f n e s s  c o e f f ic ie n ts  

can be expressed as fo l lo w s :

82u

c i i  = a— T ”  C2*2)|J oe .oe j

The k in e t ic  energy is  a qu ad ra tic  fu n c t io n  o f  the continuum 

v e lo c i ty  parameters. The expression fo r  the k in e t i c  energy d en s ity  

fun c tion  can be expressed as fo l lo w s :

T = 1 /2  (2 .3 )

Where T is  the k in e t ic  energy dens ity  fu n c t io n  per u n i t  length o f  the  

e q u iva len t  continuum model;

{«l}is the v e c to r  o f  v e lo c i t y  parameters;

[m jis the e q u iv a le n t  mass m a tr ix  c o e f f ic ie n t s  o f  the  

continuum model; and 

t  denotes t ra n s p o s i t io n -

The e q u iv a le n t  mass c o e f f ic ie n t s  in Equation (2 .3 )  can be obtained  

from the a p p ro p r ia te  d i f f e r e n t i a t i o n  o f  the k in e t i c  energy w ith  respect

to  the  v e lo c i t y  parameters as fo l lo w s :
32T

mi j  "  83; sa,
(2 .4 )

J
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The governing d i f f e r e n t i a l  equations o f  the e q u iva len t  continuum 

model a re  derived  in a c la s s ic a l  manner by ap p ly ing  H am ilto n 's  p r in c ip le  

(16) which can be expressed as fo l lo w s :

2 6 CT -  V )d t 6 Wnc dt = 0 (2 .5 )

where V = to t a l  p o te n t ia l  energy o f  the system, in c lud in g  both

s t r a in  energy and p o te n t ia l  energy o f  any co nservative  

e x te rn a l  fo rces ,

W s work done by n on -conservative  forces ac t in g  on the  

system, including damping and any a r b i t r a r y  e x te rn a l  

loads, and

6 = v a r ia t io n  taken during in d ic a te d  time in t e r v a l .

The dependent v a r ia b le s  in  these d i f f e r e n t i a l  equations are the  

g en era lized  displacements o f  the continuum. For f r e e  v ib r a t io n  a n a ly s is ,  

the time d e r iv a t iv e s  in the governing d i f f e r e n t i a l  equations are  

e l im in a te d  by assuming th a t  the g e n e ra l ize d  displacements have sinusoidal  

v a r ia t io n s  in  t im e. T h ere fo re ,  closed form s o lu t io n s  can be obtained fo r  

the continuum models w ith  simple c o n f ig u ra t io n s  and boundary c o n d it io n s ,  

since the  governing equations a re  o rd in a ry  d i f f e r e n t i a l  equ ation s . How­

ever, fo r  more complicated c o n f ig u ra t io n s  or boundary c o n d it io n s ,  

approximate s o lu t io n s  such as the  f i n i t e  element technique o r  o ther  

Rayleigh -  R i t z  techniques are  p r a c t ic a l  methods to  so lve  th e  continuum 

model. The f i n i t e  element method has been se lec ted  in t h is  study to  

solve the e q u iv a le n t  continuum models.
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2 .3  Use o f  MACSYMA Computerized Smybolic M anipulation in Developing

the Continuum P ro p ert ies

MACSYMA is an in te r a c t iv e  computer programing language developed 

by the Math Lab Group a t  Massachusetts In s t i t u t e  o f Technology. The 

MACSYMA system has numerous c a p a b i l i t i e s  fo r  symbolic a lg e b ra ic  and 

calculus computations which e l im in a te  the tedium o f  a lg e b ra ic  manip­

u la t io n .  The MACSYMA c a p a b i l i t i e s  can be summarized as:

a .  A lg ebra ic  o p era t io n s ;  MACSYMA has the a b i l i t y  to  

combine a lg e b ra ic  expressions through mathematical 

operations o f  a d d i t io n ,  m u l t ip l ic a t io n ,  and e x p o n e n t ia t io n .

b. Calculus o p era t io n s ;  MACSYMA has many b u i l t - i n  

knowledge o f  the forms o f  d e r iv a t iv e s  o f  most the  

commonly used fu n c t io n s .  In a d d it io n ,  MACSYMA has the  

c a p a b i l i t y  o f  so lv ing  systems o f  d i f f e r e n t i a l  equations  

using Laplace Transforms.

c. S im p l i f ic a t io n  o f  a lg e b ra ic  expressions; MACSYMA can 

do automatic s im p l i f ic a t io n  using g rea tes t common 

dev iso rs , rep lac ing  o f  lo g arith m ic  and tr ig o n o m etr ic  

functions w ith  t h e i r  known va lu es , fac to r in g  and 

combining terms over a common denominator, ordering  

terms according to  power o f  p a r t ic u la r  v a r ia b le s ,  e tc .

d. M anipulation o f  subscripted v a r ia b le s ;  MACSYMA can 

handle subscrip ted  fuhctions and m atrices which 

encompass m a tr ix  a d d i t io n ,  m u l t ip l ic a t io n  and 

in vers io n .

e. D isplay o f  ou tp u t;  MACSYMA d isp lays  the numerical 

and symbolic expression in two-dimensional form at.
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f .  Graphical o u tpu t;  MACSYMA a ls o  provides graphica l  

output w ith  c h a r a c t e r -p lo t t in g  ro u t in es  fo r  use w ith  

te rm ina ls  w ithou t l i n e  g en era t in g  c a p a b i l i t i e s .

g. Special commands and packages; MACSYMA has b u i l t - i n  

c a p a b i l i t y  f o r  the s o lu t io n  o f  a lg e b ra ic  equations,

T ay lo r  s e r ie s  expansion, m an ip u la t io n  o f  t r ig o n o m etr ic  

fu n c t io n s ,  e v a lu a t io n  o f  both d e f i n i t e  and in d e f in i t e  

in te g ra ls  in a n a ly t ic  form, and performing vec to r  and 

tensor a n a ly s is .

In summary, the p o te n t ia l  o f  the  MACSYMA computerized symbolic 

manipulations is i 1 lu s t ra te d  through d i f f e r e n t  problems covering wide 

range o f  the s t ru c tu ra l  mechanics a re a s .  A p p lic a t io n s  (1 5 ) ,  include  

generation o f  c h a r a c t e r is t ic  a rra y s  o f  f i n i t e  elements, e v a lu a t io n  o f  

e f f e c t iv e  s t i f fn e s s  and mass c o e f f ic ie n t s  o f  continuum models fo r  

l a t t i c e  s tru c tu re s ,  and a p p l ic a t io n  o f  the R a y le ig h -R itz  technique to  

the f re e  v ib ra t io n  a n a ly s is  o f  laminated composite e l l i p t i c  p la te s .

The MACSYMA f low  c h a r t  foif the  program developed by Noor and 

Anderson (15) is shown in F igu re  2 .1 .  T h is  program has been m odified  

and debuged during the course o f  the p resent study in order to  analyze  

t r ia n g u la r  towers w ith  v a r ia b le  cross s e c t io n s .  The l i s t in g  o f  the  

MACSYMA program used in th is  study is  presented in Appendix C.

2 . k  Convergence o f  the E q u i lv a le n t  Continuum So lu tion

I t  is  i n t u i t i v e l y  expected th a t  as the number o f  repeating  

elements in the l a t t i c e  s t r u c tu re  becomes la rg e ,  the behavior o f  the  

continuum model approaches th a t  o f  the ac tu a l l a t t i c e .  Discussion o f  

convergence fo r  a simple one-dimensional problem is considered. As
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PART 1
Input c h a r a c t e r is t ic s  o f  repeating  
element in  symbolic form

•  co o rd in a tes  o f  nodes
•  member p ro p e r t ie s ___________

PART 2a
•  s p e c ify  displacement 

v a r ia t io n  in p lan o f  cross section

set forces associated w ith  s t r a in  
gradients equal to zero

evaluate  s t i f fn e s s  c o e f f i c ie n t s  o f  
continuum model based on eng ineering  
theory
d isp lay  s t i f fn e s s  c o e f f i c ie n t s  o f  
equiva lent continuum beam model.

PART 3

•e v a lu a te  k in e t ic  energy o f  
repeating element based on 
co nsis ten t mass approach

•e v a lu a te  k in e t ic  energy o f  
continuum beam based on 
displacement approximation

•e v a lu a te  e f f e c t i v e  mass 
c o e f f ic ie n t s  o f  continuum  
beam model

•d is p la y  mass c o e f f ic ie n t s  
o f  e q u iv a le n t  continuum  
beam model

PART k
• e v a lu a te  s t ra in  components in co o rd in a te  

d ire c t io n s
•expand s t ra in  components in co o rd in a te  

d ire c t io n s  in Tay lor se r ies  about c e n te r  
o f  repeating element 

•express  lo ng itu d in a l s t ra in s  in members 
in terms o f  s t ra in  components in c o o rd in a te  
di rections

•e v a lu a te  co n tr ibu tio n  o f  d i f f e r e n t  members 
to the therm oelastic  s t ra in  energy o f  re p e a t in g  
element

• e v a lu a te  s t i f fn e s s  c o e f f ic ie n ts  o f  f u l l  
continuum theory

PART 2b

FIGURE 2.1 FLOW CHART FOR MACSYMA PROGRAM USED IN THE 
PRESENT ANALYSIS OF LATTICED TOWERS, (15)
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p rev iou s ly  mentioned, the s t i f f n e s s  and the mass c o e f f i c i e n t s  must 

represent the behavior o f  the repeating  element e x a c t ly .  T h e re fo re ,  

the displacement expressions must s im ultaneously  a l lo w  loca l f r e e  

deform ation to  occur and s a t is f y  c o m p a t ib i l i t y  between the  i n t e r ­

connected repeating  elem ents. The t o ta l  s t r a in  energy fo r  the  s tru c tu re  

can then be w r i t t e n  as a summation over a l l  rep eating  elements in the 

l a t t i c e  s t r u c tu re  as fo l lo w s :

U = ER (1 /2  { e ; } *  [ C - ] { e j } )  -jj-  ( 2 .6 )
i=1 1

where NR is  the to ta l  number o f  repeating  elements;

{e} is the s t r a in  v e c to r;

is the m a tr ix  o f  the s t i f f n e s s  c o e f f ic ie n t s  fo r  the  

e q u iva len t  continuum; and 

L is the to t a l  length  o f  the l a t t i c e  s t r u c tu r e .

As NR becomes la rg e ,  the t e r m a p p r o a c h e s  dx, and the  v e c to r  { e . }  

becomes a continuous fu n c t io n  ( e ( x ) } .  T h e re fo re ,  the  summation over 

the t o ta l  number o f  rep ea t in g  elements can then be rep laced by the 

fo l lo w in g  in te g r a l :

U = / L { e ( x ) } t  [(fj { e ( x ) }  dx (2 .7 )

Hence, the s t r a in  energy o f  the  continuum model converges to  th a t  

o f the a c tu a l  l a t t i c e  s tru c tu re  as the number o f  rep ea t in g  elements  

increases.
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CHAPTER I I I  

APPLICATION OF THE CONTINUUM MODEL 

TO PLANAR TRUSSES

3.1 General Remarks

The o b je c t iv e  o f  th is  chapter is  to  demonstrate the a p p l ic a t io n  o f  

the  continuum modeling methodology to  the s t a t i c  and dynamic a n a lys is  o f  

p lan ar t ru sses .

Although the technique presented is  very g e n e ra l ,  s p e c i f ic  emphasis 

is placed on developing a continuum model fo r  the p lan ar  tru ss  i l lu s t r a t e d  

in F igure 3 *1 .  This f ig u re  shows a f iv e -b a y  p lan ar tru ss  w ith  a to ta l  

number o f  tw elve  j o i n t s  and twenty-one members. A ty p ic a l  repeating  

section  (as defined  in the previous chapter) is a ls o  i l l u s t r a t e d  in the

same f ig u r e  along w ith  the sign convention used in the a n a ly s is .  For

s im p l ic i t y ,  the m a te r ia l  and section  p ro p ert ies  a re  assumed to  be constant.

3 .2  Kinematic Hypothesis and Displacement R e la t io n s h ip . -

The f i r s t  step in p ro p er ly  representing  a two dimensional l a t t i c e  as

a one dimensional beam model is  to e s ta b l is h  the k inem atic  hypothesis.

Since the deformed c ro ss -sec t io n  o f  any p lanar tru ss  can be described by 

four displacement parameters (two t ra n s la t io n s  a t  each o f  the top and 

bottom j o i n t s ) ,  the displacements in the plane o f  the cross section  o f  

the e q u iv a le n t  beam model can be assumed as fo l lo w s :

u = u° + y 0 °  (3 .1 )

v = v °  + y e °  (3 .2 )

where u° and v °  a re  th e  displacements a t  x = o and y = o r e s p e c t iv e ly ,

0 °  is the r o ta t io n  o f  the e q u iva len t beam cross s e c t io n ;  arid
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T
h

1

© © ®
PLANAR TRUSS CONSIDERED

A1 = Av = Ad = 11 * 5

X

in 2

I ! = ' v = 1d -  2 10 .0  in

L = 120.0  in

h = A8.0 in

D = 12 9 .2k in

E = 29000000.0 psi

P, = pd = pv = 0 .283 l b / i n 3

REPEATING ELEMENT

MEMBERS CROSS SEC. 
AREA LENGTH MOMENT OF 

INERTIA
MASS
DENSITY

HORIZONTAL A1 L ' l P1

VERTICAL Av h ‘ v Pv

DIAGONAL Ad D ‘ d Pd

FIGURE 3-1 -  PLANAR TRUSS AND ASSOCIATED PROPERTIES
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e °  is the extensional s t r a in  o f  the e q u iv a le n t  beam cross sec t io n  in the 

y d i r e c t io n .

A l l  four parameters u ° ,  v ° ,  0 ° ,  and e °  a re  fu n c t io n s  o f  th e  p o s it io n  

along the c e n te r l in e  o f  the e q u iv a le n t  continuum beam model. Consequently, 

the s t r a in  components can be expressed as fo l lo w s :

(3 .3 )

( 3 .4 )

(3 .5 )

(3 .6 )

( 3 .7 )

Y°  = 0 °  + dv? + y de?
xy dx y dx

= 0°  + 3u° + y 3e °  ( 3 .8 )

where is the  shearing s t r a in  o f  the o rd in a ry  beam th e o ry ;

k° is the cu rva tu re  change in the x d i r e c t io n ;  and

8 is the d e r iv a t iv e  w ith  respect to x .

Osfng the expressions defined  in Equations (3 .1 )  through  

Equation (3 .8 )  w ith  th e  a d d it io n a l  c o n s tra in t  th a t  compatabi 1 i t y  a t  the

in te r fa c e  o f  two rep ea tin g  elements be s a t is f ie d  ( i . e .  e °  must be

id e n t ic a l  a t  the i n t e r fa c e  between any two ad jacent e lem ents , th e re fo r e ,

de° .
must equal to  z e r o ) ,  the s t r a in  expressions o f  the ktn  member o f  the

repeating element can be expressed as:

du
eX dx du

o = Jdu_°=
ex dx

O U

_ d0°_ 30'X dx

e _ _dv
y dy

eo = ^ v °
y ”  dy

e Ck) = e °  + y M  k°  (3 -9 )X ^ A
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e^k) = e °  (3 .1 0 )

■Yxy* = 0°  + ”5 7  = 0°  + 9v°  ( 3 * n )

3 .3  S t ra in  Energy o f  the Continuum Model

As p rev io u s ly  discussed in Chapter I I ,  the second step in the  

eq u iva len t continuum approach is  to  w r i t e  the s t r a in  energy equation  o f  

the p lanar truss  in terms o f  geometric and m a te r ia l  p ro p e r t ie s  o f  the  

actual l a t t i c e  s t ru c tu re .  To perform th is  mathematical procedure, the  

a x ia l  s t ra in s  in each member o f  the  rep eating  element is  determined by 

the fo l lo w in g  expression:

e (k) i t e<k) l . (k) l j k) (3 .1 2 )

where e ^  is the a x ia l  s t r a in  in the k**1 member;

e | k  ̂ a re  the s t r a in  components evaluated  a t  the cen te r  o f  the

k**1 member in the  coo rd ina te  d i r e c t io n ;  and

1 (l<) j (k ) a|_e d i r e c t io n  cosines o f  the kt *1 member, 
i J

Th ere fo re , the s t r a in  energy o f  the rep ea ting  element can be expressed  

as fo l lo w s :

U = 1 -  £  A ^  l 4 k  ̂ ( e * kV  (3 .1 3 )
2 members

/ k) . k  •
where e is the a x ia l  s t r a in  in the  k member;

E is the e l a s t i c  modulus;

A is  the member cross s ec tio n a l a rea ;  and

L is the length  o f  the  kth  member o f  the repeating  elem ent.

The s t r a in  energy o f  the rep eatin g  element is obtained by s u b s t i tu t in g  

the s t r a in  equation given by (3 .1 2 )  in to  equation (3 -1 3 ) .  T h e re fo re ,  

the s t r a in  energy expressions fo r  the in d iv id u a l  members o f  the repeating
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element o f  t h is  p a r t ic u la r  truss as i l l u s t r a t e d  in F igure  3.1 can be 

w r i t te n  as fo l lo w s :

U<!> = y  EAL (e£ + - | -  k ° ) 2

U (2) = - | -E A L  (e °  - - h-  k ° ) 2

U (3) = - J - EAh Ce°)2 (3 .1 4 )

* U (2,) = | E A h  ( e ° ) 2

u (5) = 4 -  EAD Ce° £ ) 2 +  e °  ( £ ) 2 + i t  Y°  ) 2 
2 x T )  y D d2 *y

where D, h, L a re  the d ia g o n a l,  h e ig h t ,  and the length o f  the repea tin g  

element, re s p e c t iv e ly .

Equations 3 .14  a re  q uad ra tic  equations o f  the s t r a in  param eters ,  

which can be expressed in the fo l lo w in g  m a tr ix  form:

•J (3 .1 5 )

where [C-j} is  the m a tr ix  o f  the continuum s t i f f n e s s  c o e f f i c i e n t s ;  and 

{e} is the s t r a in  v e c to r .

However, in o rder to o b ta in  the s t i f f n e s s  c o e f f ic ie n t s  o f  the  

equ iva len t continuum, the s t r a in  energy expression g iven by Equation

(3 .15 )  has to be d i f f e r e n t i a t e d  tw ice  w ith  respect to  the associated

s t ra in s .  In otherw ords, C . j  can be expressed as:

d2UC . . =
'J de.: de.

1 J

(3 .1 6 )

Performing th is  o p era t io n  on Equation (3 -15 )  y ie ld s  th e  set o f  

s t i f fn e s s  c o e f f i c ie n t s  fo r  the e q u iv a le n t  continuum beam model. There­

fo re ,  the a lg e b ra ic  equations r e la t in g  the forces and moments in the
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continuum model to  i t s  corresponding s t ra in s  can be expressed as 

fo l lo w s:

'11 12 13  C14

---
---

---
1

z X
1

Mx

QX

II

1--
---

---
-

z •<
1

C22 C23 C2k

symmetric C
33 3*»

”1
~e° "1X

k°X

Y °xy

e°
y _

(3 .1 7 )

where N is the a x ia l  fo rc e ;  x ’

Mx is  the bending moment;

Q,x is the tran svers e  shearing fo rce ; and

Ny is the fo rc e  associated w ith  the asymmetric shearing s t r a in

o f  the continuum.

The values o f  Cjj a re  l i s t e d  in Table  3 .1 .

In g e n era l,  to  reduce the continuum beam theory to  represent  

o rd in ary  shear deform ation beam theory , the continuum theory is  fu r th e r  

s im p l i f ie d  by e l im in a t in g  a l l  forces th a t account fo r  the local member 

deformation which must occur f r e e ly  in the ac tu a l s t r u c tu re  (1 1 ) .

