

Exploring Primitives of Meaning in Support of Interoperability

Charles D. Turnitsa
Virginia Modeling Analysis and

Simulation Center
Old Dominion University

Suffolk, VA 23435
cturnits@odu.edu

Andreas Tolk, Ph.D.
Frank Batten College of

Engineering & Technology
Old Dominion University

Norfolk, VA 23529
atolk@odu.edu

Robert Kewley
Operations Research Center

US Military Academy
West Point, NY 10996

Robert.Kewley@usma.edu

Keywords:

Primitives of Meaning, MATREX FOM, Command and Control Languages,
Semantic Alignment, Conceptual Modeling

ABSTRACT: Semantic mismatch between systems is due, in part, to the grouping together of terms who have defined
meaning in different levels of granularity, and which are composed together into different groupings by distinct systems.
It has been proposed that making use of elemental concepts (referred to here as primitives of meaning) can assist in
interoperability, but seeking to define all terms at a level of granularity equal to or greater than that of all involved
systems.

By decomposing a system’s groups of composed terms into primitives of meaning, the building blocks that can be
reassembled into the compositions required by another group (of another system, for instance) can be made apparent.
While such a de-composition could serve as the basis for an interoperability enabler, having the decomposition
available as a common descriptor to highlight areas of semantic misalignment should prove in itself useful.

Taking doctrinal statements for US small unit infantry actions as one semantic system, we show how the elemental ideas
that are grouped together into commands can be identified and isolated for reconstruction into other groupings. This is
the first research step towards relying on primitives of meaning for interoperability.

1 Introduction
This paper presents research that is intended to
contribute to interoperability solutions by showing how
the primitives of meaning that make up the terms (and,
in turn, the compositions of terms) that are the basis of
communication between systems attempting to
interoperate. A number of publications from both
inside [1] and outside [2] of SISO have previously
described the Levels of Conceptual Interoperability
Model, which gives stratification to the continuum of
potential conceptual meaning available to systems
attempting to interoperate. By its nature, a system that
uses atomic conceptual elements (such as the
primitives of meaning, described here) in order to
exchange semantic meaning between systems is in
support of the conceptual interoperability at or above
level 3, the “Semantic Level” of interoperability.

The paper is organized in the following manner:
section 2 describes the problem of semantic
misalignment between systems, such that the rest of the
paper can be viewed with clarity as supporting a
specific problem. Section 3 describes a possible

solution for the problem in general terms. Section 4
describes a particular problem and applies the general
terms of the solution to that problem to illustrate how it
might be practically applicable. Section 5 describes
some other works that explored similar ideas. Section
6 gives a summary, and describes the way forward for
future research.

2 Semantic Misalignment
Interoperability between systems is enabled by the
transmission of communications from a transmitting
system to a receiving system, and the interpretation of
those communications by the receiving system. By
using this mechanism, one system can make
information about its internal state known to another
system. Such communications have different names,
but in the community of modeling and simulation
(M&S), especially military M&S, these are known as
“messages” or “updates”. When the communications
are intended to convey command and control (C2)
information, they are often thought of as “orders”,
“reports”, “tasks”, or “plans”. In almost all cases, such
communications represent a script of several actions, or

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Old Dominion University

https://core.ac.uk/display/270056249?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

represent one or more actions for an aggregation of one
or more objects.

While such groupings are convenient, and avoid having
to send multiple communications to represent a
common idea, between different systems the grouping
is possibly arranged at a different granularity or
composition. This problem is represented graphically
in Figure 1- Misalignment of Compositions.

In Figure 1, we can see that two different systems –
named letter system and number system – have
different compositions. They may be discussing the
same letter-number items (a1, a2, b1, b2, etc.), but they
compose them along different axes of categorization,
based on their own perspective.

When these compositions are groupings of actions, or
processes, then each composition can be said to
represent a script of processes. The likely problem
here is that for one system, a series of processes may
always be encountered in a specific script, but for
another system each primitive (or component process)
of the script may need to be represented separately, or
combined in scripts of different composition.
Likewise, when the composition is referring to an
aggregation of different objects which is convenient for
one system, which we can name a collective of objects,
it is quite possible that another system may have to
address only one member of such a collective, or
perhaps a different collective composed of other
primitives.

3 Primitives of Meaning
The proposed solution, of breaking down the
compositions of each system, into higher granularity
primitives that can be reassembled at need for each
system in question, is a solution that works very well
when dealing in the abstract, but raises some

immediate questions when it is brought to the
applications table.

