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ABSTRACT 

 
Title of Dissertation:   The development of a ship-server power / emissions 

assessment model: case study on big data analysis 
for real-time ship operations  
 

Degree:        Master of Science 

 

Disruptive technology, which is gradually enveloping the maritime industry with 
promises of improving ship operations and safety, certainly has some drawbacks. 
Some of the challenges identified are cyber security, data ownership, secret data 
theft, and processing framework. 
 
Recently, with the advent of Shipping 4.0, several technological changes have 
been witnessed to improve ship operations, such as the kiber helmet used to 
support engineers offshore, drones used for CO2 emissions monitoring, the 
“Electric Blue”, a future ship concept by Roll-Royce, Cargo visibility used by 
Maersk, UK’s Martek Marine, Class Nk and NAPA’s fleet intelligence and so on. 
 
The technologies have one thing in common, the use of data. Recent ship design 
solutions come with several thousands of sensors, CPS and IoT to improve ship 
operation. However, aside the identified challenges, there is no literature, to the 
best knowledge of the author, that quantifies the emissions caused by the use of 
these telemetry devices and services. 
 
This research identifies sources of ship big data, its transmission, processing and 
storage. It also incorporates the land based energy calculation for determining the 
power consumed by servers, which houses applications that processes ship big 
data. This is done using an emission calculator tool developed with Netbeans IDE 
8.0.2 and java programming language, and the creation of two model scenarios.  
 
To complete this investigation, ship engine related data from the EU funded 
TEFLES research project was used. Data acquired from the project was pre-
processed using statistical tools. The idea was to compare the energy consumption 
and emissions of a ship in the three (3) operating modes, sea, manoeuvring and 
at port.  
 
In this thesis various factors that affect the server CPU utilization are identified. 
Some are the PUE of a data center, the CPU utilization rate, and the carbon factor. 
For this investigation, the most significant factor identified was the CPU utilization 
and the grid carbon factor. 
 
The results, however, reveal that about 1.75% of additional CO2 is emitted by 20 
ships on the Baltic sea route for a distance of 530 miles. However, the relationship 
between the additional emissions created with the use of real-time application and 
the ship is not linear; the additional emission depends on the amount of time real-
time applications for ship operations are accessed.  
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To limit further increase, several measures such as subscribing for SaaS and 
sector ownership of datacenter may be recommended as full ship autonomy 
approaches. 
 

 

KEYWORDS: 4IR, Shipping 4.0, IoT, SaaS, CPU, PUE, Energy consumption of 

servers, Emissions calculation modelling 
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CHAPTER 1: INTRODUCTION 

1.1. BACKGROUND 

 

During 2007 – 2011 international shipping emissions was estimated to be 938 million 

tonnes of CO2 and 961 million tonnes of CO2e for GHG, combining CO2, CH4, and 

N2O (IMO, 2014). As at 1 January 2018, the World commercial fleet consisted of about 

94,171 vessels, with total tonnage of 1.92 billion dwt, transporting large volumes of 

products to various destinations (UNCTAD, 2018). Due to increasing population and 

living standards, leading to growing demand for goods, seaborne trade is anticipated 

to increase from 2018 – 2023. Therefore, aside from implementing measures, 

monitoring and management of ship energy efficiency is paramount, as improper 

management would mean an increase in greenhouse gas (GHG). 

Several moves have been made towards the ambitious goal of the IMO. At the 72nd 

session of the Marine Environmental Protection Committee (MEPC) meeting held in 

April 2018, IMO adopted a strategic vision to decarbonize the shipping sector. Its plan 

is to first reduce total GHG by at least 50% by 2050 compared with 2008 levels while 

pushing for a total phase-out (IMO, 2014). One of its clear targets is to reduce carbon 

intensity to a minimum of 40% by 2030 and 70% by 2050.  IMO also deliberated on 

the introduction of Market-Based Measures (MBM), such as emission trading systems 

and carbon levies (UNCTAD, 2018), as a strategy to compel ship owners to be vested 

in reducing CO2 emissions from their ships. 