The s t ra in  energy o f  the  p lanar truss considered can.be w r i t t e n  

in the fo l lo w in g  fu n c t io n a l  form:

u -  u k° • Yxy. «?• - ^ y >  <3 - ’ 8)
dx dx dx dx

«

The underlined terms in th is  fu n c tio n a l re la t io n s h ip  a re  associated  w ith  

local member deform ation o f  the p lanar t ru s s .  The fo rces  associated  

w ith  these s t r a in  components are  e l im inated  by s e t t in g  the  d e r iv a t iv e  o f  

the s t r a in  energy w ith  respect to  these terms equal to  zero  as fo l lo w s :
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Ci j  •

d2U
Z -------------

de; de. 
1 J

C11
EAL (2 + 0 J 3 )  

D

C12 = C21 0

C13 = C31 EAH ( L ) 3 

D3

CH  = C1»1 EA h2 L2 

D3

C22 4 -  EAL h2

C23 = c32 0

C2A = Ck2 0

C33
EA L2 h2 

D3

C34 = C43
EA h3 L3

d3

EAh (1 + ( h ) 3 ) 

D3

TABLE 3.1 -  CONTINUUM STIFFNESS COEFFICIENTS FOR 
PLANAR TRUSS CONSIDERED
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3U 3U 3U

3 (^ fx )  3 ( ^ )  
dx dx

3JJ___

,d2e ° ‘

3U

3 (^ rx y )  3 ( d_ ! y )  3e°
dx dx

» 0 (3 . 19)

de'Th is  w i l l  r e s u l t  in f i v e  equations which express the s t r a in  g ra d ie n ts  __
dx

dk°  ^ x v  d2e°' 9 ~~ 9 j
dx dx dx

— , — , and e °  in terms o f  the o th er  th ree  s t r a in  components

e ° ,  k ° ,  and Y °  . The re s u l t in g  s t r a in  energy expression can be w r i t te nx

as:

2 * 6*1x3 ^C|J^3x3 * 6*3 x 1
(3 . 20)

where { e } *  is the s t r a in  v e c to r  [e° k °  y °  1 ;
a  x  xyj

L is the length  o f  the rep ea t in g  sec tio n ;  

i-Ci j }  3x3 ls the m a tr ix  o f  the  e q u iv a le n t  s t i f f n e s s  c o e f f ic ie n t s  

o f  the continuum model.

Upon completion o f  th is  mathematical operation, as presented in 

Appendix A, the fo rc e  displacement re la t io n s h ip s  can be expressed as 

fo l lo w s :

-
N

X

M
X

1

o
'*

1

'11

C22 0

e°
ex

<

1
-j

 
X 

0
,

33

where is  the ex ten s io na l s t i f f n e s s  c o e f f ic ie n t ;

(3 .2 1 )

Cg2 is  the bending s t i f f n e s s  c o e f f i c i e n t ;

Cjg is  the tran sverse  shearing s t i f f n e s s  c o e f f i c ie n t  o f  the

e q u iv a le n t  continuum beam model o f  the p a r ra t  tru ss  considered.
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Since the o r ig in  o f  the coord inate  axes is chosen a t  the  c e n tro id  

o f  the repeating  e lem ent, th e re  is  no coupling terms between the  

equ iva len t s t i f f n e s s  c o e f f ic ie n t s .  This s p e c i f ic  lo c a t io n  is  found to  

be the most s u i ta b le  and e f f e c t i v e  lo ca tio n  fo r  the o r ig in  in a l l  

r e p e t i t i v e  l a t t i c e  s t r u c tu re s .

The a lg e b ra ic  va lues o f  the eq u iva len t s t i f fn e s s  c o e f f i c i e n t s  fo r  

the p lanar tru ss  considered a re  l is t e d  in Table 3 *2 .

3.*t K in e t ic  Energy o f  the E qu iva len t Continuum Model

In the f r e e  v ib r a t io n  a n a ly s is  o f  the l a t t i c e  s t r u c tu r e ,  i t  is  

necessary to  compute an e q u iv a le n t  mass m atr ix  f o r  the continuum model. 

T h is ,  as p rev io us ly  discussed in Chapter I I ,  is developed from the  

k in e t ic  energy expression.

The k in e t ic  energy o f  the  e q u iva len t  continuum model can be 

expressed in terms o f  the displacement parameters u ° ,  v ° ,  0 °

In mathematical form, the k in e t i c  energy can be expressed as:

T = T (u ° ,  v ° ,  0 ° )  (3 -2 2 )

Since the k in e t ic  energy is a qu adrat ic  fun ctio n  in th e  d is p la c e ­

ments and r o ta t io n a l  components, i t  can be w r i t te n  in the fo l lo w in g  

m a tr ix  form:

T [ m . j ]  {3} (3 .2 3 )

where { 3 } t  is  the v e lo c i t y  v e c to r ;  and

[m jj] is  the m a tr ix  o f  the eq u iva len t mass c o e f f i c ie n t s .

The e q u iva len t  mass c o e f f ic ie n t s  o f  the continuum model a re  obtained  

by d i f f e r e n t i a t i n g  the k in e t i c  energy expression tw ice  w ith  respect to
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PLANAR TRUSS

_!uL
.

>

cu 2 EA

c7„ Y  EAh2
22

C33 EALh2 (1 -  L3 )

D3 L3 + 2D3

TABLE 3 .2  -  ENGINEERING EQUIVALENT STIFFNESS COEFFICIENTS 
FOR PLANAR TRUSS CONSIDERED
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the corresponding v e lo c i t i e s  parameters. This is expressed in mathematical 

form as:

>2

Based upon a c o n s is te n t  mass approach, the k in e t ic  energy expression  

fo r  the repeating element o f  a p lanar truss can be expressed according  

to Noor and Anderson (.11) as fo l lo w s :

T = i . ^ p W A(‘ > l (kl[ | „ 1)2 t „|Uj + {Uj)«

+  ( V , ) 2  +  V .  V j  + (v ) ]  ( 3 .2 5 )

where p is the mass d e n s ity  o f  the member which jo in in g  node numbers 

i and j ;  co is  the n a tu ra l  frequency o f  V ib ra t io n .

In order to o b ta in  the e q u iv a le n t  mass c o e f f i c ie n t s ,  equations (3 .1 )  

and (3 .2 )  a re  s u b s t i tu te d  in the k in e t ic  energy expression ( 3 .2 5 ) .  The 

i n e r t i a  terms associated  w ith  e °  have in s ig n i f ic a n t  e f f e c t  on the lower 

modes o f  f r e e  v ib r a t io n  (11) and a r e ,  th e re fo re ,  n eg lected . From the  

s tru c tu ra l  po int o f  v iew , these lower modes do not s ig n i f i c a n t l y  

c o n tr ib u te  to  the f r e e  v ib r a t io n  ana lys is  o f ty p ic a l  c i v i l  engineering  

stru c tu res  i . e .  towers, b u i ld in g s ,  e tc .

T h e re fo re ,  w ith  some a lg e b ra ic  s im p l i f ic a t io n ,  the k in e t i c  energy 

o f the p lanar tru ss  continuum model considered can be expressed in terms 

o f  the displacement parameters as:

2
T = -£- [m n  (u ° )2 + m22 (v ° )2 + m^j (0 ° )2]  (3.26)

where m ^ is  the ex ten s io n a l mass density  c o e f f ic ie n t  in th e  x d i r e c t io n ;

r i s  the ex tens ion a l mass dens ity  c o e f f ic ie n t  in the y d i r e c t io n ;

m ^  is  the d e n s ity  o f  the mass ro ta to ry  in e r t ia  c o e f f i c ie n t  o f  the
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e q u iv a le n t  beam model; and 

L is  the length  o f  the  rep ea tin g  element o f  the p lan ar tru ss  

considered.

These e q u iv a le n t  mass c o e f f i c ie n t s  o f  the p lan ar  t ru s s  considered  

are  l is t e d  in Table  3 . 3 .  M oreover, the development o f  these c o e f f ic ie n t s  

is  f u l l y  presented in  Appendix A.

3 .5  Work Done by E xterna l Forces

The expression f o r  the work done by e x te rn a l fo rces  (11) co n s is ten t  

w ith  the k inem atic  hypothesis  presented in th is  chapter can be expressed 

as fo l lo w s:

Work = ? [pi Cu° + y '  0 ° )  +  Py (v °  + y '  e ° )  ]  (3 -2 7 )
• i = i

• j

where Px , Py are  the  e x te rn a l  nodal load components in x and y d i r e c t io n s ,
^  L

re s p ec t ive ly ,  a t  the i l  node o f  the l a t t i c e  s t r u c tu r e .

The t o t a l  work done by the e x te rn a l  nodal fo rces  is ob ta ined  by 

summing the c o n tr ib u t io n s  over the e n t i r e  l a t t i c e  s t r u c t u r e .  A comparison 

between the work done by e x te rn a l  fo rces  on a d is c re te  l a t t i c e  s t ru c tu re  

and th a t  on the e q u iv a le n t  continuum model in d ic a te s  very  good agreement 

between the two models ( 1 1 ) .

3 .6  Eva luation  o f  Member Forces from Continuum Model S o lu t io n  o f  P lanar  

Truss

One o f  the problems which the s t ru c tu ra l  designer faces when using  

the continuum modeling approach is the c a lc u la t io n  o f  ac tu a l member 

forces o f  the d is c r e te  s t r u c tu r e  from e q u iva len t  beam r e s u l ts .  Th is  

study presents a s imple r a t io n a l  technique to c a lc u la te  these fo rc e s .
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inn PA (2 +  Jh_ + D)
L L

m22 PA (2 + Jt_+J>)
L L

m33
y p A  h2 (1 + h + D)

6L

TABLE 3 .3  -  EQUIVALENT MASS COEFFICIENTS 
FOR PLANAR TRUSS CONSIDERED

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



30

The procedures to  o b ta in  the member fo rces  from the e q u iv a le n t  

model re s u lts  can be summarized in the fo l lo w in g  steps:

1. From the e q u iv a le n t  continuum model determine the displacement

u, v and 0 o f  the nodes in the equ iva len t continuum th a t  correspond  

to those nodes o f  the member under con s id era t io n .

2. S u b stitu te  these displacements in to  the fo l lo w in g  l in e a r  d is p la c e ­

ment re la t io n s h ip s  f o r  the p lanar truss:

where u?, v?, and 0? a re  the ho r izo n ta l displacements, v e r t ic a l

displacement, and ro ta t io n a l  displacement a t  node i o f  the  

eq u iva len t continuum model; and

Z is the v e r t ic a l  d is tance  from the cen tro id  o f  the repeating  

section  to the node under co n s id era t io n .

3. The change in length  AL{j. o f  member ( i j )  is obtained by:

(3 .2 9 )

(3 -28)

A L .j  = l ( u ;  -  U j )  + m(.V j -  V j ) (3 .3 0 )

where 1 and m a re  the  d i r e c t io n  cosines o f  member ( . i j )  in the x 

and y d ire c t io n s ,  re s p e c t iv e ly .

i*. The s t r a in  in member ( . i j )  is  given by:

(3 .3 1 )

where L . j  is the length o f  member ( i j ) .
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5. The s tress  q . j  o f  member ( i j )  is  expressed in the c la s s ic a l  manner 

as:

(3 .3 2 )

where Ejj is  the  e la s t i c  modulus o f  member ( i j ) .

6. The fo rc e  F . j  is then determined by the fo l lo w in g  expression:

(3 .3 3 )

where A . j  is  the cross section a l area o f  member ( i j ) .

A comparative study between member fo rces  obtained from the continuum 

model so lu t io n  and those obtained from the a n a ly s is  o f  the ac tu a l l a t t i c e  

s tru c tu re  is presented in the fo l lo w in g  s e c t io n .

3 .7  Numerical S tud ies  o f  Planar Truss

The purpose o f  th is  section is to  assess the accuracy o f  the  

e q u iva len t  continuum model approach in p re d ic t in g  s t a t i c  as w ell as f re e  

v ib ra t io n  a n a ly s is  o f  the p lanar trusses considered . A comparison is  

made between th re e  in d iv id u a l  s t a t i c  loadings which can be summarized as 

fo l lo w s :

Figure 3 .2  i l l u s t r a t e s  the a p p l ic a t io n s  o f  these d i f f e r e n t  loads on the  

two end bays o f  the p lanar truss considered. F igure  3 .3  shows how the 

p lanar truss  is  sim ulated in to  an e q u iva len t  beam model along w ith  i t s  

corresponding sign convention. In a d d i t io n ,  F ig ure  3 .3  demonstrates the  

a p p l ic a t io n  o f  the e q u iva len t  s t a t i c  loadings ap p lied  a t  the end node o f

an a x ia l  load;

a transverse shear load; and

a bending moment load.
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FIGURE 3 .2  -  SYSTEMS OF STATIC LOADINGS
CONSIDERED IN THE PRESENT STUDY
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the e q u iva len t  beam c e n te r l in e .  Included in t h is  f ig u r e  is  a ta b le  

summarizing the forces and associated displacements o f  the eq u iva len t  

beam model. Since the  in t e r io r  battens geometric  p ro p e r t ie s  are  assumed 

to be shared eq u a lly  between the two ad jacen t rep ea tin g  e lem ents, the  

v e r t ic a l  batten  member a t  the f r e e  end o f  the p lanar t ru s s  is  considered  

to have o n e -h a l f  o f  the  geometric p ro p e r t ie s  o f  the i n t e r i o r  batten s .

SAP IV (.12), a standard f i n i t e  element computer program, is  used in 

th is  study to  analyze the ac tua l s t r u c tu ra l  and the  e q u iv a le n t  continuum 

beam model. The key step in performing the numerical a n a ly s is  is the 

s im ulation  o f  the e q u iva len t  p ro p e r t ie s  o f  the continuum model f o r  input 

in to  the SAP IV program. In the case o f  the p lanar t ru s s  considered, the 

eq u iva len t p ro p e r t ie s  which accommodate SAP ( IV )  input data  can be 

ex trac ted  from the e q u iva len t  continuum s t i f f n e s s  and mass c o e f f ic ie n ts  

as fo l lo w s :

Equivalent a x ia l  area

Equivalent moment o f  in e r t ia

EQ E

2EA h 2
E

(3 -3 5 )
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Equiva lent shear area

A . -  C33 s h -  —

?ALh^ L9
2 (1+v) — J  (3 .3 6 )

2D'

where G is  the shear modulus; and 

V is poisson's r a t i o .

E quiva lent t r a n s la t io n a l  mass c o e f f ic ie n t  in x - d i r e c t io n

F (EQ)x = m n r  (3 .3 7 )

Equiva lent t r a n s la t io n a l  mass c o e f f i c ie n t  in y -d i r e c t io n

F (EQ)y = m22 I  (3 .3 8 )

Equiva lent ro ta t io n a l  i n e r t i a  in the p lane o f  the cross section  o f  

the eq u iva len t beam model

mEQ = ™33 1  (3 * 39)

Comparison o f  the displacement r e s u l ts  under the  th re e  s t a t ic  loading  

conditions between the  e q u iv a le n t  continuum model and the f i n i t e  element 

s o lu t io n  in d ica tes  a very high degree o f  r e l i a b i l i t y .  S p e c i f i c a l l y ,  the  

nodal displacements fo r  the a x ia l  loading c o n d it io n s  are  in e x c e l le n t  

agreement to  w ith in  .001%. These r e s u l ts  a re  i l l u s t r a t e d  in Table 3-*».

The displacement re s u lts  obtained by the continuum method under a 

transverse  loading ( r e f e r  to  Tab le  3 .5 )  a re  a ls o  in e x c e l le n t  agreement 

w ith  those obtained by the f i n i t e  element method. S p e c i f i c a l l y ,  the end 

nodal displacement agreed to  w i th in  0.30%. The re s u l ts  o f  the t h i r d  load
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NODE NO. uEq <f t -> UACT (FT- )

1 0 .0 0 0 .00

2 0.14993x10"** 0.14993x10”**

3 0.29985x10"** 0.299855x10"**

4 0.44978x10"1* 0.44978x10”**

5 0.59971x10"** 0.59971x10"**

6 0.74964x10"** 0.749635x10"**

EXACT DISPLACEMENT AT FREE END = PL = PL

= 0.74964x10"** FT.

TABLE 3 - 4 -  ACCURACY OF DISPLACEMENTS OBTAINED BY THE 
EQUIVALENT BEAM MODEL FOR PLANAR TRUSS 
CONSIDERED DUE TO UNIT AXIAL LOADJNG.
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NODE NO. v Eq ( f t - ) VACT^FT*^

1 0 .0 0 0 .0 0

2 0.11728x10"2 0 .1 1 772x10”2

3 0 . 38Af»9x10-2 0 .38596x10 "2

k 0.76A15x 10-2 0.76661jx1 0-2

5 0.12188x 10_1 0.12223X10 " 1

6 0.17109x10 " 1 o . u i s ^ x i o -1

EXACT DISPLACEMENT AT FREE END = Pi }  +  rQ^q dx

3EI l GA

= PL3 +   L_

*2 2  C -

5 0 .17108x10_1 FT.

TABLE 3 .5  -  ACCURACY OF DISPLACEMENTS OBTAINED BY THE 
EQUIVALENT BEAM MODEL FOR PLANAR TRUSS 
CONSIDERED DUE TO A UNIT SHEAR LOADING.
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case -  u n it  bending moment e x e m p li f ie s  fu r th e r  the e x c e l le n t  r e l i a b i l i t y  

o f the continuum model. The re s u l ts  o f  th is  an a lys is  shown in Table

3 .6  in d ic a te ,  as in the o th er  lo ad in g s , a very high degree o f  accuracy. 

S p e c i f ic a l ly ,  the re s u l ts  o f  the continuum ana lys is  are  p re c is e ly  the  

same. In a d d i t io n ,  as i l l u s t r a t e d  in Tables 3*4 through 3 .6 ,  a s tru c tu ra l  

analyst can obta in  e x c e l le n t  approxim ate d e f le c t io n  by simple manual 

c a lc u la t io n s  using exact expressions f o r  the d e f le c t io n  o f  c a n t i le v e r  

beam and the e q u iv a le n t  geom etric  and m a te r ia l  p ro p ert ies  obta ined  by 

the continuum'modeling approach. T h is  w i l l  be o f  a con s iderab le  assistance  

to the s t ru c tu ra l  designer in p re l im in a ry  phases o f  the design process.

Although the high accuracy o f  the re s u lts  obtained by the continuum 

model an a lys is  is o f  g rea t  im portance, neverless o f  more s ig n i f ic a n c e  is 

the computational e f f i c ie n c y  o f  the  continuum model approach versus the 

c la s s ic a l  f i n i t e  element method. S p e c i f i c a l l y ,  the computer time (as 

measured by CPU time u n its  on a DEC 10 computer) fo r  the e q u iv a le n t  

continuum a n a ly s is  was 1 .18 seconds; whereas, fo r  the more axact f i n i t e  

element s o lu t io n  the CPU tim e was 1.31 seconds. This represents a 10% 

approximate savings in computer t im e . Another example o f  a ten-bay p lanar  

truss was considered in the p resen t study and i ts  s t a t i c  a n a ly s is  

ind icates  over 20% approximate saving in computer t im e. T h e re fo re ,  i t  

should be noted th a t  computer t im e saving w i l l  increase s i g n i f i c a n t l y  as 

the number o f  repeating  elements increases in the problem considered .

This fa c t  is a ls o  demonstrated by Noor and Anderson (11) throughout t h e i r  

numerical s tu d ie s .  In a d d i t io n  to  t h is  savings in computer t im e , th e re  

w i l l  be an a d d it io n a l  savings in man-hours during the p rep ara t io n  o f  input 

data when using the e q u iv a le n t  continuum modeling technique.
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NODE NO. VEQ <FT> VACT

1 0 .0 0 0 .0 0

2 0.18741x10-** 0 .18740x10“**

3 0.74964x10"** 0.74962x10"**

4 0.16867x10"** 0.16867x10"**

5 0 .29985x10"3 0 .29985x10"3

6 0.46852x10~3 0 .46852x10 "3

EXACT DISPLACEMENT AT FREE END = J1L2 = ML2

2EI 2 ^ 2

= 0 .46852x10~3 FT.