The immediate question asked when attempting to
break a composition into primitives is concerned with
identifying the primitives themselves. Simply put, a
primitive is some identifiable conceptual aspect of a
composition. When one is considering an entity, apart
from how it might be represented as a composition
within a system, it is clear that there might be an
unknowable number of different concepts/aspects that
make up the definition of that entity. But, as a
composition of attributes represented in a system, the
entity has (at most) one primitive per attribute
(although it likely has many fewer than this, so that
each primitive is responsible for several attributes).

If one is attempting to identify the primitives that make
up an action, or process, composition, it can also be
broken up based on its identifiable component parts.
As the action or process is responsible for altering the
attributes of some other entity (either object or
process), then the different ways in which those
attributes can be altered can be identified separately as
primitives. For example, suppose that a process
composition is actually a script of several actions that
each modify an object’s attributes, in a time sequential
manner, than each identifiable action that makes up
part of the script could be labeled a separate primitive.

3.1 Reasons for identifying primitives of
meaning

Once the several primitives of a composition are
identified, the next question is likely to be – how is my
system going to handle this collection of primitives,
when it previously handled one or more compositions
in their place. This question is likely to have a number
of different answers; two that have been anticipated are
described here.

• Case 1: Primitives are identified and relied upon
for building a transport/translation mechanism
between systems.

• Case 2: Primitives are identified as having a
requirement for representation within a system,
which is independent from the entities that
originally exhibited them.

These two are distinguished from each other based on
why the primitives are used. In the first case, if the
primitives are used merely as a transport mechanism,
when the different compositions are out of alignment
with each other, then the solution becomes one of
decomposing and recomposing for each system. Going
back to the example of Figure 1, if letter system
requires the entity “a1a2”, and to get that information
the number system must provide the compositions
“a1b1c1” and “a2b2c2”, then a translation mechanism

A1

A2

B1

B2

C1

C2

Entity 1 Entity 2

A1 B1 C2C1 B2A2

A1

A2

B1

B2

C1

C2

E
ntity A

Entity B

E
ntity C

C
O
M
PO
SITIO
NS
 O
F “LETTE
R
” SYSTE
M

COMPOSITIONS OF “NUMBER” SYSTEM

PRIMITIVES OF MEANING

Figure 1- Misalignment of Compositions

must be able to decompose and recompose from
compositions to primitives, and so on, for each system.
The original systems remain intact.

The second case is one where it is required to separate
out the primitives out of an entity for distinct
consideration within a system. For instance, if a
system is used to executing a process composition,
which is a script of different actions, and it now
becomes required for the system to distinguish a subset
of that composition – distinguishing one action, or a
smaller composition of actions – then the system must
be modified to only act on the desirable portion of the
original composition. While not possible in all
situations, a potential approach case 2 involves having
the translation mechanism apply null or zero attribution
to the portions of a composition that are not desired to
be represented in the system. It is also quite possible
that a combination of these two cases will be required
to solve the applications problem at hand – this would
be in the case where the target system is now required
to exhibit portions of a new composition, where it used
to show a different composition. In order to derive the
portions of the new composition that is required, a
translation (as in case 1) must be accomplished.

3.2 Primitives of meaning and MBDE

Model Based Data Engineering (MBDE) is a useful
method for structuring data for purposes of enabling
interoperability, based on the intended model that the
system relies on for giving the data meaning. MBDE
consists of following four steps [3], which are Data
Administration, Data Management, Data Alignment,
and Data Transformation. In non-trivial cases, it is
likely that the different model perspectives of separate
systems will require a case 1 consideration of breaking
entities into their component attributes. This means
that the four steps of MBDE can be assisted by
considering the primitives of meaning that are
responsible for those attributes, for the purposes of
organization and categorization of the attributes to be
handled during Data Alignment, and Data
Transformation.

3.3 Primitives of meaning and the LCIM

The Levels of Conceptual Interoperability Model
(LCIM) is a model for stratifying the possible
continuum of conceptual meaning that can be
expressed between interoperating systems. It is
divided up into a number of different layers. The
semantic layer relies on expressing information
between systems, and giving it a semantic label (a
name or tag assigned by the originating system that
hopefully is within the context of the receiving
system). To move above that level, to the increased
conceptual expressivity described for the pragmatic

level and beyond, the meaning and context of the
information exchanged must be made understood by
the originating system to the receiving system. In a
community where the primitives of meaning are
unambiguous, and for systems whose entities can
described (using a method such as described in case 1,
from section 3.1, above) using those primitives of
meaning, then the meaning of the information
exchanged can be made known from system to system.

