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SUMMARY

Semi-natural  grasslands  are  ecosystems with  high  biodiversity. In 

Europe, such open and half-open areas are a fundamental characteristic of 

the  cultural  landscape,  originating  from  and  depending  on  management 

activities.  The  possibilities  that  grazing  with  wildlife  can  provide  for 

sustaining  these  open-land  ecosystems  are  subject  to  current  research 

activities, because only a small proportion of grasslands protected under the 

EU Habitats Directive has a favourable conservation status. For an active 

grazing management, spatial information about the landscape structure and 

forage  quality  and  quantity  is  required,  as  they  can  affect  the  spatial 

distribution and activities of free-ranging herbivores and thus their influence 

on the ecosystem e.g. by grazing. The collection of field data, however, is 

labour-intensive, time-consuming and often limited to a particular location. 

Therefore, this thesis is concerned with techniques and concepts offered by 

satellite  remote  sensing  technology  to  characterise  a  heterogeneous 

landscape dominated by semi-natural grassland.

After  a  general  introduction  to  the  wider  research  context  in 

Chapter 1,  Chapter 2 illustrates  how  Tasselled-Cap-transformed  multi-

temporal RapidEye remote sensing data can be successfully used to derive a 

classification map for a heterogeneous landscape. The results suggest that 

the  RapidEye  Tasselled  Cap  Transformation,  which  was  designed  for 

agricultural applications, can be an effective data compression tool, suitable 
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to map heterogeneous landscapes with no measurable negative impact on 

classification accuracy.

Chapter  3 presents  a  framework  on  mapping  semi-natural 

grasslands  at  community  level  using  multi-temporal  RapidEye  remote 

sensing  imagery.  For  this,  an  automated  training  data  selection  was 

successfully implemented based on the Random Forest proximity measure. 

This strategy can support the reporting obligations under Art.-17 of the EU 

Habitats Directive in the future.

Chapter 4 discusses how semi-natural grassland forage quantity and 

quality indicators can be predicted using combined optical and radar satellite 

remote  sensing  data.  A permutation-based  variable  importance  measure 

indicated a strong contribution of simple-ratio-based optical indices to the 

model performance.

The final  Chapter 5 summarises and discusses the results  of this 

work with reference to the current research context.  The findings of this 

thesis  can help to understand and manage the grazing behaviour of free-

ranging large herbivores and thus, support the conservation of semi-natural 

grassland in the future.
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ZUSAMMENFASSUNG

Naturnahes  Grünland  gehört  zu  den  Ökosystemen  mit  höchster 

Biodiversität.  In Europa sind solche offenen und halboffenen Gebiete ein 

grundlegendes  Merkmal  der  Kulturlandschaft.  Ihre Entstehungsgeschichte 

und  Erhaltung  hängen  von  einer  aktiven  Bewirtschaftung  ab.  Die 

Möglichkeiten,  die  eine  Beweidung  mit  Wildtieren  zum  Erhalt  dieser 

Offenlandökosysteme  bieten,  sind  Gegenstand  aktueller  Forschung,  denn 

nur  ein  geringer  Teil  des  unter  der  EU-Habitat-Richtlinie  geschützten 

Grünlands  befindet  sich  in  einem  günstigen  Erhaltungszustand.  Für  ein 

aktives  Beweidungsmanagement  werden  räumliche  Informationen  zur 

Landschaftsstruktur  und  Futterqualität  benötigt,  da  diese  Parameter  die 

räumliche  Verteilung  und  Aktivitäten  von  freilebenden  Herbivoren  und 

somit  deren Einfluss,  z.B.  durch die  Futteraufnahme,  auf  das Ökosystem 

beeinflussen.  Das  Sammeln  von  Felddaten  ist  jedoch  arbeitsintensiv, 

zeitaufwändig und räumlich oft nur in einem begrenzten Gebiet möglich. 

Daher befasst sich diese Arbeit mit Methoden der Satellitenfernerkundung, 

um eine von naturnahem Grünland dominierte,  heterogene Landschaft  zu 

charakterisieren.

Nach  einer  allgemeinen  Einführung  in  den  umfassenderen 

Forschungskontext  (Kapitel 1)  zeigt  Kapitel 2,  wie  multi-temporale 

Tasseled-Cap-transformierte  RapidEye-Fernerkundungsdaten  erfolgreich 

angewendet  werden  können,  um  eine  Landbedeckungskarte  für  eine 
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heterogene Landschaft abzuleiten. Die Ergebnisse deuten darauf hin, dass 

die  RapidEye  Tasselled  Cap  Transformation,  die  für  landwirtschaftliche 

Anwendungen  entwickelt  wurde,  ein  effektives  Datenkomprimierungs-

werkzeug sein kann. Diese ist dazu geeignet, heterogene Landschaften ohne 

messbare  negative  Auswirkungen  auf  die  Klassifizierungsgenauigkeit 

abzubilden.

In  Kapitel 3 wird ein Konzept für die  Kartierung von naturnahen 

Grünlandgesellschaften  unter  Verwendung  von  RapidEye-

Fernerkundungszeitreihen  vorgestellt.  Hierfür  wurde  eine  automatisierte 

Auswahl  der  Trainingsdaten  basierend auf  der  Random Forest  Proximity 

erfolgreich  implementiert.  Diese  Strategie  könnte  künftig  die 

Berichterstattungspflichten  gemäß  Artikel  17  der  EU-Habitat-Richtlinie 

unterstützen.

In  Kapitel 4 wird  erörtert,  wie  Biomasse  und  Futterqualität 

naturnaher  Grünlandaufwüchse mit  kombinierten  optischen  und  Radar-

Fernerkundungsdaten vorhergesagt werden können. Ein auf Permutationen 

basierendes  Maß  für  die  Wichtigkeit  einer  Variable  zeigt  einen  starken 

Beitrag optischer Indizes durch die Verhältnisse einzelner spektraler Kanäle 

zur Modellqualität. 

Im abschließenden  Kapitel 5 werden die  Ergebnisse dieser  Arbeit 

zusammenfassend  mit  Bezug  auf  den  aktuellen  Forschungskontext 

diskutiert.  Die  Erkenntnisse  dieser  Forschungsarbeit  können  helfen,  das 
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Beweidungsverhalten  großer  wildlebender  Herbivoren  zu  verstehen  und 

somit die Erhaltung von naturnahem Grünland in Zukunft zu unterstützen.
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1
CHAPTER 1 – GENERAL INTRODUCTION
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The conservation of semi-natural grassland in Europe

Semi-natural  grasslands  are  ecosystems  with  high  biodiversity 

(Dengler et al., 2014; Wilson et al., 2012). In Central Europe, such open and 

half-open areas are a fundamental characteristic of the cultural  landscape 

and their origin and conservation depend on active management (Isselstein 

et al., 2005; Isselstein, 2018; Peeters et al., 2014). After the second half of 

the 20th century, most of the semi-natural grasslands were transformed into 

more productive pastures or meadows, e.g. by fertilisation. This agricultural 

intensification and the related eutrophication have been directly linked to a 

decrease in grassland species richness (Harpole and Tilman, 2007; Stevens 

et al., 2004; Tang et al., 2017), mainly due to light competition (Hautier et 

al., 2009). In addition to nitrogen, other soil chemical parameters such as 

phosphorus  are  related  to  the  composition  and species  richness  of  semi-

natural grasslands (Riesch et al., 2018). As biomass removal is required for 

the preservation of semi-natural  grassland ecosystems,  land abandonment 

was identified as a major challenge for the preservation of open habitats 

(Terres  et  al.,  2015;  Valkó  et  al.,  2018). Without  management,  light 

limitation  increases,  which  promotes  the  dominance  of  few, competitive 

species. Eventually, open and half-open landscapes  are  lost  in  favour  of 

shrub-  and  finally  woodland  (Peco  et  al.,  2006;  Ruprecht  et  al.,  2010). 

Climate  change  puts  further  pressure  on  grassland  ecosystems  and  the 

ecosystems  services  they  provide  (Dangal  et  al.,  2016; 
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Lamarque et al., 2014). Currently, only 12.3% of grasslands protected under 

the EU Habitats Directive have a favourable conservation status (European 

Environment Agency, 2015). Extensive grazing with livestock has become 

an  established  tool  for  the  conservation  of  semi-natural  grassland 

ecosystems in Europe (Borer et al., 2014; Bunzel-Drüke, 2008; Rosenthal et 

al., 2012; Van Wieren, 1995).

However, for inaccessible or remote areas, livestock grazing can not 

be established, because a regular monitoring of the animals and, in most 

cases, fencing is required. This is particularly the case for military training 

areas. The potential of wild herbivores, such as red deer (Cervus elaphus), as 

a management option for open habitats under such landscape conditions has 

recently been acknowledged (Pausas and Bond, 2018; Riesch et al., 2019; 

Schulze et al., 2018). The spatial distribution of wild herbivores is guided by 

a trade-off between a potential predation risk (Godvik et al., 2009; Lima and 

Dill, 1990) and the need to utilise foraging areas (Fryxell, 1991; Merkle et 

al.,  2016).  In  this  context,  grazing  decisions  are  made  by  the  animal  at 

varying spatial scales, in order to utilise potential foraging areas (Dupke et 

al.,  2017;  Felton  et  al.,  2018).  Their  impacts  on  the  ecosystem  e.g.  by 

grazing, trampling and seed dispersal also depend on the quality of forage 

resources  (Fløjgaard et al., 2017). Therefore, spatially-explicit information 

about forage quality and landscape configuration is of pivotal importance for 

an active grazing management.  However, the collection of field data is a 
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labour-intensive and time-consuming task (Catchpole and Wheeler, 1992), 

in particular for large areas with limited accessibility.

Remote sensing 

According to Jensen (2009),  remote sensing is defined as “[...]  the art  and 

science  of  obtaining  information  about  an  object  without  being  in  direct 

physical  contact  with the object”.  In  the field of optical  earth observation, 

satellites  are  equipped  with  sensors  sensitive  for  specific  parts  of  the 

electromagnetic  spectrum (Figure  1).  Hence,  they  depend  on  the  radiation 

emitted  by  the  sun,  reflected  to  the  sensor  by  the  Earth's  surface.  These 

satellites have fixed orbits and therefore retrieve information over the same 

area with the same view angle in defined repeated cycles at defined spatial 

units, i.e. pixels. Exceptions are sensors that are able to tilt the view angle. 

Most  optical  sensors  record  radiation  for  a  defined  spectral  range  of  the 

electromagnetic  spectrum,  which  is  often  referred  to  as  bands.  From  a 

combination of different  bands,  a  remote sensing image can be composed. 

These bands or images can be used to relate the recorded reflectance intensity 

to observations made on the ground or to known biophysical principles. The 

most  important  biophysical  principle  is  the  absorption  of  radiation  by  the 

photosynthesis. Vegetation vitality, for example, can be approximated by the 

relationship  of  an  absorption  by  chloroplasts  in  the  red  part  of  the 

electromagnetic spectrum and a strong reflectance in the near-infrared part due 

to cell structural components (Figure 1)  (Sims and Gamon, 2002; Tong and 
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He,  2017).  Optical  satellite  remote  sensing  is  often  challenged  by  cloud 

contamination  and depends  on  illumination  conditions.  Microwave satellite 

remote sensing systems use an active sensing mechanism, where energy is 

emitted  and  the  echoed  intensity  as  well  as  the  time  lag  is  recorded 

(Woodhouse, 2017).

Figure  1: Typical  reflectance  curves  of  vegetated  and  soil  surfaces  in 
comparison to band location of two optical satellites depicted as grey boxes. 
VIS = visible, NIR = near infrared, SWIR = shortwave infrared part of the 
electromagnetic  spectrum.  The  reflectance  data  is  based  on  Herold  et  al. 
(2004).

Synthetic  aperture  radar  (SAR)  systems  transmit  microwave 

radiation and record the backscatter echo. The microwave radiation is able 

to penetrate through clouds and is independent from illumination conditions 

by the sun. SAR data can provide, for example, valuable information about 

vegetation structure and moisture conditions (Barrett et al., 2014; Ali et al., 
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2016;  Wachendorf  et  al.,  2017).  However,  no  information  about  other 

biophysical parameters, such as chlorophyll concentration, can be obtained 

using SAR data.

Optical and radar remote sensing have the advantage of collecting 

information  about  the  Earth's  surface  at  potentially  every  spatial  and 

temporal  scale.  In  addition,  they  can  cover  very  large  areas  at  repeated 

intervals and the processing of the data can be automated. This in turn can 

be considered as less prone to errors compared to non-automated processes. 

These benefits  make the use of satellite remote sensing products and the 

potential  contributions  of  such  data  to  the  conservation  of  semi-natural 

grassland particularly attractive.

Remote sensing land cover classification

The exemplary reflectance curves in Figure 1 can be related to soil 

and vegetation surfaces on the ground. These observations can be used to 

derive spectral patterns, from which each pixel of a satellite remote sensing 

image  can  be  assigned  to  a  respective  land  cover  class.  Land  cover 

classification can be seen as a key element to quantify and monitor changes 

of the Earth's surface (Gómez et al., 2016). Applications range from global 

land cover mapping for climate modelling purposes (Houghton et al., 2012) 

to land cover mapping at fine scales (Schuster et al., 2012). As single images 

only capture information from one point in time, multi-temporal mapping 

approaches are able to integrate vegetation dynamics into the classification 
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model (Pettorelli  et  al.,  2005).  This can increase the predictive power of 

such models (Schmidt et al., 2014) and could be particularly beneficial for 

mapping  and  monitoring  heterogeneous  landscapes.  However,  multi-

temporal classification approaches increase the amount of data which needs 

to be considered by a potential classification algorithm. Machine learning 

algorithms, such as Random Forest or Support Vector Machines, are able to 

cope  with  high-dimensional  spectral  data  (Belgiu  and  Drăguţ,  2016; 

Schuster  et  al.,  2012).  In contrast  to Support  Vector  Machines,  only few 

parameters  have  to  be  adjusted  for  the  non-parametric  Random  Forest 

algorithm  (Belgiu  and Drăguţ,  2016).  This  could  make high-dimensional 

land  cover  classification  tasks  more  applicable  for  nature  conservation, 

compared to other machine learning approaches.

Comparable  to  a  principal  component  analysis  the  Tasselled  Cap 

Transformation (TCT) provides a potential data compression approach for 

spectral remote sensing data (Kauth and Thomas, 1976). By the application 

of  empirically  derived  weighting  factors,  the  original  spectral  bands  are 

transformed to new bands with defined interpretations. Application of the 

TCT include the estimation of windthrow in forests (Einzmann et al., 2017), 

the prediction of biophysical crop parameters (Dahms et al., 2016; Schönert 

et al., 2015) and mapping of abandoned agricultural land (Löw et al., 2015). 

The TCT reduces the dimension of the input data and the correlation among 

the transformed bands is decreased. Thus, the TCT provides an attractive 

approach for multi-temporal  land cover  mapping.  As the TCT is  derived 
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from  top  of  atmosphere  reflectance  data,  potential  influences  by  the 

atmosphere,  due  to  absorption  and scattering (Song et  al.,  2001)  are  not 

considered.  As  the  atmospheric  composition  can  be  highly  variable  over 

space  and  time  (Wilson  et  al.,  2014),  this  could  impact  the  result  of  a 

Tasselled-Cap-transformed multi-temporal land cover classification. This in 

turn would offset the advantages of a reduced correlation and data intensity 

of a TCT-based multi-temporal land cover classification.

Remote-sensing-based mapping of semi-natural grassland 

Grassland ecosystems are typically mapped and monitored through 

field  surveys,  such  as  botanical  mapping.  However,  these  field  mapping 

results can be biased by subjective interpretation in the field and might also 

depend on climatic conditions and the phenological phase at the time of the 

survey (Rocchini et al., 2013). Moreover, they are not easy to reproduce, can 

be  time- and labour-intensive  and, in some cases, not practically feasible. 

Satellite remote sensing has been recognised as a valuable resource for the 

monitoring of grassland ecosystems (Borre et al., 2011; Buck et al., 2013; 

Corbane  et  al.,  2015;  Nagendra  et  al.,  2013).  Remote-sensing-based 

mapping  approaches  for  semi-natural  grassland  in  Europe  include:  the 

assessment of image acquisition timing and number (Schmidt et al., 2014), 

the use of high resolution SAR data (Schuster et al., 2015), the identification 

of  scattered  Natura  2000  habitats  (Stenzel  et  al.,  2014)  or  mapping  the 

floristic continuum instead of plant communities (Schmidtlein et al., 2007). 
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However,  studies  aiming  at  mapping  semi-natural  grasslands  at  plant 

community level to meet the requirements for reporting obligations under 

the EU Habitats Directive are limited (Rapinel et  al.,  2018). This can be 

attributed to the structural and botanical heterogeneity at  very fine scales 

(Ali  et  al.,  2016;  Wachendorf  et  al.,  2017)  and  the  related  floristic  and 

spectral uncertainties of semi-natural grassland ecosystems (Feilhauer et al., 

2013).

Remote sensing of semi-natural grassland biophysical properties

Biophysical properties of vegetated land cover  include parameters 

such  as  organic  acid  detergent  fibre  concentration,  crude  protein 

concentration,  compressed  sward  height  or  standing  biomass.  These 

parameters  are  known  to  influence  grazing  patterns  of  large  herbivores 

(Felton  et  al.,  2018;  Merkle  et  al.,  2016) and  can  vary  in  semi-natural 

grasslands  at  very fine  spatial  scales.  This  can  be  related  to  interactions 

between  individual  plants  and  changes  in  soil  moisture  and  nutritional 

concentrations  as  well  as  grazing  impacts  at  fine  scales.  Hence,  remote-

sensing-based  information  about  biophysical  properties  across  different 

phenological phases can help to interpret and understand grazing patterns of 

large herbivores, thus supporting the conservation management of grazed 

semi-natural  grassland.  For  this,  empirical  relationships  between  field 

observations  and  the  remote  sensing  signal  are  established  using  simple 

linear or machine learning regression techniques to derive spatial maps of 
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biophysical  parameters  (Ali  et  al.,  2016;  Wachendorf  et  al.,  2017).  The 

recent  advances  of  the  Sentinel  satellite  constellation  by  the  European 

Commission  provide  optical  and radar  remote  sensing  data  at  very  high 

temporal, spatial and spectral resolutions (Drusch et al., 2012). However, the 

combined  use  of  these  two  satellite  remote  sensing  techniques  for  the 

prediction of semi-natural grassland properties remains widely unexplored.

Study site

The  Grafenwoehr  military  training  area  (GTA)  is  located  in  the 

south-east of Germany (Figure 2) and extends over about 230 km². Roughly 

85% are part of the Natura 2000 network and contain numerous rare and 

highly  protected  habitat  types,  forming  a  refuge  for  many  endangered 

species  (Warren and Büttner, 2008b, 2008a; Warren et al., 2014; Riesch et 

al., 2018). Approximately 40% of the GTA are covered with open habitats, 

such as semi-natural grassland, while forest covers the majority of the area 

(about 60%). Since 1947, the GTA is used as a United States Army Garrison. 

This means that the land management aims at preserving the open landscape 

areas,  primarily  for  military  use,  but  also  for  maintaining  the  nature 

conservation status. Fire and wildlife grazing (Figure 3), especially by red 

deer, also play a role in some of these areas (Meißner et al., 2012).
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Figure 2: Area of the study site Grafenwoehr military training area outlined in 
red. The location of the study site in Germany is marked with a black square in 
the  small  map.  The  background  map  is  based  on  modified  Copernicus 
Sentinel-2 data (acquisition date: 22 May 2016).

The study area can be considered as a particular challenge to remote 

sensing applications. The GTA consists of a relatively fine-scale mosaic of 

open, semi-open, successional and forested areas. All  kinds of transitions 

between managed and unmanaged grassland as well as shrub and forest are 

present,  because  of  a  heterogeneous  management  regime  taking  both 

military use and nature conservation requirements into account.
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Figure  3: Red  deer  grazing  on  the  Grafenwoehr  military  training  area. 
Photograph taken by M. Meißner.

Aim of this thesis

The overall aim of this thesis is to evaluate different remote sensing 

sources at different spatial, spectral and temporal resolutions to characterise 

the  heterogeneous landscape  of  the  GTA.  A particular  focus  is  on semi-

natural grassland as there is an urgent need for conservation activities across 

Europe to preserve these hot-spots of biodiversity for future generations.

Structure of this thesis

This  thesis  is  subdivided  into  three  main  chapters,  each  with  an 

individual focus on one specific research challenge discussed here with a 

spatial focus on the GTA.

Chapter 2 illustrates how Tasselled-Cap-transformed multi-temporal 

RapidEye  remote  sensing  data  can  be  successfully  used  to  derive  a 

classification map for a heterogeneous landscape.  The results suggest that 

the  RapidEye  Tasselled  Cap  Transformation,  which  was  designed  for 
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agricultural applications, can be an effective data compression tool, suitable 

to map heterogeneous landscapes with no measurable negative impact on 

classification accuracy.

Chapter 3 presents a framework for mapping semi-natural grassland 

at the plant community level using multi-temporal RapidEye remote sensing 

data.  For  this,  an  automated  training  data  selection  was  successfully 

implemented based on the Random Forest proximity measure. This strategy 

can  support  the  reporting  obligations  under  Art.-17  of  the  EU  Habitats 

Directive in the future.