TABLE 3 .6  -  ACCURACY OF DISPLACEMENTS OBTAINED BY THE 
EQUIVALENT BEAM MODEL FOR PLANAR TRUSS 
CONSIDERED DUE TO UNIT BENDING MOMENT LOADING.
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The re s u l ts  fo r  the f r e e  v ib r a t io n  a n a ly s is  o f  the p lanar truss, 

using the continuum model compared to  the a n a ly s is  using the f i n i t e  

element technique are  i l l u s t r a t e d  in Tab le  3 - 7 .  This ta b le  s p e c i f i c a l l y  

compares the n a tu ra l  frequencies  using the two methods f o r  the f i r s t  f i v e  

modes o f  v ib r a t io n s .  The d i f fe r e n c e  in n a tu ra l  frequencies  between the  

two methods f o r  the f i r s t  two modes is less than 0.5%,  whereas, th is  

d if fe r e n c e  increases to  1.4% f o r  the t h i r d  mode and to  4.85% fo r  the f i f t h  

mode. I t  would appear from these re s u l ts  th a t  the continuum modeling 

approach poorly  represents the  energ ies  in the higher modes. However, in 

the a n a ly s is  o f  f r e e  v ib r a t io n  response f o r  n e a r ly  a l l  c i v i l  engineering  

s t ru c tu ra l  problems, specia l a t t e n t io n  is  g iven p r im ar ly  to  the f i r s t  

fundamental mode o f  v ib r a t io n .  Thereby, the continuum modeling approach 

is a very r e l i a b l e  method o f  a n a ly s is  f o r  the f r e e  v ib r a t io n  response 

o f  r e p e t i t i v e  s tru c tu re s .

F igure  i l l u s t r a t e s  the f i r s t  th re e  bending mode shapes as 

obta ined  from the continuum model a n a ly s is .  This f ig u r e  shows the f i r s t  

th ree  mode shapes o f  the e q u iv a le n t  continuum model which in general  

represents the f i r s t  th ree  mode shapes o f  a c a n t i le v e r  beam. In a d d i t io n ,  

dep icted  in F igure  3 .5  is a comparison o f  n a tu ra l  frequencies  r a t io s  o f  

the f i r s t  th ree  extensional modes along w ith  the f i r s t  th re e  bending 

modes. As p rev io u s ly  mentioned, the e r r o r  increases going from the  

fundamental mode to the higher modes.

As w ith  the s t a t i c  a n a ly s is ,  th e re  is  cons id erab le  computational 

e f f ic ie n c y  in using the continuum modeling approach versus the c la s s ic a l  

f i n i t e  element technique. S p e c i f i c a l l y ,  the computer time fo r  the  

continuum s o lu t io n  was 1.48 seconds; whereas, f o r  the f i n i t e  element 

s o lu t io n  i t  was 1 .78  seconds. This  savings w i l l  increase as the s iz e  o f
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MODE NO. ttE(i RAD/SEC wAct  RAD/SEC

1 32.28 32.34 0 .1 8

2 144.70 145.30 0.41

3 297 .40 301.60 1.39

A 393 .60 406.90 4 .4 0

5 417 .50 438.80 4 .8 5

CPU (SEC) 1 .48  1.78

TABLE 3 .7  -  NATURAL FREQUENCIES AND COMPUTER TIME COMPARISON 
BETWEEN FINITE ELEMENT AND EQUIVALENT BEAM MODEL 
OF PLANAR TRUSS CONSIDERED
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coi = 32 . 3^ rad /sec

FIRST MODE. SHAPE

^2 = 145-30 rad /sec  

SECOND MODE SHAPE

---------

co, = 301 .60  rad /sec

THIRD MODE SHAPE

FIGURE 3 .4  -  FREE VIBRATION MODE SHAPES FOR FIVE BAY 
CANT I LEVERED PLANAR TRUSS
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FIGURE 3 - 5 -  BAR GRAPH DISPLAYING COMPARATIVE ACCURACY OF 
LOW FREQUENCIES OBTAINED BY THE EQUIVALENT 
BEAM MODEL FOR THE PLANAR TRUSS
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the problem increases as was in d ica ted  from the a n a ly s is  o f  the ten-bay  

planar truss considered h e re in ,  and a lso  as the stud ies  conducted by 

Noor and Anderson (11) have concluded.

To i l l u s t r a t e  the  accuracy o f  the continuum model re s u l ts  in 

c a lc u la t in g  actua l member fo rces  o f  the s t r u c tu re ,  d i f f e r e n t  members 

o f  the p lanar truss  i l l u s t r a t e d  in F igure  3-1 a re  ana lyzed . Following  

the procedures o u t l in e d  in Section 3 - 6 ,  the fo rc e  in the upper chord mem­

ber 13 connecting j o i n t s  (2 ) and (3) due to the a p p l ic a t io n  o f  1 .0  k ip  

a x ia l  load is  c a lc u la te d  as fo l lo w s :

u2 = 0.14993 x 10_if f t .  , u3 = 0 .29985 x ^Q~ti f t .

AL = (U2 -  U3 )cos o = 0.14992 x 10"2* f t .

e = —  = 0.14992 x 10"5
L

a  = e E = 0.14992 x 10“ 5 X 4176000

6.2507 ksf

F = Ad = 0 .4999 kips

Actual fo rc e  in member 13 from f i n i t e  element re s u lts  is  0 .5  k ip s .  

This re s u lt  shows 0 .02?  d i f f e r e n c e  between the two s o lu t io n s .-  The fo rce  

in the v e r t ic a l  member connecting jo i n t s  (5) and (6) due to  u n i t  moment 

at the f re e  and can be ob ta in ed  in a s im i la r  fash ion  as:

v3 = 0.74964 x 10-2* f t  ; 03 = 0 .7496  x 10~5 rad.

v 6 = v3 + 1  H

= .74964 x 1 0 '4 + 2 ( .7 4 9 6  x 10"5)

= .89956 x lO’ *. f t .
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S im i la r ly :

v 5 = .7496 x 1 < f*  -  2C.7496 x 10"5 )

= 0 .60026  x 10“4 f t .

AL = (vg -  v5 )cos 90 

= 0

* T h e re fo re ,  e = a =  F = 0

In otherwords, t h is  p a r t i c u la r  member is a ze ro  member under t h is  

co n d it io n  o f  loading as the  ac tu a l f i n i t e  element re s u l ts  e x a c t ly  

in d ic a te d .

In summary, the re s u l ts  o f  s t a t i c  and f r e e  v ib r a t io n  analyses o f  the  

truss  considered have i l l u s t r a t e d  the high accuracy o f  the e q u iva len t  

continuum approach. Th is  approach is a very  a t t r a c t i v e  technique fo r  

s tru c tu ra l  engineers in o b ta in in g  accurate  responses f o r  l a t t i c e  type  

s tru c tu re s  a t  a s ig n i f i c a n t  saving in computational cost and man hours.
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CHAPTER IV  

APPLICATIONS TO TOWERS WITH TRIANGULAR 

CROSS SECTIONS

4.1 General Remarks

The purpose o f  th is  chapter is  to  present the a p p l ic a t io n  o f  the  

continuum model approach to  towers w ith  constant t r ia n g u la r  cross  

sections aswel 1 as towers w i th  v a r ia b le  t r ia n g u la r  cross sec t io n s .

Chui and Taoka (17) conducted th e o r e t ic a l  and experimental s tud ies  

fo r  an actual th re e  legged tower using d i r e c t  methods fo r  the s t a t i c

a n a lys is  and modal su p erp o s it io n  f o r  a forced response dynamic a n a ly s is .

The o b je c t iv e  o f  t h e i r  study was to  f in d  out th e  c r i t i c a l  modes o f  

v ib ra t io n  fo r  the f r e e  standing t r ia n g u la r  tower. The assumptions 

used in th e i r  a n a ly s is  can be summarized as fo l lo w s :

1. The tower is  a l in e a r  e l a s t i c  space tru s s ;

2 . Motion in any two orthogonal h o r iz o n ta l  d ire c t io n s

are uncoupled;

3. Masses a re  concentrated  a t  nodal p o in ts ;

4. Loads are  a p p lie d  o n ly  a t  panel p o in ts ;

5. V e r t ic a l  motions and secondary stresses are  

n e g l ig ib le ;  and

6. Tower base is assumed to  be r i g i d .

The conclusion o f  t h e i r  s tud ies  was th a t  the fundamental mode o f  

v ib ra t io n  predominates o th e r  modes o f  v ib r a t io n  in case o f  f r e e  stand­

ing t r ia n g u la r  towers. In a d d i t io n ,  t h e i r  a n a ly s is  ind icated  th a t  the  

f re e  standing t r ia n g u la r  tower has f a i r l y  low damping r a t io  fo r  the  

fundamental mode o f  v ib r a t io n .  Based on these f in d in g s ,  s t ru c tu ra l
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damping has been neglected and the f i r s t  th ree  modes o f  f re e  v ib ra t io n  

have been considered in the present s tudy.

As prev io us ly  mentioned, th is  chapter is  d e a l in g  w ith  f r e e  standing  

t r ia n g u la r  towers as i l l u s t r a t e d  in F igure  4 .1  and F igure 4 .2 ,  but w ith  

a completely d i f f e r e n t  approach from Chui and Taoka. As was discussed  

in Chapter I I ,  t h is  approach is based on eq u iva len c in g  the s t r a in  and 

the k in e t ic  energies o f  the ac tua l r e p e t i t i v e  s t r u c tu re  to  those o f  the  

eq u iva len t continuum model. S t a t ic  ahd f r e e  v ib r a t io n  analyses o f  f re e  

standing t r ia n g u la r  towers w ith  constant and v a r ia b le  cross sections  

are presented in th is  chapter along w ith  re s u lts  ob ta in ed  in d ic a t in g  the  

e ffe c t iv e n e s s  and the accuracy o f  the continuum s o lu t io n .  The f i n i t e  

element technique was su ccess fu lly  employed to make a comparison 

between the actual tower and the e q u iv a le n t  continuum model fo r  both 

s t a t i c  and f re e  v ib r a t io n  responses.

4 .2  C h a ra c te r is t ic s  o f  Free Standing Towers w ith  T r ia n g u la r  Cross

Sections

The co n fig u ra t io n s  o f  f re e  standing towers f o r  which the eq u iva len t  

continuum p ro p ert ies  are  developed are  shown in F ig u re  4 .1  and Figure  

4 .2 .  Nomenclature s im i la r  to  those o f  p lan ar  tru s s  is  used to  describe  

the th ree  dimensional towers considered in the p resent s tudy. The 

s in g le  bay double laced repeating  section  as dep ic ted  in F igu re  4 .3  and 

Figure 4 .4  are  the most commonly used fo r  tower s t ru c tu re s  such as 

transmission and communication towers. T h is  type o f  c o n f ig u ra t io n  is 

charac ter ized  by having no jo in t s  a t  m idpoints o f  th e  core members 

which u l t im a te ly  re s u lts  in reducing the degree o f  com plexity  o f  the  

a n a ly s is .  Other cases where in term ediate  nodes a re  present in the core 

members, t h e i r a n a ly s is  ind ica ted  th a t  these kinds o f  t russes  cannot be
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FIGURE 4 .1  -  FIVE BAYS TOWER WITH CONSTANT 
TRIANGULAR CROSS SECTION
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FIGURE k . Z ~  FIVE-BAY DOUBLE LACED TOWER WITH VARIABLE 

TRIANGULAR CROSS SECTIONS
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B

t i l 1

— L

b —  B ~ “H

L

Number o f  R epeating Element (NR) 
E »  29000000 .0  psi • _
Pj = Pb *  Pd = ° ' 283 1 b / in ^

L on g itu d in a ls  a re  Ls 5x5x5 /16  
A, -  3 .0 3  in 2 
L = 7 2 .0  in .

Battens and Diagonal Members are
L 3 x 3 x lA

Ab = Ad = 1 . M  in 2 
B = 162 .96  in .

= 5

MEMBERS
CROSS SEC. 

AREA
MOMENT OF 

INERTIA
MASS
DENSITY

MEMBER
LENGTH

DESIGNATION

LONGITUDINAL A l p l L

BATTEN Ab 'b P b B

DIAGONAL Ad 'd P d D

FIGURE i».3 r  REPEATING ELEMENT OF DOUBLE LACED TRIANGULAR TOWER WITH 
CONSTANT CROSS SECTION AND ASSOCIATED MEMBER PROPERTIES.
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1- B
1

L

Number o f  Repeating Element (NR) 
E = 29000000.0 psi 
p 1= p fa = p d = 0 .283  1 b / in 3

Lo ng itud ina ls  a re  Ls 5x5x5/16  
A .=  3 .0 3  in2 
L = 72 .0  in .

Battens and Diagonal Members are
L 3 x 3 x lA

A. = A .  = 1.44 in 2 
B = 162.96 in .

= 5

MEMBERS
CROSS SEC. 

AREA
MOMENT OF 

INERTIA
MASS
DENSITY

MEMBER
LENGTH DESIGNATION

LONGITUDINAL A l p l L

BATTEN Ab 'b pb B -----------------

DIAGONAL Ad 'd p d D -----------------

FIGURE k A  -  REPEATING ELEMENT OF DOUBLE LACED TRIANGULAR TOWER WITH 
VARIABLE CROSS SECTION AND ASSOCIATED MEMBER PROPERTIES.
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analyzed as a c la s s ic a l  space truss  w ith  pin j o i n t s  due to i n s t a b i l i t y  

problems. This w i l l  occur because bending s t i f fn e s s  o f  the a x ia l  core  

members is required to  m a in ta in  the o v e r a l l  s t a b i l i t y  o f  the repeating  

element assembly. In a d d i t io n ,  a d e s i r a b le  fe a tu re  o f  the s in g le  bay 

double laced c o n f ig u ra t io n  is  th a t  i t  e x h ib i t s  no p e c u l ia r  coupling  

between the d i f f e r e n t  modes o f  deform ation such as bending and shear 

coupling . Furthermore, the double la c in g  in the core adds redundancy 

to  the s t ru c tu re ,  thus f a i l u r e  o f  a s in g le  member w i l l  not cause 

f a i l u r e  o f  the o v e ra l l  s t r u c tu r e  due to  r e d is t r ib u t io n  o f  loading among 

the o ther members o f  the l a t t i c e .  Th is  makes the double laced c o n f ig u ra ­

t io n  a very a t t r a c t i v e  s t ru c tu r a l  c o n f ig u ra t io n  and as such i t  is 

h ig h ly  recommended f o r  f r e e  standing towers from the p r a c t ic a l  eng ineering  

design perspective .

The continuum model approach reduces the th ree  dimensional repeating  

element in to  a one dimensional e q u iv a le n t  beam element in which the 

displacement v a r ia t io n  is  assumed to  be l i n e a r  in the lo n g itu d in a l  

d ire c t io n  o f  the repeating  element.

In the present study, the  continuum model approach has been ap p lied  

to towers w ith  sloping legs ( thus , a v a r ia b le  t r ia n g u la r  cross 

section );  Special co ns id era t io n s  a re  made to  count f o r  the e f f e c t  o f  

the sloping legs o f  the f r e e  standing t r i a n g u la r  tower on i t s  o v e ra l l  

behavior. The displacement v a r ia t io n  is considered to  be l in e a r  in the  

plane o f  the cross section  as w ell  as along the members o f  the repeating  

element o f  the double laced t r i a n g u la r  tow er. T h e re fo re ,  the s t i f fn e s s  

and mass c o e f f ic ie n ts  o f  the e q u iv a le n t  continuum a re  obtained as 

functions o f  the geometric and m a te r ia l  p ro p e r t ie s  as w e ll as the  

slop ing  angle o f  the tower legs . Subsequently , as a r e s u l t  o f  in troducing
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the l in e a r  slope o f  the tower le g s ,  bending-shear coupling terms appear 

in the eq u iva len t s t i f f n e s s  c o e f f i c i e n t s .  However, numerical s tu d ies  

conducted herein  have in d ica ted  th a t  these coupling terms do not have 

s ig n i f ic a n t  e f f e c t  on th e  o v e ra l l  response o f  the tower and w i l l  not 

a f f e c t  the f in a l  design o f  in d iv id u a l  tower members. This r e s u l t  is  

important because c la s s ic a l  f i n i t e  element programs such as SAP IV do 

not provide en try  fo r  these coupling terms in the standard beam bending 

element.

4 .3  Kinematic Assumptions and Displacement R e la tion sh ips

The s e le c t io n  o f  necessary displacement functions  fo r  a f re e  

standing tower w ith  t r ia n g u la r  cross sec tio n s  begins w ith  a co n s id e ra t io n  

o f  the displacements in  the plane o f  th e  cross s ec t io n . T h e re fo re ,  

since each o f the displacement components has a l in e a r  v a r ia t io n  along  

the pin-connected members o f  the rep ea tin g  elem ent, the th re e  components 

o f  the double laced t r i a n g u la r  tower a re  assumed to have a l in e a r  

v a r ia t io n  in the p lane o f  the cross s e c t io n .  Based on th is  assumption, 

the displacement v a r ia t io n  in the plane o f  the cross section  can be 

expressed as given by Noor and Anderson (11 ) as fo l lo w s :

u (x ,  y ,  z) = u° — y02 + z0y (4 .1 )

v (x , y ,  z )  = v °  + ye °  + z (eyz -  0X) (4 .2 )

w (x ,  y ,  z )  = w° + y (eyz + 0X) + z e °  (4 .3 )

where u ° ,  v ° ,  w° a re  the displacement components a t  the c e n tro id  o f

the repeating  sec t io n  i . e .  a t  y = z = 0;

$v> K ,  ar,d 0 ,  a re  the r o ta t io n a l  components; a y z

ey and e °  a re  the  extens iona l components; and
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eyz ' s t *ie  s^e a r ' n9 s t r a in  in the plane o f  the tower cross  

s e c t io n .

The sign convention fo r  the displacement and r o ta t io n  component 

along w ith  forces and associated  displacements o f  the continuum model 

are depicted in F igure  4 . 5 .  T h e re fo re ,  the n ine  parameters u ° ,  v ° ,  w°,  

0X , 0yi 02 , e ° ,  e ° ,  and e ° z a re  fun ctions  o f  the displacement along the

c e n te r l in e  o f  the repeating  e lem ent. For towers w ith  t r i a n g u la r  cross  

sections, the deformed p o s it io n  o f  any cross section is  com plete ly  

sp ec if ied  by the th re e  displacem ent components o f  each node o f  the  

t r ia n g u la r  cross s e c t io n .  In a d d i t io n ,  each o f  the displacement  

components has a l in e a r  v a r i a t io n  in the y and z plane o f  the cross  

section . Since th e re  a re  a t o t a l  o f  n ine f re e  parameters in the d is p la c e ­

ment expressions, th is  w i l l  p ro v ide  an actua l rep resen ta t io n  o f  the d is ­

placement f i e l d  fo r  the t r i a n g u la r  towers depicted in F igure  4.1 and F ig u re  4 .

As a consequence o f  the k inem atic  assumptions, the s t r a in  components 

also  have a l in e a r  v a r ia t io n  in the  plane o f  the cross s e c t io n .  They 

can be expressed as the fo l lo w in g  fun ction s  o f  x  as in d ica ted  in (1 1 ) :

g
(Note a l l  p a r t i a l s  a re  w ith  respect to  x, i . e .  9 =~r~ )

3u
6xx "  gx

9 u °  -  y 902 + z 30y

Therefore;

exx (4 .4 )

S im i la r ly ;

9v
eVy 9y

(4 .5 )
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Z,w

X,u°

FORCE ASSOCIATED DISPLACEMENT

N U°

«Y
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M f ty y

Mz f t

T f t

FIGURE A .5 -  CONTINUUM BEAM MODEL SIGN CONVENTION
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ezz = -  e:  (^ *6 )
= J w = e °

3z z

= J iL + i £
3y 3x

o>mll +
N

i

$  + z K z

Therefore;

2ex y  ’  2 e x y  ( f  8 <2e? 2 ) -  k?> « - 7 )

S im i la r ly ;

_ 3u , 3w
xz 3z dx

= 0y +  9w° + y (8 0 x + Se°2 ) + z 3e°

Therefore;

2 e x z  =  2 e ° z  +  z 3 e z +  y ( i - 3 ( 2 e ° z ) +  k ° )  ( 4 . 8 )

S im i la r ly ;

_ 3w . 9v
Vz 3y 3z

-  2 e ° z  ( 4 . 9 )

where e°  is the ex ten s io na l s t r a in  o f  the c e n te r l in e  o f  the  

repeatin g  element;  

k ° ,  k °  a re  th e  cu rva tu re  changes in the y and z d i r e c t io n s ;

k° is the  t w is t  due to  to rs io n  about x a x is ;

2e?_ and 2e° a re  the transverse shear s t ra in s  in the  p lane  
12 13

o f  th e  cross section  o f  the e q u iv a le n t  continuum 

model.