4 Doctrine to FOM
In an ongoing project in support of PEO Soldier, it
became desirable to depict doctrinally based tasks, for
small infantry units, in a number of different simulation
systems. Those systems are federated together using
the high level architecture (HLA), and relying on the
MATREX federation object model (FOM). The FOM
gives description and attribution to a number of entities
and interactions (actions) that are appropriate for small
unit actions. However, some of the interactions that
are typically relied on for the tasks in question have a
lower composed granularity of meaning, than would be
desired in a training setting. This seemed like a very
good test case to attempt to solve the problem using
primitives of meaning.

4.1 Doctrinal Model

The desired action to depict for a typical training
exercise that this experimental work focused on, is that
of representing a “support by fire” order within a
constructive simulation, with appropriate input from
members of the training audience to represent the input
that a small unit commander would give to his unit.

The support by fire command is described in US Army
Infantry doctrine [6]. The description of the command
is given in the appendix (section 7) of this paper. From
the field manual, we can take a look at an example
order that a unit leader might receive, that describes
how the actions of a support by fire command would
be transferred, in a C2 community.

WPNs, establish an SBF on the berm to the south
of Bldg 100 and orient your fires to the North.
On the codeword “ANVIL 1,” engage the first
and second floor with 10 secs of cyclical M240B
fire, subsequently talking your guns at a rapid
rate. Additionally, maintain a watch and shoot to
the East of Bldg 100 to prevent the enemy’s exfil.
On “HAMMER,” shift your fires to the east of PL
RED onto Bldg 101, and standby for “ANVIL 2.”

Combining the knowledge of the general form of the
doctrinal command, with a specific example, we can
now take a look at the command, and begin to see
which processes/actions are required to be depicted,
and what their features are; likewise, we are able to get

a catalog of the objects that need to be represented in
order to satisfy those processes.

Figure 2- Diagram supporting example of Support by
Fire

The basic processes involved are these:

• Move to given location of SBF (Support by Fire),
and take up position, using given Orientation

• On “engage” code word, fire at stated target
• On “shift” code word, cease firing, re-orient, and

begin firing at new stated target
• On “lift” code word, cease firing

If we begin to categorize these processes, along with
the objects that are needed within the model to enable
them, we come up with:

• UNIT will MOVE to LOCATION
• UNIT will ORIENT in a stated direction, once at

LOCATION
• UNIT will await “fire code word”
• UNIT will await additional “code words”
• On “fire code word”, UNIT will begin to FIRE at

stated TARGET
• On “lift code word”, UNIT will cease the FIRE

activity
• On “shift code word”, UNIT will cease the FIRE

activity at the current TARGET, re-ORIENT, and
begin to FIRE at a new stated TARGET

4.2 Object/Process Taxonomy

We begin to see, in our process of examining the
doctrinal model, to derive a taxonomical structure of
the objects and processes required to simulate (or
depict) this model. By dividing these up into objects
and processes (separate lists), we can see the following
begin to emerge:

Objects

Unit – the military unit being ordered to assume the
SBF. UNIT is an explicit object.

Location – the spot on the map/chart where the SBF is
to take place. Location is an explicit object.

Target – the location where the fire is to be directed at.
Target is an explicit object.

Map/Chart – an implicit object, represented by a
reference system that provides a domain and range for
the locating objects and describing actions.

Class V Expendables – if these are modeled by the
simulation, then there will be an expenditure rate that
depletes these during the existence of a FIRE process.
If the expendables are depleted, then the FIRE process
implicitly stops.

Processes

Move – the UNIT changes its location on the
map/chart, to match the LOCATION given in the
order. MOVE is a process that will end as soon as the
UNIT’s LOCATION is the same as given with the
MOVE process.

Orient – the UNIT changes it’s “facing” to match the
one given with the ORIENT process command.
ORIENT is a process that will end as soon as the
UNIT’s orientation matches that given with the
ORIENT process.

Fire – the UNIT begins to discharge its weapons at the
stated TARGET. The FIRE process is continuous, so a
start and stop for the period of fire is indicated by the
corresponding code words

In addition, each of these processes needs to have a
subject start/stop condition, based on the command
words stated by the unit commander.

4.3 Granularity of Meaning

From one model (the model of US Army Infantry
Doctrine) we see the level of granularity that we are
required to depict. The other model we have is the
MATREX FOM based HLA federation.