Chapter 4 demonstrates how combined radar Sentinel-1 and optical 

Sentinel-2 data can be used to predict forage quantity and quality indicators 

of semi-natural grassland. A permutation-based variable importance measure 

indicated a strong contribution of simple-ratio-based optical indices to the 

model  performance.  This  can  support  the  conservation  of  semi-natural 

grassland and a targeted wildlife management in the future.
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2
CHAPTER 2 – MULTI-TEMPORAL RAPIDEYE 

TASSELLED CAP DATA FOR LAND COVER 

CLASSIFICATION USING RANDOM FORESTS

This chapter is submitted as:

Raab, C., B. Tonn, M. Meißner, N. Balkenhol and J. Isselstein. “Multi-temporal RapidEye 
Tasselled Cap data for land cover classification using Random Forests.” European Journal  
of Remote Sensing.
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Abstract

Land cover mapping can be seen as a key element to understand the 

spatial distribution of habitats and thus to sustainable management of 

natural resources. Multi-temporal remote sensing data are a valuable 

data source for land cover mapping. However, the increased amount of 

data requires effective machine learning approaches. In this study, the 

Random Forest  classification  algorithm was  applied  to  (1)  a  multi-

temporal  Tasselled-Cap-transformed,  (2)  top  of  atmosphere  and  (3) 

surface reflectance RapidEye time-series. The overall accuracies were 

about 91.5% (Kappa = 0.9) for all three datasets. The McNemar test  

showed, however, significant differences between the Tasselled-Cap-

transformed and untransformed mapping results. The profiles for the 

Tasselled-Cap-transformed  RapidEye  data  indicated  a  good 

separability between considered classes. The phenological profiles of 

vegetated surfaces followed a typical green-up curve for the Greenness 

Tasselled-Cap-index.  A  permutation-based  variable  importance 

measure  indicated  that  late  autumn  should  be  considered  as  most 

important phenological phase contributing to the classification model 

performance. The results suggested that the RapidEye Tasselled Cap 

Transformation, which was designed for agricultural applications, can 

be an effective data compression tool, suitable to map heterogeneous 

landscapes  with  no  measurable  negative  impact  on  classification 

accuracy.

Keywords: land  cover;  Random  Forest;  RapidEye;  phenological 

correction, Tasselled Cap Transformation



 | 27

Introduction

Land cover classification using satellite remote sensing data can be 

seen as a key element to quantify and monitor changes of the Earth’s surface 

(Gómez et al., 2016). Applications range from global land cover mapping 

for climate modelling purposes (Houghton et al., 2012) to the delineation of 

different  grassland  communities  at  small  scales  using  RapidEye  data 

(Schuster et  al.,  2015; Raab et  al.,  2018).  Multi-temporal remote sensing 

data and indices or transformations can increase the predictive power of a 

land cover classification model (Schmidt et al., 2014), as more information 

about  the  land  surface  reflectance  characteristics  can  be  included.  The 

increased amount of data,  however, may require robust machine learning 

classification algorithms and data compression approaches to cope with high 

amounts  of  data,  such  as  Support  Vector  Machines  (Cortes  and  Vapnik, 

1995; Schuster et al., 2012) or Random Forests (RF) (Breiman, 2001; Belgiu 

and Drăguţ, 2016).

The  RapidEye  earth  observation  constellation  consists  of  five 

identical  satellites  with  a  theoretical  off-nadir  revisit  time  of  one  day. 

Spectral data are recorded at a spatial resolution of 6.5 m pixel, which is 

resampled  to  5  m  by  the  data  provider  (Planet  Labs  Inc.,  2016).  The 

mounted sensors  record  data  not  only in  the visible  blue  (440–510 nm), 

green  (520–590  nm)  and  red  (630–685  nm)  part  of  the  electromagnetic 

spectrum, but  also in  the rededge (690–730 nm) and near-infrared (NIR, 
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760–850  nm)  region  (Tyc  et  al.,  2005).  In  addition  to  the  reflectance 

recorded by a satellite remote sensing platform, vegetation indices are an 

established  tool  for  the  analysis  of  plant  dynamics  and  ecosystem 

monitoring (Pettorelli et al., 2005). The Tasselled Cap Transformation (TCT) 

represents a group of spectral indices designed for agricultural applications 

(Kauth and Thomas, 1976). The TCT has been developed for several remote 

sensing platforms, such as the sensors of the Landsat programme (Baig et 

al., 2014; Crist and Cicone, 1984; Huang et al., 2002; Kauth and Thomas, 

1976), MODIS (Lobser and Cohen, 2007) and RapidEye  (Schönert et al., 

2014). Similar to the concept of principal component analysis, the original 

spectral bands are transformed to new bands with defined interpretations. 

For  this,  fixed  weighting  factors  are  assigned  to  the  original  reflectance 

values of the respective spectral bands. The generated Tasselled-Cap-bands 

can be associated with biophysical  properties of the studied surface.  The 

first Tasselled-Cap-band captures the overall brightness (Brightness), while 

the  second  transformation  enhances  the  characteristics  of  vegetation 

reflectance (Greenness). Thus, the Greenness can be used as a measure of 

photosynthetically-active  vegetation,  with  its  peak  in  the  NIR  domain 

(Dahms  et  al.,  2016).  For  RapidEye  data,  five  multi-spectral  bands  are 

compressed by the TCT into three new bands with reduced correlation and 

limited information loss. The Brightness component for the RapidEye sensor 

summarises the total reflectance as a weighted sum of all spectral bands. 

Hence, the Brightness is sensitive to changes in the sum of reflectance, but 
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particularly  to  an  alteration  in  soil  brightness.  These  two Tasselled-Cap-

bands  are often complemented by a third transformation, such as Wetness, 

which is sensitive to surface moisture. For the RapidEye satellites the third 

Tasselled-Cap-band,  Yellowness,  is  configured  to  enhance  the  typical 

reflectance behaviour of senescent vegetation cover (Schönert et al., 2014). 

RapidEye  Tasselled-Cap-transformed  data  has  been  successfully 

applied to map abandoned agricultural land (Löw et al., 2015), to estimate 

windthrow  in  forests  (Einzmann  et  al.,  2017)  or  for  the  prediction  of 

biophysical crop parameters (Dahms et al., 2016; Schönert et al., 2015). As 

the correlation and data intensity is reduced by the TCT, its application can 

be an attractive approach for multi-temporal land cover mapping, which has 

not been extensively tested, yet. However, as the TCT-components of the 

RapidEye sensor are derived from top of atmosphere (TOA) reflectance data 

(Schönert  et  al.,  2014), potential  influences  by  the  atmosphere,  due  to 

scattering  and  absorption  (Song  et  al.,  2001),  might  not  be  considered 

sufficiently.  This  in  turn  could  impact  the  result  of  a  Tasselled-Cap-

transformed  multi-temporal  land  cover  classification,  because  the 

atmospheric  composition  can  be  highly  variable  over  space  and  time 

(Wilson et al., 2014). Consequently, this could thwart the advantages of a 

TCT-based  multi-temporal  land  cover  classification.  Therefore,  an 

alternative  to  a  land cover  classification using Tasselled-Cap-transformed 

data could be the application of atmospheric corrected surface reflectance 

data.  For  this,  radiative  transfer  models  can  be  used  to  estimate  the 
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atmospheric  conditions  at  the  sensing  time of  an  image (Vermote  et  al., 

1997).

Within  this  context,  the  purpose  of  this  land  cover  classification 

study was to evaluate the performance of a multi-temporal Tasselled-Cap-

transformed RapidEye time-series in comparison to TOA and atmospheric 

corrected surface reflectance (SR) data. We hypothesise that multi-temporal 

RapidEye Tasselled-Cap-transformed data will capture phenological patterns 

of  vegetated  surfaces  and  that  the  classification  performance  will  be 

comparable to using untransformed data, even if they include atmospheric 

correction.

This  hypothesis  was  tested  in  an  area,  the  Grafenwoehr  Military 

Training area,  which can be considered as a  particular  challenge to  land 

cover classification. As a result of long-term military use, the Grafenwoehr 

military training area consists of a relatively fine-scale mosaic composed of 

open,  semi-open,  successional  and  forested  areas,  compared  to  the 

surrounding  landscape.  Transitions  between  managed  and  unmanaged 

grassland as well as shrub and forest are present, as management has to take 

into account both military use and nature conservation requirements.

Furthermore,  as  the acquisition timing can be an important  factor 

influencing the quality of multi-temporal land cover classification (Schmidt 

et  al.,  2014; Nitze et  al.,  2015),  a permutation-based variable importance 

measure was used to estimate the contribution of the three TCT indices the 
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TOA and  SR  bands  to  the  respective  classification  models  for  different 

phenological phases.

Materials and methods

Study site

The  Grafenwoehr  military  training  area  (GTA)  is  located  in  the 

south-east of Germany (Figure 1) and lies at about 450 m (sd = 38 m) above 

sea level in the natural region Upper Palatine-Upper Main Hills. The long-

term average temperature and precipitation are 8.3 ± 0.04 °C and 701 ± 4 

mm, respectively (1981–2010, mean ± SEM of four weather stations of the 

German Weather Service (DWD, Deutscher Wetterdienst) in the immediate 

vicinity). The GTA covers 230 km²; about 85% are part of the Natura 2000 

network  and  contain  numerous  rare,  highly  protected  habitat  types  and 

function  as  a  refuge  for  many  endangered  species  (Warren  and  Büttner, 

2008a, 2008b; Riesch et al.,  2018). About 40% of  GTA are covered with 

open habitats, such as grassland or heath, while about 60% are covered with 

forest.  Parts  of  the  grassland  areas  are  mown  once  a  year around  the 

beginning of July. Wildlife grazing, especially by red deer (Cervus elaphus), 

also plays an important role for vegetation dynamics (Meißner et al., 2012; 

Riesch et al., 2019).
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Figure 1: Location the study site Grafenwoehr military training area outlined 
in red. The location of the study site in Germany is marked with a black square 
in the lower right map. The background map is based on the 24 June 2016 
RapidEye acquisition (Table 1).

Satellite data and pre-processing

A multi-temporal  RapidEye  time-series  consisting  of  ten  images 

covering the years  between 2014 and 2017 (Table 1)  was acquired.  The 

ordered processing level 3A was already radiometrically, geometrically, and 

sensor corrected,  and was delivered covering one 25 by 25 km tile  (ID-

3,262,023).

The pre-processing included a correction of the acquisition dates for 

shifts in the phenology according to the method proposed by Schmidt et al. 

(2014).  This  is  an  important  processing  step,  because  two  images  from 
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different years, acquired for the same day of the year and the same area, can 

differ in their phenology. The actual Julian day of the year was corrected for 

each acquisition to an adjusted Julian day of the year (Table 1), as outlined 

in Raab et al. (2018).

Table 1: Multi-annual RapidEye time-series ordered by adjusted Julian day of 
the year (DOY).

No
Acquisition 

date

Actual 
Julian 
DOY

Adjusted 
Julian 
DOY

Sensing 
time 
(am)

Sensor 
view 
angle 

(°)

Phenological 
phase

1 14 March 2016 74 88 10:45 10.4
prespring 
(PSP)

DOY 
71-
1022 27 March 2017 86 95 10:35 3.5

3 2 April 2014 92 114 11:17 13.0
first spring 
(FIS)

DOY 
103-
131

4 20 April 2016 111 119 11:07 9.6

5 17 April 2014 107 127 11:14 6.3

-
full spring 
(FUS )

DOY 
132-
158

6 11 June 2017 162 169 10:31 6.9
early 
summer 
(ESU)

DOY 
159-
179

7 24 June 2016 176 183 10:49 0.3
midsummer 
(MSU)

DOY 
180-
220

8 25 August 2017 237 243 10:27 3.5
late summer 
(LSU)

DOY 
221-
244

-
early 
autumn 
(EA)

DOY 
245-
266

-
full autumn 
(FA)

DOY 
267-
284

9 12 October 2015 285 287 11:02 6.3
late autumn 
(LA)

DOY 
285- 
30510 16 October 2017 289 290 10:25 6.6

In  order  to  ensure  spatial  consistency  and  to  reduce  potential 

classification errors all images were co-registered to the image acquired on 2 
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April 2014 using the function coregisterImages, implemented in the package 

RStoolbox (Leutner  and Horning,  2018) in  the R statistical  programming 

environment  (R  Core  Team,  2018). TOA was  derived  according  to  the 

product  specification  by  the  data  provider  (Planet  Labs  Inc.,  2016).  The 

Tasselled-Cap-indices Brightness (TCB), Greenness (TCG), and Yellowness 

(TCY) were derived using the transformation introduced by Schönert et al. 

(2014). The band specific weighting factors are illustrated in Figure 2. The 

SR dataset was derived using the Second Simulation of Satellite Signal in 

the Solar Spectrum (6S) algorithm (Vermote et al., 1997), implemented in 

the function i.atcorr within the open source Geographic Resources Analysis 

Support System (GRASS GIS), version 7.6 (GRASS Development Team, 

2019).

Figure 2: Tasselled Cap Transformation coefficients for Brightness, Greenness 
and Yellowness for each band according to Schönert et al. (2014).
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Training and validation data collection

The classification schema was adopted from the Corine Land Cover 

level 3 classes. The selected classes included water, moors and heathlands, 

managed  grassland,  unmanaged  grassland,  transitional  woodland-shrub, 

broad-leaved forest, coniferous forest and other (Table 2). The class ‘other’ 

summarised areas covered by artificial surfaces and bare soil.

An independent  validation  set  of  410 locations  was  created  by  a 

random  sampling  approach  (Table  2).  The  distinction  between  different 

classes was aided by an aerial image (24 June 2016) as well as the habitat 

map created as part of the Natura 2000 legal obligations in 2006 (Meißner et 

al., 2012). Similarly, a total of 4104 training locations were distributed over 

the GTA (Table 2). As recommended by Millard and Richardson (2015), the 

proportion of training sample locations per class were adjusted to reflect the 

actual class proportion in the study area, guided by the Natura 2000 habitat 

map. Plots of TCB, TCG and TCY against adjusted Julian day of the year 

were  used  to  visualise  vegetation  phenology  for  the  selected  land  cover 

classes  using  the  extracted  information  at  the  training  set  locations 

(Pasquarella et al., 2016).
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Table  2: Classification  schema,  respective  number  of  training  points  and 
independent validation points.

Number Class name Number of 

training points 

used for cross-

validation

Number of 

independent

validation points used 

for the McNemar test

1 water WA 120 5

2 moors and heathlands MH 393 14

3 managed grassland GM 433 21

4 unmanaged grassland GU 1059 106

5 broad-leaved forest BF 561 67

6 coniferous forest CF 788 156

7 transitional woodland-shrub TW 316 13

8 other OS 434 28

Total 4104 410

Classification and validation

The  RF  machine  learning  classifier  implemented  in  the  package 

ranger (Wright and Ziegler, 2015) was used to relate the TCT, TOA and SR 

predictor  variables  to  the  training  sample  dataset,  respectively.  The non-

parametric  method  of  RF  was  selected,  because  it  can  handle  high-

dimensional  datasets  (Belgiu  and  Drăguţ,  2016) and  its  robustness  for 

mapping heterogeneous habitats has been demonstrated by several studies 

(Barrett  et  al.,  2016;  Cutler  et  al.,  2007;  Millard  and Richardson,  2015; 

Rodriguez-Galiano et  al.,  2012).  The RF algorithm is  an ensemble-based 

classification tree, from which the predictions are drawn by a majority vote 

among all trees. The trees are constructed using a subset of training samples 

drawn through replacement  (Belgiu and Drăguţ, 2016). For this, about two 
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thirds of the training samples are used to train the trees (in-bag samples) and 

the remaining one third is used to estimate the model performance using 

internal cross-validation (out of bag samples, OOB).  As recommended by 

Belgiu and Drăguţ (2016), the number of trees to be constructed (num.trees) 

was set  to  500.  The number of  predictor  variables  randomly sampled as 

candidates at each split (mtry) was set to the square root of the total number 

of predictor variables (Gislason et al., 2006). To account for the randomness 

of  the  RF  algorithm,  the  classification  map  was  derived  from the  most 

frequently predicted class from 100 spatial predictions per pixel. In addition 

to the classification map, spatial probability values were derived from the 

RF models, as the mean of 100 predictions.

An important part of land cover classification is the validation, e.g. 

accuracy assessment by a confusion matrix, of the final map (Foody, 2002). 

As  the  internal  OOB  validation  of  the  RF  can  be  biased  (Millard  and 

Richardson, 2015), a  k-fold cross-validation approach was used instead of 

the  RF  OOB  classification  error  estimation.  The  k-fold  cross-validation 

procedure  partitions  the  dataset  selected  for  the  model  construction 

randomly into k folds, i.e. k single parts of the dataset. In this approach, k-1 

folds  are  used  to  train  the  model  and the remaining one fold is  used to 

validate the classification model. This approach has the advantage that, with 

sufficient repetitions,  all  the samples can be used to  train and validate a 

model. Hence, a 10-fold cross-validation was used to estimate the models 

constructed using the training sample set, implemented in the package  mlr 
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(Bischl et al., 2016). The validation procedure was repeated 100 times to 

reduce  variance  introduced  by  the  cross-validation.  Accuracy  assessment 

included overall,  user’s and producer’s accuracy, derived from a standard 

confusion matrix (Congalton, 1991).

The independent validation set of 410 locations (Table 2) was used 

to compare the statistical significance of the differences between the land 

cover predictions derived from TCT, TOA and SR data. For this, the non-

parametric  McNemar  test  was  used  (Foody,  2004),  which  has  been 

commonly  applied  to  evaluate  differences  between  classification  results 

(Barrett et al., 2016; Rodriguez-Galiano et al., 2012). The significance level 

was set to 5% with a z-critical value of z = 1.96.

Variable importance

Permutation-based  variable  importance  was  derived  in  order  to 

estimate which TCT index, spectral TOA or SR band at which phenological 

season contributed most to the RF model performance. By excluding one 

variable  and  keeping  the  rest  in  the  model,  the  contribution  to  the 

performance can be estimated in terms of change in classification error rate 

(Ruß and Brenning, 2010; Peña and Brenning, 2015). Thus, the increase of 

classification error as a measure of variable importance was estimated with 

100 permutations per variable, using the package mlr.
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Results

Tasselled Cap Transformation time-series

The created training data set was used to extract the TCB, TCG and 

TCY time-series data and to explore differences in the phenology across the 

land cover classes. Figure 3 illustrates the seasonal variability with distinct 

patterns  for  all  eight  land  cover  classes.  Values  of  TCB were  generally 

higher  than  those  of  TCG  and  TCY. The  TCY  curves  showed  little 

variability for all classes with consistently negative values close to zero. The 

TCG profiles exhibited more pronounced phenological patterns with peaks 

in  the  early  summer  for  all  classes,  except  for  the  non-vegetative  ones 

‘other’ and ‘water’. The classes ‘unmanaged’ and ‘management grassland’ 

were well separated according to the TCB and TCG seasonal profiles. The 

class ‘managed grassland’ showed consistently higher TCB and TCG values 

compared to ‘unmanaged grassland’. Both TCB and TCG curves captured 

transitions  from leaf-on  to  leaf-off  periods  for  ‘broad-leaved  forest’ and 

‘transitional  woodland-shrub’ with  high  seasonal  amplitude.  The  highest 

TCB values were present for the class ‘other’, which had very low TCG 

values without a seasonal pattern.
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Figure  3: Seasonal  Tasselled  Cap  Brightness,  Greenness  and  Yellowness 
index plots using the mean value of the extracted training data (Table 2) set 
per class.

Classification and validation

The  accuracy  assessment  results  derived  from  repeated  10-fold 

cross-validation for the the TCT, TOA and SR datasets are shown in Table 3. 

The overall  accuracy for all  three datasets was about 91.5 % (TCT  sd = 

1.4%, TOA sd = 1.4%, SR sd = 1.3%). The derived Kappa values were very 

similar  as  well.  Class-specific  omission  and  commission  error  rates  are 

illustrated by producer’s (PA) and user’s accuracy (UA) in Table 3. Lowest 

PA and UA values were estimated for the classes ‘transitional woodland-
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shrub’ and ‘moors and heathlands’. In general, the differences between the 

three tested datasets were small.

Table 3: Classification results for all three datasets. PA = producer’s and UA = 
user’s accuracy.

Tasselled Cap 
Transformation

Top of atmosphere 
reflectance

Surface 
reflectance

Overall Accuracy (%) 91.49 91.55 91.49

Kappa 0.90 0.90 0.90

water

PA 0.97 0.93 0.93

UA 0.97 0.98 0.98

moors and heathlands

PA 0.87 0.85 0.85

UA 0.82 0.84 0.84

managed grassland

PA 0.94 0.94 0.94

UA 0.95 0.95 0.95

unmanaged grassland

PA 0.91 0.91 0.91

UA 0.87 0.86 0.86

broad-leaved forest

PA 0.92 0.92 0.92

UA 0.93 0.94 0.94

coniferous forest

PA 0.96 0.95 0.95

UA 0.94 0.94 0.94

transitional woodland-
shrub

PA 0.80 0.82 0.81

UA 0.92 0.95 0.95

other

PA 0.92 0.95 0.95

UA 0.99 0.98 0.98
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The results of the McNemar test between the TCT, TOA and SR classification 

results using the independent validation set (Table 2) are displayed in Table 4. 

The  null  hypothesis,  i.e.  no  significant  difference  between  classification 

results,  was  confirmed  for  TOA  and  SR.  The  TCT  classification  results 

differed significantly from the TOA and SR results (p < 0.001). The overall 

accuracy estimated  by the  independent  validation  set  was  higher  (96.34%) 

than that of the TOA and SR classification results (89.8–89.3%).

Table  4: Results  of  the  McNemar  test  for  three  different  datasets,  TCT = 
Tasselled Cap Transformation, TOA = Top of atmosphere reflectance, SR = 
surface reflectance, OA = overall accuracy.

Map 1 Map 2 |z| p value OA map 1 OA map 2 Kappa map 1 Kappa map 2

TCT TOA 4.56 < 0.001 96.34% 89.76% 0.95 0.87

TCT SR 4.77 < 0.001 96.34% 89.27% 0.95 0.86

TOA SR 1.41 0.079 89.76% 89.27% 0.87 0.86

The predicted map derived from the TCT RF model is presented in 

Figure 4. The accompanying predicted probability maps for each class are 

displayed in the supplemental  material  Figure S1. The percentages  of all 

land cover classes are shown in Table 5. The differences between TCT, TOA 

and SR predicted proportion of the land cover were marginal. The dominant 

vegetation cover classes in all three versions were ‘coniferous forest’ and 

‘broad-leaved forest’, making up about 54% of the total area. Most of the 

‘transitional woodland-shrub’ cover was in the western part of the study site, 

predominantly  associated  with  a  more  fragmented  landscape.  Larger 

complexes  of  ‘managed  grassland’  were  embedded  in  this  fragmented 
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mixture of open landscape and ‘transitional woodland-shrub’ and forest. The 

class ‘unmanaged grassland’ can be found relatively ubiquitously, but with 

larger complexes in the centre as well as in the western part of the study site. 