The nine s t r a in  measures ( e ° ,  e ° ,  e ° ,  2e°  , 2e°  , 2e °  , k ° ,  k °  and
x y z xy xz yz» t  2

k°)  a re  functions o f  x o n ly .  T here fo re , the a x ia l  s t r a in  in each membier
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o f  the repeating element is  expressed in terms of the  s t r a in  components 

in the coord inate  d ire c t io n s  as:

,(k )  _  3 3 (k ) ( k) (k )
e . .  1; 1;

1=1 J=1 IJ 1 J

, thHence, the a x ia l  s t r a in  in the k tn  member o f  the re p e a t in g  element 

can be expressed in m a tr ix  form as fo l lo w s :

e e e ‘  1 “xx xy xz

e (k> =• [1  n n ] eyx eyy eyz m

ezx ezy ezz n

(4 .1 1 )

where e ^ )  ] s the  a x ia l  s t r a in  in the k**1 member o f  the re p e a t in g  

element;

e . ^  a re  the s t r a in  components o f  the k*^ member in the  
•J

coo rd in a te  d i r e c t io n s  eva luated  a t  the c en tro id  o f  th a t  

member;

(k) (k) (k )  th1 ' , m , and n a re  the  d i r e c t io n  cosines o f  the  k member.

In o rd er to represent the s t r a in  expressions o f  the d is c r e t e  

system in the continuum model, the s t r a in  components in the c o o rd in a te  

d ire c t io n s  are  expanded in  a T a y lo r  s e r ie s  about the c e n tro id  o f  the  

repeating element. This T a y lo r  s e r ie s  expansion about th a t  p o in t  can be 

expressed as:

«?
(k)e - e °  + y (k) k °
XX x ’  y 

+ z ^  3k°  )

e ( k> « e °  + x (k) 3e?
yy ^ y v

e (k) *
zz e °  + x W  3e°

(4 .1 3 )

(4 .1 4 )

(4 .1 5 )
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(A.16)

x W  (a ( 2 e °z ) + y M  (a k ° .+  %2& °z ) + a2e °  

2 e ^ } e 2e°z + x<k ) 3 (2 e °z )

(A.17)

(A.18)

where x^k \  y ^ ,  and z ^  are  the coordinates o f  the c e n te r  o f  the  

ktfl member o f  the repeating  elem ent.

To s a t i s f y  c o m p a t ib i l i t y  between repeating  elements o f  the continuum 

model, the  s t r a in  components in the plane o f  the  cross sections  o f  any 

two a d ja c e n t  elements (eyy , ez z , and 2eyZ) must be id e n t ic a l  a t  t h e i r  

in t e r f a c e .  This is  s a t i s f i e d  when the un derl in ed  d e r iv a t iv e s  in 

Equations (A.13) through Equation (A.18) a re  se t  equal to  ze ro . In 

o th e rw o rd s , . th is  can be expressed in mathematical form as«

For l a t t i c e  s tru c tu re s  w ith  s in g le  bay double laced rep ea tin g  element 

such a.s the towers shown in F igure A.1 and F igu re  A.2, th e re  are  twelve  

independent modes o f  deform ation th a t  correspond to  the  ze ro th -o rd e r  

terms in T a y lo r  s e r ie s  expansion. On the o th e r  hand, th e re  are  th ree  

c o m p a t ib i l i t y  con d it ion s  as g iven by Equation (A .19). T h e re fo re ,  the  

t o t a l  number o f  s t r a in  components used in th is  T a y lo r  s e r ie s  expansions 

given by Equations (A .13) through (A.18) reduces to  n ine  components.

This is  e q u iv a le n t  to  assuming a uniform s ta te  o f  s t r a in  e ° ,  k ° ,  k ° ,  2 e °z ,
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k ° ,  e ° ,  e ° ,  2e°z , 2e£y w i th in  each repeating  element.

4 .4  S tra in  Energy and S t i f f n e s s  C o e f f ic ie n ts  o f  Equivalent Continuum

Model

Following the development procedures o u t l in e d  in Chapter i l ,  and 

as prev ious ly  discussed in Chapter I I I ,  the s t r a in  energy o f  the rep ea t­

ing element can be expressed as fo l lo w s :

U = i -  1 ( e ^ ) 2 (4 .20 )
2 members

where e ^  j s the a x ia l  s t r a in  o f  the  k t 1̂ member o f  the repeating  

element;

E ^  i s the modulus o f  e l a s t i c i t y  o f  the k ^  member o f  the  

repeating e lem ent;

A ^  is the cross se c t io n a l  area  o f  the k**1 member o f  the 

repeating e lem ent; and

is the length  o f  th e  kt 1̂ member o f  the repeating  element.

(k)When e in Equation (4 .2 0 )  is  replaced by th e  d i f f e r e n t  s t r a in  

components as given by Equation (4 .1 0 )  and Equations (4 .1 3 )  through 

( 4 .1 8 ) ,  then the s t r a in  energy o f  the  repeating  element can be w r i t te n  

as a function  o f  the s t r a in  g ra d ie n ts  as w e ll as the s t r a in  components 

o f  the equ iva len t continuum beam model. The s t r a in  g rad ien ts  must be 

included to  obtai:n c o rre c t  s t i f fn e s s e s  f o r  more complicated co n fig u ra t io n s  

as in d icated  by Noor and Anderson (1 1 ) .

As p rev ious ly  mentioned in Chapter I I I ,  loca l deformation should 

be allowed to occur f r e e ly ;  t h e r e fo r e ,  the fo rces  associated w ith  these  

local deformations must be set equal to z e ro .  This can be accomplished 

by s e t t in g  the s t r a in  energy d e r iv a t iv e s  w ith  respect to  the s t ra in  

grad ien ts  equal to  ze ro .  In mathematical form, th is  can be expressed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



60

as fo l lo w s:

3U 3U 3U 3U 3U

3 (3 e ° )  3 (3ky) 8 0 k ° )  “ 3 (3 (2 e J y ) )  ~ 3 ( 3 ( 2 e ° z ) )

3U 3U 3U 3U
= 0 (4 .2 1 )

3 (3 k ° )  3 (3 2e ° )  3 (3 2e ° )  3 (3 2 (2 e °z ) )

To reduce the continuum theory as c lose  to  an eng ineering  theory ,  

the forces associated w ith  the s t r a in  components in the p lane o f  the 

t r ia n g u la r  cross section  a re  se t  equal to  z e ro .  That is ,

3U 3U au

3 ( 2 e ° 2 ) '  ! * °  = 0 (<l-22)

Equations (4 .2 1 )  and (4 .2 2 )  a re  used to express the s t r a in  g rad ien ts

and the s t r a in  components ey , e ° ,  2eyz in terms o f  o th e r  s t r a in

components; thereby, reducing the  s t r a in  energy to a q u a d ra t ic  function

in the s t r a in  components e?, k ° ,  k ° ,  2e°  , 2e° , and k?. The re s u lt in ga y xv ^

expression o f  the s t r a in  energy can be w r i t t e d  as:

U = y L  { e } 1 [ C ]  { e} (4 .2 3 )

where { e } 1 = [ e °  k° k °  2e°y 2e°z k j  ]

'L is  the length  o f  the repeating  elem ent; and

[c] is  the s ix  by s ix  m atr ix  o f  the e q u iv a le n t  s t i f f n e s s  

c o e f f ic ie n t s .

The elements o f  the  e q u iv a le n t  s t i f f n e s s  c o e f f i c ie n t s  were obtained  

a n a ly t i c a l l y  by using MACSYMA symbolic m an ipu la tion  programing 

c a p a b i l i t ie s  (14) as discussed in Chapter I I .  The program used is  

l is te d  in Appendix C. The eq u iva len t s t i f f n e s s  c o e f f i c ie n t s  l i s t e d  in 

Table 4.1 are  functions  o f  the geometric and m a te r ia l  p ro p e r t ie s  o f  the
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C11 _3_ (E-j A, X + 2 ± 3 Ed V
X D3

C22 = c33 i ?  (E1 Ai X + i i  Ed Ad>
2X 2D3

CA4 = C55 3 B2L Ed Ad 

D3

C66 A  Ed Ad
*»D3

2b3 a h
X .  1 -  _ ! _ !

1)3 Eb Ab

TABLE l j . 1 -  EQUIVALENT STIFFNESS COEFFICIENTS FOR THE
TRIANGULAR TOWER WITH CONSTANT CROSS SECTIONS, (11 ),
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repeating element. In t h is  t a b le ,  the c o e f f ic ie n t  re fe r s  to  the

extensional s t i f f n e s s  o f  th e  e q u iv a le n t  continuum model: C and C are
22 33

the bending s t i f f n e s s  c o e f f i c i e n t s  about the  y and z axes, re s p e c t iv e ly ;  

C/jjj and C|j,j a re  the tra n s v e rs e  shear s t i f fn e s s e s  in the p lane o f  the cross  

section ; and Cgg is  the  to rs io n a l  s t i f f n e s s  o f  the e q u iv a le n t  continuum 

model about the x a x is .  In the  case o f  s in g le  bay double laced towers 

w ith  a constant t r i a n g u la r  cross s e c t io n ,  th e re  are  no moment-shear 

coupling terms between the e q u iv a le n t  s t i f f n e s s  c o e f f i c ie n t s .  This  is  

due to the f a c t  th a t  the  T a y lo r  s e r ie s  expansions were taken about the  

cen tro id  o f  the rep ea t in g  s e c t io n .  However, in  the case o f  towers w ith  

v a r ia b le  t r ia n g u la r  cross s e c t io n s ,  the e q u iv a le n t  s t i f f n e s s  c o e f f ic ie n t s  

are  functions o f  the geom etric  and m a te r ia l  p ro p e r t ie s  o f  the repeating  

element as w ell as the angle, @, o f  the s lop ing  legs o f  the tower. The 

c o e f f ic ie n ts  fo r  a s lo p in g  tower a re  l i s t e d  in Table 4 .2 .  Besides the  

s ix  common s t i f fn e s s e s  which a re  analogous to  those o f  the o rd in a ry  

beam shear deform ation th e o ry ,  th e re  are two a d d it io n a l  bending-shear  

coupling terms which appear because o f  the l in e a r  slope o f  the tower legs  

and the T ay lo r  s e r ie s  expansion being performed about the  m id -he igh t  

po in t o f  the rep ea tin g  s e c t io n .

A c la s s ic a l  beam th eo ry  is  obta ined  from the shear deform ation beam

theory by s e t t in g  th e  t ra n s v e rs e  shear s t r a in s  equal to  z e ro .  That is ,

2 e °y = 3 v °  -  0Z = 0 (4 .2 4 )

2 e °z = 8w° + 0y = 0 (4 .2 5 )

This approximation w i l l  r e s u l t  in an e q u iv a le n t  beam which does not 

account f o r  in -p la n e  shearing s t r a in s ,  thus w i l l  y ie ld  more s im p l i f ie d  

s t i f fn e s s  c o e f f ic ie n t s  which w i l l  f i t  in to  c la s s ic a l  f i n i t e  element 

programs.
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EQUIVALENT STIFFNESS COEFFICIENTS FOR THE TRIANGULAR 
TOWER WITH VARIABLE CROSS SECTION

'11

'22

C33 = C22

' k2

27 (2 A t  Ad Ej Ed L4 C o s 3  3 t a n 4  3 +  2Afa Ad Eb Ed B L3 

-  AAj Ad Ej Ed B2 L2 Cos3 6 tan 2 3 .  +  2A1 Arf E1 Ed B4 Cos3 3

+ A1 Ab E, Eb BD3 Cos3 3 ) /  (2 Ad Erf L4 ta n 4 3 +  12 Ad Ed 

B2 L2 tan 2 3 + 1 6  Aj Ej LD3 tan4 B + 18 Ad Ed B

+ 9 Ab Eb D3 )

3 (2 aJ eJ L9 tan 6 3 -  ** A§ E§ B2 L7 ta n 2* 3 + 1 6

Aj Ad E1 Ed D3 L6 Co s 3 3 t a n 6 3 + 2. A j eJ B4 l 5  t a n 2 3

+ 9 Ab Ad Eb Ed B L5 d3 tan23 -  20 A, Ad E, Ed B2 D3 L4

Cos3 3 ta n 4 3 + 3 Afa Ad Eb Ed B3 L3 D3 -  8 A, Ad Ej Ed

B4 L2 D3 Cos3 3 tan 2 3 + 12 A1 Ad Ej Ed B6 D3 Cos3 3

+ 6 Aj Afa E1 Efa B3 D6 Cos3 ) /  {A D3 (2 Ad Ed L4 tan4 3 

+ 12 Ad Ed B2 L2 tan 2 3 + 16 A1 Ej LD3 Cos3 3 tan4 3

+ 18 Ad Ed B4 + 9 Ab Eb B D3) }

9 B tan (A2 Ed L7 tan 4 3 -  2 Ad Ed B2 L5 ta n 2 3

+ 2 Aj Ad Ej Ed L4 D3 Cos3 3 tan4 3 + A^ EJj B4 L3

+ 2 Ab Ad Eb Ed B L3 D3 -  4 At Ad Ej Ed B2 L2 D3 Cos3 3

tan 2 3 + 2 Aj Ad E1 Ed B4 D3 Cos3 3 + Aj Ab Ej Eb B D6

Cos3 3 ) /  {D3 (2 Ad Ed L4 tan4 3 + 12 Ad Ed B2 L2 tan2 3 

+ 16 Aj Ej LD3 Cos|tan43+ l 8 Ad Ed B4 + 9 Ab Eb BD3)
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TABLE 4 .2  -  EQUIVALENT STIFFNESS COEFFICIENTS FOR THE TRIANGULAR 
TOWER WITH VARIABLE CROSS SECTION
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4 .5  K in e tic  Energy and Mass C o e f f ic ie n ts  o f  Equivalent Continuum Model 

As prev ious ly  discussed in Chapter I I I ,  in f re e  v ib r a t io n  a n a ly s is  

o f  l a t t i c e  s t ru c tu re s ,  i t  is  necessary to  compute the e q u iv a le n t  mass 

m atr ix  fo r  the continuum model using the k in e t ic  energy. Based on the  

consistent mass approach, the k in e t i c  energy o f  the repeating  element 

as given by Noor and Anderson (11) can be expressed as fo l lo w s:

The k in e t ic  energy o f  the repeating  element is obtained in terms 

o f  the m ater ia l and geom etric  p ro p e r t ie s  o f  the tower by s u b s t i tu t in g  

the expressions fo r  the nodal displacements and ro ta t io n s  given by 

Equations (4 .1 )  through ( A . 3 ) ,  in to  the fo l lo w in g  k in e t ic  energy 

expression (11) :

repeating  element as g iven in Appendix B.

Numerical s tud ies  by Noor and Anderson (11) in d ic a te  th a t  the

in e r t ia  terms associated  w i t h  the s t r a in  components e 2 ,  e °  and 2e °  can
yz

be neglected w ithout a f f e c t in g  the n a tu ra l  frequencies o f  the lower modes.

members
p (k ) k) |_(k) ( u2 + u + u2 + y2 + y

• • i i J i JJ j  J • J

(4 .2 6 )

(k)
where p 7 is the mass o f  member k between nodes i and j ;

w is the n a tu ra l frequency o f  v ib ra t io n s ;

and A ^  a re  the length  and the cross sec tio na l area o f  the  

kt 1̂ member, r e s p e c t iv e ly .

T = —  co2 I  { d } *  [ f c M ] 4 [ M ^ ]  [ £ ( k ) ]  {d} (4 .2 7 )
Z

where M ^  is the e lem ental c o n s is te n t  mass m atr ix  o f  the k**1 member;

(d )  is the displacem ent v e c to r ;
i . L

is the tra n s fo rm a tio n  m a tr ix  o f  the k member o f  the
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T here fo re , the k in e t ic  energy express ion  o f  the eq u iv a le n t  beam model 

can be expressed in the fo l lo w in g  form:

The f in a l  expressions fo r  the mass c o e f f i c i e n t s  o f  the e q u iv a le n t  

beam model fo r  the towers considered a re  l i s t e d  in Table 4 .3  and Tab le  

4 . 4 ,  fo r  constant and v a r ia b le  t r i a n g u la r  cross sec tio n a l towers.

These e q u iva len t  mass c o e f f ic ie n t s  a re  obta ined  a n a l y t i c a l l y  by 

using MACSYMA symbolic m an ipu la tion  programing c a p a b i l i t i e s  ( 1 4 ) .  In 

Tables (4 .3 )  and ( 4 . 4 ) ,  the c o e f f i c i e n t  m ,, represents  the ex ten s io na l  

i n e r t i a  o f  the e q u iv a le n t  beam model; whereas, m ^ ,  rn^ represent the  

ro ta ry  in e r t i a  in the p lane o f  the cross s e c t io n  o f  the e q u iv a le n t  

continuum model. There is no coupling between the  in e r t i a  terms o f  the  

eq u iva len t  continuum due to  the symmetry o f  the repeating  element about 

i t s  c e n tro id a l  a x i s .

4 .6  Work Done by External Forces on Three Dimensional Towers

As prev iou s ly  mentioned in  Chapter I I I ,  th e  work done by e x te rn a l  

forces on the eq u iv a le n t  continuum is  req u ire d  in  the  s t a t i c  a n a ly s is .  

Consistent w i t h  the k inem atic  assumptions g iven  by Equations ( 4 . 1 )  

through ( 4 . 3 ) ,  the expression f o r  the work done by e x te rn a l  fo rces  can 

be expressed as fo l lo w s  ( 11) :

L oj2 [ m , ,  (u °2 + v ° 2 + w°2 ) + 2m, 2 (w°0x -  u °02 )

+ 2m,^ (u °0y -  v °0x ) -  2m23 0y 02 + m22 (0 *  + 02 ) 

+ m33 (02 + 02) ]  (4 .2 8(4 .2 8 )

n
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m33

TABLE *»•

3 P, A, +_3B Pb Ab + 6_D Pd Ad 

L L

B2 (J P, A, + _B_ Pb Ab + _D_ Pd Ad) 
k l  21

B2 ( P, A + _B_ p A + JD_ p A )
2 1 1  2L L

3 “ EQUIVALENT MASS COEFFICIENTS FOR THE TRIANGULAR 
TOWER WITH CONSTANT CROSS SECTION, (11)
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Cos B

JL  pd Ad DL tan2 &

Pb Ab BL tan

2 Cos 3

6 Cos 8

TABLE M . k -  EQUIVALENT MASS COEFFICIENTS FOR THE TRIANGULAR 
TOWER WITH VARIABLE CROSS SECTIONS
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where P^, P^, and a r e . t h e  e x te rn a l  load components a t  the  i * *1 node

in the co o rd in a te  d i r e c t io n s ,  and the summation extends o n ly  over 

the nodal p o in ts  where the ex te rn a l fo rces  are  a p p l ie d .

*♦.7 Eva luation  o f  Member Forces From the Continuum Model S o lu t io n  o f

Three Dimensional Towers

As p re v io u s ly  discussed in Chapter I I I ,  member fo rces  a re  o f  

prime in t e r e s t  to  the designer o f  tower problems. The fo l lo w in g  procedures 

o u t l in e  the methodology involved in the e v a lu a t io n  o f  ac tu a l  member 

forces o f  the tower from the e q u iv a le n t  continuum model r e s u l t s .  These 

procedures a re  s im i la r  to  the procedures o u t l in e d  f o r  the p la n a r  truss  

and can be summarized as fo l lo w s:

1. S u b s t i tu te  the displacements and ro ta t io n s  obta ined  from  

the continuum s o lu t io n  fo r  the  two nodes connecting the  

member under co n s id e ra t io n  in to  the fo l lo w in g  displacement  

r e la t io n s h ip s .

u. = u? + Z. 0 °5 T • ®v : I —  I X I -30 )

W. = W? + Z; 0 ° .  (*».(*♦.32)

where u j ,  V j ,  and wj are  the displacements in the  

co o rd in a te  d ire c t io n s  o f  node i o f  the

rep ea tin g  sec tion ;

(u?, v? , w?) and (0 °  , 0 °  0 ° j )  a re  the
• x i y i

c e n t e r l in e  displacements and ro ta t io n s  o f

node i o f  the  e q u iv a le n t  continuum in the

co o rd in a te  d i r e c t io n ;
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Zj is the v e r t ic a l  d is tance between th e  c e n te r l in e  

o f  the repeating  element o f  the a c tu a l  l a t t i c e  and 

the i n o d e .

2 .  Determine the change in length  AL. . o f  member i j
'J

connecting node i to node j  as fo l lo w s :

A L . j  = (u; -  V j )  1 + (v j -  v j )  m + (w. -  Wj) n (^ .33 )  

where 1, m, and n a re  the d i r e c t io n  cosines o f  

member i j  o f  the repeating  e lem ent in the  

coord inate  d ire c t io n s .