Within the MATREX FOM, appropriate entities exist
that can show all of the objects, with the appropriate
level of attribution, that we have identified from our
Doctrine model. We have Units, Locations, Targets, a
Map object, and (when necessary) Class V expendables
– all modeled at the level of depiction required by the
doctrine model.

Moving from objects to processes, however, we have a
problem with the MATREX FOM. The interactions
that depict movement, orientation, firing, etc are often
grouped together, and the constructive simulation that
receives direction to depict that interaction does so
using its own interpretation. This removes the
need/ability to have the member of the training
audience be the one to initiate the action using a

simulation of issuing the command code words (the
fire code word, the lift fire code word, the shift code
word, etc.). But by removing that need, it also removes
the training possibility of having the audience member
issue commands.

4.3.1 Object Granularity

As mentioned, the objects of the FOM remain similar
to the identified objects of the Doctrinal model. Here
is a short synopsis of the FOM objects and parameters
that suffice.

• Unit – The FOM object AggregateUnit is a
candidate here. It gives parameters for all of the
information concerning a unit’s current status (ID,
type, side, country, damage, ammo, fuel,
appearance, location, orientation, etc.)

• Location – The FOM element
LatLongAltPositionCDT is a complex data type
(the suffix CDT is an indicator), that is part of the
StateVectorCDT, which is the UnitLocation
parameter’s data type (UnitLocation is from
AggregateUnit, and other objects). This CDT
gives the x,y,z location of the object it is with. As
mentioned, this is part of the StateVectorCDT
which also gives velocity, position, orientation,
orientation rate, orientation acceleration, as well as
a timestamp. Changes to the StateVectorCDT
represent the results of a Move process.

• Target – This is also based on the
LatLongAltPositionCDT, which is given as a
parameter to the AttackByFire interaction (the
parameter is named EngagementArea). This
complex data type, when used for this parameter,
is given with a cardinality of 2+, as it is intended
to be the vertices of a region (opposite corners of a
quadrilateral).

• Map – While not given specifically as an object,
or a set of parameters, the Map gains definition
from the boundaries it sets on all the uses of
LatLongAltPositionCDT. This boundary is the
results of an assumption, that all positions will be
within the bounded region of the Map.

• Class V Expendables – One of the parameters of
the AggregateUnit object has the complex data
type AmmoStateCDT as its possible value – this is
the means for aggregate units to track their own
class V (ammunition) supplies in the FOM.

As mentioned, these objects are fine, in terms of
matching granularity from the Doctrinal model to the
MATREX object model (FOM). It should be pointed
out, in the examples given above, that we chose one of
two possible “cells” of objects from the MATREX
FOM. The FOM supports a number of objects and

interactions at the entity level, and another set of
objects and interactions at the aggregated unit level.
For simplicity, these examples are from the second
cell, the aggregated unit level. The recommendations
made below (in section 5), however, are for both cells.

4.3.2 Process Granularity

Now, to take a look at the processes as they are
represented in the FOM (by HLA interactions). These
are intended to proved the interactions to represent
those required by the Support by Fire exercise, from
the Doctrinal model.

• Move – The interaction from the FOM is named
Move (not surprisingly). The Move interaction
has, as parameters, the Destination of the move
(which is a LatLongAltPositionCDT), the Route
followed (which uses the SimpleWayPointCDT),
and a rate of speed, which is given in meters per
second.

• Orient – This process is accomplished via the
transmission of LatLongAltPositionCDT. This is
given as part of Move, and is a parameter of that
interaction. In order to change the current
orientation, issue a Move interaction, with the
current location as the destination, but with a new
orientation.

• Fire – Accomplished within the aggregate unit
“cell” by the interaction UnitAttack. This
interaction gives the unit information (via CDT
parameters) on where to move to, and where to
attack to. It includes all three of the actions given
here, Move, Orient, and Fire, into one interaction,
with assumptions about the ordering and the
concurrency of the action.

As can be seen from these actions, there are some
assumptions made in the granularity of activity as it is
presented within the FOM. The actions are grouped
together, with assumptions made about the concurrency
of the actions, or whether or not they should always go
together. It would be possible to obviate one or more
of these granular pieces within the interactions (by, for
instance, giving the current unit’s location to Move, but
giving a different Orientation parameter, thus
accomplishing an Orient, without moving at all), but
this is making assumptions about how the actions will
be ordered, and leaves out the possibilities given earlier
for training audience participation. In addition, when a
number of distinct processes are scripted together (as in
our example case of Support by Fire), but are separated
by other user-initiated C2 commands (or any other
interruption in a scripted series of processes), then it is
not possible to identify a future interjected process as
being part of the initial script, or something new.