The class ‘other’ covers a  larger area in the centre of the study site, which 

reflects soil scarification due to exploded ordnance. In the eastern part of the 

study  site  the  class  ‘moors  and  heathlands’  occurred  more  frequently, 

compared to the remaining area. This can be related to dryer and less fertile 

soil conditions for heathlands in the northern and north-eastern part of the 

study site (Riesch et al., 2018).

Figure 4: Classification map for the GTA derived from the multi-temporal 
Tasselled Cap RapidEye times-series, using the Random Forest classification 
algorithm. To improve the homogeneity of the classification a 3×3 majority 
filter was applied to the presented map.
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Table 5: Share of land cover classes for the Tasselled Cap Transformation 
(TCT),  Top  of  atmosphere  (TOA)  and  surface  reflectance  (SR)  predicted 
maps.

Number Class name TCT TOA SR

Share of class (%)

1 water 1.26 1.20 1.20

2 moors and heathlands 3.66 3.57 3.59

3 managed grassland 3.69 3.64 3.65

4 unmanaged grassland 26.31 25.42 25.41

5 broad-leaved forest 15.53 16.18 16.16

6 coniferous forest 38.36 38.09 38.12

7 transitional woodland-shrub 2.75 2.61 2.59

8 other 8.44 9.29 9.28

Total 100 100 100

Variable importance

The permutation-based variable importance estimated as the mean 

increase  in  error  rate  is  shown  in  Figure  5.  For  the  TOA  and  SR 

classification, the most important variable for the RF model was the near-

infrared band. This was particularly the case for the phenological seasons 

early summer and late autumn,  which were generally the most important 

time frames. For the TCT dataset, TCG contributed most to the classification 

model.  The sum of  its  mean increase  in  error  rate  across  all  considered 

phenological seasons was about 6.38%. For TCB and TCY, sums of 1.35% 

and 0.01% were estimated, respectively. The most important phenological 

season for the TCT model was late autumn. In general, the maximum mean 

increase in error rate values were higher for the models based on TCT data 

compared to TOA and SR.
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Figure 5: Permutation-based variable importance derived as mean increase in 
error  rate  for  the  top  of  atmosphere  (TOA),  surface  reflectance  (SR)  and 
Tasselled  Cap  Transformation  (TCT)  dataset.  TCB  =  Brightness,  TCG  = 
Greenness, TCY = Yellowness, PSP = prespring, FIS = first spring, FUS = full 
spring, ESU = early summer, MSU = midsummer, LSU = late summer, EA 
=early autumn, FA = full autumn, LA = late autumn.
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Discussion

Tasselled Cap Transformation time-series

Similar  to  the  study  by  Pasquarella  et  al.  (2016),  who  evaluated 

Landsat Tasselled Cap time-series to characterise different habitats, distinct 

phenological profiles of different land cover classes were provided by the 

RapidEye TCT time-series (Figure 3). As TCG has a high positive weighting 

factor for the near-infrared band (Figure 2), it covers the spectral variation of 

live vegetation well. Thus, all TCG-profiles of vegetated surfaces followed a 

typical green-up curve, similar to the commonly used normalised difference 

vegetation index (Pettorelli  et  al.,  2005). Most studied land cover classes 

showed a peak in TCB at the beginning of summer, especially for the class 

‘other’.  As  the  TCB  captures  overall  brightness  and  variance  in  soil 

brightness (Schönert et al., 2015), this might be attributed to changes in soil 

conditions, such as moisture.

The  Tasselled-Cap-transformed  Landsat  archive  data  has  been 

recently recognised as a  valuable tool  to asses abrupt as well  as gradual 

changes in land cover (Kennedy et al., 2015, 2010; Pasquarella et al., 2016). 

The available RapidEye archive data should be considered by future studies 

to  evaluate  the  potential  of  the  high  spatial  resolution  Tasselled-Cap-

transformed RapidEye data for change analysis.
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Classification and validation

Only  marginal  differences  in  classification  accuracy  between  the 

TCT, TOA and  SR  datasets  were  present  (Table  3).  The  McNemar  test 

showed no significant difference between the TOA and SR dataset (Table 4). 

This was similar to the results provided by Raab et al. (2015), who reported 

only  marginal  classification  accuracy  differences  among  different 

atmospheric correction approaches and uncorrected multi-temporal Landsat 

data. Even though the study area has only small topographic variability, an 

additional topographic correction could have increased the predictive power 

of  the  classification  model  (Vanonckelen  et  al.,  2013).  However, 

classification results based on TCT differed from both classifications based 

on untransformed  values,  and had a  c.  6% higher  overall  accuracy  than 

those.  This  might  be  related  to  a  lower  model  complexity  as  a  smaller 

number of predictor variables were included, and to a reduced correlation 

among the predictor variables in the TCT dataset (Millard and Richardson, 

2015).  The  TCT,  which  was  originally  developed  for  agricultural 

applications,  can  thus  be  considered  as  an  effective  data  compression 

approach, which can provide similarly high classification accuracies as TOA 

and SR data.

A variety of alternative land cover classification concepts have been 

presented using RapidEye data in comparison to the presented pixel-based 

RF approach. For land cover mapping with single temporal RapidEye data 

and  machine  learning  techniques,  such  as  Support  Vector  Machines, 
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Schuster et al. (2012) and Ustuner et al. (2015) reported OA values ranging 

from 78.1 to 85.6%. More accurate classification results were reported for 

multi-temporal data (Zillmann and Weichelt, 2013; Schuster et al., 2015), 

similar to the results presented in this study. However, the application of 

Support  Vector  Machines  is  computational  intensive,  since  it  requires 

parameter tuning. In a direct comparison of Support Vector Machines and 

RF for land cover classification in a heterogeneous coastal landscape, Adam 

et  al.  (2014) found no significant difference between the performance of 

both algorithms. The overall  accuracy estimated for the RF classification 

was slightly higher compared to the result using Support Vector Machines. A 

segmentation-based  classification  approach  aggregates  spectrally 

homogeneous pixels into objects and would most likely increase the overall 

accuracy compared to the presented pixel-based classification (Förster et al., 

2010; Laliberte et al., 2007). This would come with the trade-off of losing 

information as small features are integrated into bigger objects (Schmidtlein 

and Sassin, 2004; Liu and Xia, 2010; Schmidt et al., 2017). Therefore, the 

presented pixel-based TCT classification approach can be seen as a valid 

approach,  from which  it  would  be  easy to  aggregate  classified  pixels  to 

objects.

Variable importance

The  different  magnitudes  of  the  measure  mean  increase  in 

classification error rate between the TCT and untransformed datasets can be 
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explained by the compression of information into only three (TCT) instead 

of  five  (TOA and  SR)  uncompressed  bands  (Figure  5).  As  most  of  the 

surface in the study site was covered with vegetation (Table 5), the high 

importance of the Greenness TCT-index and the near-infrared band of the 

TOA and SR dataset was not surprising. The small contribution of the TCY 

data  can  be  explained  by  the  small  variability  of  this  transformation 

component (Schönert  et  al.,  2014).  However,  all  components  of  the 

respective datasets should be considered for mapping land cover, because a 

potential interdependence between the predictor variables would otherwise 

be  disregarded.  The  differences  between  the  TOA  and  SR  variable 

importances were small. For both datasets, the rededge band contributed to 

the model accuracy, albeit  only slightly. Similar results  were reported by 

Schuster et al. (2012).

The phenological correction of acquisition dates allowed to compare 

how different phenological phases contributed to the classification model. 

The phenological season late autumn contributed most to the classification 

model in all three cases. Therefore, the late autumn season must be seen as a 

critical data acquisition window for mapping land cover by the means of 

satellite  remote  sensing in  this  study. This  is  supported  by  Förster  et  al. 

(2010),  who recommended using image acquisitions originating from the 

onset of vegetation and the senescence phase to map Natura 2000 habitats. 

As  the  remote  sensing  data  available  in  this  study  did  not  cover  all 
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phenological  seasons  (Table  1),  a  broad  generalisation  concerning  the 

importance of all phenological phases was not possible.

Conclusion

The classification of a heterogeneous landscape using Tasselled-Cap-

transformed  RapidEye  data  achieved  similar  high  overall  accuracies 

compared  to  top  of  atmosphere  and  surface  reflectance  data.  Thus,  the 

RapidEye Tasselled Cap Transformation can be seen as an effective data 

compression measure, valuable for the application of multi-temporal land 

cover  mapping.  The Tasselled  Cap Transformation  captured  phenological 

patterns of vegetated surfaces and the late autumn was identified as the most 

influential image acquisition window. A phenological correction of image 

acquisition  dates  must  be  seen  as  a  pivotal  pre-processing  step  for  the 

analysis  of  satellite  remote sensing data  originating from different  years. 

Future  research  should  evaluate  the  potentials  of  the  Tasselled-cap-

transformed RapidEye data  to  study environmental  changes  at  very high 

resolutions.
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Appendix 1: A practical example.
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Figure S1: Probability maps for the GTA derived from the multi-temporal 
Tasselled Cap RapidEye time series, using the Random Forest classification 
algorithm.
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Appendix 1: A practical example

To illustrate how the random forest algorithm can be used for remote 

sensing  classification  purposes,  we  make  use  of  a  data  set  compilation 

provided by the book “Remote Sensing and GIS for Ecologists: Using Open 

Source Software” (Wegmann et al., 2016). The data can be accessed under 

the following URL:

http://book.ecosens.org/data/

The  aim  of  this  exercise  is  to  demonstrate  how  land  cover 

classification can be performed using R.

Data preparation

First we will load the required packages and subsequently the data:

library(raster)
library(rgdal)
library(mlr)
library(ranger)
library(RStoolbox)
library(ggplot2)

lsat <- brick("data_book/raster_data/LT52240632011210.tif")

train <- readOGR("data_book/vector_data", "training_2011")
test <- readOGR("data_book/vector_data", "validation_2011")

Training data samples

We merge the provided training and testing data set, because we will 

use the spatial boundaries of both to generate random samples for the model 

training and validation:

train_polygon <- rbind(train,test)
# 500 random points to be generated
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set.seed(123)
train_points <- spsample(train_polygon, type = "random", n = 500)
# spatial overlay between the polygons and generated points
vals <- over(train_points, train_polygon)
# add class name as response column
train_points$response <- vals$class_name

table(train_points$response)
## 
##   forest noforest    water 
##      360       98       42

Visualisation

train_points_df <- as.data.frame(train_points)
train_poly_df <- fortify(train_polygon)
ggplot() + Rstoolbox::ggRGB(lsat,
                            r=3,
                            g=2,
                            b=1, 
                            stretch = "lin",
                            ggLayer = TRUE)+
  geom_point(data=train_points_df,
             aes(x=x, y=y, color=response))+
  scale_colour_manual(values = c("noforest"="red", "forest"="green", 
"water"="blue"))+
  geom_polygon(data= train_poly_df, 
               aes(x=long,y=lat, group=group),
               colour="yellow",
               fill=NA)+
  coord_equal()
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Now  we  can  use  the  generated  samples  in  order  to  extract  the 

respective reflectance values recorded by the satellite:

train_extracted <- data.frame(extract(lsat, 
                                      y=train_points, 
                                      cellnumbers = TRUE, 
                                      sp=TRUE))

# remove potential dublicates
train_extracted  <- train_extracted [!duplicated(train_extracted$cells), -2]
train_df <- train_extracted[c(1:8)]
train_coordinates <- train_extracted[c(9:10)]

Model parameter settings

Here  we  adjust  the  parameter  setting  for  the  random  forest 

classification model:

#number of predictor variables randomly sampled as candidates at each split
mtry <- round(sqrt(length(names(train_df))))
# number of trees to be constructed 
num.trees <- 500 
# number of folds
k <- 5
# number of repetitions
reps <- 10 

Model validation

# define task and learner
nsp_task <- makeClassifTask(id = "lsat_nsp",
                        data = train_df,
                        target = "response")
# define learner
rf_learner <- setHyperPars(makeLearner("classif.ranger"), 
                           par.vals = list(mtry = mtry,
                                           num.trees = num.trees))
#define non-spatial, repeated cross-validation
rdesc = makeResampleDesc("RepCV",
                         reps=reps,
                         folds=k,
                         predict = "test")
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# validation
res_nsp <- mlr::resample(learner = rf_learner,
                               task = nsp_task, 
                               resampling = rdesc,
                               measures = list(
                                 setAggregation(acc, test.mean),
                                 setAggregation(acc, test.sd),
                                 setAggregation(kappa,test.mean),
                                 setAggregation(kappa,test.sd)),
                               models = FALSE,
                               show.info = FALSE)

res_nsp$aggr
##   acc.test.mean     acc.test.sd kappa.test.mean   kappa.test.sd 
##      0.91660000      0.02200278      0.80656936      0.05586579

Prediction

After the model performance was evaluated using cross-validation 

we apply the model to each pixel, in order to generate a classified land cover 

map.

# get predictor variable names
ff <- names(train_df)[c(2:8)]

# create formula for the random forest model
fo <- as.formula(paste("response ~", paste(ff, collapse="+")))

# model paramters
ntree <- 500
mtry <- round(sqrt(length(ff)))

# construct predictive model
rf_model <- ranger(formula = fo,
                   data=train_df,
                   mtry=mtry,
                   num.trees = ntree,
                   num.threads = 1,
                   classification=TRUE,
                   write.forest = TRUE,
                   probability=FALSE)
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#https://stackoverflow.com/questions/46354103/image-classification-raster-stack-
with-random-forest-package-ranger  
  
lsat_prediction <- predict(lsat,
                           rf_model,
                           type='response',
                           num.threads=1,
                           progress = 'text',
                           fun = function(model, ...) predict(model, ...)$predictions)
# save prediction result 
res <- writeRaster(lsat_prediction, "lsat_prediction")
hdr(res, format = "ENVI")
rm(res)

library(rasterVis)

cols <- c("A" = 'green', "B" = 'red', "C" = 'blue')

gplot(lsat_prediction,length(values(lsat_prediction))) +
  geom_raster(aes(fill=factor(value, labels=c("A", "B", "C"))))+
  scale_fill_manual(values = cols,
                    breaks = c("A", "B", "C"),
                    labels = c("forest", "no forest", "water"),
                    name= " ")+
  coord_equal()

References

Wegmann,  M.,  Leutner, B.,  Dech, S.,  2016. “Remote Sensing and GIS for 
Ecologists: Using Open Source Software.” Pelagic Publishing Ltd.
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3
CHAPTER 3 – MAPPING SEMI-NATURAL 

GRASSLAND COMMUNITIES USING MULTI-

TEMPORAL RAPIDEYE REMOTE SENSING 

DATA

This chapter is published as:

Raab, C., H-G. Stroh, B. Tonn, M. Meißner, N. Rohwer, N. Balkenhol, J. Isselstein. 2018. 
“Mapping  semi-natural  grassland  communities  using  multi-temporal  RapidEye  remote 
sensing data”. International Journal of Remote Sensing. 39, 5638–5659.
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Abstract

Mapping  semi-natural  grassland  has  become  increasingly  important 

with  regard  to  climate  variability,  invasive  species,  and  the 

intensification  of  land  use.  At  the  same  time,  adequate  field  data 

collection  is  of  pivotal  importance  for  national  and  international 

reporting  obligations,  such  as  the  European  Habitats  Directive.  We 

present  a  remote-sensing-based  monitoring  framework  for  a  Natura 

2000  site  with  a  heterogeneous  composition  of  different  grassland 

communities, using the Random Forest algorithm. Automated training 

data  selection  was  successfully  implemented  based  on  the  Random 

Forest  proximity  measure  (Overall  Accuracy  ranging  from  77.5-

86.5%).  RapidEye  acquisitions  originating  from onset  of  vegetation 

(prespring  and  first  spring)  and  senescence  (late  summer  and  first 

autumn) were identified as important phenological phases for mapping 

semi-natural grassland communities. The derived probability maps of 

occurrences  for  each  grassland  class  captured  transitions  between 

grassland communities and are therefore a better approximation of real 

world conditions compared to classical, discrete maps.

Keywords: European Habitats Directive, monitoring, Random Forest, 

proximity, training data, variable importance, probability maps
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Introduction

Semi-natural grasslands are habitats with high biodiversity (Dengler 

et al., 2014). They are characterised by indigenous, naturally occurring plant 

communities which have not been substantially modified, e.g. by sowing or 

fertilization.  Unlike natural  grassland,  semi-natural  grasslands  have  their 

origin in human activities, such as mowing or grazing, and depend on active 

management  for  their  conservation  (Peeters  et  al.,  2014).  Mapping  and 

monitoring these habitats with their structural and botanical heterogeneity at 

very fine scales is a challenging task, but becomes increasingly relevant with 

regard to intensification of land use, land abandonment, climate variability 

and invasive species (Stenzel et al., 2014; Wachendorf et al., 2017). National 

and international nature conservation and management activities, such as the 

European Habitats Directive (Council Directive 92/43/EEC 1992) may even 

impose legal obligations to set up a monitoring framework for grasslands 

(Borre, et al., 2011). Typically, grassland habitats are mapped and monitored 

through field surveys, which are time- and labour-intensive. In addition, they 

are difficult to reproduce, prone to subjective interpretation in the field, and 

in some cases limited by access restrictions. Remote-sensing-based mapping 

and  monitoring  offer  unique  possibilities  to  derive  spatially-explicit 

vegetation maps on large geographical areas using automated process chains 

(Borre et al., 2011; Buck et al., 2013; Nagendra et al., 2013; Stenzel et al.,  
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2014;  Corbane  et  al.,  2015).  Thus,  remote-sensing-derived  products  can 

easily be updated on regular intervals.

The  availability  of  remote  sensing  platforms  applicable  for  land 

monitoring has experienced a tremendous boost since the 1970s  (Belward 

and  Skøien,  2015).  The  increased  amount  of  remote  sensing  images, 

however, requires effective supervised machine learning algorithms, such as 

Support Vector Machines (Cortes and Vapnik, 1995; Mountrakis et al., 2011) 

or Random Forests  (Breiman,  2001;  Belgiu and Drăguţ,  2016) to extract 

relevant  information  from  high-dimensional  spectral  data.  The  Random 

Forest  classifier  can be described as an ensemble of decision trees,  from 

which the prediction is drawn by a majority vote. In contrast to Maximum 

Likelihood classifiers, no assumptions about the distribution of the data are 

required  for  the  non-parametric  Random Forest.  Moreover,  the  Random 

Forest algorithm is insensitive to overfitting and its good performance for 

mapping vegetation has been demonstrated in several studies (Gislason et 

al.,  2006; Cutler et al., 2007; Rodriguez-Galiano et al., 2012; Feilhauer et 

al., 2014; Barrett et al., 2016; Maxwell et al., 2018).

All supervised machine learning algorithms require a set of training 

data,  which  adequately  represent  the  spectral  characteristics  of  targeted 

vegetation  classes.  The  training  sampling  strategy  impacts  classification 

accuracy and often leads to either over- or underrepresentation of classes in 

the final map (Millard and Richardson, 2015; Ustuner et al., 2016). Manual 

training sample selection is a time-consuming and subjective task (Rocchini 
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et al., 2013), and so is the collection of test samples in the field, especially at 

transitions between different vegetation cover types.

Automated  training  data  generation,  derived  e.g.  from  existing 

reference maps, can be a potential solution to maintain objectivity in a cost- 

and labour-efficient way. For this, robust computer algorithms are needed to 

screen the initial training data set for incorrectly labeled samples, also called 

outliers. The Random Forest proximity of two training samples is a function 

of  the ratio between the number of trees in which both samples share the 

same terminal node and the total number of trees in the forest  (Belgiu and 

Drăguţ, 2016). As pointed out by Gislason et al. (2006), Verikas et al. (2011) 

and Touw et al. (2012), this measure can be used to detect and consequently 

exclude outliers in a training data set. Thus, by using the Random Forest 

proximity  measure,  uncertainties  (e.g.  at  the  transition  between  two 

vegetation communities) introduced by the training data sampling strategy 

or reference field mapping can be reduced.

In addition to the training data sampling design, the acquisition time 

of remote sensing data can be seen as an important factor influencing the 

quality  of  the mapping result  (Nitze et  al.,  2015).  Multi-seasonal  remote 

sensing time series can support the discrimination of spectrally very similar 

land  cover  types,  such  as  semi-natural  grassland  types,  by  incorporating 

temporal  characteristics  (Schmidt  et  al.,  2014).  The  identification  of 

important temporal windows for classifying land cover types is not only of 
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value  to  decrease  model  complexity  and  computation  intensity,  but  also 

allows for a very targeted study design.

In this  article,  we explore the use of  multi-annual,  multi-seasonal 

remote sensing data combined with the Random Forest machine learning 

algorithm to discriminate semi-natural grassland communities identified by 

field mapping. The aims of this study were to:

• develop a framework to automatically derive training data by reducing 

uncertainties introduced by field mapping and sampling strategy,

• map  the  probability  of  spatial  occurrence  of  different  grassland 

communities, 

• identify phenological seasons supporting the discrimination of different 

grassland communities.

The work was divided into a field mapping and data pre-processing 

part  followed  by  the  training  data  selection  process.  For  each  grassland 

class, the probability of occurrence was derived. Finally, permutation-based 

variable  importance  (Ruß  and  Brenning,  2010)  were  calculated.  The 

presented  processing  framework will  help  to  improve current  and future 

mapping  and  monitoring  obligations,  such  as  required  by  the  European 

Habitats Directive.

Materials and Methods

In this section, we provide an introduction to the study area and field 

mapping process, followed by our main study aim: automated selection of 
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training data. In addition, we present how the derived training data can be 

applied  for  mapping  the  probability  of  occurrence  of  grassland  at 

community  level.  Important  temporal  windows for  mapping semi-natural 

grassland are estimated using a permutation based approach. A conceptual 

overview of methods applied in this manuscript is given in Figure 1.

Figure  1: Schematic  illustration  of  the  automated  training  data  selection 
process highlighted by a gray box. The right part of this figure emphasises the 
application  of  the  derived  training  data  set  to  calculate  spatially  explicit 
probability  maps  and  to  identify  important  phenological  seasons  for  the 
discrimination of different grassland communities.