3. C a lc u la te  the s t r a in  in member i j  as fo l lo w s :

e , , = i i l J  ( * .3 4 )

L ' j

where L j j  is  the  ac tua l length  o f  member i j .

A. Evaluate the s tre s s  O j j  o f  member i j  as:

a i j  = Ei j e i j  (**-35)

where Ejj is the  modulus o f  e l a s t i c i t y  o f  member i j .

5. Determine the fo rc e  F j j  o f  member i j  as fo l lo w s :

F i j  = a i j  Ai j  (2* *36)

where A . j  is the cross sec tio n a l area o f  member i j  o f

the repeating  e lement.

A .8 Numerical Studies o f  T r ia n g u la r  Towers

The o b je c t iv e s  o f  the numerical s tu d ies  presented in th is  chapter  

are  to  demonstrate the e f fe c t iv e n e s s  o f  the continuum model s o lu t io n  

and to  assess the accuracy o f  the continuum modeling approach in 

ana lyz ing  towers. S t a t ic  d e f le c t io n  and f r e e  v ib r a t io n  comparison are
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made between re s u l ts  obtained by the continuum model s o lu t io n  and those 

obtained by ana lyz ing  the ac tu a l towers using the c la s s ic a l  f i n i t e  

element technique. The r e s u l ts  o f  the f r e e  v ib ra t io n  a n a ly s is  as w e ll  

as several s t a t i c  analyses f o r  a f i v e  bay double laced c a n t i le v e r e d  

towers as i l l u s t r a t e d  in F igures 4 .1  and 4 .2 , are presented in t h is  s e c t io n .  

Figure 4 .6  i l l u s t r a t e s  the  d i f f e r e n t  s t a t i c  loading c o n d it io n s  ap p lied  

a t  the f re e  end o f  the t r i a n g u la r  towers considered. In F ig u re  4 .6 a ,

(the case o f  pure a x ia l  lo a d in g )a  concentrated  load o f - ^ - i s  a p p lie d  a t  

each node o f  the f r e e  end. Th is  w i l l  be eq u iva len t to  app ly in g  a 

concentrated a x ia l  load equals to  N a t  the  f re e  end o f  the e q u iv a le n t  

beam model. The case o f  tran svers e  shear is  i l l u s t r a t e d  in F igure  4 .6 b .  

This type o f  loading is ob ta ined  by app ly ing  a concentrated load equals  

to  —  o r i n  each d i r e c t io n  o f  the t r ia n g u la r  cross sec tio n  a t  each
3 3

node o f  the f r e e  end. This is  e q u iv a le n t  to  applying a concentrated  

load equals Qz or Qy in the p lane o f  the cross section  o f  the e q u iv a le n t  

beam model. The tw is t in g  moment loading combination as shown in F igure  

4 .6c  is e q u iva len t  to  ap p ly ing  a torque T* in the plane o f  the  cross  

section  o f  the e q u iv a le n t  beam model. F in a l l y ,  the bending moment 

loading con d it ion  i l l u s t r a t e d  in F ig u re  4 .6d  is  e q u iva len t  to  app ly ing  

a moment Mz o r  My about the z o r  y axes o f  the e q u iv a le n t  beam model.

For s im p l ic i t y ,  the  m a te r ia l  p ro p e r t ie s  o f  the repeating element is  

assumed to  be constant f o r  a l l  f i v e  bays o f  the towers. As p re v io u s ly  

discussed in Chapter I I I ,  the  geom etric  p ro p e rt ie s  o f  the end b a tten  

members a re  taken to  be o n e -h a l f  those o f  the in t e r io r  ba tten  members.

A comparison o f  the  re s u l ts  f o r  the  a x ia l  load case obtained by the  

eq u iva len t continuum beam model to  those obtained by the  f i n i t e  element 

technique is  i l l u s t r a t e d  in  Table  4 . 5 .  As shown in t h is  t a b le ,  the  

s t a t i c  d e f le c t io n  fo r  the continuum approach is  w ith in  1 .82  percent o f
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33

a) AXIAL FORCES b) TRANSVERSE SHEAR FORCES

AH

c) TWISTING MOMENT d) BENDING MOMENT My, Mz

FIGURE A .6 -  STATIC LOADING SYSTEMS USED IN THE ANALYSIS OF TOWERS CONSIDERED
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NODE NUMBER UEQ (FT) UACT (FT)

1 0 .0 0 0 .0

2 -.77429x1  o’ * - .7 8 8 4 7 x 1 0 “*

3 - .1 5 5 4 2 x 1 O"3 - .1 5 9 0 5 x 1 O"3

4 - . 2 3 3 9 8 x 1 0 " 3 - . 2 3 8 9 5 . 10"3

5 - .3 1 3 1 1 x 1 0 -3 - . 3 1 8 9 2 x 1 0 ~ 3

6 - . 3928x 1O" 3 - .3 9 8 8 4 x 1 O- 5

CPU (SEC) 1.52 2 .9 7

TABLE 4 .5  -  AXIAL DISPLACEMENTS AND CPU TIME COMPARISON 
OF THE TOWER SHOWN IN FIGURE 4 . 1 . DUE TO PURE 
AXIAL LOADING.
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the more exact re s u lts  ob ta ined  using the f i n i t e  element methodology.

For the sake o f  b r e x i t y ,  the  r e s u l ts  from the o th e r  load case a re  not 

presented; however, co ns iderin g  a l l  the  load cases, the maximum 

d if fe re n c e  between the two s o lu t io n s  was less than 2 .5  p e rc e n t .  Using 

the deformations c a lc u la te d  from the continuum beam model, the fo rces  

in c e r ta in  s e le c t  members were eva lu a ted  according to  the procedure  

o u tl in ed  in section  4 .7 .  The r e s u l t s ,  in g e n e ra l ,  demonstrated an 

accuracy o f  less th a n 0.3  percent e r r o r  when comparing the two techniques.  

This e r ro r  is co n s is te n t  w i th  the  e r r o r  found in the d e f le c t io n  

c a lc u la t io n .  I t  should be noted th a t  th is  e r ro rs  is n o t  very  la rg e  fo r  

actual design o f  most c i v i l  en g in eerin g  s tru c tu re s .

A lb e i t  the s tress  and d e f le c t io n  a re  a very im portant c r i t e r i a  in 

eva luating  the performance o f  t h is  approximate s o lu t io n ,  more s i g n i f i c a n t ,  

however, is the computional e f f i c i e n c y  o f  th is  technique. S p e c i f i c a l l y ,  

the CPU time fo r  the e q u iv a le n t  continuum model and fo r  the f i n i t e  

element technique was 1 .52  seconds and 2 .9 7  seconds, r e s p e c t iv e ly .  T h is  

represents a 49 percent savings in computer t im e.

The re s u lts  from the f r e e  v ib r a t io n  an a ly s is  o f  the continuum model 

as compared to  the more exact f i n i t e  e lem ent'techn ique  is  shown in Table  

4 .6 .  S p e c i f i c a l l y ,  th is  ta b le  presents  the f i r s t  th ree  n a tu ra l  frequencies  

in rad/sec f o r  both techn iques . As can be seen, the two r e s u l ts  a re  in 

e x c e l le n t  agreement. S p e c i f i c a l l y ,  the maximum d i f fe r e n c e  is less  than

0.1 percent. F igure 4 .7  i l l u s t r a t e s  th e  r a t io  o f  the n a tu ra l '  f requenc ies  

fo r  the f i r s t  two e x te n s io n a l ,  bending, and to rs io n a l  modes. Here, as 

was in the case o f  p la n a r  t r u s s ,  i t  appears th a t  the continuum model 

represents the energies in the  lower modes b e t te r  than in the h igher  

modes (e r ro r  in frequenc ies  in crease  in the h igher modes). In a d d i t io n ,  

i t  is noteworthy th a t  the e r r p r  d i f f e r e n c e  in the  bending modes is  less
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MODE NUMBER WEQ RAD/SEC “ ACT RAD/SEC

1 0 . 1 1 7 6 x 1 0 3 0 . 1 1 6 5 x 1 0 3

2 0 . 1183x 103 0 .1172x1O3

3 0 . 1854x 103 0.1846x1O3

CPU (SEC) 1.53 4 .0 4

TABLE 4 .6  -  NATURAL FREQUENCIES OF VIBRATIONS AND CPU TIME 
COMPARISON OF THE TOWER SHOWN IN FIGURE 4.1
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E , . .  = i th  EXTENSIONAL MODE 

B ( j )  = i th  BENDING MODE 

T f , \  = i th  TORSIONAL MODE
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FIGURE 4 .7  -  BAR GRAPH DISPLAYING COMPARATIVE ACCURACY 
OF LOW VIBRATION FREQUENCIES OBTAINED BY 
EQUIVALENT CONTINUUM FOR CANT I LEVERED 
TRIANGULAR TOWER WITH CONSTANT CROSS SECTION.
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than the extensional or to rs io n a l  mode. I t  would appear th a t  the  

continuum model may represent the bending o r  f le x u r e  energy b e t te r  than 

the other types o f  energ ies . F igure  4 .8  d ep ic ts  the shapes f o r  the  

f i r s t  th ree  modes.' The re s u lts  o f  both technique agreed q u i te  c lo s e ly .

As in the s t a t i c  analyses , th e re  was a s ig n i f i c a n t  computational 

savings in computer time using the continuum modeling technique.  

S p e c i f ic a l ly ,  the CPU time fo r  the e q u iv a le n t  model approach was 1.53  

seconds; whereas, fo r  the f i n f t e  element technique; the CPU time was 4 .04  

seconds. This represents a saving o f  approxim ate ly  63 percen t.

S im i l ia r  analyses on a f i v e  bay double laced tower w ith  v a r ia b le  

t r ia n g u la r  cross (see Figure 4 .2 )  produced s im i la r  re s u lts  and conclus­

ions as those o f  the prev iou s ly  described tower. Results o f  the s t a t i c  

load cases in d ica te  very good agreement between th e  continuum modeling 

technique and the f i n i t e  element techn ique . The maximum d i f fe re n c e  

between any o f  the load case was less than 3 .2  p ercen t. The re s u lts  o f  

the f re e  v ib ra t io n  ana lys is  ( i l l u s t r a t e d  in Table  4 .7 )  ind ica ted  a 0 .12  

percent d i f fe re n c e  in the fundamental n a tu ra l  frequency and less than

0 .5  percent fo r  the o th er  two f req u en c ies . F igure  4 .9  dep ic ts  the r a t io  

o f  the natura l frequencies c a lc u la te d  by the continuum model to those  

ca lcu la ted  by the f i n i t e  element techn ique . As in previous r e s u l t s ,  the 

bending mode appears to g ive b e t t e r  re s u lts  than the o ther two modes.

In the case o f  the f re e  v ib r a t io n  a n a ly s is  o f  th is  tower, s i g n i f i ­

cant computer time was saved when comparing the  continuum modeling 

technique to  the c la s s ic a l  f i n i t e  element methodology. S p e c i f i c a l l y ,  the  

CPU time fo r  the continuum model approach was 1 .58  seconds and fo r  the  

f i n i t e  element technique, th e  CPU time was 4 .1 3  seconds. This represents  

an approximate saving o f  62 percent in computer t im e.
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“ (1)Ed = 18* 717 HZ 

“ (1)ACT7 HZ

“ (2)EQ = 18* 828 HZ

“ (2)a c t:  18*656 hz

71

“ ( 3 ) Ed = 2 9 ‘ 507 HZ

^ ( 3 ) act:  2 9 - 380 HZ

FIGURE A .8 -  VIBRATION MODE SHAPES FOR THE CANTI LEVERED
TRIANGULAR TOWER WITH CONSTANT CROSS SECTION.
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MODE NUMBER “ eq RAD/SEC “ ACT RAD/SEC

1 .1619 x 103 0 . 1 6 1 7 x 1 0 3

2 . 1 6 2 5 x 1 0 3 0.1620x103

3 .2349x103 0.2339x103

4 .3852x103 0.3843x1O3

CPU (SEC) 1.58 4 .13

TABLE 4 .7  -  NATURAL FREQUENCIES OF VIBRATIONS AND CPU 
TIME FOR THE TOWER SHOWN IN FIGURE 4 .2
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FIGURE k .S  -  BAR GRAPH DISPLAYING COMPARATIVE ACCURACY OF LOW 
VIBRATION FREQUENCIES OBTAINED BY THE EQUIVALENT 
CONTINUUM MODEL FOR THE CANT I LEVERED TOWER WITH 
VARIABLE TRIANGULAR CROSS SECTIONS
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In summary, t h is  chapter has c le a r ly  demonstrated the accuracy o f  

the continuum modeling technique in the analyses o f  both the constant  

cross-section and v a r ia b le  c ro ss -sec t io n  th ree  dimensional towers. In 

ad d it ion  to  the accuracy being w e ll  w ith in  to le r a b le  l im i t s  f o r  des ign ,  

the continuum modeling technique has e x h ib ite d  s ig n i f ic a n t  computer 

savings. This savings coupled w ith  the p o te n t ia l  man-hours saved in 

preparing input data make the continuum modeling technique a very  

a t t r a c t iv e  a n a ly t ic a l  to o l ,  fo r  design purposes.
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CHAPTER V

APPLICATIONS TO TOWERS WITH RECTANGULAR 

CROSS SECTIONS

5.1 General Remarks

Recent development in the c o n s tru c tio n  and fa b r ic a t io n  o f  la rg e  

r e p e t i t iv e  re c ta n tu la r  towers has s t im u la ted  in te re s t  in the use o f  

approximate techniques fo r  an a lyz in g  these types o f  s t ru c tu re s .  The 

continuum model approach provides a p r a c t ic a l  and e f f e c t i v e  method f o r  

pred ic t in g  the response and comparing the s t i f fn e s s e s  o f  towers and l a t t i c e s  

with d i f f e r e n t  geometric and m a te r ia l  p ro p e r t ie s .  The purpose o f  th is  

chapter is to apply and attem pt to  model the e q u iv a le n t  p ro p e r t ie s  o f  

rectangular cross s ec t io n a l towers in a c la s s ic a l  f i n i t e  element program (1 2 ) .

The major d i f fe re n c e  in the development o f  the e q u iv a le n t  continuum 

model fo r  towers w ith  re c ta n g u la r  cross sections and those w ith  t r ia n g u la r  

cross sections as discussed in Chapter IV is  the in c lu s io n  o f  the e f f e c t  

o f warping and shear deform ation in the plane o f  the rec ta n g u la r  cross 

sections. Therefore , the e q u iv a le n t  continuum theory  presented in 

Chapter IV must be m odified to  account fo r  th is  warping and shear deformation  

in the plane o f  the cross sec tion  as in d ica ted  by Noor (1 5 ) .

5 .2  Kinematic Assumptions

For the rec tangu lar  cross se c t io n a l  tower i l l u s t r a t e d  in F igure  

5 .1 ,  the deformed p o s it io n  o f  a cross sectio n  is com plete ly  s p e c if ie d  

by twelve displacement param eters . In otherwords, th ree  displacement  

components are  s p e c if ie d  a t  each corner node. Each displacem ent  

component is assumed to  have a l in e a r  v a r ia t io n  along the p in-connected  

members o f  the repeating  elem ent, and a b i l i n e a r  v a r ia t io n  in the  

(Y -  Z) plane o f  the cross s e c t io n .  Hence, an accurate  re p re s e n ta t io n

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B 83

FIGURE 5 .1  -  FIVE-BAY DOUBLE LACED TOWER WITH CONSTANT 
RECTANGULAR CROSS SECTION
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(15) o f  the displacement f i e l d  in the p lane o f  the  cross section  can be 

expressed as:

u = u° -  y0y + yzu (5 -1 )

v = v °  + y e °  + z (e ° z -  0X) +  yzv (5 .2 )

w = w° + y (e °z + 0X) + z e °  + yzw (5 .3 )

where u°, v ° ,  w° a re  the displacement components a t  y = z  = 0;

0X, 0y , 0Z a re  the ro ta t io n a l  components;

e ° ,  e °  are  the extens iona l s t ra in s  in the p lane o f  the cross y ’ z r

sec tion ;

eyz is h a l f  the shearing s t r a in  in the y -  z p lane;

u, v , w are warping and d is t o r t io n  parameters o f  the cross 

section about x ,  y , and z axes, r e s p e c t iv e ly .

The tw elve parameters (namely u ° ,  v° ,  w , 0^, 0y , 0Z> e ° ,  e ° ,

e°  , u, v and w) a re  fun ctio ns  o f  the a x ia l  co o rd in a te  x o n ly .  The 
yz

/

repeating  element o f  the rec tan gu la r  tower considered is depicted in 

Figure  5 .2  along w ith  the associated sign convention . The e q u iva len t  

continuum beam model and i t s  sign convention is shown in F igu re  5 *3 .

Based on the k inem atic  hypothesis given by Equation (5 .1 )  through 

Equation (5 -3 )>  the s t r a in  components have a b i l i n e a r  v a r ia t io n  in the  

plane o f  the cross sec tion  as fo llow s (1 5 ) :

ex = e °  -  yky + z k °  +  y z 0 °  ( 5 . ^ )

ey = e °  + zv ( 5 .5 )

ez = e °  + yw (5 -6 )
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FIGURE 5 .2  -  REPEATING ELEMENT OF DOUBLE LACED RECTANGULAR TOWER WITH 
CONSTANT CROSS SECTION
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IN FIGURE 5 .1
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2exy = 2 e °y + y9e° + z (k -  k£) + yz97  (5 .7 )

2exz  = 2 e °z + y fk + k ° )  + z9e°  + yz9w (5 .8 )

2eyz = 2eyz + yv + zw (5 . 9 )

where e °  = 3u° i s th e  e x ten s io n a l s t r a in  o f  the c e n te r l in e ;

k° = 90° is the  c u rv a tu re  change in the y -  d i r e c t io n ;

k° = 90y is  the  c u rv a tu re  change in the z -  d i r e c t io n ;

k? = 90 is  the  t w is t  about the x -  d i r e c t io n ;  
z x

2exy = ^ v°  “ ' s t *ie t ran svers e  shear s t r a in  in the x -y  p lane;

2e°z = (9w° + 0£) is  the tran sverse  shear s t ra in  in the x - z  p lane;

0° = 3u and k = 3 e ° z a re  s t r a in  parameters due to  the warping  

o f  the cross s e c t io n .

The s t r a in  measures namely e ° ,  k ° ,  k ° ,  e °z , ex y , k ° ,  0° and k are  

assumed to  be o n ly  a fu n c t io n  o f  the a x ia l  deformation o f  the lo n g i tu d in a l  

ax is  o f  the tower. As p re v io u s ly  discussed, the a x ia l  s t r a in  in each 

member o f  the rep ea t in g  element is replaced by i t s  expression in terms 

o f  the s t ra in  components in the co ord inate  d i re c t io n  as given by 

Equation ( 4 .1 0 ) .  The s t r a in  components in the co ord in a te  d ir e c t io n s  

are expanded in a T a y lo r  s e r ie s  about the cen tro id  o f  the  repea tin g  

element to conduct the tran s fo rm atio n  .from the d is c re te  s t ru c tu r e  to  the  

equ iva len t continuum. Using Equations (5 . 4) through (5 -9 ) and r e t a in in g  

the f i r s t  two terms o f  T a y lo r  s e r ie s ,  the fo l lo w in g  approxim ation f o r  

the s tra in s  are ob ta ined : by Moor and Anderson (15) as:
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X
-  e °  ex

_ y ( k)  |<° +  z ( k ) ^0 + y ( k )  2; (k ) e °

+  « W  (3e o -  y W  3 k °  + 2 (k) 9 k®1 + y ( k ) (

. W 9 6 ° )  ) (5 .1 0 )

e<k >
o

— p
y + z ^  v +  x ^  ( 9 e °  + z (k) 9v) (5 .1 1 )

e<k) + y ( k ) v7 + x<k> ( 9 e °  + y (k ) 9w) (5 .1 2 )

2 e Wxy = 2 e °y + y ^  9e°  + z ^  (k - k?) + >/ ( k ) (

z (k) 9v )+  x (k) 9 (2e°y ) + y ( k >̂ 92
■S

+ z (k)

(9k - 3k?) + y ^  z ( k> 92 v (5 .1 3 )

-  2e °  + y ^  (k °  + k) + z ^AZ t 9e° + 1, ( k ) (

z (k) 9w)+ x ^  9 (2e?z ) + y ( k ) (9k + 3 k?)