Based on this analysis, it appears as if the granularity
of the FOM is at a lower level of process fidelity than
is required from the Doctrinal model. Because of this,
some recommended additions to the MATREX FOM
have been identified, organized according to the
principles of Primitives of Meaning for processes
(distinct, atomic actions, not aggregated together).

5 Recommended FOM Additions
In order to fully support the required granularity of the
Doctrinal model, some of the functions of a command
that are represented by the current interactions of the
MATREX FOM need to be identified and isolated.
Most of these have to do with separating the C2
functionality from the command. This is because of
the specific example used – Support by Fire. In
representing that task, the Doctrinal model specifies
that the command (SBF) is given, then elements of the
command are performed following command “trigger”
words.

5.1 Process Modeling – Activity vs. Results

Before proceeding with the identified new FOM
interactions, it is worthwhile here to discuss a topic that
is at the heart of modeling decisions, but is often
overlooked. This topic has to do with the modeling of
processes. Note that at this time, the discussion here is
specifically talking about modeling (which is making
the decisions about what to represent from the
referent), and not about simulation (which is the
implementation of the decided-upon model). When
modeling a process, two approaches can be taken.
Modeling the activity, or modeling the results. The
difference is highly subjective in that given different
perspectives, one can easily become the other, but
within the same perspective.

When modeling activity, one actually decides to depict
what the changes are that the objects affected by the
process are going through, at the highest granularity of
time permitted by perspective of the modeler. For
instance, if it is desired to model the movement of an
infantry platoon, moving dismounted at 1 kilometer
every 15 minutes, in a model that will have a time
granularity of 1 time tick per minute of represented
time, then over the kilometer of modeled terrain, the
activity based model would show 15 different positions
along the way, one for every time tick.

Using the same example, when modeling the results of
the process, even though the model might have a time
granularity of 1 minute time ticks, the modeled infantry
platoon might be designated as being “in movement”,
and only have its destination updated in the model once
it is reached (15 modeled time ticks later).

There are good, practical reasons for taking the second
approach (that usually have to do with the simulation
of the model, not the model itself), but it should be
realized by the modeler that he is sacrificing some
possibly important details if he makes the decision to
model results rather than activity. In our case, the
FOM interactions model the results, rather than the
activity. The individual simulations that get those
interactions, if they want to depict the activity, must
make their own assumptions, as the model does not
describe them.

Once we arrive at a process modeling specification
(currently being researched at VMASC), it can be
evaluated and determined if the benefits of modeling
activity at a high resolution leads to better simulation
(of activity OR results). A new way of thinking about
modeling is to describe the process in a manner that is
true to the referent as possible, so that in the example
given above, dividing the move up into time slices
would not have to be done at all in the model,
especially if the process (movement) remained the
same throughout the period of interest. In that case, it
could say that movement from point 1 to point 2 takes
place (leading to a continual change in location with
respect to time, but not discretized to time slices),
without worrying about how to devolve it to the system
that will implement the model. This is a true
implementation-neutral approach to modeling
processes.

5.2 FOM Additions

It is proposed, to support the other FOM additions
being described here, that there be a new base
interaction added, that other interactions can extend.
This same base interaction will be used as the basis for
extension for both the entity level cell and the
aggregated unit level cell. The new base interaction is
called C2Command, which is similar to the existing
base interaction Command. C2Command will extend
the Communication base interaction. It has the
following parameters:

• ContributingID has a cardinality of 0+, based on
the FederateIDCDT, which comes from the
SituationReports, used in the same way that the
interaction Command uses this parameter. It is for
identifying the federation object that is issuing the
command.

• StartSignalID has a cardinality of 1, and a data
type of long integer. It correlates to the
CommandID parameter that will be used to start an
extended interaction based on C2Command. This
is the C2 start signal identifier.

• StopSignalID has a cardinality of 0-1, and a data
type of long integer. Correlates to a CommandID
to stop the C2Command. Only needed for

interactions that extend this command who require
a "stop" command - like C2Fire.

Each new proposed interaction introduce here, that
extends C2Command, will therefore be given a start
signal identifier, but not necessarily (except where
appropriate) a stop signal identifier.

5.2.1 Entity Level Interactions

Based on that new base interaction, here is a list of the
interactions designed to work with the entity level
objects.