Study area

The  Grafenwoehr  military  training  area  (GTA)  is  located  in  the 

south-east of Germany (Bavaria) and lies at about 445 m above sea level in 

the natural region Upper Palatine-Upper Main Hills (Figure 2). Long-term 
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annual averages of temperature and precipitation are 8.3 ± 0.04 °C and 701 

± 4 mm, respectively (1981-2010, mean ± SEM, of four weather stations of 

the  German  Weather  Service  (DWD,  Deutscher  Wetterdienst)  in  the 

immediate vicinity). The GTA extends about 223 km². Roughly 85% are part 

of the Natura 2000 network and contain numerous rare and highly protected 

habitat types, forming a refuge for many endangered species (Warren and 

Büttner, 2008a, 2008b; Riesch et al., 2018). About 130 km² of the GTA are 

covered with forest and around 63 km² with semi-natural grasslands. The 

majority of the open areas are mown or mulched once per year between July 

and  August.  Fire  and  wildlife  grazing,  especially  by  red  deer  (Cervus 

elaphus), also play a role in some of these areas (Meißner et al., 2012).

In  order  to  demonstrate  the  feasibility  of  monitoring  semi-natural 

grassland communities via remote sensing in areas with limited access, we 

focused on two study sites, Sommerhau and Hoehenberg.  Situated in the 

north of the GTA (Figure 2), about 71 ha of the total Hoehenberg site can be 

described as heterogeneous grassland, surrounded by forest.  The northern 

two thirds of the Hoehenberg site consist of a plain, underlain by Keuper 

sandstone, with only slight differences in the relief. Parts of the area are 

mulched  once  a  year  around  the  middle  of  July,  mainly  for  fire  safety 

reasons. 

In contrast, the Sommerhau site is situated in the western part of the 

GTA (Figure 2). This area of about 140 ha is characterised by a mixture of 

grassland,  fallow land and hedgerows,  mainly  underlain by more  or  less 
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calcareous  rock.  In  addition  to  some  smaller  forest  stands,  a  larger 

continuous  forested  area  can  be  found  in  the  south.  Compared  to  the 

Hoehenberg  site,  more  anthropogenic  infrastructure  is  present  and  the 

management regime includes mowing once a year around the middle of July.

Figure  2: Location  of  the  two  study  sites  Sommerhau  (orange)  and 
Hoehenberg (red) in the Grafenwoehr military training area. The location of 
the study site in Germany is marked with a red square. The map is based on 
data provided by ©OpenStreetMap contributors.

Field mapping

Field data were collected at the two study sites between 2015 and 

2017, mainly during summer. The collection of field data was limited by 

access  restrictions  due  to  military  training  activities.  Even  though 

geographical (Figure 2) and management differences exist, a large quantity 

of the same common species can be found in both study sites. The field data 

collection aimed to derive vegetation units based on floristic composition as 
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well as on dominance of individual species and structural properties. To this 

end, reference relevés were surveyed according to the EU Habitats Directive 

habitat types of Bavaria (BayLFU, 2012). A selection of plant sociological 

literature  aided  the  mapping  process  to  adequately  depict  special  local 

habitat types (Dierschke, 1997; Dierschke and Briemle, 2002; Burkart et al., 

2004), as a restriction to the units in the Habitat Directive would have led to 

an  inadequate  depiction  of  unlisted  local  habitat  types.  Vegetation  units 

(communities) were formed based on the surveyed reference plots and are 

outlined in Table 1 and Table 2, respectively. To derive a spatial grassland 

community map for each site, spatial boundaries were drawn according to 

the collected relevés  data  and visual  interpretation in  the field.  This was 

supported by an aerial image taken during the midsummer season.
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Table  1: Mapped  grassland  communities  and  share  of  total  area  for 
Sommerhau in percentage (%).

ID Description
Share 
(%)

SG1
Mown grassland dominated by short grasses (< 40%) - pasture-like lowland 
hay meadow

39.4

SG11 Species-rich pasture-like lowland hay meadow, cover of Trifolium repens < 10% 16.0

SG12 Species-rich pasture-like lowland hay meadow, cover of Trifolium repens > 10% 22.0

SG13
Species-rich o pasture-like lowland hay meadow with species of dry calcerous 
grassland 

0.5

SG14 Lolium-perenne-Trifolium repens pasture, cover of Trifolium repens >10% 1.0

SG2
Mown grassland dominated by tall  grasses (> 40%) - typical lowland hay 
meadow

35.4

SG21 Species-rich lowland hay meadow, cover of Trifolium repens <10% 19.1

SG22
Species-rich  lowland  hay  meadow with  nutrient  indicator  species, cover  of 
Trifolium repens >10%

7.3

SG24 Species-rich or species-poor, disturbed lowland hay meadow 3.9

SG25 Species-rich lowland hay meadow with high cover of ruderal species 5.0

SB Fallow grassland 25.2 

SB10 Species-rich grassland fallow land, mesophilic sites 12.1

SB30 Species-poor grassland fallow land, mesophilic sites 11.3

SB40 Grassland fallow land, wet to dry locations 1.7

Total area 138.4 ha
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Table  2: Mapped  grassland  communities  and  share  of  total  area  for 
Sommerhau in percentage (%).

ID Description
Share 
(%)

HM1 Vegetation dominated by short grasses, cover of tall grasses < 15% 47.1

HM11 Species-rich Festuca-rubra-Agrostis capillaris meadow 13.9

HM12 Species-rich Festuca-rubra-Agrostis capillaris meadow, with grazing indicators 9.6

HM14 Species-rich Festuca-rubra-Agrostis capillaris, transition to Nardus grassland 20.9

HM15
Species-rich Festuca-rubra-Agrostis capillaris meadow, transition to oligotrophic 
siliceous grassland

2.8

HM2 Vegetation dominated by tall grasses >20% 27.5

HM21 Species-rich meadow-like grassland 27.5

HM3 Nardus grassland 1.9

HM30 Nardus grassland, cover of Calluna vulgaris < 30% 1.9

HM4 Oligotrophic siliceous grassland 0.9

HM40 Oligotrophic siliceous grassland 0.9

HB Fallow grassland 22.5

HB50 Calamagrostis-epigejos-dominated 7.5

HB60 Molinia meadows, Molinia caerulea > 40% 8.1

HB70 Eutrophic wet grasslands, Cyperaceae > 50% 6.9

Total area 71.0 ha

Satellite data and pre-processing

We acquired a multi-annual RapidEye time series (2014 - 2017) of 

17 images (Table 3) with different temporal coverage for the Sommerhau 

and Hoehenberg sites.  The processing  level  3A that  was used  is  already 

radiometrically, geometrically, and sensor corrected, and is delivered as 25 

by 25 km tiles (ID-3262023). 

Launched in 2008, the RapidEye satellite constellation consists of 

five identical satellites with a theoretically daily off-nadir recording interval 
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(5.5 days at nadir) (Tyc et al., 2005). The high spatial resolution of 6.5 m 

pixel size is resampled to 5 m during the ortho-rectification by the data-

provider. In addition to the visible part of the electromagnetic spectrum, blue 

(440-510 nm),  green (520-590 nm) and red (630-685 nm), the RapidEye 

satellites acquire top-of-atmosphere radiation in the rededge (690-730 nm) 

and near-infrared (NIR, 760-850 nm) part. 

Temporal  differences  of  phenological  phases  across  years  are  a 

challenge when working with multi-annual time series remote sensing data 

(Schmidt et al., 2014). Climate and local weather conditions affect the entry 

times  of  vegetation  stages  (phenological  phases/seasons),  therefore  two 

satellite images from the same date but different years covering the study 

area  may  capture  different  phenological  seasons.  To  account  for  this, 

Foerster  et  al.  (2012)  introduced  a  correction  approach,  which  was 

successfully  applied  on  multi-annual  RapidEye  data  by  Schmidt  et  al. 

(2014). To consider shifts in the phenology, we used observations of plant 

phenological seasons from the DWD, within a buffer distance of up to 30 

km from the  GTA centroid,  to  calculate  the  average  entry  time  of  each 

phenological  season  (Table  3)  for  the  years  1951-2013.  To estimate  the 

deviation of each study year 2014-2017 from the long-term recordings, the 

averaged  values  were  fitted  to  actual  phenological  observations  of  the 

respective year, using a third order polynomial (Schmidt et al., 2014). Based 

on these models, we calculated an adjusted Julian day of the year from the 

actual image acquisition dates (Table 3).
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Table 3: Multi-annual RapidEye time series ordered by adjusted DOY (Julian 
day of the year). Study sites: Hoehenberg (H) and Sommerhau (S).

No
Acquisition 

date 
Study 

site
Actual 
DOY

Adjusted 
DOY

Phenological phase

1 14 March 2016 H,S 74 88

Prespring (PSP), DOY 
71-102

2 18 March 2015 S 77 89

3 18 March 2016 H,S 78 91

4 27 March 2017 H 86 95

5 2 April 2014 H,S 92 114
First spring (FIS), DOY 
103-131

6 20 April 2016 H,S 111 119

7 17 April 2014 H,S 107 127

8 22 Mai 2016 H,S 143 149 Full spring (FUS ) DOY 
132-1589 26 Mai 2017 H 146 154

10 11 June 2017 H,S 162 169 Early summer (ESU), 
DOY 159-17911 8 June 2014 H,S 159 174

12 24 June 2016 H,S 176 183
Midsummer (MSU), 
DOY 180-120

13 1 August 2016 H,S 214 221 Late summer (LSU), 
DOY 121-24414 5 August 2015 H,S 217 227

-
Early autumn (EA), DOY 
245-266

15 28 September 2014 S 271 277
Full autumn (FA), DOY 
267-284

16 12 October 2015 H,S 285 287
Late autumn (LA), DOY 
285- 305

All images were reprojected to the German DHDN/3-degree Gauss-

Kruger zone 4 (EPSG:31468) reference system and co-registered (RMSE ≤ 

0.5). Image correction included the transformation of raw Digital Numbers 

(DN) to radiance and top-of-atmosphere-reflectance (Planet Labs Inc, 2016). 

Atmospheric  correction  was  performed  using  the  Second  Simulation  of 

Satellite Signal in the Solar Spectrum (6S) (Vermote et al., 1997) algorithm, 

as  implemented  in  the  i.atcorr function  in  the  open  source  Geographic 

Resources  Analysis  Support  System (GRASS GIS)  version  7.2  (GRASS 
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Development  Team,  2017).  To account  for  distortions  introduced  by  the 

topography, a C-factor correction (Teillet et al., 1982) was applied using a 

sun illumination model derived from the European Digital Elevation Model 

(EU-DEM), version 1.1 (25 m spatial resolution).

Training data sampling

The  training  data  selection  was  performed  in  a  fully  automated 

process chain, illustrated as a generalised flow chart in Figure 1. The key 

elements of the proposed procedure include a stratified random sampling 

based on a reference map (derived as described in section 2.2), the removal 

of  potential  outliers  followed  by  validation  and  the  selection  of  a  final 

training data set. 

As recommended by Colditz (2015), training points were randomly 

allocated proportional to the area covered by each class in the respective 

reference map (Figure 3). Since we converted each pixel location into one 

point, no double sampling was possible. In addition, all non-grassland pixels 

were manually excluded from the study in advance by visual interpretation. 

To  prevent  a  low  representation  of  rare  grassland  communities,  the 

minimum amount of training samples per class was set to 1% of the total 

number of training points (Colditz, 2015). The total number of samples for 

each  initial  training  data  candidate  set  per  study site  was  set  to  15% of 

available pixels (8,453 pixels for Sommerhau and 4,261 for Hoehenberg). 
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We repeated the random sampling 100 times, resulting in 100 initial training 

data candidate sets.

To reduce the complexity and to save calculation time, a Principal 

Component Analysis (PCA) was carried out for both study sites using all 

data  available  in  the  respective  multi-seasonal  RapidEye  time  series. 

Subsequently, the initial training data candidate sets were used to extract the 

first ten Principal Component (PC) bands (PC1-10), explaining about 96% 

of the time series data for both Sommerhau and Hoehenberg.

Potential  outliers  were  excluded  based  on  the  sample  proximity 

measurement provided by the Random Forest (Breiman, 2001; Gislason et 

al.,  2006). The reduction of the 100 initial training data candidate sets was 

carried out using the function rfOutliers (threshold = 10) implemented in the 

CORElearn  package  (Robnik-Šikonja  et  al.,  2017) in  R  (R  Core  Team, 

2017).

To estimate the performance of each reduced training data candidate 

set we applied a 5-fold cross-validation approach with 100 repetitions using 

the  mlr  package  (Bischl  et  al.,  2016)  and the  Random Forest  algorithm 

implemented  in  the  ranger  package  (Wright  and  Ziegler,  2015).  In  this 

study,  all  Random  Forest  models  were  constructed  with  500  trees 

(num.trees) with the number of variables randomly sampled as candidates at 

each split  (mtry) set  to the square root  of the number of input  variables 

(Belgiu and Drăguţ, 2016).
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The decision for the final training data set was based on the ratio of 

overall accuracy and the range of a class-specific performance measure (F-

score).  The  F-score  is  calculated  as  the  harmonic  mean  of  user’s  and 

producer’s accuracy, derived from the  confusion  matrix.  The used  range 

refers  to  the  respective  F-score  values  for  all  considered  classes.  This 

trainscore ratio  measure  was chosen in  order  to  ensure  a  balance  between 

class-related accuracy and overall performance.

Spatial probability of occurrence

Instead of classifying each pixel into discrete grassland classes, we 

used  the  final  training  data  set  for  each  study site  to  predict  the  spatial 

probability of occurrence for each class (Malley et  al.,  2012). Due to its 

randomness,  a  constructed  Random  Forest  model  is  always  unique  and 

would slightly differ from a second model that is constructed from the same 

data with the same settings. To account for these uncertainties, we averaged 

the predicted probabilities of 100 Random Forest models. The probabilities 

were predictions using the first ten PC bands of the respective RapidEye 

time series.

Variable importance

To determine  which  image  acquisition  dates  (Table  3)  are  most 

relevant  for  estimating  the  spatial  distribution  of  semi-natural  grassland 

communities,  we  calculated  permutation-based  variable  importance, 

recorded  as  an  increase  in  classification  error  caused  by  excluding  one 
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variable  and  keeping  the  rest  in  the  model.  Thus,  important  dates 

contributing to model  performance can be estimated. For this purpose, we 

compressed  the  main variance of  all  five bands of  each image from the 

multi-seasonal RapidEye time series by extracting only the first Principal 

Component  (PC1) per  acquisition.  On average,  about  73% (sd = 6.5)  of 

variance was explained by the first PC for Sommerhau and 84% (sd = 10.2) 

for  Hoehenberg.  Permutation  was  embedded  in  an  additional  cross-

validation procedure with 100 repetitions, repeated 100 times on fold level, 

using the mlr and ranger packages.

Results

Field mapping

The  field  mapping  revealed  a  high  diversity  of  grassland 

communities for both study sites. Results of the field mapping are displayed 

in  Figure  3.  The  mapped  communities  are  outlined  in  Table  1  for 

Sommerhau and in Table 2 for Hoehenberg. The highest proportion of the 

Sommerhau  site  was  covered  with  mown  grassland  dominated  by  short 

grasses (39.4%,  SG11-SG14).  The  grassland  class  boundaries  mostly 

followed the management (e.g. mowing). Fallow grassland classes could be 

found in the northern and western part, covering about one quarter of the 

area (SB10-SB40).  In contrast, a much more heterogeneous mosaic of less 

intensively  managed  grassland  communities  could  be  found  in  the 

Hoehenberg site. Short-grass dominated areas covered about one half of the 
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site  (HM11-HM15).  With  about  27%,  stands  dominated  by  tall  grasses 

(HM21) were the most widespread class, occurring mainly in the northern 

two thirds of the area.

Figure 3: Aerial image (24 June 2016) of the Hoehenberg a) and Sommerhau 
c) (geodata based on: Bayerische Vermessungsverwaltung, 2018). The result 
of  field  vegetation  mapping  for  Hoehenberg  b)  and  Sommerhau  d). 
Explanations of the legend items can be found in Table 1 and Table 2.

Training data sampling

Using a proportional  training data  selection strategy along with a 

Random  Forest  proximity-based  outliers  detection,  the  mean  number  of 

points  remaining in each of the 100 reduced training data candidate sets 
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were  6,350  (sd  = 134)  points  for  Sommerhau  and  3,331  (sd  = 82)  for 

Hoehenberg. On average 2,147 (sd = 133) outliers were excluded from the 

initial  training data candidate sets for Sommerhau and 932 (sd  = 83) for 

Hoehenberg. A detailed overview of class-specific values for both sites are 

outlined in Table 4 and Table 5, respectively. No outliers were detected for 

the classes SG12 and SG14, as well as for HM30 and HM40.
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Table 4: Results of the training data sampling procedure for all classes (Table 
1) of the Sommerhau site,  reported as the amount of points per class.  The 
performance is given by the harmonic mean of user’s and producer’s accuracy 
(F-score). sd = standard deviation.

SB10 SB30 SB40 SG11 SG12 SG13 SG14 SG21 SG22 SG24 SG25

Mean number of 

points
647 690 133 1049 1449 84 84 1164 445 231 374

sd 21 16 3 18 20 - - 21 12 9 14

Mean number of 

outliers
357 260 8 279 373 - - 418 164 96 192

sd 21 16 3 18 20 - - 21 11 9 14

Mean F-score 82.2 80.6 68.3 92.4 87.4 77.6 66.0 88.3 81.3 86.8 86.1

sd F-score 1.3 1.0 3.7 0.6 0.6 2.9 4.6 0.7 1.6 1.6 1.2

Number of points 
of the selected 
training set

663 688 134 979 1400 84 84 1171 443 203 356

Number of 
detected outliers 
points of the 
selected training 
set

341 256 6 306 422 - - 411 166 108 209

F-score of the 
selected training 
set

84.9 82.2 73.1 92.5 87.3 77.7 73.6 89.5 77.6 86.4 86.2

sd F-score of the 
selected training 
set

0.6 0.5 2.1 0.3 0.3 2.0 2.7 0.3 1.0 1.0 0.8
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Table 5: Results of the training data sampling procedure for all classes (Table 
2) of the Hoehenberg site,  reported as the amount of points per class. The 
performance is given by the harmonic mean of user’s and producer’s accuracy 
(F-score). sd = standard deviation.

HB50 HB60 HB70 HM11 HM12 HM14 HM15 HM21 HM30 HM40

Mean number of 

points
215 280 256 412 353 676 113 901 82 43

sd 10 7 5 15 8 16 2 19 - -

Mean number of 

outliers
104 65 39 179 55 214 4 272 - -

sd 10 7 5 15 8 16 3 19 - -

Mean F-score 78.3 86.8 85.2 78.9 68.6 76.5 83.4 77 68.7 79.4

sd F-score 2.8 1.7 1.8 2.0 2.2 1.5 2.6 1.0 4.4 4.0

Number of points 
of the selected 
training set

206 286 251 431 349 671 115 916 82 43

Number of 
detected outliers 
points of the 
selected training 
set

113 59 44 157 59 219 2 255 - -

F-score of the 
selected training 
set

77.7 84.9 83.3 79.2 73.6 72.7 83.5 76.8 74.5 81.7

sd F-score of the 
selected training 
set

1.0 0.7 0.9 0.9 1.0 0.8 1.2 0.4 2.4 2.7

The average estimated performance of the 100 reduced training data 

candidate  sets  in terms of overall  accuracy was about 9% higher  for the 

Sommerhau (OA = 86%, Kappa = 0.84) compared to the Hoehenberg (OA = 

78%,  Kappa =  0.73)  site  (Table  6).  The  average  F-score range  was  8% 

higher for the Sommerhau compared to the Hoehenberg site.
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Table 6: Results of 5-fold cross-validation with 100 repetitions of the 100 
reduced training data candidate sets and the selected training data set. OA = 
overall accuracy, sd = standard deviation, F-range = range of class-specific 
F-scores.

OA OA sd Kappa Kappa sd F-range F-range sd F-range/OA

Sommerhau selected 
training set

86.5 0.2 0.84 0.0027 20.1 2.1 0.23

Sommerhau mean of all 
models

86 0.4 0.84 0.005 27.9 6.7 0.32

Hoehenberg selected 
training set

77.5 0.4 0.73 0.0045 12.2 1.4 0.16

Hoehenberg mean of all 
models

78 0.7 0.73 0.0088 20.1 3.2 0.26

The  final  training  data  set  for  all  subsequent  calculations  was 

determined by the lowest F-score range:OA ratio. For Sommerhau the best 

training set in terms of this ratio resulted in an OA of 86.5% (sd = 0.2). A 

lower value was obtained for the Hoehenberg data set (OA: 77.5%,  sd  = 

0.4). In comparison to the respective mean values of all training sets, the 

selected sample sets showed more balanced F-score values.

The  cross-validated  confusion  matrix  of  the  Random  Forest 

classification applied on PC1-10 data of the RapidEye time series yielded 

good class-specific results for Sommerhau (Table 7) and Hoehenberg (Table 

8). The lowest user’s and producer’s accuracies were estimated for relatively 

rare classes, such as HM40 and SG14.
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Table 7: Confusion matrix  of grassland communities classified by Random Forest  applied on the first  ten Principal  Component bands of the 
Sommerhau RapidEye time series. Data is averaged over 100 cross-validation repetitions.