+ z M  32 eO + y(k )  z (k) g2 — (5 .1 4 )

“ 2eyz + y ( k) 7 + z<k) w + x<k) (y
(k) 9v

+ 3 ( 2 e ° z ) + z M  9w) (5 .1 5 )

where w ^ ,  z ^  a re  the coordinates o f  the cen ter  o f  the kt *1

member o f  the repeating  element;

9 2 32
9 = — ; and 9 are  p a r t i a l  d e r iv a t iv e s  w ith  respect to  x .

9x 3x

To s a t is f y  the  c o m p a t ib i l i t y  requirements between rep ea t in g  

elements o f  the continuum model, the two s t ra in  components ey and ez 

in the plane o f  the  cross sec tion  a t  the in te r fa c e  o f  a n y ‘two ad jacen t  

elements have to  be id e n t i c a l .  Th is  cond it ion  is  s a t i s f i e d  i f  the odd- 

order d e r iv a t iv e s  o f  these s t r a in  components are  set equal to  zero  as
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fo llows:

3 e°  = 3 e °  = 3v = 3w = 0 (5 .1 6 )

5 .3  S tra in  Energy and S t i f fn e s s  C o e f f ic ie n ts  o f  the E q u ilv a le n t

Continuum Model

The s t r a in  energy o f  the repea tin g  element o f  the re c ta n g u la r  tower 

is given by Equation (4 .2 0 ) .  I f  e ^  ;n Equation (4 .2 0 )  is  replaced by 

i t s  expressions in terms o f  the s t r a in  expansions given by Equations 

(5 .10 )  through (5 - 15)» the s t r a in  energy o f  the repeating  element can 

be expressed as a q uad ra tic  fu n c t io n  o f  the s t r a in  components and s t ra in  

gradients  ( r e f e r  to Equation 4 . 2 3 ) .

The s t r a in  g rad ien ts  account fo r  the local deformation which must 

occur f r e e ly  w ith in  the repeatin g  e lem ent. T h ere fo re ,  they should be 

included to  obta in  c o rrec t  s t i f f n e s s  f o r  complicated la t t i c e d  

configu ra t ion s  (1 5 ) .  Hence, to a l lo w  fo r  these local deformations to  

occur, the forces associated w ith  them should be equal to ze ro . The 

d e r iv a t iv e s  o f  the s t r a in  energy expressions w ith  respect to  these  

s t ra in  grad ients  must be set equal to  zero th a t  is :

3U 3U 3U 3U 3U

3 (3 e ° )  3 (3k°)  3 (3 k ° )  3 3 (2 e °y ) 3 3 (2eJz )

9U 3U 3U 3U

3 (3 k ° )  3 (3 0 ° )  3 (3k) 3 ( 3 2 e ° )

3U 3U 3U

3 (3 2 e ° )  3 (32 v) 3 (3 2 7̂)
= 0 (5 .1 7 )

Moreover, in order to  o b ta in  an engineering  beam theory s im i la r  

to  the th in -w a lle d  beam theory  which does not account fo r  shear
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deformation in the plane o f  the cross s e c t io n ,  -the forces associated  

i th  the s t r a in  components e ° ,  e ° ,  v and w are  set equal to zero th a twi

is :

8U 8u 8u 8U = 0 (5 . 18)
3e° 3e° 3v 3w

In genera l,  the forces associated w ith  the remaining s t r a in  

parameters cannot be neglected in o rder to  o b ta in  accurate  r e s u l ts .  In 

a d d it io n ,  the inc lu s io n  o f  the two s t r a in  parameters namely k and 2 e °z 

is necessary to o b ta in  c o rre c t  warping response o f  towers w ith  

rectangu lar cross sections e s p e c ia l ly  those w ith  u n s t i f fe n e d  batten  

members.

Equations (5 -17 )  and (5 .18 )  can be used to  express the s t ra in

grad ien t as w ell as the s t r a in  components e ° ,  e ° ,  v̂  and w in terms o f

the other s t ra in  components, and thereby reduces the s t r a in  energy to a

qu adratic  form in the nine s t ra in  components (namely e ° ,  kS, k ° ,  2e° ,
a  y  Z  A y

2e°z , k ° ,  0 ° ,  k and 2e°z ) .  The e q u iv a le n t  s t i f f n e s s  c o e f f ic ie n t s  C . j

as given by Equation (3 .1 6 )  a re  obtained by the a id  o f  MACSYMA computarized

symbolic program (1 5 ) ,  and the corresponding e q u iv a le n t  s t i f fn e s s

expressions fo r  the tower shown in F igure  5-1 a re  g iven in Table 5 .1 .

"These c o e f f ic ie n ts  agreed w ith  those obtained by Noor and Anderson (1 5 ) .

5 . A K in e t ic  Energy and Mass C o e f f ic ie n ts  o f  the E qu iva len t Continuum Model 

The k in e t ic  energy o f  the repeating  element when the cons is ten t  

mass approach is used is given by Equation (A .2 6 ) .  However, when the  

c o n s t i tu t iv e  re la t io n s h ip s  given by Equations (5 .1 )  through (5 -3 )  are  

used and the i n e r t ia  terms associated w ith  the s t r a in  components e ° ,  

e ° ,  v and w are neg lected , the k in e t ic  energy o f  the e q u iv a le n t  continuum 

model fo r  the rec tangu lar  tower shown in F igure  (5 .1 )  can be expressed
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E 1 A  T  )  

° 3 Eb Ab +Eb Ab / 2

2B3 Ej A,

03 Eb Ab

TABLE 5 . 1 -  EQUIVALENT STIFFNESS COEFFICIENTS FOR THE CONTINUUM
MODEL OF THE RECTANGULAR TOWER SHOWN IN FIGURE 5 .1 , (1 5 )
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where L is  the length  o f  the repeating  element;

(o is  the c i r c u la r  frequency o f  v ib r a t io n  o f  the e q u iv a le n t  

continuum model; 

m^ is the extens io na l in e r t i a ;

11I22 and are  mass ro ta ry  in e r t i a  about y and z axes,  

re s p e c t iv e ,  and

m2233 ' s t *ie  fnass d en s ity  parameter f o r  warping -  shear modes.

The e q u iv a le n t  mass c o e f f ic ie n t s  given by Equation (3 .2A ) were obtained  

by using MACSYMA computarized sumbolic program ( 1 5 ) .  However, the  

e q u iv a le n t  continuum mass c o e f f ic ie n ts  o f  the  re c ta n g u la r  tower shown 

in F igure 5-1 are  given in Table 5 .2 .

5 .5  General Discussions and Findings

The continuum approach presented here in  to  p re d ic t  th e  s t a t i c  and 

f re e  v ib r a t io n  responses o f  la rg e  r e p e t i t i v e  towers w ith  rec tan g u la r  

cross sections is based on rep lac in g  the o r ig in a l  l a t t i c e  s tru c tu re  by 

an e q u iv a le n t  continuum beam model which accounts foi* warping and shear 

deformation in the plane o f  the cross s e c t io n .  T h is  warping e f f e c t  

occurs because the rec tan g u la r  tower cross section  does not remain plane  

during deform ation . The e q u iva len t  e l a s t i c  m a te r ia l  and geom etric  

p ro p e rt ie s  o f  towers w ith  constant rec tan g u la r  cross sec tio n  were 

obtained and these c o e f f ic ie n t s  a re  l is t e d  in Tab le  5 .1  and Table  5 -2 .
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m11
*  [ Pi A + B (p fa Ab + 1 p, A , )+  2D Pd Ad ]

L f l  L

m22=m33
B2 [  P1 A1 + _2B_ (Pb Afa + 1 p , Aj ) + j»D pd A j

3L 2/ 2" 3L

m2233
r P1 Aj + B (Pjj Ab + 3 Pj A  ̂ ) + 2D pj A j ,

T  1 T l W  3L

TABLE 5 .2  - EQUIVALENT MASS COEFFICIENTS FOR THE CONTINUUM 
MODEL OF THE RECTANGULAR TOWER SHOWN IN FIGURE 5.
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An attempt to  develop the e q u iv a le n t  e l a s t i c  p ro p e r t ie s  o f  rec ta n g u la r

towers w ith  s lop ing  legs was made, but the expressions fo r  th e  e q u iva len t

s t i f fn e s s  c o e f f i c ie n t s  were extrem ely long and coupling terms appeared

which made the modeling o f  such problem extrem ely  complicated and

im practica l from the engineering  design p o in t  o f  view. Moreover, even

fo r  the rec ta n g u la r  towers w ith  constant cross s e c t io n ,  r e s u l ts  o f

numerical s tud ies  conducted here in  in d ica ted  th a t  i t  is im possib le  to

a c c u ra te ly  model the e q u iv a le n t  continuum in most c la s s ic a l  f i n i t e

element programs o r  even SAP IV , the program used in the present study.

However, Noor and Anderson (15) have conducted some numerical s tud ies

and compared the c losed form s o lu t io n  o f  the e q u iv a le n t  beam model w ith

exact s o lu t io n  based on d i r e c t  a n a ly s is  o f  the  actual l a t t i c e  s t ru c tu re .

The numerical s tu d ie s  in d ica ted  some d i f fe r e n c e  in the f i r s t  s ix

d is t in c t  frequenc ies  obta ined  by the reduced theory in which the transverse

shear s t ra in s  2e °  , 2e °  and the s t r a in  parameter k are  set equal to  zero ,  x y  x z

A d if fe re n c e  o f  15% was in d ica ted  between the  two s o lu t io n s  f o r  a ten bay 

sin g le -b ay -d o u b le  laced beam, and th is  d i f fe r e n c e  reduced to  when the  

number o f  rep ea tin g  elements increased to  twenty bays. I t  is  found th a t  

the reduced theory  over estim ates  the bending f req u en c ies , and i t  a lso  

over estim ates  the  w arp ing-shear frequencies  due to  n e g le c t in g  o f  k and 

m2233* WaS ^ounc* t 'i a t  t *ie f ' r s t  two fundamental modes a re  w arp ing-  

shear modes. T h e re fo re ,  i t  is  necessary to  include the e f f e c t  o f  the  

warping and shear deform ation in the plane o f  the cross s e c t io n  in order  

to p re d ic t  these w arp ing-shear modes and o b ta in  accurate  r e s u l t s .
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS

6.1 Summary

For economical reasons, la rg e  towers and complex space l a t t i c e  

s tru c tu re s  are u su a lly  designed such th a t  in d iv id u a l  elements are  jo in ed  

in a reg u la r  geometrical p a t te r n .  This r e g u la r i t y  renders the system 

t r a c ta b le  fo r  ra t io n a l  f i e l d  a n a ly s is .  However, the a p p l ic a t io n  o f  

these ra t io n a l  f i e l d  techniques f o r  d is c r e te  systems remains as a 

r e l a t i v e l y  undeveloped f i e l d  to  t h is  date  w h i le  the c losed-form  an a lys is  

o f  the analogous continuous systems, a much narrower c lass  o f  problems, 

is q u i te  w ell developed. This study a p p l ie s  the continuum modeling 

methodology as a ra t io n a l  approach fo r  an a lyz in g  r e p e t i t i v e  types o f  

s tru c tu re s .

The eq u iva len t continuum models a p p lie d  in t h is  study have 

demonstrated the v e r s a t i l i t y  and the f l e x i b i l i t y  o f  the e q u iv a le n t  

energy approach fo r  determ ining the continuum p ro p e r t ie s  o f  the rep ea t­

ing element o f  r e p e t i t i v e  truss  s t ru c tu re s .  The e q u iv a le n t  energy 

approach is  based on equating the  s t r a in  and k in e t i c  energ ies  in the  

repeating  element o f  the ac tua l s t r u c tu r e  to  those energ ies  o f  the 

continuum model. The s t r a in  and k i n e t i c  energ ies  o f  the e q u iv a le n t  

continuum are obtained by making displacement or s t r a in  assumptions, 

then c a lc u la t in g  the s t r a in  and k in e t i c  energ ies  o f  the  repeating  element 

in terms o f  the displacement o r  s t r a in  parameters as w e ll  as geometric and 

m a te r ia l  p ro p ert ies  o f  the l a t t i c e d  s t ru c tu r e .  The key step to  ob ta in in g  

accurate  eq u iva len t c o e f f i c ie n t s  is the s e le c t io n  o f  the a p p ro p r ia te  

k inem atic  hypothesis which includes a l l  p o ss ib le  deform ation modes o f  the 

repeating  element. In a d d i t io n ,  the t o t a l  number o f  displacement
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parameters in the re p e a t in g  element provides an upper bound on the number 

o f  terms th a t  should be re ta in e d  in T a y lo r  s e r ie s  expansions which r e la t e  

the displacements o r  s t r a in s  in the d is c re te  system to  those o f  the  

equivalent, continuum model.

The accuracy and the e f fe c t iv e n e s s  o f  the continuum models a p p lied  

in the present study f o r  a n a ly z in g  c i v i l  eng ineering  problems under 

d i f f e r e n t  s t a t i c  load ing  co n d it io n s  as w e ll  as p re d ic t in g  the f r e e  

v ib ra t io n  response have been demonstrated by numerical examples. The 

eq u iva len t continuum models f o r  towers o f  constant and v a r ia b le  t r ia n g u la r  

cross sections have been developed. In a d d i t io n ,  the development o f  

general procedures to  o b ta in  th e  member forces o f  the ac tu a l l a t t i c e d  

s tru c tu re  from the e q u iv a le n t  continuum re s u lts  is  presented. Moreover, 

a computer t im e comparison between the e q u iv a le n t  continuum s o lu t io n  and 

the actual s t ru c tu re  s o lu t io n  using f i n i t e  element program SAP IV , fo r  

the p lanar truss  and th re e  dimensional towers is presented.

6 .2  Conclusions

From the present s tu dy , th e  fo l lo w in g  conclusions, a re  drawn:

1. The numerical s tu d ie s  have demonstrated the accuracy o f

the s o lu t io n  o b ta in ed  by the continuum model for- r e p e t i t i v e  

s tru c tu re s  even when th e  number o f  repeating  elements is  

low. For example, a n a ly s is  o f  a p lan ar  truss in d ica ted  

less than d i f f e r e n c e  .in the s t a t i c  d e f le c t io n s  and mem­

ber fo rces  between the two s o lu t io n s .  The f r e e  v ib r a t io n
i A' 3

a n a ly s is  o f  a p la n a r  t ru s s  a lso  in d ica ted  less than 1.5% 

d i f f e r e n c e  fo r  th e  lower fundamental frequency. In the  

case o f  towers w i th  constant and v a r ia b le  t r ia n g u la r  cross  

s e c t io n s ,  the r e s u l t s  in d ic a te  approx im ate ly  2% d i f f e r e n c e
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in s t a t i c  d e f le c t io n s ,  0.3% d i f fe re n c e  in the member fo rces ,

• 95% d i f fe r e n c e  in the fundamental v ib r a t io n  frequency and 

less  than k% d i f fe r e n c e  between the two so lu t io n s  fo r  

higher v ib r a t io n  modes.

2 .  Rotary i n e r t i a  was found to  have a small e f f e c t  on the

lower v ib r a t io n  frequ enc ies  o f  the continuum model fo r

towers.

3. Bending-shear coupling terms and C ^  o f  the eq u iva len t  

s t i f f n e s s  c o e f f ic ie n t s  f o r  the t r ia n g u la r  tower w ith  

v a r ia b le  cross sections can be neg lected  w ith o u t s i g n i f i ­

cant e f f e c t  on the accuracy o f  the  response.

k .  S im u la t in g  the e q u iva len t  continuum p ro p e r t ie s  by a shear 

deform ation beam model re fe r r e d  to  as engineering  beam 

model was found to  be adequate fo r  p re d ic t in g  the s t a t i c  

d e f le c t io n s  and the lower n a tu ra l  frequenc ies  o f  pin 

jo in t e d  l a t t i c e d  s t ru c tu re s .

5 .  W arping-shear deformation o f  towers w ith  rec tang u la r  cross 

section  has a s ig n i f i c a n t  e f f e c t  on t h e i r  s t a t i c  and 

dynamic responses. T h e re fo re ,  the shear-warping parameters 

and t h e i r  e f f e c ts  must be considered in the an a lys is  fo r  

accu ra te  responses. This  cannot be done using the 

standard beam element o f  a c la s s ic a l  f i n i t e  element program 

as was found from th is  s tu dy .

6 .  The savings in computational cost and computer time by 

using continuum models is  s i g n i f i c a n t  (^3% f o r  the s t a t i c  

a n a ly s is  and approxim ate ly  62% f o r  the dynamic an a lys is  

o f the f i v e  bay t r ia n g u la r  tower co n s id ered ).
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6 .3  Recommendation fo r  Future Studies

The equiva lent continuum modeling approach is a very a t t r a c t i v e  

design tool to the p ro fess iona l eng ineer. Hence, the e q u iv a le n t  energy 

approach fo r  determining the e q u iv a le n t  p ro p e r t ie s  o f  r e p e t i t i v e  

l a t t i c e d  s tructu res  appears to  o f f e r  cons iderab le  p o te n t ia l  fo r  fu tu re  

development. As th e re  is a l im i t l e s s  v a r ie t y  o f  la t t i c e d  s tru c tu re s  w ith  

d i f f e r e n t  shapes and boundary c o n d it io n s ,  the sub ject o f  fu tu re  s tud ies  

is extreme, broad and l im ite d  o n ly  by the  im agination o f  the in v e s t ig a to r  

or the designer. The fo l lo w in g  a re  some suggestions and aspects o f  

continuum modeling th a t  deserve fu r th e r  a t t e n t io n :

1. Complete s tud ies  to i d e n t i f y  the s e n s i t i v i t i e s  o f  s t a t ic *  

f re e  v ib ra t io n  and fo rced  v ib r a t io n  responses to  v a r ia t io n s  

in m ater ia l and geometric p ro p e r t ie s  o f  the r e p e t i t i v e  

l a t t i c e  s tru c tu re s .

2 .  Development and improvement o f  the continuum theory to  

study the e f f e c t  o f  j o i n t  e c c e n t r i c i t i e s  and member imper­

fec t ion s  on the response c h a r a c t e r is t ic s  o f  towers and 

other l a t t i c e  s t ru c tu re s .

3 . Development o f  modeling techniques to  count fo r  geometric  

and m ater ia l n o n l in e a r i t ie s  in l a t t i c e  s tru c tu re s .

4 . Development o f  broad techniques f o r  transform ing models 

and so lu tions along w ith  member design from one l a t t i c e  

c o n n e c t iv ity  pa tte rn  to  another o f  s im i la r  shape.
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APPENDIX A

E qu iva len t S t i f fn e s s  and Mass C o e f f ic ie n ts  

o f  P lan ar Trusses

A. 1 D e r iv a t io n  o f  th e  E q u iva len t s t i f f n e s s  c o e f f ic ie n t s  o f  P lan ar Truss 

As p rev io u s ly  discussed in Chapter I I I ,  the general form o f  the  

c o n s t i tu t iv e  r e la t io n s h ip s  can be expressed as fo l lo w s :

NX C11 C12 cl3 C1i» e°ex

Mx c22 C23 c2A k°Kx

<*x symmetric C33 C^/j Y°xy

Ny •S

Equations (A .1 ) a re  fu r th e r  s im p l i f ie d  to match the o rd in a ry  shear

deformation beam th eory  by so lv ing  fo r  e °  in  terms o f  the  o th e r  s t ra in

parameters e ° ,  k ° ,  and Y °y . Th is  can be accomplished by considering  the

case o f  a x ia l  load o n ly  i . e .  se t M = Q = N = 0 which y ie ld s  to  thex o y

fo llo w in g  express ion:

(EAL) e °  = 0 (A .2)

Since (EAL) cannot be ze ro ,  th e r e fo re ,  ey must be z e ro .  In o ther  

words, the c o m p a t ib i l i t y  is s a t is f ie d  a t  the in te r fa c e  o f  any two 

adjacent elements.

S u b s t i tu t in g  back in to  Equation (A .1 ) ,  and so lv ing  f o r  Nx y ie ld s  

the fo l lo w in g :
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»x -  ( t i l  -  C13 T } e°  + Ct2  "S (A‘ 3)

where C j j  expressions a re  l i s t e d  in Tab le  3 . 1 ,  th e re fo re

Nx -  [EAL (2 + i ) 3 -  EAh (-jj-)3 £ ]  e j

= (2 EAL) .»  -  C „  «J

Cn = f n  = 2EA (A. A)
L

where is the extensional s t i f f n e s s  o f  the e q u iv a le n t  continuum 

beam model.