• C2Move - (similar to Move, could also be based on
MoveAlongRoute) Extends C2Command. It has
the following parameters -
– Destination (has a cardinality of 1 and a data

type of LatLongAltPositionCDT). This gives
the destination point, within the bounded
parameter values, of the Map object.

– Route (has a cardinality of 1+, and a data type
of SimpleWayPointCDT). This gives the
points to follow along a simple way point
route, for the movement.

– Rate of Speed (has a cardinality of 1 and a
data type of long integer). This is in
kilometers per hour.

• C2Orient - (new interaction) Extends
C2Command, and has the new parameter
Orientation (a cardinality of 1, with a data type of
double float) this is the new orientation of the
entity, given in degrees from due north, increasing
clockwise.

• C2Fire - (similar to Assault) Extends
C2Command. It has the following parameter, in
addition to those inherited from C2Command,
EngagementTRP (a cardinality of 2+, with a data
type of LatLongAltPositionCDT) Gives the
engagement area, by specifying the vertices of a
quadrilateral.

• C2CommandSignal - (new interaction) Extends
Communication. It has the parameter CommandID
(a cardinality of 1, with a data type of long integer)
Supplies the CommandID which will be either a
start or stop signal for one of the other interactions.

5.2.2 Unit Level Interactions

Following is a list of the aggregated unit level
interactions that are recommended. Note that these are
very similar to the entity level interactions, with the
addition of parameters needed to describe the behaviors
of an aggregated unit performing the same activity.

• C2UnitMove – similar to C2Move, with the
additional parameter of formation, which has a

cardinality of 1 and uses the MoveFormationEDT
data type.

• C2UnitOrient – similar to C2Orient, with the
additional parameter of OccupyPosition, which has
a cardinality of 1+, and a data type of
LatLongAltPosition. The purpose for the new
parameter is the give the occupational space of the
unit once it adopts its new orientation.

• C2UnitFire similar to C2Fire, with the same
parameters.

• C2UnitCommandSignal – Similar to C2Command,
with the same parameters.

5.3 Intended Use

The basic use of these interactions would be, when an
order is issued to a unit, to send one of the C2
command interactions (either C2Move, C2Orient, or
C2Fire), which will have as its parameters, identified
command codes for starting, and (in the case of
C2Fire) stopping the activity. Such an interaction
would be received by the federate, but not acted upon
until a later interaction (C2CommandSignal) was
transmitted to it, with a parameter having an issued
command code that signifies the earlier interaction to
now begin. In this way, the transmission of orders, and
the transmission of commands by a member of the
training audience can be simulated. An alternative to
having he start command code supplied with the C2
command interaction, would be a default behavior of
“start now” if no code were given. The problem here,
is one that was identified within the literature of the
existing FOM interactions – and that is there is no
“suspend fire” or “halt fire” interaction that has been
identified. Perhaps this is interpreted by the individual
federate, or perhaps there is some workaround that
experts with the FOM are accustomed to using.

6 Primitives of Meaning and Combat
Modeling

The example given here is only in support of the
analysis of one command, from US Army Infantry
doctrine (the Support by Fire task). If a robust
decomposition of the US Army Doctrinal model were
to be performed, then a number of additional primitives
of meaning might be identified, other than just move,
orient, fire, and command. However, the number of
primitives, it is assumed, would be much less than the
number of tasks and command that could be supported
by their composition into tasks. A benefit would be the
achievement of a desired granularity of meaning, for
the purposes of depiction of the model, and also the
means to convey meaning of semantic terms
(supporting level 4, or Pragmatic, expressivity between
systems, according to the LCIM – see section 3.3
above).

6.1 Combat Object Primitive Capabilities

In fact, there has been some work identifying some of
the primitives of meaning for processes that are
performed, at least in the kinetic realm, of battlespace
activities. One such work is [4], which describes the
modeling of battlespace objects in terms of their basic
capabilities. The objects are based on agglomerating
these primitive capabilities onto a basic conceptual
entity called an “object for military operations”. The
identified capabilities are:

• Attrition – neutralizing other objects / preventing
neutralization of own objects

• Movement – changing locations / preventing
others from changing locations

• Transportation – transport other objects
• ISR – detect and identify other objects / prevent

detection
• Communication – transport data and information /

jam communication
• C2 – decision cycle to generate situation adequate

commands
• Maintenance – repairing objects
• Material supply – use of material in the operation

The first six of these are the basic combat activities,
and the last two are considered combat support
activities, according to the original report.
Parameterization of the resulting entity would give the
details. Presumably, an entity that was composed (in
part) of the Movement capability, would then be
capable of being affected by Movement processes,
depending on the simulator in question that
implemented such a model.