Reference

SB10 SB30 SB40 SG11 SG12 SG13 SG14 SG21 SG22 SG24 SG25 Total
User's 

accuracy

 P
re

di
ct

io
n

SB10 564 62 14 1 0 6 0 11 0 2 4 664 0.85

SB30 74 596 38 0 0 1 0 41 1 1 3 755 0.79

SB40 1 2 82 0 0 0 1 0 0 0 0 86 0.94

SG11 12 7 0 943 33 1 6 5 3 5 2 1017 0.93

SG12 0 1 0 68 1273 8 22 26 63 21 35 1517 0.84

SG13 0 0 0 0 1 56 1 0 0 0 2 60 0.93

SG14 0 0 0 0 3 0 51 0 0 0 0 54 0.94

SG21 11 23 0 3 31 4 0 1068 61 10 5 1216 0.88

SG22 0 0 0 0 29 0 0 19 312 0 3 363 0.86

SG24 0 0 1 1 10 0 0 1 0 177 1 191 0.93

SG25 0 2 0 5 19 7 2 1 2 3 302 343 0.88

Total 662 693 135 1021 1399 83 83 1172 442 219 357

Producer's 
accuracy

0.85 0.86 0.61 0.92 0.91 0.67 0.60 0.91 0.71 0.81 0.85
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Table 8: Confusion matrix  of grassland communities classified by Random Forest  applied on the first  ten Principal  Component bands of the 
Hoehenberg RapidEye time series. Data is averaged over 100 cross-validation repetitions.

Reference

HB50 HB60 HB70 HM11 HM12 HM14 HM15 HM21 HM30 HM40 Total
User's 

accuracy

 P
re

di
ct

io
n

HB50 145 0 4 1 0 14 0 2 1 0 167 0.86

HB60 4 234 9 1 1 3 0 12 0 0 264 0.88

HB70 4 12 201 2 0 0 0 10 0 0 229 0.87

HM11 2 1 1 320 1 24 6 12 6 2 375 0.85

HM12 5 10 0 2 250 28 1 33 1 0 330 0.76

HM14 10 4 1 45 29 473 6 55 9 0 632 0.75

HM15 3 0 0 2 0 2 92 0 1 4 104 0.88

HM21 31 25 34 56 66 126 6 794 9 0 1147 0.69

HM30 1 0 0 2 2 1 0 0 53 1 60 0.88

HM40 0 0 0 2 0 0 3 0 2 35 42 0.83

Total 205 286 250 433 349 671 114 918 82 42

Producer's 
accuracy

0.70 0.82 0.80 0.74 0.72 0.71 0.80 0.86 0.65 0.81
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In addition, we analysed the spatial characteristics of the excluded 

outliers summed up for all initial training data candidate sets, illustrated as a 

density raster in Figure 4. For both sites, core areas with no outliers can be 

observed.  The  density  of  outliers  for  the  Sommerhau  site  followed  the 

spatial patterns of infrastructure, e.g. roads. Both cases provide evidence for 

a general edge effect, characterised by high density of outliers present at 

transitions between different grassland communities.

Figure 4: Share of outliers divided by the total amount of members of training 
data  candidate  sets  per  pixel  expressed  as  percentage.  Sommerhau  a)  and 
Hoehenberg b).

Spatial probability of occurrence

For each class, we derived the modelled probability of occurrence 

for each pixel, averaged over 100 repetitions. The exemplary results for the 

classes SG21 and SG14 for the Sommerhau site and HM21 and HB70 for 

the Hoehenberg site are illustrated in Figure 5. 
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Figure 5: Exemplary results for the spatial probability of occurrence for the 
Sommerhau classes SG21 a) and SG14 c), as well as the Hoehenberg classes 
HM21  b)  and  HB70  d).  The  field  mapping  results  are  drawn  as  black 
polygons. Detailed descriptions of the classes can be found in Table 1 and 
Table 2.

For  all  other  grassland  communities  the  results  are  displayed  in 

Figure S1-S17 in the supplementary material.  Very high class probabilities 
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can  be  observed  within  the  field-mapped  boundaries  for  all  grassland 

communities and both sites. In general, areas with lower probabilities can be 

found mostly in the direct vicinity of the mapped boundaries, with a gradual 

decrease with distance.

Variable importance

Permutation-based  variable  importance,  derived  from  increase  in 

classification error, were used to  identify important  acquisition dates.  As 

illustrated  in  Figure  6,  the  importance  across  and  within  phenological 

seasons varied,  with a  maximum increase in classification error of about 

20%  for  the  first  autumn  (FA)  image  number  15  in  Sommerhau.  The 

cumulative importance for all prespring (PSP) acquisitions was much higher 

for Sommerhau than in Hoehenberg, but relatively similar between the two 

sites  for  the  first  spring  (FIS)  season.  In  general,  for  both  sites  the  late 

summer  (LSU) season appeared  to  be  relevant  for  mapping grassland at 

community level, and for Sommerhau especially also the first autumn (FA). 

Unfortunately, no image for this period was available for a comparison with 

Hoehenberg.

In summary, the least important phenological seasons for mapping 

semi-grassland at community level, in terms of an increase in classification 

error, were the full spring (FUS) and early summer (ESU) for both study 

sites.
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Figure  6: Permutation-based  variable  importance  in  terms  of  increase  in 
classification  error  caused  by  excluding  the  PC1  band  for  one  date  and 
keeping the rest in the model. Explanations to the image number of the x-axis 
and the phenological seasons of the legend can be found in Table 3.

Discussion

The  field  mapping  of  both  study  sites  was  challenged  by  access 

limitations and, given the heterogeneous grassland community composition, 

a labour-intensive and time-consuming task. Similar circumstances for field 

data collection are reported by Ghimire et al. (2012), and are probably quite 

common on many military training areas, which often support high levels of 

biodiversity and are of major management and conservation concern (e.g. 

Benton et al., 2008). Uncertainty in training data due to the subjectivity of 

field surveys, as well as the mixed pixel problem, are major challenges in 

remote sensing (Rocchini et al., 2013). In our study, the applied screening of 

training data for potential outliers excluded about 25% of  the initial field 

reference set for both study sites. As the training data set were screened for 

outliers,  potential  uncertainties  were  reduced.  High  accuracies  were 
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estimated for  the  respective  final  training data  set,  based on the  PC1-10 

response  variables  (Sommerhau:  OA  =  86.5%,  Kappa  =  0.84  and 

Hoehenberg: OA = 77.5%, Kappa = 0.73). The performance with a Random 

Forest proximity threshold of 10 was good.  The proximity measure can be 

related to the spectral distance of two samples and a more conservative, i.e. 

smaller, threshold value would lead to more homogeneous training points 

for the respective classes. For very low threshold values, the model would 

be trained with pure pixels only, and would therefore not be able to reliable 

classify mixed pixels. In general, there is a need to explore the sensitivity of 

results  to  the  threshold  setting  for  the  Random-Forest-based  outliers 

detection method  (Belgiu and Drăguţ,  2016).  In addition,  its  potential  to 

identify subclasses by grouping samples with similar proximities to all other 

training  points  of  the  same  class  should  be  explored  in  future  research 

activities (Touw et al., 2012). 

The spatial  distribution  of  detected  outliers  for  several  iterations 

(Figure  4)  highlights  areas  with  potential  mapping  errors,  as  well  as 

uncertainties  about  the  discrete  spatial  boundaries  between  grassland 

communities  drawn  during  the  mapping  process.  These  areas  can  be 

specifically addressed by a following mapping iteration to revise the spatial 

class  boundaries.  This  can be especially  useful  for  long-term monitoring 

strategies  in  combination  with  probability  maps  to  detect  potential  early 

warning  signals  for  the  decline  of  a  high-value  grassland  community  in 

terms of conservation.
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The  estimated  performance  during  the  training  data  selection 

procedure  was  consistently  better  for  the  Sommerhau  site  compared  to 

Hoehenberg. This can be attributed to a more heterogeneous land cover for 

the Hoehenberg site and different land management practices. The amount 

of initial training points per study site (15% of the area) can be regarded as 

relatively  high  compared  to  common  recommendations  (Colditz,  2015; 

Belgiu and Drăguţ, 2016), even though about one quarter was subsequently 

excluded by the outliers screening. However, in contrast to a fixed number 

of  training  points  related  to  the  study  site  size,  Millard  and  Richardson 

(2015) recommended that the training set should be as large as possible and 

randomly distributed, while accounting for the proportion of land covered 

by each class. In addition, studies showed that the Random Forest benefits to 

a great extent from large  sample sizes (Fassnacht, et al., 2014; Ma, et al., 

2017).

The  selection  of  the  most  important  variables  contributing  to  a 

classification model has gained a lot of attention over the last decade (Diaz-

Uriarte, 2007; Pal and Foody, 2010; Verikas et al., 2011; Rodriguez-Galiano 

et  al.,  2012;  Chutia  et  al.,  2017),  and methods to  select  most  influential 

variables include backward elimination (Dash and Liu, 1997) and forward 

selection strategies (Langley, 1994). The Random Forest algorithm provides 

a relative measure of variable importance in the form of the change of an 

internal classification error measure and the Gini index caused by excluding 

one variable and keeping the rest in the model (Breiman, 2001; Rodriguez-
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Galiano et  al.,  2012).  These variable  importance measures  can,  however, 

display a bias when variables are correlated (Strobl et al., 2008). In this case 

high  importance  can  be  observed  in  favour  of  insignificant  variables 

correlated  with  significant  variables  at  the  cost  of  reduced  importance 

measures  for  significant,  uncorrelated  variables  (Nicodemus  and  Malley, 

2009;  Conn  et  al.,  2015).  In  addition,  the  Random  Forest  variable 

importance  is  not  reliable  when  the  predictor  variables  vary  in  scale  or 

number of categories (Strobl et al., 2007). Introduced by Strobl et al. (2008), 

the conditional variable importance for Random Forest is one approach to 

address the discussed importance measure problems, but is known to be very 

calculation intensive (Nicodemus et  al.,  2010).  Therefore,  a  permutation-

based variable importance estimation can be seen as a valid alternative. 

The  results  of  the  permutation-based  variable  importance  of  this 

study indicate a general importance of the first spring (FIS) and late summer 

(LSU) season for both sites. Particularly for Sommerhau, the first autumn 

(FA)  can  bee  seen  as  the  most  influential  temporal  window,  with  an 

estimated mean increase of about 20% in classification error when excluded 

from the model. Full spring (FUS) and early summer (ESU) were the least 

important phenological seasons for both sites in this study. This finding is 

not supported by Schmidt et al. (2014), who identified early summer (ESU) 

– followed by full spring (FUS), late summer (LSU) and midsummer (MSU) 

– as the most important phenological seasons to discriminate semi-natural 

grasslands in Northern Germany. However, the inconsistent important dates 
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for  accurately  mapping  northern  versus  southern  German  grassland 

communities  can  likely  be  attributed  to  differences  in  the  location, 

management  and grassland composition between studied areas.  However, 

Förster et al. (2010) suggested to use RapidEye acquisitions during the onset 

of vegetation and senescence phases to monitor Natura 2000 habitats, which 

was indicated by our findings as well.

When the probability values of occurrence (Figure 5 and Figure S1-

S17 in the supplementary material) are plotted together with the mapping 

results, a good spatial agreement can be observed, even for rare grassland 

communities (e.g. SG14, Figure 5). Some probability values higher than the 

expected value of zero can be found outside the mapped boundaries. For the 

example of class HB70 this can be linked to the topography, e.g. related to a 

ditch going from the north to the south. Areas with lower probabilities can 

be attributed to continuous transitions due to self-organisation in vegetation 

and changes in environmental conditions (Rocchini et al., 2013). While a 

common pixel-based classification of such gradual transitions into a fixed 

number of discrete classes would not have reflected the true reality of the 

Earth’s surface, the proposed mapping approach captures gradual transitions 

by  probabilities  of  occurrence.  A segmentation-based  mapping  approach 

would most likely increase the overall accuracies for high spatial resolution 

data by aggregating spectrally homogeneous pixels into objects (Laliberte et 

al.,  2007; Förster et  al.,  2010), but with the trade-off of losing fine-scale 

information as small features are swallowed into bigger objects (Schmidtlein 
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and Sassin, 2004; Schmidt et al., 2017). In addition, it is easy to aggregate 

pixels to objects for reporting purposes, while the reverse is impossible.

Conclusion

In  this  study  we  showed  that  training  data  for  mapping  and 

monitoring vegetation cover can automatically be derived in an objective 

way  and  that  multi-annual,  multi-seasonal  remote  sensing  data  can  be 

successfully applied to monitor semi-natural grassland vegetation types at a 

fine scale.  The introduced training data  sampling framework can help to 

identify potential uncertainties in the reference data. Pivotal for this is the 

collection of baseline data by field mapping. With regard to the reporting 

obligations  under  Art.-17  of  the  EU  Habitats  Directive,  the  proposed 

mapping strategy can locate hot-spot areas of change by incorporating future 

remote sensing data. Thus, an effective field work strategy can be designed 

to target areas of special interest. Full spring (FUS) and early summer (ESU) 

were  identified  as  the  least  important  phenological  seasons  for  mapping 

semi-natural  grassland.  Future  research  should  consider  the  synergistic 

possibilities of combining multi-spectral and radar data for monitoring semi-

natural grassland (Schuster et al., 2011; Metz et al., 2012; Bargiel, 2013).
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Supplementary figures

Figure S1: Predicted spatial probability for the class SG11.

Figure S2: Predicted spatial probability for the class SG12.

Figure S3: Predicted spatial probability for the class SG13.

Figure S4: Predicted spatial probability for the class SG22.

Figure S5: Predicted spatial probability for the class SG24.

Figure S6: Predicted spatial probability for the class SG25.

Figure S7: Predicted spatial probability for the class SB10.

Figure S8: Predicted spatial probability for the class SB30.

Figure S9: Predicted spatial probability for the class SB40.

Figure S10: Predicted spatial probability for the class HM11.

Figure S11: Predicted spatial probability for the class HM12.

Figure S12: Predicted spatial probability for the class HM14.

Figure S13: Predicted spatial probability for the class HM15.

Figure S14: Predicted spatial probability for the class HM30.

Figure S15: Predicted spatial probability for the class HM40.

Figure S16: Predicted spatial probability for the class HB50.

Figure S17: Predicted spatial probability for the class HB60.

R code example

Appendix 1: A practical example.
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Figure S1: Predicted spatial probability for the class SG11. The field mapping 
results are drawn as black polygons.

Figure  S1: Predicted  spatial  probability  for  the  class  SG12.  The  field 
mapping results are drawn as black polygons.
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Figure S3: Predicted spatial probability for the class SG13. The field mapping 
results are drawn as black polygons.

Figure  S4: Predicted  spatial  probability  for  the  class  SG22.  The  field 
mapping results are drawn as black polygons.
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Figure S5: Predicted spatial probability for the class SG24. The field mapping 
results are drawn as black polygons.

Figure  S6: Predicted  spatial  probability  for  the  class  SG25.  The  field 
mapping results are drawn as black polygons.
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Figure S7: Predicted spatial probability for the class SB10. The field mapping 
results are drawn as black polygons.

Figure  S8: Predicted  spatial  probability  for  the  class  SB30.  The  field 
mapping results are drawn as black polygons.
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Figure S9: Predicted spatial probability for the class SB40. The field mapping 
results are drawn as black polygons.

Figure S10: Predicted  spatial  probability  for  the  class  HM11.  The  field 
mapping results are drawn as black polygons.
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Figure  S11: Predicted  spatial  probability  for  the  class  HM12.  The  field 
mapping results are drawn as black polygons.

Figure S12: Predicted  spatial  probability  for  the  class  HM14.  The  field 
mapping results are drawn as black polygons.
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Figure  S13: Predicted  spatial  probability  for  the  class  HM15.  The  field 
mapping results are drawn as black polygons.

Figure S14: Predicted  spatial  probability  for  the  class  HM30.  The  field 
mapping results are drawn as black polygons.
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Figure  S15: Predicted  spatial  probability  for  the  class  HM40.  The  field 
mapping results are drawn as black polygons.

Figure  S16: Predicted  spatial  probability  for  the  class  HB50.  The  field 
mapping results are drawn as black polygons.
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Figure  S17: Predicted  spatial  probability  for  the  class  HB60.  The  field 
mapping results are drawn as black polygons.
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Appendix 1: A practical example

In this practical example we will illustrate how the Random Forest 

algorithm can be used for  automated training data sampling and remote 

sensing  classification  purposes.  For  this,  we  make  use  of  a  data  set 

compilation provided by the book “Remote Sensing and GIS for Ecologists: 

Using Open Source Software”  (Wegmann et  al.,  2016).  The data  can  be 

accessed under the following URL:

 http://book.ecosens.org/data/

Data preparation

First we load the required packages and subsequently the data:

library(raster)
library(RStoolbox)

lsat <- brick("data_book/raster_data/LT52240632011210.tif")
names(lsat) <- paste0("b",rep(1:7))

lsat <- crop(lsat, extent(650000,665046,-519107,-498509))

Dummy mapping results

Now we use an unsupervised classification to create a dummy map 

with three classes, which represent our field mapping result for this short 

example. For this, we convert the unsupervised classification raster will be 

to  polygons,  because  field-mapping  results  are  often  available  in  such a 

format.

# unsupervised classification
lsat_map <- unsuperClass(lsat, nClasses = 3)$map
# majority filter (3*3) to smooth the result and add some error
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lsat_map <-focal(lsat_map, w=matrix(1,11,11), fun=modal)

lsat_map_poly <- rasterToPolygons(lsat_map,
                                  dissolve=TRUE)

plot(lsat_map)
plot(lsat_map_poly, add=TRUE)

Sampling

#calculate area per class
lsat_map_poly$area <- area(lsat_map_poly)

# check resolution of the satellite image
res(lsat)
## [1] 30 30
# calcualte how many pixels are available per class
lsat_map_poly$pixels <- lsat_map_poly$area /(30*30)
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# calcualte how many pixels should be included for the sampling
lsat_map_poly$no_samples <- round(lsat_map_poly$pixels/100 *1)

# now we will iterate over all unique classes 
data_sampling <- lapply(unique(lsat_map_poly$layer), function(x){
  # first subset data according to the respective class 
  sub <- subset(lsat_map_poly, layer == x)
  # create random sample points
  sub_sampled <- spsample(sub, n = sub$no_samples, type = "random")
  # add class name as response column
  sub_sampled$response <- rep(x,length(sub_sampled))
  return(sub_sampled)
  
  })
  
# combine the sampling results for all classes
data_sampling <- do.call(rbind,data_sampling)

# extract reflectance values from the satellite image
train_extracted <- data.frame(extract(lsat, 
                                      y=data_sampling, 
                                      cellnumbers = TRUE, 
                                      sp=TRUE))

# remove potential dublicates
train_extracted  <- train_extracted [!duplicated(train_extracted$cells), -2]
table(train_extracted$response)  
## 
##    1    2    3 
## 1741  984  589

Outlier detection

Because no convenient function was available in the randomForest 

or  range  package,  we  make  use  of  the  CORElearn  package  to  exclude 

potential outliers based in the Random Forest proximity measure.

library(CORElearn)

# subset data
train_df <- train_extracted[c(1:8)]
# we use factor in case of classification
train_df$response <- factor(train_df$response)
# model construction
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md <- CoreModel(response ~ ., 
                train_df,
                model="rf",
                rfNoTrees=500,
                maxThreads=1)

# calculate outier measure
outliers <- rfOutliers(md, train_df)

plot(md, train_df, rfGraphType="outliers")
abline(h = 10)

# clean up
destroyModels(md) 
train_df$out <- abs(outliers)

Model validation

We use a cut-off value of 10 to exclude all samples considered as 

outlier.

library(ranger)
library(mlr)

train_df_cleaned <- train_df[train_df$out < 10,]

# Number of excluded outliers per class
table(train_df$response) - table(train_df_cleaned$response)
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## 
##   1   2   3 
## 318 168 100
train_df_uncleaned <- train_df[c(1:8)]
train_df_cleaned <- train_df_cleaned[c(1:8)]

#number of predictor variables randomly sampled as candidates at each split
mtry <- round(sqrt(length(names(train_df_cleaned))))
# number of trees to be constructed 
num.trees <- 500 
# number of folds
k <- 5
# number of repetitions
reps <- 10 

# define task and learner for cleaned sample dataset
cleaned_task <- makeClassifTask(id = "lsat_cleaned",
                                data = train_df_cleaned,
                                target = "response")

# define learner
rf_learner <- setHyperPars(makeLearner("classif.ranger"), 
                           par.vals = list(mtry = mtry,
                                           num.trees = num.trees))

#define non-spatial, repeated cross-validation
rdesc = makeResampleDesc("RepCV",
                         reps=reps,
                         folds=k,
                         predict = "test")

# validation
res_cleaned <- mlr::resample(learner = rf_learner,
                               task = cleaned_task, 
                               resampling = rdesc,
                               measures = list(
                                 setAggregation(acc, test.mean),
                                 setAggregation(acc, test.sd),
                                 setAggregation(kappa,test.mean),
                                 setAggregation(kappa,test.sd)),
                               models = FALSE,
                               show.info = FALSE)

# define task and learner for the uncleaned sample dataset
uncleaned_task <- makeClassifTask(id = "lsat_uncleaned",
                        data = train_df_uncleaned,
                        target = "response")
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# validation
res_uncleaned <- mlr::resample(learner = rf_learner,
                               task = uncleaned_task, 
                               resampling = rdesc,
                               measures = list(
                                 setAggregation(acc, test.mean),
                                 setAggregation(acc, test.sd),
                                 setAggregation(kappa,test.mean),
                                 setAggregation(kappa,test.sd)),
                               models = FALSE,
                               show.info = FALSE)

Comparison

#”uncleaned” training data
res_uncleaned$aggr
##   acc.test.mean     acc.test.sd kappa.test.mean   kappa.test.sd 
##     0.905190906     0.008311368     0.842784621     0.014300796
#”cleaned” training data
res_cleaned$aggr
##   acc.test.mean     acc.test.sd kappa.test.mean   kappa.test.sd 
##               1               0               1               0

Prediction of probabilities

# construct model with probability = TRUE
ranger_model <-ranger(response ~ .,
                     data=train_df_cleaned,
                     probability=TRUE,
                     num.threads = 1)
# convert raster to data.frame with coordinates
img_df <- as.data.frame(lsat, xy=TRUE)
# Run predictions   
rf_proba <- predict(object=ranger_model,
                              data=img_df[3:length(names(img_df))],
                              type="response",
                              num.threads=1,
                              num.trees = ranger_model$num.trees,
                              probability = TRUE)
proba_rast <- rasterFromXYZ(cbind(img_df[1:2], data.frame(rf_proba$predictions)))
names(proba_rast) <- c(paste0("p", colnames(rf_proba$predictions)))

plot(proba_rast)
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Highlights

• Radar (Sentinel-1) and multispectral (Sentinel-2) data were evaluated 

for  mapping  semi-natural  grassland  forage  quantity  and  quality 

indicators.