In l i k e  manner, consider the case o f  pure bending i . e .  j6 0 and set

Nx = Qx = Ny = 0 , the fo l lo w in g  expression can then be o b ta in e d ;

"x -  C21 4  * h i  *5  + c23 A  + h A ey (A-5>

S u b s t i tu te  the expressions o f  C - . from Table  3.1 and e °  = 0 ,

Equation (A .5) y ie ld s :

M = 4  EAL h2 K°
Z X

= C22 Kx 

T h ere fo re ;

^22 = Y EAhZ (A- 6 )

where C22 ' s t *ie  e q u iva len t  bending s t i f f n e s s  c o e f f i c i e n t  o f  the  

eq u iv a le n t  continuum model.
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S im i la r ly ,  in the case o f  pure shear i . e .  Qx 4  0 ,  and 

set Nx = Mx = N = 0 ,  the  fo l lo w in g  expression is obta ined

ea lV  ( 1 - - y = J  Y ®
03 l 3  + 2d3 Y

"  C33 *  xy

(A. 7)

Therefore;

.  “ L i2 (1 - _ iL _
3 D3 L3 + 2D3

(A .8)

where ' s the e q u iv a le n t  shear s t i f f n e s s  c o e f f i c i e n t  o f  the  

e q u iv a le n t  continuum model.

Therefo re , equation  (A .1) can then be expressed in i t s  f in a l  

m atr ix  form as fo l lo w s :

N. c n  0 0

C22 °

0 C
33

o
xy

(A .9)

where the va lues o f  C jj a re  l i s t e d  in  Table  3 .2

A .2 D er iva t io n  o f  the Equ iva len t Mass C o e f f ic ie n ts  o f  P lan ar Truss  

The k in e t ic  energy o f  the  continuum beam model, as discussed  

previously  in Chapter I I I ,  can be expressed in  terms o f  the nodal 

displacement parameters as:

2
T = —  Z PAL (u? + u. u. + u? + v?

6 Memb. ' J J '

+  V .  V j  +  V j ) ( A . 10)
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where the nodal displacement u and v can be obta ined  from the 

kinem atic  hypothesis as fo l lo w s :

o -o u = u + y 0

v = v °  + y e °

( A .11) 

( A . 12)

By d i r e c t  s u b s t i tu t io n  in to  Equation ( A .1 0 ) ,  the expressions o f  

k in e t ic  energy f o r  the  p lanar tru ss  considered become,

T 1 = |  co* PAL [ ( u °  + ~ 0 ° ) 2 + ( v ° ) 2 ]

T2= “ 2 PAL [  (u° -  ~  0 ° ) 2 +  ( v ° ) 2  ]

T3= T ^ = T  “ 2 PAh ^ (u° )2 + ”  (0° )2

( A . 13) 

( A .14)

( v ° ) 2 ]

v 4 -  0)2 PAD [  (U ° )2 + ~  (0 ° )  +  ( v ° ) 2 J

(A. 15) 

( A .16)
>5 2 “  l  1 ’  12

Based on a co n s is te n t  mass approach, the k in e t ic  energy expression o f  

the e q u i lv a le n t  continuum model can be w r i t t e n  in m a tr ix  form as:

m11 m12 m13 ■ « ° “

0 ° ] m22 m23
v° (A. 17)

- symmetric m^j 0°

—  1 2  
where irijj = -j=- ( 9 T )

3d j 3dj
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The c e n tro id  o f  the repeating  element has been chosen as the o r ig in  

o f  the s e c t io n ,  and the in e r t ia  terms associated  w ith  e °  as w e ll as i t s  

d e r iv a t iv e s  have been neglected . This re s u lts  in e l im in a t in g  the  

coupling terms o f  the e q u iva len t  mass m a tr ix  c o e f f i c i e n t s ,  th a t  is  

m12 = m13 = m23 = ex ten t io n a i  mass den s ity  c o e f f i c i e n t  m ^ and

' n the x and y d i re c t io n ^  re s p e c t iv e ly  along w ith  the ro ta ry  mass 

i n e r t i a  c o e f f i c i e n t  m ^  are  presented in Table 3 .2  fo r  the p lan ar  truss  

studied in t h is  d is s e r ta t io n .
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APPENDIX "B "

STRAIN ENERGY AND KINETIC ENERGY OF 

THE THREE DIMENSIONAL TOWERS

The expressions fo r  the s t r a in  energy o f  a p in  connected tower w ith  

t r ia n g u la r  cross sections can be expressed as fo l lo w s :

U = Z - I  {d } *  [ K (k)J U (k ) ]  {d >  (B. 1)
k=1 2

where {d} is the nodal displacements vec to r  o f  a ty p ic a l  member defined  

in space by the nodal po in t i and j .

The expression fo r  the nodal displacement vec to r  o f  a pin connected

element is given by:

{ d } 1 = [ u ( , )  v<»> w ^  u ^  v ^  w<J> ] ,  ,  . (B .2 )
u 1x6

The elemental s t i f fn e s s  m atr ix  o f  a ty p ic a l  truss element k

in the local coordinated system is  given by

.(k )i
[K J =" r

1 - i  

- i  i
(B .3 )

2x2

The tran s fo rm atio n  m a tr ix  S fo r  a p in - jo in te d  bar element 

o r ie n te d  a r b i t r a r y  in space (which r e la te s  the displacements in local 

coordinates to those in g lobal coord inates) is expressed as fo l lo w s :

1 m n o o o'

l o  o o 1 m n
(BJf)  

1 x 6

where I ,  m, and n are  the d ire c t io n  cosines o f  a ty p ic a l  truss element.
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The g lobal s t i f f n e s s  m atr ix  o f  a ty p ic a l  truss  element is  given  

by:

[ K <k)]  -  [ 5 ] ‘ [ K (k> ]  L tJ  (B .5 )

S u b s t i tu t in g  o f  Equation (B.3 )  in to  Equation (B .5) leads  

to the elemental g lobal s t i f f n e s s  m a tr ix  [  K ^ ] w h i c h  can be 

expressed as fo l lo w s :

[ K (k ) ]  = i f i .
L

I 2 lm In -  I 2 -  lm -  In

ml 2m mn -  ml -  m2 -  mn

nl nm n2 -  nl -  nm -  n2

- l 2 -  lm -  In I 2 lm In

-ml -m 2 -  mn ml m2 mn

-n l -  nm - n 2 nl nm n2

(B .6 )

6x6

The k in e t i c  energy express ion , based on a co n s is ten t mass 

fo rm u la t io n ,  is  g iven by

T = - L  « 2 S {d } ‘  [ s W ] 1 [ H ( k ) ]  [ S ( k ) ]  {d} ( 8 .7 )
2

k=1

where

[M<k ) ]  is  the elemental co n s is te n t  mass m a tr ix  o f  a ty p ic a l  

member k;
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[«<k>] is the element tran s fo rm atio n  m a tr ix ;

{d} nodal displacem ents v e c to r ;  and 

co is  the n a tu ra l  c i r c u l a r  frequency o f  v ib r a t io n .

The eq u iva len t mass m a tr ix  fo r  a p in - jo in te d  member can be obtained  

by applying Ham ilton's P r in c ip le  which re s u lts  in the fo l lo w in g  expression  

fo r  the elemental mass m a tr ix

[ „ ( k > ]  = _PAL f  21  I ]  ( b . 8 )

« L I  n j 6x6

The (B.8) expression is  in v a r ia n t  w ith  respect to  the se lec ted  ’

set o f  axes. In the specia l case when o n ly  motion along the bar is

considered, the expression (B .8 )  reduces to:

r t PAL[m]= —  
6

2 1 
1 2

(B .9 )
2x2

where p is the mass d en s ity  per u n i t  length  o f  the member; and 

[ l ] i n  equation (B .8 )  is  th ree  by th re e  id e n t i t y  m a t r ix .
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APPENDIX (C)

LISTING OF MACSYMA PROGRAM FOR THE ANALYSIS 
OF TOWERS WITH VARIABLE TRIANGULAR CROSS SECTIONS

/ *  PART 1: INPUT DATA

LBAR = LENGTH OF REPEATING ELEMENT * / $

LBAR: L

/ *  COORDINATES OF NODES OR REPEATING ELEMENT AS FUNCTION OF THE 

INCLINATION ANGLE (BETA) OF TOWER LEGS * / $

H: B/2 *SQRT (3 ) $

XX { 1> : XX { 2 } :  XX { 3 > : -  L /2  $

X X '{4 }:  XX ( 5 } t  XX { & :  L /2  $

YY { 1 } :  YY{3 } :  (B + L *  TAN (BETA)) *  SQRT ( 3 ) / 6  $

YY '{2 }:  - 2 *  (8 + L *  TAN (BETA)) *SQRT ( 3 ) / 6  $

YY f t ) :  YY{6>: (B -  L *  TAN (BETA)) *  SQRT ( 3 ) / 6  S

YY{5>: -  2 *  (B -  L *  TAN ( BETA)) *  SQRT ( 3 ) / 6  $

ZZ{1 }: -  (B + L *  TAN (BETA))/2  $

ZZ {2} : Z Z {5 ):  0 $

ZZ{3}: (B + L *  TAN (BETA))/2  $

Z Z { k } :  -  (B -  L *  TAN (BETA))/2  $

ZZ {6}: (B -  L *  TAN (BETA))/2  $

/ *  CHARACTERISTICS OF THE MEMBERS OF THE REPEATING ELEMENT;

THE PROPERTY LIST CONTAINS NODAL CONNECTIVITIES, YOUNG'S MODULUS, 

CROSS SECTIONAL AREA, LENGTH, MATERIAL DENSITY, AND THE COEFFICIENT 

OF THERMAL EXPANSION FOR EACH MEMBER. * / $
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B

FIGURE C.1 -  REPEATING ELEMENT OF TOWER WITH VARIABLE
TRIANGULAR CROSS SECTION USED IN MACSYMA PROGRAM
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PROP: {

(1 ,2 ,  EB, AB/2, B + L *  TAN (BETA), RHOB, ALPB),

(2 , 3, EB, AB/2, B + L *  TAN (BETA), RHOB, ALPB),

(3 , 1, EB, AB/2, B + L *  TAN (BETA), RHOB, ALPB),

0*. 5, EB, AB/2, B -  L *  TAN (BETA), RHOB, ALPB),

(6 , **, EB, AB/2, B -  L *  TAN (BETA), RHOB, ALPB),

(1 , E1, A1, L/COS (BETA), RH01, ALP1),

(2 , 5, E l , A1, L/COS ( BETA), RH01, ALP1) ,

(3 , 6, E l , A1, L/COS (BETA), RH01, ALP1) ,

(1 , 6 , ED, AD, D, RHOD, ALPD),

(**, 3, ED, AD, D, RHOD, ALPD),

(*», 2 , ED, AD, D, RHOD, ALPD),

(5 , 1, ED, AD, D, RHOD, ALPD),

(6 , 2 , ED, AD, D, RHOD, ALPD),

(5 , 3, ED, AD, D, RHOD, ALPD) }  $

/ *  PART 2; THERMOELASTIC STRAIN ENERGY S STIFFNESS AND

COEFFICIENTS OF THE FULL THEORY * /

DEPENDS ( {EPS 10, EPS20, EPS30, TEPS120, TEPS130, TEPS230, 

UBAR, VBAR, WBAR, PS 10, KAP20, KAP30, KAPBAR, KAPTO, UO, VO, 

WO, PH11, PHI3, TO}, X1) $

RATFAC: TRUE $

SHOWTIME: TRUE $

/ *  EXACT REPRESENTATIONS OF THE DISPLACEMENT FIELDS U, V, W AS

FUNCTIONS OF X1 ARE GIVEN BY THE FOLLOWING EXPRESSION * / $
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DISPLACEMATRIX: MATRIX (

{ UO, -  PHI3 , PHI2 } ,

{VO , EPS20 , -  PH11 + TEPS230/2},

{WO, PH11 + TEPS230/2, EPS30 ) }  $

/ *  EPS = LIST OF ENGINEERING STRAIN COMPONENTS EPS 11, EPS22, 

EPS33, TEPS12, TEPS13, TEPS23 * / $

U: DISPLACEMATRIX. TRANSPOSE ( { 1 ,  X2, X3, X2 *  X3 } ) $

U: TRANSPOSE (U) { 1 }  $

TRANSPOSE (U) ;

EPS: {

DIFF (U { 1 } ,  X1) ,

DIFF (U { 2 } ,  X2) ,

DIFF (u { 3 } ,  X 3 ) ,

DIFF (U { 1 } ,  X2) + DIFF (U { 2 } ,  X I ) ,

DIFF (U { 2 } ,  X3) + DIFF (U {3 } ,  X2) $

SUBLIST: {

•DIFF (UO, X I )  = EPSIO,

'DIFF (VO, X1) = TEPS120 + PH 13,

'D IFF (WO, X I )  = TEPS130 -  PHI2,

'DIFF (PH11, X1) = KAPTO,

'DIFF (PHI2, X I )  = KAP30,

'DIFF (PHI3, X1) = KAP20};

EPS: EXPAND (SUBST (SUBLIST, EPS)) $

TRANSPOSE (EPS) $

/ *  STRAINS AT X1 j* 0 ARE FOUND BY TRUNCATED TAYLOR SERIES ABOUT
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XI = 0 BEING THE CENTER OF THE REPEATING ELEMENT 

CALCULATE THE STRAIN ENERGY UU * /

UU: 0 $

FOR K THRU LENGTH (PROP) DO (

L X I : XX {PROF :{K,1) } ,

L Y I : YY {PROP ( K , 1 ) } ,

L Z I : ZZ {PROP (K, 1) } ,

LXJ: XX {PROP ( K , 2 ) } ,

LYJ: YY {PROP (K ,2 )  } ,

LZJ: ZZ {PROP ( K , 2 ) } ,

/ *  LEN IS THE LENGTH OF MEMBER K

L I ;  L 2 ; , L3 ARE THE DIRECTION COSINES OF MEMBER K * /

L I :  (LXJ -  LX I) /LEN,

L2: (LYK -  LYI) /LEN,

L3: (LZJ -  LZY) /LEN,

/ *  EVALUATE THE STRAINS AT THE CENTER OF MEMBER K * /

CENTER: {XXI = (LXI + LXJ) / 2 ,  X2 = (LYI + LYJ) / 2 ,  X3 -  (LZI + L Z J ) /2 }  ,

EPS 11: SUBST (CENTER, EPS {1 }  ) ,

EPS: SUBST (CENTER, EPS { 2 } ) ,

EPS33: SUBST (CENTER, EPS {3 }  ) ,

TEPS12: SUBST (CENTER, EPS {4 }  ).,

TEPS13: SUBST (CENTER, EPS {5 }  ) ,

TEPS23: SUBST (CENTER, EPS {6 }  ) ,

TEMPERATURE: SUBST (CENTER, TO + X2 *  T2 + X3 *  T3 + X2 *  X3 *  T 23 ),

/ *  AXIAL STRAINS IN MEMBERS AS A FUNCTION OF THE STAIN COMPONENTS IN 

COORDINATE DIRECTIONS * /

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



EPSMEM: EPS 11 *  L1 *  LI + EPS22 *  L2 *  L2 *  EPS33 *  L3 *  L3 + TEPS 12

*  L1 X L2 + TEPS13 *  L1 *  L3 + TEPS23 *  L2 *  L3 ,

EPSMEM: RATSIMP (EPSMEM) -  PROP { K ,7 }  *  TEMPERATURE,

UU: UU + PROP { K ,3 }  *  PROP { M >  A PROP {K,5 }  *  EPSMEM A 2 /2  ) $

/A ‘ LIST OF VARIABLES AND DERIVATIVES CONTAINED IN UU * /

SHOWRATVARS (UU);

/ a THE TERMS IN UU CONTAINING THE QUANTITIES DIFF (TEPS230.XI) ,  DIFF

(EPS20, X I ) ,  DIFF (EPS30,XI) WILL BE IGNORED BECAUSE THESE QUANTITIES 

MUST BE ZERO TO HAVE COMPATIBILITY BETWEEN REPEATING ELEMENT * /  

VARLIST: { EPS10, KAP20, DAP30, TEPS120, TEPS130, KAPTO, TEPS230,

EPS20, EPS30, TO, T2 , T3 >;

NUMBERVARS: LENGTH (VARLIST)}

/A  COMPUTE THE STIFFNESS AND THRMAL COEFFICIENTS CC { l , j }  OF THE FULL

THEORY

FOR I THRU NUMBERVARS DO (

( I :  DIFF (UUILBAR, V A R L IS T { | }  ) ,

FOR J THRU I DO (

C C { I , J >  : DIFF (C l ,  VARLIST { J> ) ,

CC { l , J }  : EXPAND (RATSIMP (CC { l , J }  ) )  ) )  $

KILL (ALLBUT (LBAR, PROP, XX, YY, ZZ, VARLIST, NUMBERVARS,

CC, DISPLACEMATRIX, DEPENDENCIES));

/A PART 3; STIFFNESS AND THERMAL COEFFICIENTS OF ENGINEERING THEORY. * /

NND: 6

NNU: NUMBERVAR $

NNL: NNU-3 $
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FOR I THRU NNU DO FOR J THRU I DO 

IF CC { I , J} = 0  THEN

C { I , J> : C { J , I } : F { I , J } : F { J , I } : 0 ELSE

F { l , J >  : F {J , I } : » *»  $

/ *  MATI IS AMATRIX WHICH INDICATES BY O'S OR * 'S  WHICH ELEMENTS OF

C { I , J > ARE ZERO OR NONZERO * /

MATI: GENMATRIX (F,NNU,NNU) $

FOR I:  NNL STEP-1 THRU NND + I DO FOR J THRU 1-1 DO

IF C { | , J}  t  0 THEN (

FOR K: I THRU J DO C { J , K} : C { J ,K }  -  C { I , K} *

C { l , J }  /C { 1 , 1 }  ,

FOR L: NNL +1 THRU NNU DO C { L , J }  : C { L , J }  -  C { L , l }

*  C { I .J }  /C {J , l}  ) $

/ *  COMPUTE AND DISPLAY THE STIFFNESS. COEFFICIENTS C { l , J }  FOR

THE ENGINEERING THEORY * /

FOR I THRU NND DO FOR J THRU I DO 

IF C { I . J }  ^ 0 THEN

C { I . J  } : SUBST (C = CC, C I , J ) ,

C { I . J  > : EV(C { I , J } , EVAL),

C { I . J  } : C { J . 1} : FACTOR (RATSIMP (C { I . J } ) ) ,

DISPLAY (C { I , J } ) ) $

CCC: GENMATRIX (C,6 ,6 )  $

/ *  COMPUTE AND DISPLAY THE THERMAL COEFFICIENTS C l , J  FOR 

ENGINEERING THEORY. * /

FOR I : NNL + I THRU NNU DO FOR J THRU NND DO

IF C { l , J }  *  0 THEN (
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C { I , J } : SUBST (C=CC, C { l , J  } ) ,

C { I ,J }  : -EV (C { I , J > , EVAL),

C {J .  I > : C { J . I  > : FACTOR (C { j , J }  ) ) $

CCT: GENMATRIX (C ,6 ,N N U ,I ,N N L +!) .