6.2 Decomposed Role-Behaviors

Another more recent work [5] shows how Joint
Mission Threads can be used to illustrate how military
units are tied to their role-behaviors (the processes that
they are expected to perform in satisfying a mission
thread, or in response to battlefield conditions). These
role-behaviors are identified as having several C4I
behaviors, and several tactical behaviors. A list
follows.

• Update Situational Awareness (C4I)
• Informational Message (C4I)
• Call for fire Message (C4I)
• Other Message (C4I)
• Command Self (tactical)
• Command Subordinate (tactical)
• Maneuver (tactical)
• Fire/Engage (tactical)

• Change Status (tactical)

Comparing these role-behaviors to the primitive
capabilities discussed earlier in this section reveals
some overlap. In the second listing, the command and
control activity is given some additional granularity, by
breaking it up into a number of different C4I/Message
type activities, but the other actions correspond pretty
well. That these two divergent approaches have
identified very similar primitives indicates that there
may be some community level uniformity here.

6.3 Primitives of Meaning and Modeled
Primitives

So far, in this paper, the authors have discussed
decomposing model entities (objects and processes)
into primitives of meaning that have implemented
attribution or parameters. In fact this represents a
limited, but very much practical, subset of the idea of
primitives of meaning. What is presented here could
be called modeled primitives, and in addition to them,
there also might exist within a system a number of
primitives of meaning that influence the relationships
and structure of the system (therefore having an
influence on attempts to interoperate with such as
system at levels 5 and 6, Pragmatic and Conceptual, of
the LCIM), as well as its constraints and assumptions.
While the difference between the two groups
(Primitives of Meaning, and Modeled Primitives) is
important, and the existence of each can be shown, it is
beyond the scope of this paper to explore this
relationship. A future paper will no doubt explore this
paradigm, but for now it is enough to identify the
difference.

7 Summary
Primitives of meaning remains a topic to be fully
explored, however this early analysis/application
indicates promising results. The idea is to express the
meaning of an object or process within a model by
identifying its atomic elements of meaning, at or above
a granularity required by the highest fidelity use they
will be put to. As each of these primitives will then
suggest one or more of the attributes that combine to
define the original object or process, those attributes
can be addressed by other objects/processes in the
normal interaction that a dynamic model provides.

The US Army Infantry action, Support by Fire, was
examined and analyzed to determine the atomic
processes and objects that must be depicted in order to
accurately model such a task for a simulation system to
illustrate those objects and processes for training.
Another model, one that is currently being used by
PEO Soldier to depict tasks to simulation systems for

training, the MATREX FOM, was also analyzed. It
was shown to be at a level of granularity, in terms of
the processes required for support by fire, too high to
provide for proper training objectives. Therefore new
FOM interactions have been identified that can depict
the processes at a primitives of meaning level (i.e. –
each process is one atomic activity).

Future work remains to have systems that can use the
new FOM interactions, and to test them to see if the
primitives (and their composition) does provide the
results anticipated. Additionally, further analysis of
other doctrinal tasks and commands awaits to identify
further primitives (both of objects and processes) to
assemble a new series of FOM objects and interactions
at the primitives level.

Additionally, future work awaits the development of
(1) a process modeling specification (currently being
researched at VMASC), in order that engineering
methods can be applied to the composability and
interoperability of the processes of models, and (2)
further exploration of the primitives of meaning
paradigm in modeling, and additionally, the difference
of primitives of meaning from modeled primitives.

Acknowledgments
The underlying research was partly supported by the PEO
Soldier supported interoperability work, designed to explore
the federating of several systems using the MATREX FOM.
Additional ideas contributing to the research presented here
came from research performed in support of the development
of the Coalition Battle Management interoperability
standard, SISO PDG-CBML. Finally, the idea of primitives
of meaning arose out of ongoing PhD research performed by
the primary author (Turnitsa), and his chief advisor (Tolk).

8 Works Cited
[1] Data, Models, Federations, Common Reference
Models, and Model Theory. Tolk, Andreas, Diallo,
Saikou Y and Turnitsa, Charles D. Genoa : IEEE,
2007. Proceedings of the 2007 European Simulation
Interoperability Workshop. pp. 07E-SIW-052.

[2] Tolk, Andreas, Turnitsa, Charles and Diallo,
Saikou. Implied Ontological Representation within the
Levels of Conceptual Interoperability Model.
International Journal for Intelligent Design
Technologies. 2008, Vol. 2, 1.