• The predictor dataset was optimised using permutation-based variable 

importance,  maximising  the  predictive  power  of  the  random  forest 

regression models.

• Simple ratios between the narrow near-infrared and red-edge region 

were among the most important variables.
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Abstract

Semi-natural grasslands represent  ecosystems with high biodiversity. 

Their conservation  depends on the removal of  biomass, e.g. through 

grazing by livestock or wildlife. For this, spatially-explicit information 

about  grassland forage  quantity  and quality  is  a  prerequisite  for  an 

efficient  management.  The  recent  advancements  of  the  Sentinel 

satellite  mission,  providing  valuable  information  with  a  high 

spatiotemporal  resolution,  offer  new  possibilities  to  support  the 

conservation of semi-natural  grasslands. In this study, the combined 

use of radar (Sentinel-1) and multispectral (Sentinel-2) data to predict 

forage  quantity  and  quality  indicators  of  semi-natural  grassland  in 

Germany was investigated. Field data for organic acid detergent fibre 

concentration (oADF), crude protein concentration (CP), compressed 

sward height (CSH), and standing biomass dry weight (DM) collected 

between 2015 and 2017 were related to remote sensing data using the 

random forest  regression algorithm. In total,  102 optical- and radar-

based predictor  variables  were used to  derive  an optimised dataset, 

maximising  the  predictive  power  of  the  respective  model.  High  R² 

values were obtained for the grassland quality indicators oADF (R² = 

0.79, RMSE = 2.29%) and CP (R² = 0.72, RMSE = 1.70%) using 15 

and  eight  predictor  variables,  respectively.  Lower  R² values  were 

achieved for the quantity indicators CSH (R² = 0.60, RMSE = 2.77 cm) 

and  DM  (R² =  0.45,  RMSE  =  90.84  g/m²).  A permutation-based 

variable importance measure indicated a strong contribution of simple-

ratio-based optical indices to the model performance. In particular, the 

ratios  between  the  narrow  near-infrared  and  red-edge  region  were 

among  the  most  important  variables.  The  model  performance  for 

oADF, CP and CSH was only marginally increased by adding Sentinel-

1  data.  For  DM,  no  positive  effect  on  the  model  performance  was 

observed by combining Sentinel-1 and Sentinel-2 data. Thus, optical 

Sentinel-2 data resampled to a resolution of 10 m might be sufficient to 
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accurately  predict  forage  quality,  and  to  some  extent  also  quantity 

indicators of semi-natural grassland.

Keywords: semi-natural  grassland,  Sentinel,  forage  quality  and 

quantity, random forest, variable selection, satellite, radar
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Introduction

Grassland  ecosystems  cover  approximately  30%  of  the  Earth’s 

terrestrial  surface and are habitats  with high biodiversity  (Dengler  et  al., 

2014; Gibson, 2009; Riesch et al., 2018; Scurlock and Hall, 1998; Wilson et 

al.,  2012).  The  conservation  of  semi-natural  grasslands  depends  on 

management,  as  they  originate  from  human  activities,  such  as  livestock 

grazing or mowing (Peeters et al., 2014). In the last decades, it has become 

pivotal to actively conserve semi-natural grasslands due to various threats 

including intensification of land use (Isselstein et al., 2005, Isselstein 2018), 

land abandonment (Valkó et al., 2018) and climate change (Dangal et al., 

2016; Lamarque et al., 2014). From a conservation perspective, extensive 

grazing with livestock species and wildlife has become an established and 

suitable tool to maintain semi-natural grasslands (Borer et al., 2014; Bunzel-

Drüke,  2008;  Rosenthal  et  al.,  2012;  Van  Wieren,  1995).  The  spatial 

distribution and activities of large herbivores are affected by the availability 

and quality of potential forage areas, and so is their impact on the ecosystem 

through grazing, trampling and dispersion of wastes (Catorci et al., 2016; 

Fløjgaard et al., 2017; Merkle et al., 2016; Palmer et al., 2003; Raynor et al., 

2016).  Therefore,  spatially-explicit  information about  forage quantity and 

quality is of critical importance for active grazing management to conserve 

semi-natural grasslands. However, collecting field data is a labour-intensive 

and time-consuming task (Catchpole and Wheeler, 1992). Satellite remote 
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sensing offers unique possibilities to evaluate and predict grassland forage 

quantity  and quality  for  large  areas  using  empirical  models  (John et  al., 

2018;  Mutanga et  al.,  2004).  For  this,  regression  techniques  are  used  to 

relate field information to the data recorded by a satellite.

Earth observation sensors with high temporal and spatial coverage 

can be the preferred choice to establish a robust relationship between field 

and  remote  sensing  reflectance  data.  The  application  of  such  data,  for 

example recorded by the Moderate Resolution Imaging Spectroradiometer 

(MODIS) at  250−500 m spatial  resolution or by the Medium Resolution 

Imaging Spectrometer (MERIS) at 300−1200 m spatial resolution, has been 

successfully applied in several geographical regions, such as the Xilingol 

steppe  situated  in  the  central  part  of  Inner  Mongolia  (Kawamura  et  al., 

2005),  intensively  managed  grassland  in  Ireland  (Ali  et  al.,  2017)  and 

agricultural and semi-natural grassland in the north of the Netherlands (Si et 

al.,  2012).  But  the  structural  and botanical  heterogeneity  of  semi-natural 

grasslands may require higher spatial and spectral resolutions. Hyperspectral 

remote  sensing  systems  draw  on  the  possibilities  of  the  entire 

electromagnetic  spectrum  to  relate  remotely  sensed  reflectance  data  to 

chemical  components  or  biomass  of  the  vegetation  cover  (Cho  and 

Skidmore, 2009; Darvishzadeh et al., 2014; Knox et al., 2011; Mutanga et 

al.,  2004;  Pellissier  et  al.,  2015;  Skidmore  et  al.,  2010).  However, 

hyperspectral remote sensing data are usually not commonly available and 

very high resolution multispectral satellites, such as RapidEye (Ramoelo et 
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al.,  2012)  (provides  multispectral  data  at  5  m  spatial  resolution)  or 

WorldView-2 (Ramoelo et  al.,  2015) (records multispectral  data at 1.8 m 

spatial  resolution)  are  operated  by  commercial  companies.  This  can 

introduce financial constraints for the application of these data in long-term 

monitoring for conservation purposes. One freely available alternative could 

therefore be the medium resolution Operational Land Imager (OLI) sensor 

(records  multispectral  data  at  30  m  spatial  resolution),  mounted  on  the 

Landsat-8 satellite (Marsett et al., 2006). The higher spatial resolution of the 

recently started satellite mission Sentinel-2 (records multispectral data at 10, 

20 and 60 m) of the European Space Agency offers further advantages, such 

as a higher spectral and temporal resolution (Delegido et al., 2011; Frampton 

et  al.,  2013;  Ramoelo et  al.,  2015;  Punalekar  et  al.,  2018).  In  particular, 

Ramoelo et al. (2015) demonstrated for simulated multispectral Sentinel-2 

data  that  the  red-edge  and  short-wave-infrared  regions  of  the 

electromagnetic spectrum were robust predictors for modelling the spatial 

distribution of nitrogen and therefore crude protein, in the Lowveld savanna 

of  South-Africa.  Similarly,  promising  results  were  recently  shown  by 

Punalekar et al.  (2018) who used Sentinel-2 data to successfully estimate 

grassland  biomass  at  farm  level.  The  results  showed  a  good  agreement 

between compressed sward height measurements and the derived biomass 

maps.

All  these spectral-based approaches  depend on image acquisitions 

with  a  low cloud  contamination  rate  and  thus  are  restricted  by  weather 
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conditions. Synthetic aperture radar (SAR) sensors, such as the Sentinel-1 

constellation operated by the European Space Agency, can penetrate through 

clouds and are less dependent on illumination conditions. In addition, SAR-

systems can  provide  valuable  information  about  vegetation  structure  and 

moisture content (Barrett et al., 2014; Ali et al., 2016; Wachendorf et al., 

2017).  The  application  of  SAR-data  has  been  successfully  tested  for 

agricultural applications, such as the detection of grassland mowing events 

(Tamm et  al.,  2016;  Voormansik et  al.,  2016,  2013) or  the estimation of 

grassland  vegetation  height  and  biomass  (Zalite  et  al.,  2016).  When 

combined with multispectral remote sensing data, SAR-data might help to 

model  biophysical  properties  of  rapidly  changing vegetation  composition 

and structure at small scales (Dusseux et al., 2014).

In this article, the potential advantages of using combined Sentinel-1 

and Sentinel-2 data  to predict  semi-natural grassland forage quantity  and 

quality  were  explored.  For  this  purpose,  the  random  forest  regression 

(Breiman, 2001) algorithm was applied on 102 potential predictor variables, 

including multispectral and SAR-indices. The study site was located in the 

south-east of Germany and is extensively grazed by wild red deer (Cervus  

elaphus)  (Riesch  et  al.,  2019).  The  following  research  questions  were 

evaluated:

• Does  combining  multispectral  (Sentinel-2)  and  radar  (Sentinel-1) 

remote sensing data improve the mapping of semi-natural  grassland 

forage quantity and quality?
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• Can an optimised subset of the predictor dataset increase the random 

forest regression model performance?

Materials and methods

Study area

The study was carried out in the Grafenwoehr military training area 

(GTA)  located  in  the  south-east  of  Germany  (Bavaria),  extending  over 

approximately  230 km²  (Figure  1).  GTA is  part  of  the  natural  region of 

Upper Palatine-Upper Main Hills, bordering the Franconian Jura in the west, 

with  elevations  between 450 and 500 m above sea  level.  The long-term 

average temperature and precipitation are 8.3 ± 0.04 °C and 701 ± 4 mm, 

respectively  (1981−2010,  mean  ±  SEM,  of  four  weather  stations  of  the 

German Weather Service (DWD, Deutscher Wetterdienst) in the immediate 

vicinity). About 40% of  GTA is covered with open habitats, such as semi-

natural grassland, while forest covers the majority of the area (ca.  60%). 

Approximately 85% of GTA is part of the Natura 2000 network and contains 

many rare and highly protected habitat types, forming a refuge for numerous 

endangered species (Warren et al., 2014; Warren and Büttner, 2008a). The 

grasslands  in  the  western  third  of  GTA are  underlain  by  more  or  less 

calcareous soils  (Warren and Büttner 2008b, 2008a). Since 1947, GTA is 

used as a United States Army Garrison. This means that preserving the open 

landscape is of high importance for military use as well as for maintaining 

their conservation status. Soil fertility in the study area is low, comparable 
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with  a  pre-industrialised  soil  nutrient  status  of  the  first  half  of  the  20th 

century (Riesch et al., 2018).

Figure 1: Location of the study site Grafenwoehr Military Training Area. The 
location of the study site in Germany is highlighted with a black square (lower 
right corner). The five sampling locations are marked with black crosses and 
labelled  from A-E.  The  grassland  layer  is  based  on  data  provided  by  the 
Copernicus  High  Resolution  Layer:  Grassland  (GRA)  2015  (©  European 
Union,  Copernicus  Land  Monitoring  Service  2018,  European  Environment 
Agency (EEA)), illustrated in green.

Field data

Various  methods  exist  to  assess  the  quantity  of  available  forage 

(t’Mannetje, 2000). A method that is particularly suitable for heterogeneous 

vegetation is measuring the compressed sward height (CSH) with a rising 

plate meter (Sanderson et al., 2001, Correll et al., 2003). This measurement 

can be converted to standing biomass dry weight (DM) based on calibration 

cuts  (t’Mannetje  and  Jones,  2000).  Forage  quality  depends  on  a  large 
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number of chemical and physical biomass characteristics. Among these, the 

concentrations  of  crude  protein  (CP)  and  organic  acid  detergent  fibre 

(oADF) are particularly useful parameters (Adesogan et al., 2000).

For this study, the forage quantity and quality dataset provided by the 

study of Riesch et al. (2019) was used, who investigated the grazing effect 

of red deer on plot level in GTA between 2015 and 2017. This dataset was 

collected on lowland hay meadows (EU Habitats Directive Annex I habitat 

type 6510, ‘grasslands’) in April, June, August and September in each of the 

studied  years.  At  each  of  the  five  sampling  sites  (Figure  1),  three 

management treatments were compared: grassland was either burnt in late 

winter/early spring, mown in July or remained untreated. This approximates 

the spectrum of grassland management activities on GTA and is, therefore, a 

good representation  of  the  site  conditions.  In  total,  15 sampling plots  of 

15 × 15 m  were  included  in  the  dataset.  Photographs  illustrating  one 

exemplary sampling area across different phenological phases are shown in 

Figure 2.

Figure  2: Photographs  from  one  of  the  sampling  plots  at  location  B  in 
Figure 1. Photographs were taken in a) May, b) August and c) October 2016.
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Details on the respective sampling dates of the utilised dataset are 

given  in  Table 1.  A  subset  of  the  dataset  was  used,  according  to  the 

availability of Sentinel-2 data with regard to cloud contamination. For each 

plot and sampling date, Riesch et al. (2019) determined standing biomass 

and forage quality values with the following methods: standing biomass was 

estimated by a double-sampling strategy using CSH measured by a rising-

plate meter in combination with calibration cuts, i.e. above ground biomass 

cut at ground level on a 0.18 m² area.

The relationship between calibration cut biomass (standing biomass 

dry  weight,  DM) and sward  height  was  estimated  using  a  linear  model. 

Vegetation  samples  for  the  analysed  forage  quality  parameters  were 

collected  on  each  sampling  date  by  a  hand  pluck  approach,  mimicking 

grazing animals’ foraging behaviour (Riesch et al., 2019). The total nitrogen 

concentration  in  plant  material  was  assessed  according  to  the  Dumas 

combustion method in a CN elemental analyser and subsequently converted 

to CP.
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Table 1: Sampling dates of the dataset provided by Riesch et al. (2019) and 
corresponding satellite data acquisitions used in this study.

Number Sampling dates Sensor Date Pass

1 2015-06-30−2015-07-02 S1-A 2015-06-26 D

S1-A 2015-06-29 A

S2-A 2015-07-04 D

2 2015-08-25−2015-08-26 S1-A 2015-08-21 A

S1-A 2015-08-25 D

S2-A 2015-08-26 D

3 2016-05-24−2016-05-26 S2-A 2016-05-22 D

S1-A 2016-05-23 A

S1-A 2016-05-27 D

4 2016-08-23−2016-08-24 S1-A 2016-08-19 D

S1-A 2016-08-22 A

S2-A 2016-08-27 D

5 2016-10-17−2016-10-20 S2-A 2016-10-16 D

S1-A 2016-10-18 D

S1-A 2016-10-21 A

6 2017-05-16−2017-05-17 S1-B 2017-05-16 D

S2-A 2017-05-17 D

S1-A 2017-05-18 A

7 2017-08-28−2017-08-30 S2-A 2017-08-25 D

S1-A 2017-08-29 A

S1-B 2017-09-01 D

8 2017-10-23−2017-10-25 S1-B 2017-10-22 A

S1-A 2017-10-25 D

S2-B 2017-10-29 D

S1: Sentinel-1, S2: Sentinel-2, D: descending orbit, A: ascending orbit.

Organic acid detergent fibre (exclusive of residual ash, oADF) was determined 

by  near-infrared  spectroscopy.  Figure  3  gives  an  overview  of  the  forage 

quantity and quality parameters provided by the field dataset. The variability 

of  all  parameters  increased  after  June,  as  cutting  lowered  the  quantity  of 
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standing biomass, decreased the fibre and increased the protein concentration 

in the mown plots (Riesch et al., 2019).

Figure  3: Grassland  forage  quantity  and  quality  data  used  in  this  study 
(Riesch et  al.,  2019).  The respective sampling dates are shown in Table 1. 
oADF  =  organic  acid  detergent  fibre  concentration  (dry-matter-based, 
exclusive  of  residual  ash),  CP  =  crude  protein  concentration  (dry-matter-
based), CSH = compressed sward height, DM = standing biomass dry weight. 
The cutting events in July are indicated by the dashed line.

Satellite data and pre-processing

The study used Sentinel-1 and Sentinel-2 imagery for the estimation 

of semi-natural grassland forage quantity and quality. Both constellations are 

part  of  the  Copernicus  program,  a  joint  initiative  of  the  European 

Commission, European Space Agency and the European Union.

Sentinel-1A (launched on 3 April 2014) and Sentinel-1B (launched 

on 25 April 2016) satellites are equipped with a C-band synthetic-aperture 
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radar  (SAR)  with  5.6 cm  wavelength  (ESA,  2016a).  Sentinel-1  level-1 

(Ground Range Detected) data collected in the interferometric wide swath 

mode with  dual  polarisation  (VV and VH) were  used.  This  mode has  a 

defined spatial resolution of 5 × 20 m.

Table  2:  Spectral  and spatial  specifications  of  the Sentinel-2 constellation. 
NIR = near-infrared, SWIR = short-wave-infrared.

Band Band name Spatial 

resolution (m)

Wavelength 

centre (nm)

Spectral width 

(nm)

1 Coastal aerosol 60 443 20

2 Blue 10 490 65

3 Green 10 560 35

4 Red 10 665 30

5 Red-edge-1 20 705 15

6 Red-edge-2 20 740 15

7 Red-edge-3 20 783 20

8 NIR 10 842 115

8A Narrow NIR 20 865 20

9 Water vapour 60 945 20

10 SWIR-cirrus 60 1375 30

11 SWIR-1 20 1610 90

12 SWIR-2 20 2190 180

Sentinel-2A (launched on 23 June 2015) and Sentinel-2B (launched 

on 7 March 2017) acquire data in 13 spectral  wavelengths with a spatial 

resolution of 10, 20 and 60 m (Drusch et al., 2012). A detailed overview of 

the specifications is outlined in Table 2. Since the plot size of field sampling 

by Riesch et al. (2019) was 15 × 15 m, all analyses were continued with a 

spatial resolution of 10 m. In addition, all non-grassland areas were masked 
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according to the Copernicus High Resolution Layer: Grassland (GRA) 2015 

(© European Union, Copernicus Land Monitoring Service 2018, European 

Environment Agency (EEA)).

Multispectral data pre-processing

All available level-1C top of atmosphere (TOA) reflectance Sentinel-

2 data were acquired from https://scihub.copernicus.eu/dhus/#/home within 

a temporal window of seven days before and after the temporal mean of the 

respective sampling period of Riesch et al. (2019). All images with cloud 

and cloud-shadow contamination over the sampling sites were subsequently 

removed from the analysis. The final selection of Sentinel-2 images and the 

corresponding sampling dates are compiled in Table 1.

The pre-processing included atmospheric and topographic correction 

using Sen2Cor (Müller-Wilm et al.,  2018), version 2.5.5). The Sentinel-2 

data  was  resampled  to  10 m spatial  resolution  using  the  SNAP software 

(ESA, 2016b) and the Sen2res resolution enhancement operator provided by 

Brodu (2017). For the subsequent analyses, all 60 m resolution bands were 

excluded, as they are mainly designed for atmospheric application purposes.

SAR data pre-processing

Sentinel-1  data  were  acquired  from 

https://scihub.copernicus.eu/dhus/#/home  in  descending  and  ascending 

orbits as close as possible to the temporal mean of the selected sampling 

periods of Riesch et al. (2019) (Table 1). The data were pre-processed using 
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SNAP,  applying  the  respective  orbit  file,  geometric  calibration,  terrain 

correction, resampling to 10 m spatial resolution using bilinear interpolation 

and speckle filtering (Lee filter, 3×3). Finally, the data were converted to dB 

using a range-doppler approach. 

Calculation of indices

Vegetation indices  (VIs)  are  established as  a  suitable  tool  for  the 

analysis  of  plant  dynamics  and  ecosystem  monitoring  by  multispectral 

satellite  remote  sensing  (Pettorelli  et  al.,  2005),  including  the  chemical 

composition (Clevers and Gitelson, 2013; Frampton et al., 2013; Tong and 

He, 2017; Loozen et al., 2019) and quantity (Silleos et al., 2006; Ramoelo et 

al.,  2015;  Schweiger  et  al.,  2015)  of  grassland  biomass.  Most  VIs  are 

relatively easy to compute and are able to reduce variability introduced by 

site-specific  conditions,  such  as  bare  soil,  illumination  angle  or  the 

atmosphere. Thus, VIs can support the transferability of the estimation of 

vegetation  conditions.  VIs  consist  of  a  combination  of  different  spectral 

bands. Simple ratios (SR) and normalised difference indices are the most 

commonly used, the normalised difference vegetation index (NDVI) (Rouse 

et al., 1973) being the most prominent. More complex VIs, such as the soil 

adjusted vegetation index (SAVI) (Huete,  1988) or the MERIS terrestrial 

chlorophyll index (MTCI) (Dash and Curran, 2004) have been successfully 

applied in several studies (Ullah et al., 2012; Jin et al., 2014; Loozen et al., 

2019). Due to the well-covered red-edge-region of the Sentinel-2 sensors, 
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Frampton et  al.  (2013) proposed the inverted red-edge chlorophyll  index 

(IRECI)  and  the  Sentinel-2  red-edge  position  (S2REP)  index  for  the 

quantitative estimation of biophysical variables in vegetation. The red-edge 

region describes the spectral feature between the red absorption maximum 

and  a  reflectance-peak  in  the  near  infrared,  which  can  be  linked  to  the 

chemical composition of vegetation and vegetation biomass (Clevers  and 

Gitelson,  2013;  Frampton  et  al.,  2013).  The  Microwave  Polarization 

Difference Index (MPDI) is calculated similarly to the multispectral-based 

NDVI  (Hird  et  al.,  2017).  Calculated  from  vertical-vertical  (VV)  and 

vertical-horizontal  polarisation  (VH)  data  of  a  SAR-system,  the  MPDI 

elements were shown to be sensitive to, for example surface roughness and 

vegetation structure (Chauhan and Srivastava, 2016; Periasamy, 2018).