{TO , 'DIFF (TO, X 2 ) , 'DIFF (TO, X 3 ) ,  'DIFF (TO, X2,1 , X 3 ,1 ) }  

KILL (LABELS, C,CC,F,MATI) $

{VALUES, ARRAYS, FUNCTIONS};

/ *  PART 4; KINETIC ENERGY AND EFFECTIVE MASS COEFFICIENTS * /

MASSMATRIX: MATRIX (

{ MO , M02, MO 3 },

{ M02 , M22, M2 3 },

{ M03 , M23, M33}) ' $

TT: (OM 2 *  LBAR/2) *  (MO *  (UO *  UO + VO *  VO + WO *  WO)

+ 2 *  M02 *  (WO *  PHI1 -  UO *  PH 13)

+ 2 *  M03 *  (UO + PHI2 -  VO *  PH 11) -  2 *  M23 *  PH 12 *  PHI 3

+ M22 *  (PHI 1 A 2 + PHI3A 2)

+ M33 *  (PH11 A 2 + PHI2A 2) ) ;

/ *  TT = KINETIC ENERGY OF EQUIVALENT CONTINUUM BEAM WHERE OM IS THE 

CIRCULAR FREQUENCY OF VIBRATION

TTT = KINETIC ENERGY OF REPEATING ELEMENT * /  $

TTT: 0 $

FOR K THRU LENGTH (PROP) DO (

A l:  {1 ,Y Y  {PROP { K, I } }  , ZZ {PROP { K, I } , YY { PROP { K, I } *

{ZZ} PROP { K, 1}} }

AJ: { I ,  YY {PROP {K ,2  } }  , ZZ {PROP {K,5: } }  , YY {PROP { K , 2 } } *

ZZ{ PROP { K, I } }  },
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VELLI: OM*DISPLACEMATRIX. TRANSPOSE ( A I ) ,

VELJ: OM*DISPLACEMATRIX. TRANSPOSE (A J ),

TTT: TTT + (PROP {K,A } *  PROP {K ,5  } *  PROP { K , 6 } / 6 )  *

(VELI. VELI + VELI. VELJ + VELJ. VELJ) ) $

VARLIST: LIST OF VARS (DISPLACEMATRIX) $

NUMVARS: LENGTH (VARLIST);

FOR I THRU NUMVARS DO (

M l: DIFF (TT-TTT) /  (LBAR *  OM 2 ) ,  VARLIST I ) ,

FOR J THRU I DO (

M { I , J} : DIFF (M l, VARLIST {J > ) ,

M { I , J }  : M{ J , I )  : RATSIMP (M { I , J }  ) ) )  $

LIST: LIST OF VARS (MASSMATRIX) $

GLOBALSOLVE: TRUE $

FOR I THRU NUMVARS DO FOR J THRU I DO (

MM { l , J }  : EV (M { I , J } ,  EVAL),

FOR K IN LIST DO

IF NOT FREEOF (K,MM { I , J }  ) THEN LINESOLVE (MM { I , J } ,  K) ) $

FOR VAR IN LIST DO

IF (TEMP: EV (VAR, EVAL)) + 0 THEN DISPLAY (VAR = EXPAND (TEMP)) $ 

NONZERO DISPLAY (SYMMETRICMATRIX): = BLOCK ( {M A T ,  TEMP} ,

MAT: EV (SYMMETRICMATRIX),

FOR I THRU LENGTH (MAT) DO

FOR J THRU I DO

IF (TEMP: EXPAND (MAT { I ,J / }  ) )  4  0

THEN DISP (ARRAYMAKE (SYMMETRICMATRIX, { I , J } = TEMP)) $

NONZERO DISPLAY ('M ) $
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START

READ 
N,I,EQUIVALENT 

BEAM PROPERTIES

N=1

.EVALUATE AND WRITE EQUIVALENT 
STIFFNESS AND MASS COEFFICIENTS 
OF TRIANGULAR TOWERS WITH 
CONSTANT CROSS SECTIONS.

N=2

.EVALUATE AND WRITE EQUIVALENT 
STIFFNESS AND MASS COEFFICIENTS 
OF TRIANGULAR TOWERS WITH 
LINEARLY VARYING CROSS SECTIONS

N=3

 !________________
.EVALUATE AND WRITE EQUIVALENT 
STIFFNESS AND MASS COEFFICIENTS 
OF RECTANGULAR TOWERS WITH 
CONSTANT CROSS SECTION.

C STOP )

FIGUREC.2- FLOW CHART OF FORTRAN IV PROGRAM USED 
IN THE PRESENT STUDY TO EVALUATE THE 

EQUIVALENT CONTINUUM PROPERTIES OF 
DIFFERENT LATTICED STRUCTURES

I
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FORTRAN IV PROGRAM TO EVALUATE THE EQUIVALENT 

CONTINUUM PROPERTIES FOR DIFFERENT MATERIAL 

PROPERTIES AND CONFIGURATION OF TOWERS

C STIFF, AND MASS COEFF. FOR TOWERS WITH CONSTANT AND VARIABLE CROSS SECTIONS

C M=NUMBER OF SECTION PROPERTIES SETS

M=30

DO 10 1=1,M

READ ( 5 , * )  N,B , L ,AB ,AD ,A1 ,EB ,2ED 

,E1 , RHOB , RHOD ,RH01, U .BETA

C N IS CROSS SECTIONAL IDENTIFICATION NUMBER

C N=1 (TRIANGULAR CROSS SECTION TOWERS WITH VARIABLE CROSS SECTIONS)

C N=2 (RECTANGULAR CROSS SECTIONAL TOWERS)

C N=3 (CONSTANT TRIANGULAR CROSS SECTIONAL TOWERS)

TAN ( BETA)=S IN (BETA) /COS (BETA)

D=SQRT (L * * 2 . + ( B-L*TAN (BETA)) * * 2 . )

G =E1/(2 .+2 .*U )

IF (N.EQ.O) GO TO 200

IF (N.EQ.2) GO TO 20

IF (N.EQ.3) GO TO 15

C11 = 2 7 . * (2 . *A1*AD*(COS (B E TA ))**3 .*(TA N (B ETA ))** i» .*E1*ED *L**4 .

1 + 2 . *AB*AD*B*EB*ED*L**3. - k . *A1*AD*B**2. * (COS(BETA)) * * 3 . * (TAN(BETA))

1 **2 .*E1*ED*L**2.+2.*A1*A D*B**1*.*E1*ED*(C0S(BETA )) * * 3 .

1 +A 1*A B *B *D **3 .*E 1*E B *(C O S (B E T A ))**3 .) /(2 .A D *E D *L**4 .*

1 (TAN ( (BETA)) ;=12 . *A D *B **2 . *E D *L **2 . *  (TAN ( BETA)) * * 2 .  +

1 1 6 .*A1* ( COS(BETA)) * * 3 . * (TAN( BETA)) * * k . * D * * 3 . *E 1*L+18 . *AD*B**A.
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1 *ED+9.*AB*B*EB*D**3.)

C22=3. *  ( 2 . *DA **2 . *E D **2 . * L * * 9 . *  (TAN( BETA)) * * 6 . - 4 . *A D **2 . * B * * 2 .

1 *ED**2 . * 1 * * 7 . *  (TAN ( BETA)) * * 4 . +16. *A 1*A D *D **3 . *E 1 *ED*L**6

1 *  (COS (BETA)) * * 3 .  *  (TAN (BETA)) * * 6 . + 2 . *A D **2 . * B * * 4 . *E D **2 . * L * * 5 .

1 *  (TAN (BETA) ) * * 2 .+ 9 .  *AB*AD*B*D**3. *E B *E D *L **5 .*  (TAN (BETA))

1 * * 2 . - 2 0 . *A1 *AD*B**2. * 0 * * 3 . *E 1 *E D *L * *4 . *  (COS (BETA)) * * 3 . *

(TAN ( BETA)) * * k  .+ 3 .  *AB*AD*B**3. *E B *E D *L**3 . - 8 .  *A1 *AD*B**A.

1 * D * * 3 . *E1 *ED* (COS (BETA)) * * 3 .  *  (TAN ( BETA)) * * 2 . * 2 . * L * *2  .+12

1 *A1*AD*

1 B **6 .*D **3 .*E 1 *E D *(C O S (B E T A ))* *3 .+ 6 .*A 1 *A B *B **3 .*D **6 .*

1 E1 *EB* (COS (BETA)) * * 3  • ) /  (4 .  * D * * 3 . *  (2 .  *A D*ED*L**4 . *  (TAN ( BETA))

1 * *4 .+ 1 2 .*A D *B **2 .*E D *L **2 .* (T A N  (BETA) ) * * 2 .+ l6 . * A 1 * E 1 * L *

2 0 * * 3 . * (COS(BETA)) * * 3 . * (TA N (B E TA ))**4 .+18 .*A D *E D *B **r .+9 .

2 *AB*B*D**3.*EB))

C44=9. *  ( 6 . *A D **2 . *E D **2 . *E D **2 . * L * * 5 . * (TAN( BETA)) * * 4 . + 4 . *A1*AD*

1 D **3 . *E 1 *E D *L**4 . *  (COS ( BETA)) * * 3 . *  (TAN (BETA)) * * 6 .  - 1 2 . *A D **2 . *

1 B **4 . *  (TAN(BETA)) * * 2 . *

1 ED**2. *L * *3  • +AB*AD*B* (TAN (BETA)) * * 2 .  * D * * 3 . *EB *ED *L**3 . - 8 *

1 A1 *AD*B**2. *  (COS (BETA)) * * 3 . *  (TAN (BETA)) * * 4 . * D * * 3 . E1 *ED*

2 L * * 2 .+ 6 .  *AD**2. * B * * 6 . *E D **2 . *L + 3 . *AB*AD*B**3.

2 * D * * 3 . *EB*ED*L+4. *A1*

1 AD*B**4. *  (COS ( BETA)) * * 3 .  *  (TAN ( BETA) ) * * 2 .  * D * * 3 . *E1 *ED+2. *A1 *AB*
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1 B* (COS ( BETA)) * * 3 . * D * * 6 . *E 1 *EB* (TAN ( BETA) ) * * ! . ) /  (D * * 3 . *

1 ( 2 . *AD*(TAN(BETA)) * * k . *

1 ED*L**4 .+12 . *AD. *A D *B **2 . *  (TAN ( BETA)) * * 2 .  *ED*L**2  .+16 . *A1 *  (COS

1 ( BETA)) * * 3 .  *  (TAN (BETA)) * * k . * D * * 3 . *E 1*L+18 . *A D *B **4 . *ED+

1 9 .*A B *B *D **3 .*E B ))

C66=AD*ED*L*( L*TAN(BETA)) * * 2 .  + B * * k . ) / 2 . D **3 . )

C42=9. *B * (TAN (BETA)) *  (AD ( ( 2 .  *  (TAN ( BETA)) * * k . *E D **2 . * L * * 7 .

1 - 2 .  *A D **2 . *B * *2 . *  (TAN ( BETA)) * * 2 . * E D **2 . .  * L * * 5 . +2. *A1 *AD* (COS

1 (BETA)) * * 3 . * (TAN (BETA) ) * * k . * D * * 3 . . *E1*ED*L**1».+AD**2.*B**1».*ED

1 * * 2 .  * L * * 3 . + 2 . *AB*AD*B*D**3. • *EB *E D *L**2 . - k . *A1 *A D*B**2. *

1 (COS ( BETA)) * * 3 . *  (TAN (BETA)) * * 2 . * D * * 3 . *E 1 *E D *L **2 . +2 . *A1 *AD*B*

1 *1 , . *  (COS (B ETA ))**3 .*D **3 .*E1*ED *+A 1*A B *B *(C O S(B ETA ))**3 .*D *6 .

1 *E 1 *EB)/  (D * * 3 . *  (2 . *AD* (TAN ( BETA)) * * k . *E D *L **4 .+ 1 2 . *AD 

1 * b * * 2 . *  (TAN ( BETA)) * * 2 .  *E D *L * *2 .+16 .*A1 *  (COS ( BETA)) * * 3 . *

1 (T A N (B E T A ))**4 .*D **3 .*E 1*L +18 .*A D *B **4 .*E D +9 .*A B *B *D **3 .*E B ))

AM 1 =6. *AD*D*RH0D/ L+3. *AB*B*RHOB/L+3. A1 *RH01 /COS (BETA)

AM22=5. *AD* (TAN ( BETA)) * * 2 .  *D *L*RH 0D /6 .+A D*B**2 . *D*RH0D/ (2 . *L )

1 + 3 . *AB*B* (TAN (BETA)) * * 2 .  *L*RH O B A.+AB *B **3 . *RH0B/ ( k . *L )

1 +A1*(TAN(BETA) ) * * 2 . * L * * 2 . * R H 0 1 /  ( 6 . *  (COS (BETA))

1 )+A 1*B **2 .*R H 0 1 /( 2 . * (COS(BETA))

AEQ=C11/El 

ASEQ=CWG 

AJEQ=C66/G
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12 CONTINUE

C PROPERTIES OF CONST. RECTANGULAR CROSS SECTION

20 DO 13 K=1,M

D=SQRT(B**2.+L**2.)

G =E 1 /(2 .+2 .*U )

EL=EB

AL=AB

RHOL=RHOB

A N U = 1 .+ (2 .*B **3 .*H D *A D /(D **3 .*E B *A B )) /(1 .+E L *A L /(E B *A B *S Q R T (2 .) ) )  

AN 11=1.+2 .*B **3 .*E D *A D /(D **3 .*E B *A B )

C11= k . *E 1*A1+ 8 . * L * * 3 • *ED*AD/(ANU*D**3. )

C22=B**2. *E 1*A 1*B **2 . * L * * 3 . *ED*AD/(ANU1* D * * 3 . )

Ckk=k. * B * * 2 . *L*ED*AD/D**3.

C66=2. *L*ED*AD/D**3.

C42=0.0

AM1=if.*RH01*A1+i».*B*RH0B*AB/L+i*.*B*RH0L*AL/(L*SQRT(2.)) +

1 8.*D*RH0D*AD/L 

AM22=B**2.*RH01*A 1+2 .*B **3 .*R H 0B *A B /( 3 . * L )+ B * * 3 . *RHOL*AL*

1 ( 3 . *L*SQRT( 2 . ) )+ 4 . * B * * 2 . *D*RHOD*AD/( 3 . *L )

AM23=B**A .*RHO 1*A1 A  .+ B * *5 . *RHOB*AB/ ( 1 2 . * L ) + B * * 5 . *RHOL*A

1 (1».*L*S0RT(2.))

2 +B**4 .*D *RH 0D*AD /(6 .*L )

AEQ=C11/E1 

AIEQ=C22/E1 

ASEQ=CM/G 

AJEQ=C66/G
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AMIL=AM1*L/2.

AM22L=AM22*L/2.

WRITE (5 ,1 0 0 )  C11,C22,Ci»4,C66,CA2,AM1,AM22 

WRITE (5 ,3 0 0 )  AEQ,AIEQ,ADEQ, AMIL,AM22L,AJEQ 

GO TO 10

C TRIANGULAR PROPERTIES OF CONST . SECT.

15 DO 12 J=1,M

D=DQRT(B**2.+L**2.)

G = E 1 /(2 .+ 2 .*U )

AMU=1. + ( 2 . * B * * 3 . *ED*AD)/ (D **3 . *EB*AB) 

C 11=3.*E1*A 1+6.*L**3 .*ED*AD /*A M U*D **3 .)

C 22= 0 .5 *B **2 . *E 1*A 1+B**2. * L * * 2 . *ED*AD/( k . *AMU*D**3. )  

C M »=3.*B**2 .*L*ED*AD/D**3 .

C 66=0 .5 *B **4 .*L *ED *A D /D **3 .

C42=0.0

AM1 = 3 . * (THO1*A1+B*RHOB*AB/L+2. *D*RHOD*AD/L)

AM22=( B * *2 . / 2 . ) * ( RH01*A 1+0.5*  B*RHOB*AB/L*D*RHOD*AD/L)

AEa=C11/E1

AIEQ=C22/E1

ASEQ=CWG

AJEQ=C66/G

AM1L=AM1*L/2.

AM22L=AM22*L/2.

WRITE (5 ,1 0 0 )  C11,C22,Ci»1»,C66,Cl»2,AM1,AM22 

WRITE (5 ,3 0 0 )  AEQ,AIEQ,ASEQ,AM1L,AM22L,AJEQ 

GO TO 10
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AM1L=AM1*L/2.

AM22L=AM22*L/2.

WRITE (5 ,150 ) AM23

WRITE (5 ,100 ) C11,C22,C44,C66,C42,AMI,AM22  

WRITE (5 ,300) AEQ,AIEQ,ASEQ,AM1L,AM22L,AJEQ 

GO TO 10 

13 CONTINUE 

10 CONTINUE

150 FORMAT( / / , 1 0 X , 'M 2 2 3 3 - ' , 3 X ,E 1 5 ,6 , / / / )

100 F0RMAT(10X,//,10X,'STIFFNESS C O E F F IC IE N T S ', / / / ,1 0 X , 'C 1 1 = ' ,3X ,

9 E 1 5 .6 , / ,1 0 X , 'C 2 2 = ' ,3 X ,E 1 5 .6 / ,1 0 X >'CV»=, ,3 X ,E 1 5 .6 ,

6 / , 1 0 X , , C 6 6 = ' ,3 X ,E 1 5 .6 , / ,1 0 X , 'C 4 2 = ' ,3 X ,E 1 5 .6 ,

9 // ,10X ,'M A SS C O E F F IC IE N T S ', / / ,1 0 X , 'M 0 = ',3 X ,

7 E 1 5 .6 , / , 1 0 X , 'M 2 2 = ' , 3 X ,E 1 5 .6 , / / /  )

300 FORMAT(1 OX,/ / , 1  OX,'EQUVALENT COEFFICI ENTS' , / / , 1 0X,

1 'EQ. AXIAL AREA = ' ,3 X ,E 1 5 * 7 , / / , 1 0 X , 'E Q .  MOM. OF INERTIA=;

2 3 X ,E 1 5 .7 . / / ,1 0 X , 'E Q .  SHEAR A R E A = ',3 X ,E 1 5 .7 , / / ,1 0 X ,

3 'EQ. EXTENT IAL INERTIA = '  ,3 X ,E 1 5 .7 , / / , 10X,

4 'EQ. ROTARY INERTIA = ' , 3 X , E 1 5 » 7 , / / , 1 0 X , ' EQ.TORSIONAL INERTIA=',

5 3 X .E 1 5 .7 , / / / )

200 STOP

RETURN

END

C EQUIVALENT MASS AND STIFF. COEFF. FOR A PLANAR TRUSS

C M=NUMBER OF SECTION PROPERTIES SETS
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M=30

DO 10 1 = 1, M

READ ( 5 , * )  B,L,A,E,RHO,U  

D=SQRT(B**2,+L**2.)

G =E /(2 .+2 .*U )

C l1=2.*E*A  

C22=E*A*B **2 ./2 .

C l» l f= E * A * L * B * * 2 . /D * * 3 . -E * A * L * * 4 . * B * * 2 . / (D * * 3 . * L * * 3 .+ 2 . * D * * 6 . )  

AM1=RHO*A*( 2 .+B/L+D/L)

AM22=RH0*A* B **2 . / 2 .+  (RHO*A* B** 3 . +RHO*A* D* B **2 . )  / 1 2 .  *L

AEQ-C11/E

AlEQ=C22/E

ASEQ.=CWG

AJEQ=C66/G

AMIL=AM1*L

AM22L=AM22*L

WRITE (5 ,100 ) C11,C22,Cl*l*,C66,Cl»2,AM1,AM22 

WRITE (5 ,300 )  AEQ,AIEQ,ASEQ, AM1L,AM22L,AJEQ 

TO TO 10 

10 CONTINUE

100 FORMAT (10X ,// ,10X ,'ST IFFN ESS COEFF1C I ENTS' , / / / , 1 0 X , ' C11 = ' ,3X,

9 E 1 5 .6 , / , 1 0 X , , C 2 2 = ' ,3 X ,E 1 5 .6 , / ,1 0 X , , C ^ = ' , 3 X ,E 1 5 . 6 ,

6 / , 1 0 X ,  'C66=' ,3 X ,E 1 5 .6 , / ,1 0 X ,  , Ci»2=l ,3 X ,E 1 5 .6 ,

9 / / , 10X,'MASS C O E F F IC IE N T S ', / / ,1 0 X ,'M 0 = ',3 X ,
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7 E 1 5 .6 , / , 1 0 X , 'M 2 2 = ' , 3 X , E 1 5 . 6 , / / /  )

300 FORMAT(1 OX,//,1OX,'EQUVALENT C O EFFIC IEN TS ',/ / ,10X ,

1 'EQ. AXIAL AREA = ' , 3 X ,E 1 5 .7 , / / , lO X.'EQ . MOM. OF INERTIA=',

2 3 X ,E 1 5 .7 , / / , 1 0 X , 'E Q .  SHEAR A R E A = ',3 X ,E 1 5 .7 , / / ,1 0 X ,

3 'EQ. EXTENT IAL INERTIA = ' ,3 X ,E 1 5 -7 » / / ,1 0 X ,

k 'EQ. ROTARY INERTIA = ' ,3 X ,E 1 5 .7 , / / , 1 0 X , ' EQ. TORSIONAL INERTIA=',

5 3 X , E 1 5 . 7 , / / / )

RETURN

END
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