[3] Tolk, Andreas and Diallo, Saikou. Model Based
Data Engineering for Web Services. IEEE Internet
Computing. 2005, July.

[4] IABG Report B-CS 2027/02: “Entscheidungsunter-
stützende Systeme (EUS)” [in German; Decision
Support Systems], Ottobrunn, Germany, July 1999.

[5] Works, Paul. “M&S Decision/Role-Behavior
Decompositions,” Wargaming and Analysis Workshop,
Military Operations Research Society, October 2007.

[6] US Army Infantry School, “The SBCT Infantry
Rifle Company,” Department of the Army, Washington
DC, January 2003.

Authors' Biographies
CHARLES TURNITSA is a Senior Project Scientist at the
Virginia Modeling Analysis and Simulation Center at Old
Dominion University. In addition he is also a Ph.D.
Candidate, studying under Dr. Andreas Tolk at ODU. He has
a M.S. in Electrical and Computer Engineering from that
institution.

ANDREAS TOLK is Associate Professor in the Faculty for
Modeling, Simulation, and Visualization at the Engineering
Management Department of the College of Engineering and
Technology at Old Dominion University (ODU) of Norfolk,
Virginia. He is affiliated with the Virginia Modeling Analysis
& Simulation Center (VMASC). His domain of expertise is
the integration of M&S functionality into real world
applications based on open standards. He received a Ph.D.
and an M.S in Computer Science from the University of the
Federal Armed Forces in Munich, Germany.

ROBERT H. KEWLEY is currently the Director of the
Operations Research Center at the United States Military
Academy (USMA) Department of Systems Engineering. He
was commissioned in 1988 from the USMA as an armor
officer. His armor assignments include Task Force 1-32
Armor in the 1st Cavalry Division and Task Force 1-70
Armor in the 194th Separate Armored Brigade. He served as
a tank company executive officer during Operations Desert
Shield and Desert Storm. He has commanded both a tank
company and a cavalry scout training troop. His analysis
experience includes a teaching assignment at West Point and
a tour at the Center for Army Analysis. LTC Kewley’s
research interests focus on command and control systems. He
has a M.S. in Industrial Engineering and a Ph.D. in Decision
Science and Engineering Systems, both from Rensselaer
Polytechnic Institute.

9 Appendix
This is the text of the doctrinal definition of the
Support by Fire command that is the subject of the
word described in this paper.

SUPPORT BY FIRE

The platoon maneuvers to a position on the battlefield
from which it can observe the enemy and engage him
with direct and indirect fires. The purpose of support
by fire is to prevent the enemy from engaging friendly
forces.

 a. To accomplish this task, the platoon must maintain
orientation both on the enemy force and on the friendly
maneuver force it is supporting. The platoon leader
should plan and prepare by:

• Conducting line-of-sight analysis to identify the
most advantageous support-by-fire positions.

• Conducting planning and integration for direct and
indirect fires.

• Determining triggers for lifting, shifting, or
ceasing direct and indirect fires.

• Planning and rehearsing actions on contact.
• Planning for large Class V expenditures, especially

for the weapons squad and support elements since
they must calculate rounds per minute. (The
platoon leader and weapons squad leader must
consider a number of factors in assessing Class V
requirements, to include the desired effects of
platoon fires; the time required for suppressing the
enemy; and the composition, disposition, and
strength of the enemy force.)

b. A comprehensive understanding of the battlefield
and enemy and friendly disposition is a crucial factor in
all support-by-fire operations. The platoon leader uses
all available intelligence and information resources to
stay abreast of events on the battlefield. Additional
considerations may apply. The platoon may have to
execute an attack to secure the terrain from which it
will conduct the support by fire. The initial support-by-
fire position may not afford adequate security or may
not allow the platoon to achieve its intended purpose.
This could force the platoon to reposition to maintain
the desired weapons effects on the enemy. The platoon
leader must ensure the platoon adheres to these
guidelines:

• Maintain communications with the moving force.
• Be prepared to support the moving force with both

direct and indirect fires.
• Be ready to lift, shift, or cease fires when masked

by the moving force.
• Scan the area of operations and prepare to acquire

and destroy any enemy element that threatens the
moving force.

• Maintain 360-degree security.
• Use ICVs and Javelins to destroy any exposed

enemy vehicles.
• Employ squads to lay a base of sustained fire to

keep the enemy fixed or suppressed in his fighting
positions.

• Prevent the enemy from employing accurate direct
fires against the protected force.