In  total,  77  multispectral-based  vegetation  indices  were  included, 

commonly  found  in  the  literature.  In  addition,  five  biophysical  products 

(L2B) were calculated using the biophysical processor in SNAP. These L2B 

products included leaf area index, fraction of absorbed photosynthetically 

active  radiation,  cover  fraction,  canopy  water  content  and  canopy 

chlorophyll content. Moreover, six SAR indices, such as simple ratios and 

MPDI were added to the analyses.  In total,  102 predictor  variables were 

available  for  the  grassland  forage  quantity  and  quality  random  forest 

regression models, including 10 multispectral bands, four SAR bands from 

different orbits and five L2B products. All included predictor variables can 

be found in Table S1−S3 of the supplementary material.
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Statistical analysis

The random forest (RF) regression algorithm was used to assess the 

relationships  between  grassland  forage  quantity  and  quality  and  remote 

sensing  derived  datasets.  Several  statistical  analysis  techniques  for  the 

estimation of  forage  biomass  and chemical  composition exist (Ali  et  al., 

2016).  They  include  partial  least  square  regression  or  stepwise  multiple 

linear regression (Ramoelo et  al.,  2012; Pellissier et  al.,  2015) and more 

advanced machine learning techniques, such as RF (Ramoelo et al., 2015) 

and  artificial  neural  networks  (Skidmore  et  al.,  2010).  RF  can  be 

characterised as an ensemble of decision trees. The prediction is based on a 

majority  vote  among  all  constructed  trees.  The  variables  used  and  the 

training  samples  for  each  respective  tree  are  randomly  sampled  with 

replacement  from  the  input  data.  So  far,  the  RF  algorithm  has  most 

commonly been used for classification (Belgiu and Drăguţ, 2016), but its 

robustness in  a  regression context  has  been confirmed in various  studies 

(e.g. Mutanga et al. (2012) and Ramoelo et al. (2015)). Therefore, we will 

use of the RF algorithm in this study.

In a first step, three different predictor variable sets were applied to 

RF  algorithm  in  order  to  compare  the  change  in  model  performance 

depending  on  the  selected  input  variables.  These  models  used  either 

predictor variables originating from Sentinel-2 data only, Sentinel-1 only or 

a combination of both.  The analyses were initially performed with a full 

predictor dataset. The model performance was estimated as the root mean 
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square error (RMSE) using a 10-fold cross-validation. In addition, predictor 

variable importance was estimated using a permutation approach (Brenning, 

2012;  Ruß  and  Brenning,  2010).  The  least  important  variable  was 

determined  by  excluding  one  variable  at  a  time  from  the  model  and 

calculating  the  mean decrease in  RMSE after  100 permutations  and 100 

repetitions. The variable whose exclusion caused the smallest  increase in 

RMSE was permanently left  out  of the respective model.  Based on an a 

priori decision, this process was repeated until only two variables were left 

in the final model.

In a  second step,  an optimised predictor  variable  combination for 

each response variable (oADF, CP, CSH and DM) was selected based on the 

lowest RMSE from all calculated models. These respective optimised final 

models  were  additionally  validated  using  a  10-fold  cross-validation 

procedure with 1000 repetitions. The calculation of variable importance for 

each optimum model was estimated with 1000 permutations per predictor 

variable.

All  RF  models  were  built  using  default  settings.  The  number  of 

variables randomly sampled as candidates at each split (mtry) were set to the 

number  of  input  variables  divided  by  three,  constructed  with  500  trees 

(num.trees) (Belgiu and Drăguţ, 2016).

Finally, the  spatial  distribution  of  oADF, CP, CSH and  DM was 

predicted using the best variable combination. All final maps were averaged 

over 100 predictions.
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All analyses were carried out within the R statistical programming 

environment  (R  Core  Team,  2018)  using  the  packages  ranger for  RF 

regression (Wright and Ziegler, 2015),  mlr  (Bischl et al., 2016) for cross-

validation  and  permutation,  and  raster (Hijmans,  2017)  for  the  spatial 

predictions.
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Results

Selection of predictor dataset and validation

A  relatively  weak  performance  was  observed  for  models  with 

Sentinel-1  data  only,  compared  to  models  where  Sentinel-2  data  were 

included (Table 3).  The lowest RMSE and highest  R² for oADF, CP and 

CSH were reached using the combined Sentinel-1 and Sentinel-2 predictor 

dataset.  For DM, the lowest RMSE was obtained by the Sentinel-2 only 

dataset,  but  the  difference  to  the  combined  Sentinel-1  and  Sentinel-2 

predictor  dataset  was  marginal.  Therefore,  all  subsequent  analyses  were 

conducted with the combined Sentinel-1 and Sentinel-2 dataset.

The validation results after iteratively removing predictor variables 

from  the  combined  Sentinel-1  and  Sentinel-2  dataset  are  illustrated  in 

Figure 4.  Starting  with  a  full  set  of  102  variables,  removing  predictor 

variables initially increased the R² value. After reaching a maximum, the R² 

rapidly decreased for oADF, CP, CSH and DM. A reverse behaviour was 

observed for the normalised RMSE. The normalisation is expressed between 

zero  and  one  according  to  the  observed  minimum  and  maximum.  The 

models with the lowest RMSE contained 8−15 predictor variables (Table 4).
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Table 3: Performance of the three different predictor datasets estimated using random forest regression. Predictors were iteratively removed based on 
variable importance. The R² and RMSE testing values are means of 100 repetitions of a 10-fold cross validation. oADF = organic acid detergent fibre 
concentration,  CP = crude protein concentration,  CSH = compressed sward height,  DM = standing biomass dry matter  weight.  S1 = Sentinel-1 
predictor dataset, S2 = Sentinel-2 predictor dataset, S1+S2 = combined Sentinel-1 and Sentinel-2 predictor dataset. The lowest RMSE and highest R² 
values are highlighted in bold.

oADF (%) CP (%) CSH (cm) DM (g/m²)

S1 S2 S1+S2 S1 S2 S1+S2 S1 S2 S1+S2 S1 S2 S1+S2

RMSE max 5.51 2.71 2.70 3.52 2.13 2.1 4.55 3.44 3.44 127.75 111.24 111.44

RMSE min 5.32 2.37 2.29 3.38 1.78 1.7 4.11 2.79 2.76 120.48 90.63 90.82

RMSE sd 0.07 0.06 0.08 0.04 0.04 0.06 0.15 0.08 0.09 2.08 2.61 2.55

R² max -0.02 0.78 0.79 -0.05 0.7 0.73 0.12 0.59 0.60 0.04 0.45 0.45

R² min -0.01 0.71 0.71 -0.15 0.57 0.58 -0.08 0.36 0.36 -0.09 0.17 0.16

R² sd 0.03 0.01 0.01 0.03 0.02 0.02 0.06 0.03 0.03 0.04 0.03 0.03
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Figure 4: Changes in R² and normalised RMSE depending on the number of 
predictor  variables  remaining  in  the  random  forest  regression  model  as 
variables are iteratively removed from the combined Sentinel-1 and Sentinel-2 
predictor  dataset.  The  R² and  RMSE  testing  values  are  means  of  100 
repetitions  of  a  10-fold  cross  validation  of  the  respective  predictor  and 
repetition. oADF = organic acid  detergent  fibre concentration,  CP = crude 
protein  concentration,  CSH  =  compressed  sward  height,  DM  =  standing 
biomass dry matter weight.

The high R² testing values indicated a good match between observed 

and  predicted  oADF  and  CP  concentrations.  This  was  supported  by 

relatively low RMSE testing values in comparison to the range of oADF and 

CP concentrations measured in the field. The small R² and RMSE standard 

deviation testing values after 1000 repetitions further supported good model 
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performances.  For CSH and DM, lower  R² testing values  were observed 

compared to oADF and CP. The estimated RMSE values were moderately 

higher, considering the respective observed range of the data. For both CSH 

and DM, 13 predictor variables remained in the final model.

Table 4: Statistics reporting the comparison of the selected best model for 
oADF  =  organic  acid  detergent  fibre  concentration,  CP  =  crude  protein 
concentration, CSH = compressed sward height, DM = standing biomass dry 
weight. The R² and RMSE values are means of 1000 repetitions of a 10-fold 
cross validation using random forest regression.

oADF (%) CP (%) CSH (cm) DM (g/m²)

Min observed 23.37 5.91 2.93 117.57

Max observed 47.97 21.33 25.55 630.07

RMSE testing 2.29 1.70 2.77 90.84

RMSE testing sd 0.42 0.35 0.60 17.63

RMSE training 0.99 0.75 1.20 39.18

RMSE training sd 0.02 0.02 0.03 0.95

R² testing 0.79 0.72 0.60 0.45

R² testing sd 0.13 0.15 0.17 0.23

R² training 0.97 0.96 0.94 0.91

R² training sd <0.01 <0.01 <0.01 <0.01

Number of variables 15 8 13 13

Number of radar variables 2 1 2 0

To assess  how the  models  behave  when applied  to  test  data,  the 

RMSE and R² were compared for both training and testing datasets from the 

cross-validation procedure (see Table 4).  The mean RMSE results  of the 

training phase of all models were considerably lower than the testing results. 

For  oADF, the  RMSE  testing  value  was  1.3%  higher  compared  to  the 

training result. Little variation in the model robustness was observed for the 
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training result across all models, indicated by low standard deviation values. 

For all grassland forage quantity and quality indicators, R² values close to 1 

were  observed  for  the  training  phase.  However,  the  testing  results  were 

much lower for all models. For DM, a large difference between training (R² 

= 0.91) and testing (R² = 0.45) was found. For oADF and CP, the differences 

were less pronounced. Thus, the robustness of CSH and DM R² results was 

lower than that of forage quality indicators.

Variable importance

Permutation-based  variable  importance  was  used  to  identify 

important  predictor  variables  for  oADF,  CP,  CSH,  and  DM  from  the 

optimised combined Sentinel-1 and Sentinel-2 dataset (see Figure 5). For 

oADF and CP, the most important variable was the simple ratio between the 

narrow near-infrared (B8A) and the red-edge-3 (B7) band. Excluding this 

simple ratio from the model decreased the performance in terms of  R² by 

0.10 for oADF and 0.18 for CP. A similar simple ratio, narrow near-infrared 

divided  by  red-edge-2  (B6),  contributed  substantially  to  the  model 

performance of CSH and DM.  For DM, R² decreased by 0.22 when this 

particular simple ratio was excluded from the model.  For CSH, the simple 

ratio between the short-wave-infrared-2 (B12) and the red (B4) band was 

found to be the most relevant variable. Single multispectral bands were in 

the optimised predictor dataset for oADF, CSH and DM, but their removal 

did not decrease R² by more than 0.06. The SAVI and its extensions that use 
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different red-edge bands instead of the red band were important for oADF, 

CP,  CSH  and  DM.  Other  vegetation  indices  contributed  to  the  model 

performances  to  smaller  extents.  For  CP, vegetation  indices  were  more 

important  than  for  oADF, CSH and DM. Sentinel-1 variables  were only 

selected for oADF, CP and CSH models. The general contribution of SAR-

variables was low compared to simple ratios or vegetation indices. No L2B 

variable was selected by the variable optimisation process.
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Figure 5:  Permutation-based variable  importance derived as an increase in 
RMSE caused by excluding one variable and keeping the rest in the model. 
Explanations to the respective x-axis labels can be found in the supplementary 
material  (Tables  S1–S3).  B = band (Table  2),  underscore  = divided by. a) 
oADF = organic acid detergent fibre (exclusive of residual ash), b) oNDF = 
organic  neutral  detergent  fibre  (exclusive  of  residual  ash),  c)  CP =  crude 
protein, d) CSH = compressed sward height, e) DM = standing biomass dry 
weight.
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Spatial prediction

Figure 6 displays the spatial predictions for oADF, CP, CSH and DM 

derived from the optimised predictor variables by applying the respective 

RF model. For illustration purposes, the figures and following descriptions 

are presented for the area surrounding the two sample locations A and B of 

Figure 1. Only the results for May and October 2016 are presented; spatial 

predictions for further sampling dates can be found in Figures S1–S3 in the 

supplementary material.

A relatively even distribution of oADF concentrations was observed 

for  May  2016  (Figure  6a).  In  October  2016,  the  spatial  distribution  of 

concentrations  was  more  differentiated,  especially  at  the  edges  of  the 

masked non-grassland areas. The mean predicted oADF concentration was 

about  29.3% (sd =  0.97%) for  May and about  36.6% (sd =  4.52%) for 

October  2016,  which  corresponds  to  the  observed  concentrations  in 

Figure 3.

Similar to oADF, a relatively even distribution of CP concentrations 

was observed for May 2016 (Figure 6b). The mean CP concentration in May 

2016  was  about  15.1%  (sd =  0.98%).  For  October  2016,  the  spatial 

distribution  of  CP  showed  a  distinct  differentiation  in  areas  with  CP 

concentrations  either  above  or  below  approximately  8%,  with  a  mean 

predicted CP concentration of 10.8% (sd = 2.54%).

For  May 2016, a  mean CSH of  10.3 cm (sd = 1.84 cm) and for 

October a mean CSH of 9.9 cm (sd = 2.64 cm) were predicted. Similar to the 
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predictions of CP, CSH showed a spatial differentiation,  with values either 

below or above 10 cm (Figure 6c). A corresponding distinction was present 

for the DM predictions. A mean DM of 355.0 g/m² (sd = 67.0 g/m²) in May 

and 329.9 g/m² (sd = 84.18 g/m²) in October was predicted. In general, a 

more even spatial distribution of oADF and CP concentrations in May and a 

more pronounced differentiation in October 2016 was observed. This was 

similar for CSH and DM, but with a higher degree of variance in May. Areas 

with high CP and low oADF concentrations in October 2016 were related to 

areas  with  low CSH and DM values,  and vice  versa.  A similar  but  less 

pronounced  pattern  between  the  predicted  vegetation  characteristics  was 

observed for the spatial predictions in May.
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Figure  6: Spatial  predictions  of  oADF  =  organic  acid  detergent  fibre 
concentration, CP = crude protein concentration, CSH = compressed sward 
height, DM = standing biomass dry weight for May and October 2016 using 
random forest regression, averaged over 100 repetitions. The illustrations are 
presented for the area surrounding the two sampling locations  A and B of 
Figure 1.
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Discussion

This  study  shows  that  semi-natural  grassland  forage  quality 

indicators can be mapped with high accuracy, as R² values of the regression 

models ranged from 0.72 (sd = 0.15) for CP to 0.79 (sd = 0.13) for oADF. 

For the grassland forage quantity indicators, lower R² values were obtained 

(R² = 0.60,  sd = 0.17 for CSH and  R² = 0.45,  sd = 0.23 for DM). When 

analysed  separately,  Sentinel-1  data  had  a  low  performance  for  all 

considered indicators. When Sentinel-1 data were added to Sentinel-2 data, 

the RF model performance increased only marginally. In particular, the max 

R² values of all models considered in Table 3 were only higher by 0.025 for 

CP and about 0.012 higher for oADF and CSH for the combination of both 

data sources. For DM, the difference was negligible.

Sentinel-1 data for grassland forage quantity and quality prediction

Despite  the  generally  low  contribution  of  Sentinel-1  data  to  the 

model performance, between one and two SAR variables were among the 

most  important  variables  for  the  prediction  of  oADF,  CP  and  CSH 

(Figure 5).  The small  contribution  of  Sentinel-1 data  to  the  final  models 

might be attributed to the wavelength (5.6 cm) of the C-band sensor. Even 

though the amount of studies concerned with the estimation of biophysical 

parameters  for  semi-natural  grasslands  is  limited,  Zalite  et  al.  (2016) 

demonstrated the potential of X-band data with a wavelength of about 3 cm 

to map biophysical parameters on agricultural grassland. For this purpose, 
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HH-polarised COSMO-SkyMed 1-day repeat-pass SAR pairs were used to 

inversely relate temporal interferometric coherence to vegetation height and 

fresh  above-ground  biomass.  In  addition,  Ali  et  al.  (2017)  showed  that 

TerraSAR-X  interferometric  coherence  data  can  be  used  successfully  to 

predict agricultural grassland height (R² = 0.55) and biomass (R² = 0.75) at 

the  paddock  scale.  Thus,  further  research  is  required  to  investigate  the 

potential contribution of X-band SAR data to predict semi-natural grassland 

forage quality and quantity indicators.

Optimisation of the predictor dataset

The repeated reduction of the combined Sentinel-1 and Sentinel-2 

complete dataset (102 variables) provided an optimised subset of predictor 

variables for semi-natural grassland forage quantity and quality indicators 

with 8 to 15 variables. Several studies have selected important variables for 

the prediction of biophysical parameters of grassland from remote sensing 

data (Loozen et al., 2019; Mutanga et al., 2004; Tong and He, 2017). Linear-

based  machine  learning  approaches,  such  as  lasso  and  ridge  regression, 

recently showed promising results for the selection of important predictor 

variables (Zandler et al., 2015). However, non-linear relationships between 

spectrally-derived predictor variables and biophysical response variables can 

be  present  (Mutanga  and  Kumar,  2007;  Mutanga  and  Skidmore,  2004; 

Skidmore et al., 2010). When time-series data are applied, the correlation 

between a predictor variable  and the respective biophysical variable  may 
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change its slope, depending on the phenological phase. In such cases, the 

non-linear,  decision-tree-like  RF regression  algorithm can  be  superior  to 

linear regression techniques (Beckschäfer et al., 2014; Strobl et al., 2007). 

Because the internal importance measure of the RF was shown to be biased 

(Strobl  et  al.,  2007),  and  the  conditional  RF  is  very  computationally 

intensive (Nicodemus et al., 2010), the applied permutation-based variable 

selection can be seen as an appropriate strategy. Thus, a subset of variables 

could be identified, important for the prediction of semi-natural grassland 

quantity and quality. However, a tendency of the RF to adapt to the training 

data  and a  decreased  performance  in  the  validation  phase  was  observed 

(Table 4).

Important variables for the prediction of semi-natural grassland forage  

quantity and quality

The dominant source for the selected predictor for the prediction of 

semi-natural  grassland  forage  quantity  and  quality  indicators  variables 

originated  from  both  10  m  and  20  m  spatial  resolution  Sentinel-2  data 

(Figure  5).  This  underlines  the  importance  of  including all  20 m spatial 

resolution bands, resampled to 10 m using the applied Sen2res resolution 

enhancement  operator  provided by Brodu (2017).  This is  contrary to the 

results observed by Punalekar et al. (2018) who found that the 10 m bands 

from in situ hyperspectral data resampled to Sentinel-2A were sufficient to 

estimate leaf area index (LAI) using a radiative transfer model (PROSAIL) 

on agricultural grassland. The LAI can be related to vegetation biomass (e.g. 
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Friedl et al. (1994) and Dusseux et al. (2015)), but radiative transfer models 

such  as  PROSAIL  assume  canopies  to  be  rather  homogeneous.  Hence, 

Darvishzadeh et al. (2008)  showed that the limitation of PROSAIL-based 

LAI predictions increased with increasing species diversity. Therefore, the 

presented regression approach might be more suitable for mapping forage 

quality and quantity on semi-natural grasslands.

In order to relate field observations of grassland forage quantity and 

quality to remote sensing data, a certain number of predictor variables might 

be required to increase the predictive power of a regression model. In the 

presented study, the most important groups of variables for the prediction of 

oADF, CP, CSH and DM were simple spectral ratios followed by spectral 

vegetation indices (Figure 5). For the prediction of the quality indicators 

oADF and CP, the simple ratio between the narrow near-infrared (band 8A, 

Table  2)  and red-edge-3 (band 7,  Table  2)  band contributed  most  to  the 

respective  model.  A similar  result  was  observed  for  CSH and  DM. The 

simple ratio between the narrow near-infrared and red-edge-2 band as well 

as the ratio between the short-wave-infrared-2 and red band were the two 

most  essential  variables  for  the  model.  The  importance  of  the  red-edge 

region  to  predict  biophysical  parameters  of  grassland  was  confirmed  by 

several  other  studies  (Clevers  and Gitelson,  2013;  Delegido et  al.,  2011; 

Duan et al., 2012; Frampton et al., 2013; Ramoelo et al., 2015b, 2012; Tong 

and He, 2017; Verrelst et al., 2012). The reflectance in the NIR-part can be 

related to leaf structure, while the red-edge region is related to chlorophyll 
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concentration (Sims and Gamon, 2002; Tong and He, 2017). Because of the 

relationship between chlorophyll and nitrogen, the red-edge reflectance may 

therefore  be  related  to  vegetation  protein  concentration.  As  illustrated  in 

Figure 3,  the positive relationship between vegetation quantity  indicators 

(CSH and DM) and CP was very pronounced until  mowing in July. For 

oADF the relationship was negative.  Thus,  the ratio  between the narrow 

near-infrared band 8A and one of the red-edge bands can approximate the 

relationship between grassland quality and quantity. The application of this 

relationship  by  a  normalisation,  similar  to  the  NDVI,  might  therefore 

facilitate  the  estimation  and  monitoring  of  semi-natural  and  agricultural 

grassland quantity and quality by remote sensing. This would require further 

research for different geographical regions and types of grassland.

Remote sensing for the conservation of semi-natural grassland

For pasture management purposes, remote sensing has been proven 

to be a valuable tool to predict grassland forage mass and quality indicators 

(Ali et al., 2016; Wachendorf et al., 2017). This can be of high importance 

for farmers, e.g. for rotational grazing systems, as well as for conservation 

(e.g.  Punalekar  et  al.  (2018)  and  Riesch  et  al.  (2019)).  Marginal  areas, 

however, are often characterised by more heterogeneous land cover. In the 

special case of an active military training area, access restrictions challenge 

the  management  and conservation  of  open habitats,  such as  semi-natural 

grasslands.  Under  such  landscape  conditions,  the  potential  of  wild 
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herbivores  as  a  management  and  conservation  option  has  recently  been 

acknowledged (Pausas and Bond, 2018; Schulze et al., 2018). For the GTA, 

Riesch et al. (2019) showed that red deer can contribute significantly to the 

conservation  of  semi-natural  grassland  ecosystems.  In  particular,  it  was 

shown that forage removal was enhanced in mown grassland, related to an 

increased productivity and forage quality (Riesch et al., 2019). The present 

study provides evidence that for semi-natural grassland ecosystems forage 

mass  and  quality  indicators  can  be  successfully  predicted  using  freely 

available Sentinel data. Thus, the conservation of open landscapes could be 

supported  by  a  target-oriented  habitat  and  consequently  wildlife 

management (Raynor et al., 2017). To what extent management activities, 

such  as  mowing,  can  be  used  to  spatially  direct  the  utilisation  of  semi-

natural  grasslands  as  foraging  areas  by  wild  herbivores  requires  further 

research.

Conclusion

The  present  study  has  evaluated  the  possibilities  of  combining 

Sentinel-1 and Sentinel-2 data for estimating semi-natural grassland quantity 

and quality. Predictor  variables derived from the Sentinel-2 sensors were 

sufficient to accurately predict  organic acid detergent fibre concentration, 

crude protein concentration, compressed sward height, and standing biomass 

dry weight from field observations.  A repeated reduction of the predictor 

variable  set  was  implemented,  guided  by  a  permutation-based  variable 
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importance measure. Thus, a subset of important variables was identified. 

The  simple  ratios  between  the  narrow near-infrared  and red-edge region 

were found to be particularly important. As the spatial distribution and the 

activities of large herbivores are affected by the availability and quality of 

potential forage areas, this may help to support the future conservation of 

semi-natural grassland ecosystems grazed by livestock species or wildlife.
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Table  S1: A list  of  spectral  predictor  variables  and  the  respective  groups 
included in the variable selection process. See Table 2 of the main document 
for band descriptions. B = band.

No Index Formula Reference

1-10 Individual bands

11-55 Simple Ratios (SR) e.g.
B 3
B 4 (e.g. Jordan, 1969)

56 NDVI1
B8−B4
B8+B4

(Rouse, 1974)57 NDVI2
B8 A−B4
B8A+B 4

58 NDVI3
B7−B4
B7+B4

59 NDI45
B 5−B 4
B 5+B4 (Delegido et al., 2011)

60 RDVI0
(B8 A−B 4)

√(B 8 A+B 4)

(Roujean and Breon, 1995)
61 RDVI1

(B8 A−B5)

√(B8 A+B5 )

62 RDVI2
(B 8 A−B 6 )

√(B 8 A+B 6)

63 RDVI3
(B8 A−B7 )

√(B8 A+B7 )

64 CRE B7
B5

−1

(Gitelson et al., 2006)

65 ARI

1
B3
1
B5

(Gitelson et al., 2001)

66 NRI
(B3−B4 )

(B 3+B 4) (Schleicher et al., 1998)

67 GNDVI
(B7−B3)
(B7+B3) (Gitelson et al., 1996)

68 IRECI
(B7−B 4 )

B 5
B 6

(Frampton et al., 2013)

69 SIPI
(B8 A−B2)
(B8 A+B2) (Penuelas et al., 1995)

70 PSRI
(B4−B2)

(B6) (Merzlyak et al., 1999)

71 CRI

1
B3
1

B8 A

(Gitelson et al., 2002)

72 SAVI0 (1+0.5 )×
B 8 A−B 4

B8 A+B 4+0.5

(Huete, 1988)
73 SAVI1 (1+0.5 )×

B 8 A−B 5
B8 A+B 5+0.5

74 SAVI2 (1+0.5 )×
B 8 A−B6

B8 A+B6+0.5

75 SAVI3 (1+0.5 )×
B 8 A−B 7

B 8 A+B7+0.5
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76 OSAVI (1+0.16)×
B 6−B 5

B 6+B5+0.16

(Rondeaux et al., 1996; Wu et al., 

2008)

77 MCARI/OSAVI
((B6−B5)−0.2×(B6−B3 ))×

B6
B3

(1+0.16)× B6−B5
B6+B5+0.16

(Wu et al., 2008)

78 EVI 2.5×
B8 A−B4

1+B8 A+6×B4−7.5×B2 (Huete et al., 1997)

79 CIre
B 7
B 5

−1 (Gitelson et al., 2006, 2003)

80 CIg
B7
B3

−1 (Gitelson et al., 2006, 2003)

81 REP 705+
35∗

B4+B 7
2

−B5

(B6−B5 )
(Guyot and Baret, 1988)

82 MTCI
B6−B5
B5−B4 (Dash and Curran, 2004)

83 MCARI ((B 5−B 4)−0.2×(B 5−B 3))×
B 5
B 4 (Daughtry et al., 2000)

84 TCARI 3×((B6−B5)−0.2×(B6−B 3)×
B 6
B 5

)

(Haboudane et al., 2002; Wu et al., 

2008)

85 TCARI/OSAVI
3×((B6−B5)−0.2×(B6−B3)×

B6
B5

)

(1+0.16)× B6−B5
B6+B5+0.16

(Wu et al., 2008)

86 NDRE1
B6−B5
B6+B5

(Gitelson  and  Merzlyak,  1994; 

Sims and Gamon, 2002)

87 NDRE2
B 7−B 5
B7+B5 (Barnes et al., 2000)
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Table S2: A list of spectral biophysical predictor variables (L2B) included in 
the variable selection process.

No Index Definition Reference

88 LAI
The Leaf area index is defined as the developed area of 
photosynthetically active elements of the vegetation
per unit horizontal ground area.

(Weiss and Baret, 2016)

89 CAB The Canopy chlorophyll content is strongly related to leaf 
nitrogen content.

90 CW Canopy water content

91 fapar The fapar is defined as the fraction of photosynthetically active 
radiation absorbed by the canopy.

92 fCover The fCover is defined as th gap fraction for nadir direction and 
used to separate vegetation and soil.

Table S3: A list of radar predictor variables included in the variable selection 
process.

No Index Formula Reference

93 AS0VHdb Ascending orbit, backscatter in dB, vertical-
horizintal polarisation

94 AS0VVdb Ascending orbit, backscatter in dB, vertical-
vertical polarisation

95 AMPDI
AS 0VHdb−AS 0VVdb
AS0VHdb+AS 0VV db (e.g. Hird et al., 2017)

96 DS0VVdb Descending orbit, backscatter in dB, vertical-
vertical polarisation

97 DS0VHdb Descending orbit, backscatter in dB, vertical-
horizontal polarisation

98 DMPDI
DS 0VHdb−DS 0VVdb
dS0VHdb+DS 0VV db (e.g. Hird et al., 2017)

99-101 Simple ratios (SR) e.g.
AS0VHdb
AS 0VVdb

102 AMPDI/DMPDI
AMPDI
DMPDI
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Figure  S1: Spatial  predictions  of  oADF  =  organic  acid  detergent  fibre 
(exclusive of residual  ash),  CP = crude protein,  CSH = compressed sward 
height, DM = standing biomass dry weight for August 2016 and May 2017 
using  random  forest  regression,  averaged  over  100  repetitions.  The 
illustrations are presented for the area surrounding the two sampling locations 
A and B of Figure 1.
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Figure  S2: Spatial  predictions  of  oADF  =  organic  acid  detergent  fibre 
(exclusive of residual  ash),  CP = crude protein,  CSH = compressed sward 
height, DM = standing biomass dry weight for August 2017 and October 2017 
using  random  forest  regression,  averaged  over  100  repetitions.  The 
illustrations are presented for the area surrounding the two sampling locations 
A and B of Figure 1.



 | 174

Figure  S3: Spatial  predictions  of  oADF  =  organic  acid  detergent  fibre 
(exclusive of residual  ash),  CP = crude protein,  CSH = compressed sward 
height, DM = standing biomass dry weight for June 2015 and August 2015 
using  random  forest  regression,  averaged  over  100  repetitions.  The 
illustrations are presented for the area surrounding the two sampling locations 
A and B of Figure 1.
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Appendix 1: A practical example

To  illustrate  how  the  Random  Forest  algorithm  can  be  used  to 

optimise a predictor dataset in a remote sensing regression context, we make 

use of a data set compilation provided by the book “Remote Sensing and 

GIS for Ecologists: Using Open Source Software” (Wegmann et al., 2016). 

The data can be accessed under the following URL:

http://book.ecosens.org/data/

Data preparation

First  we  load  the  required  packages  and  the  satellite  image.  In 

addition, we derive vegetation indices from the spectral bands of the image.

library(raster)
library(RStoolbox)
library(rgdal)
library(ranger)
library(mlr)

mtl <- "data_book/raster_data/LT52240632011210/LT52240632011210CUB01.xml"

lsat <- stackMeta(file=mtl, quantity = "sre", category = "image")
lsat <- lsat* 0.001

# calculate vegetation indices
lsat_vis <- spectralIndices(lsat,
                            blue = 1,
                            green = 2,
                            red = 3,
                            nir = 4,
                            swir2 = 5,
                            swir3 = 6)

# combine spectral bands and vegetation indices
lsat_imgvi <- stack(lsat,lsat_vis)
names(lsat_imgvi)
nlayers(lsat_imgvi)
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Data sampling

train_points <-  readOGR("data_book/vector_data","occurrence")

train_points$occurrence <- as.numeric(train_points$occurrence)
train_points$occurrence[train_points$occurrence == 1] <-0
train_points$occurrence[train_points$occurrence == 2] <-1

#plot data
plotRGB(lsat, b=1, g=2, r=3,stretch = "lin")
pointSize <- train_points$occurrence*2+1
points(train_points, cex=pointSize,col="yellow", pch = 20)

# extract reflectance and vegetation indices values
train_extracted <- data.frame(extract(lsat_imgvi, 
                                      y=train_points, 
                                      cellnumbers = TRUE, 
                                      sp=TRUE))

# remove potential duplicates
train_extracted  <- train_extracted [!duplicated(train_extracted$cells),]
# remove potential NAs
train_extracted <- train_extracted[complete.cases(train_extracted),]

Modelling

library(plyr)
library(parallelMap)
set.seed(123)

train_df <- train_extracted[c(3,5:30)]
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# number of trees to be constructed 
num.trees <- 500 
# number of folds
k <- 5
# number of repetitions
reps <- 20
# number of permutations
perm <- 20

#define repeated cross-validation
rdesc = makeResampleDesc("RepCV",
                         reps=reps,
                         folds=k,
                         predict = "test")
#predictor names of the full model
ff_start <- names(train_df)[c(2:(length(names(train_df))))]
ff <- ff_start
response <- "occurrence"

#define result lists
res_rmse_rf <- list()
res_varn_rf <- list()
leng <- length(ff)

for( x in 1:(leng-1)){
  data <- train_df[c(ff,response)]
  # define task 
  nsp_task <- makeRegrTask(id = "sdm",
                           data = data,
                           target = response)
    
  #number of predictor variables randomly sampled as candidates at each split
  mtry <- round((length(ff)) /3)
  # define learner
  rf_learner <- setHyperPars(makeLearner("regr.ranger"), 
                             par.vals = list(mtry = mtry,
                                             num.trees = num.trees))
    
  # validation)
  res_nsp <- mlr::resample(learner = rf_learner,
                           resampling = rdesc,
                           task = nsp_task,
                           measures = list(setAggregation(rmse, test.mean),
                                            setAggregation(rmse, test.sd),
                                            setAggregation(rsq,test.mean),
                                            setAggregation(rsq,test.sd)),
                           models = FALSE,
                           show.info = FALSE)
    # variable importance
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  res_var_imp <- generateFeatureImportanceData(
    task = nsp_task,
    method = "permutation.importance", 
    learner = rf_learner,
    measure = list(mlr:rmse),
    nmc = perm)$res
  
  res_var_imp <- data.frame(t(res_var_imp))
  res_var_imp$var <- rownames(res_var_imp)
  res_var_imp <- arrange(res_var_imp,rmse,var)
  varn <- res_var_imp$var
  
  res_rmse_rf[[x]] <- res_nsp$aggr
  res_varn_rf[[x]] <- res_var_imp
  ff <- varn[2:(length(varn))]
}

res_rmse_rf <- data.frame(do.call(rbind, res_rmse_rf))
res_rmse_rf$var_num <- seq(length(ff_start), 2)
res_rmse_rf$model_run <- seq(1:(length(ff_start)-1))

Modeling results

library(ggplot2)
ggplot(data=res_rmse_rf, aes(x=var_num, y=rmse.test.mean))+
  geom_point()+
  geom_smooth()+
  theme_bw()+
  labs(x = "Number of variables in the model", y = "RMSE")+
  scale_x_reverse()
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Variable importance

res_rmse_rf[which(res_rmse_rf$rmse.test.mean == 
min(res_rmse_rf$rmse.test.mean)),]
##    rmse.test.mean rmse.test.sd rsq.test.mean rsq.test.sd var_num model_run
## 21      0.3715429   0.03577308     0.4061821   0.1142985       6        21
m <- res_rmse_rf[which(res_rmse_rf$rmse.test.mean == 
min(res_rmse_rf$rmse.test.mean)),]$model_run
res_varn_rf[[m]]

##         rmse    var
## 1 0.08384547  MNDWI
## 2 0.08904531 B3_sre
## 3 0.09212387 B2_sre
## 4 0.09807378  GNDVI
## 5 0.10643804   NDWI
## 6 0.13396461  SATVI

ggplot(res_varn_rf[[m]], aes(x=var, y=rmse)) + 
  geom_bar( stat="identity", width = 0.6)+
  theme_classic()+
  labs(x = "Variable", y = "Mean increase in RMSE")
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5
CHAPTER 5 – GENERAL DISCUSSION

The  overall  aim  of  this  thesis  was  to  evaluate  different  satellite 

remote sensing sources to characterise the heterogeneous landscape of the 

GTA. A particular focus was on semi-natural grassland as there is an urgent 

need  for  conservation  activities  for  these  habitats  across  Europe.  In  this 

context,  the  final  part  of  this  thesis  discusses  the  main  findings  of  the 

presented  chapters  and  provides  an  outlook  on  future  contributions  of 

remote sensing to the conservation of semi-natural grassland.

Marcus Meißner
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Remote sensing land cover classification

RapidEye remote sensing data can be used to accurately derive land 

cover  information  of  a  heterogeneous  landscape,  such  as  the  GTA.  The 

RapidEye earth observation constellation consists of five identical satellites, 

which provided a dense inter-annual time series at a spatial resolution of 5 

m. The applied Tasselled Cap Transformation can be seen as an effective 

data compression measure, which can decrease the data intensity for multi-

temporal land cover applications.

Object-  or  segmentation-based  land  cover  mapping  could  be  an 

alternative  approach  to  the  pixel-based  classification  presented  in 

Chapter 2.  In  particular,  for  high-resolution  images,  object-  or 

segmentation-based  land  cover  classification  provides  higher  accuracies 

compared to pixel-based maps (Förster et al., 2010; Laliberte et al., 2007). 

This can be attributed to the aggregation of spectrally homogeneous pixels 

into objects and the reduced mixed-pixel effect. Most image segmentation 

algorithms require adequate parameter settings by the user, which often have 

to be defined manually (Stefanski et al., 2013). Thus, the segmentation result 

can be subjective. In addition, the aggregation of pixels into objects comes 

with the trade-off of losing information, as small features are integrated into 

bigger objects (Schmidtlein and Sassin, 2004; Liu and Xia, 2010; Schmidt et 

al., 2017). This could potentially impact the analysis of grazing behaviour of 

red deer, for example by, GPS (Global Positioning System) telemetry data, 

because movement decisions might be made at fine scales (Wallace et al., 
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1995;  Langvatn  and  Hanley,  1993).  Hence,  a  pixel-based  land  cover 

classification can be considered as a valid mapping approach in order to 

characterise a heterogeneous landscape. A coarser spatial resolution of 10 m 

provided  for  example  by  the  Sentinel-2  (10  –  60  m  spatial  resolution) 

tandem satellite constellation could, however, be sufficient for the analysis 

of movement data, as location uncertainties can be introduced by the GPS-

signal (Lewis et al., 2007).

Remote-sensing-based mapping of semi-natural grassland

Semi-natural grassland ecosystems are characterised by continuous 

transitions  between botanical  communities  associated  with  environmental 

gradients, such as soil fertility or moisture availability (Riesch et al., 2018). 

The  composition  of  grassland  communities  can  further  be  influenced  by 

large herbivores, e.g. by grazing, trampling and seed dispersal (Catorci et al., 

2016).  This  structural  and  botanical  heterogeneity  at  small  scales  is  a 

particular  challenge  for  field-based  as  well  as  remote-sensing-based 

mapping and monitoring efforts. 

Typically,  training  data  or  field  observations  are  used  to  relate 

spectral remote sensing data to a respective class or botanical community. 

Classification algorithms assign each pixel to the most probable community, 

e.g.  by using maximum likelihood. This forces the continuous transitions 

between different communities into sharp boundaries (Rocchini et al., 2013). 

Alternatively,  classification  algorithms  such  as  the  Random  Forest  can 
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provide  a  discrete  map  along  with  information  about  the  associated 

uncertainty (Barrett et al., 2016). As shown in Chapter 3, this uncertainty or 

probability of a pixel belonging to a class can be used to better represent 

gradual  transitions  between  semi-natural  grassland  communities.  The 

recently presented fuzzy logic mapping approach for semi-natural grassland 

by Rapinel  et  al.  (2018)  and the  results  shown in  Chapter 4 both  offer 

promising perspectives to meet management requirements, e.g. under Article 

17 of the EU Habitats Directive. In this context, major challenges are related 

to the definition of vegetation classes or communities as well as to a spatial 

mismatch between the scale of field observation and the image resolution of 

remote sensing data (Rocchini et al., 2013). The use of very high resolution 

remote sensing data, such as WorldView-3 (0.31 – 3.7 m spatial resolution) 

would  decrease  the  scale  mismatch  between  field  and  remote  sensing 

observations,  but  would  introduce  a  high  noise  fraction  e.g.  by  shading 

effects (Rocchini et al., 2013).

Future  applications  could  focus  on  satellite  remote  sensing  data 

sources which facilitate a repeated inventory and monitoring of large areas. 

From  an  operational  perspective  for  the  reporting  obligations  under 

Article 17  of  the  EU  Habitats  Directive,  Sentinel-2  data  could  be  the 

preferred choice as they are freely available.  For this,  further research is 

required to support the conservation of semi-natural grassland habitats  in 

Europe.
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Remote sensing of semi-natural grassland biophysical properties

The  recent  advances  of  the  Sentinel  program  by  the  European 

commission  offer  new  possibilities  for  the  prediction  of  semi-natural 

grassland biophysical properties. As illustrated in  Chapter 4, simple ratio 

indices based on red-edge and near-infrared bands were particularly useful 

for  the  prediction  of  grassland forage  quality  and quantity  indicators.  In 

order  to  ensure  a  good  agreement  between  collected  field  samples  and 

remote sensing image acquisitions, the time difference between both data 

acquisitions  should  be  as  small  as  possible.  Due  to  the  high  temporal 

resolution of the Sentinel-2 satellites of five days, a sufficient number of 

cloud free image acquisitions is possible. Even higher frequencies could be 

expected by the harmonised Landsat 8 Sentinel-2 data (HLS) (Claverie et 

al., 2018). The HLS dataset provides surface reflectance data, harmonized 

between  both  satellite  systems.  Thus,  higher  temporal  frequencies  at  a 

spatial  resolution  of  30 m can be realized  (Li  and Roy 2017).  Since no 

reflectance data are recorded in the red-edge region by the optical Landsat 8 

sensor,  a  reduction  of  the  predictive  power  could  be  a  consequence 

compared  to  Sentinel-2  data.  Hyperspectral  remote  sensing  data  provide 

much more spectral information compared to multi-spectral sensors and are 

a  promising  data  source  for  the  prediction  of  grassland  biophysical 

properties (Mutanga et al., 2004; Cho and Skidmore, 2009; Skidmore et al., 

2010; Knox et al., 2011; Darvishzadeh et al., 2014; Pellissier et al., 2015). 

However, hyperspectral remote sensing data are usually not freely available 
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and  often  cover  only  small  regions.  With  the  upcoming  Environmental 

Mapping and Analysis  Program mission (EnMAP) the hyperspectral  data 

availability  will  increase  (Guanter  et  al.,  2015).  In  comparison  to 

hyperspectral  approaches,  unmanned-aerial-vehicle-based  (UAV)  RGB 

images are a useful alternative to predict grassland biophysical properties 

(Bareth  and Schellberg,  2018;  Michez  et  al.,  2019).  The  battery  charge, 

however, limits the application of UAV-based approaches to smaller areas. 

For  larger  geographical  regions,  a  coupled  climate-  and  multi-spectral 

remote-sensing-based modelling approach could facilitate the understanding 

of grazing patterns of large herbivores, and thus the conservation of semi-

natural  grassland  with  regard  to  environmental  changes  (Raynor  et  al., 

2017).

Outlook

Remote  sensing  has  proven  to be  a  powerful  application  to 

characterise semi-natural grassland ecosystems (Chapters 2–4). Promising 

research perspectives towards the conservation of grassland habitats include 

the assessment of grassland use intensity  (Franke et al., 2012; Giménez et 

al., 2017), the detection of mowing events (Tamm et al., 2016; Kolecka et 

al., 2018) and the estimation of habitat quality of protected dry grasslands 

(Weber et al., 2018).

Cooperation between different disciplines, such as grassland science, 

wildlife science and remote sensing are more necessary than ever to advance 
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conservation activities (Clark et al., 2017). Climate change and habitat loss 

and  fragmentation  are  major  threats  to  biodiversity  and  food  security 

(Bellard et al., 2012; Haddad et al., 2015; O’Connor et al., 2015). This thesis 

presented  applications  of  remote  sensing  with  a  spatial  focus  on  the 

Grafenwoehr military training area. However, the bounsaries of the study 

area are artificial. The open Landsat archive provides spectral information 

dating back to the 1970s and the recently launched Sentinel program will 

continue to deliver remotely sensed data at very high temporal and spectral 

resolution  (Belward  and Skøien,  2015).  Future  research  should  therefore 

make use of the unprecedented amount of data available to the public to date 

and  take  larger  geographical  and  temporal  scales  into  consideration 

(Pasquarella  et  al.,  2016).  For  this,  open and reproducible  research is  of 

pivotal importance (Rocchini and Neteler, 2012; Turner et al., 2015).
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