The special Intergovernmental Panel on Climate Change (IPCC) report, “Global 

Warming of 1.5 degree”; released on 8 October 2018, notified Policy makers of the 

current impacts of climate change. It highlighted the need for rapid reduction of carbon 

emissions by a minimum of 49% of 2017 levels by 2030 and encouraged work towards 

neutralizing carbon by 2050 (Intergovernmental Panel on Climate Change, 2018). The 
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finality is to reverse the effects of climate change. This herculean task may require 

National Governments to align with international climate change experts to develop 

and implement a strategy aimed at achieving this goal, noting that it would involve 

quick dramatic changes to the functions of businesses and societies.  

The IMO has proactively developed strategies for the maritime sector, such as the 

Sulphur Cap 2020 regulation. It requires a substantial reduction of SOx from 3.50% 

m/m (mass by mass) to 0.50% m/m effective 1st January 2020 (IMO, 2018). 

Another strategy is the implementation of the Data Collection System (DCS) that 

commenced on January 2019. The DCS process requires ship owners to include a 

Data Collection Plan (DCP) in their Ship Energy Efficiency Management Plan 

(SEEMP) Part II by 31 December 2018 (IMO, 2018). When a DCP is included in the 

SEEMP, it is approved and confirmed by the verifier. Upon confirmation, a 

Confirmation of Compliance (CoC) is issued to the ship owner. The next stage is the 

actual data collection by the ships in-line with the DCP. After the collected data is 

submitted, the ship owner is issued a Document of Compliance and then a Statement 

of Compliance after verification and entry into the database by the Administration. All 

these processes should be completed on or before 31 March 2020.  

To aid data collection, IMO launched the Ship fuel database, Global Integrated 

Shipping Information System (GISIS). GISIS is used to collect data from international 

vessels through states. The information shall be collated to build historical information 

for ships, and analysed and used to develop a baseline for ships and their 

corresponding CO2 emissions. More time is required to assess the efficacy of these 

measures and strategies. 

Looking forward, as the Fourth Industrial Revolution (4IR) approaches it comes with 

swift disruptive technology concepts, and the current gradual phase out of traditional 

operational methods, automatic data collection, communication and processing may 

aid the process. Some ship owners, companies and operators have already embraced 

the concepts of Internet of Things (IoT), Artificial Intelligence (AI), Blockchain 

Technology, and Big data to improve work processes and monitor fuel consumption. 

Some examples are: 
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1. The “Electric Blue’, a future ship concept produced by Rolls-Royce (Levander, 

2017) 

2. Cargo visibility from any part of the world used by Maersk 

3. The use of drones by operators to monitor emissions 

4. Denmark’s Explicit Marine  

5. The UK’s Martek Marine  

6. Class NK and Napa fleet intelligence (NAPA Green, 2019). 

Although these concepts rely on data collection, communication and processing 

techniques that utilize high computing resources, the benefits cannot be over-

emphasized. 

 

1.2. PROBLEM STATEMENT  

The entry into force in January 2013 of the EEDI and SEEMP created a platform for 

further research into energy efficiency measures in ship design and operations. The 

EEDI is a ship technical measure aimed at promoting the use of energy efficient 

equipment and engines for new ships. The SEEMP relies on the Energy Efficiency 

Operational Indicator (EEOI) that is supposed to be a monitoring tool used to manage 

ship and fleet energy efficiency performance. It was anticipated that after a period of 

implementation of the SEEMP, the indicator would give the operators a guide to where 

improvements would be introduced. 

A previous study by Smith, O'Keeffe, Aldous & Agnolucci (2013) identified low 

improvements and proposed a tri-solution approach. The authors highlighted that 

proper attention should be paid to the underlying physics that affect ship performance, 

uncertainty of input data sources and use of new and quality data sources (such as 

Automatic Identification System (AIS)). After the entry into force of SEEMP, Olmer, 

Comer, Roy, Mao, & Rutherford (2017) yet realised an increase in emissions.  

Ghaforian (2018) thus conducted a deeper root cause analysis of SEEMP 

ineffectiveness and identified 3 classes of barriers, management, economy and 

uncertainty of EEOI, and introduced a ship energy management self-assessment 

(SEMSA) using Energy Management System (EnMS) ISO 50001 approach as a 
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solution to improve the efficacy of the SEEMP rather than reliance on the EEOI. As 

part of the further barriers identified in Kitada & Ölçer (2016) and recommended 

solutions in Smith et al (2013) and Ghaforian (2018), the aspect of monitoring was a 

salient point because it provides deep insight into the definition of operational barriers 

and stimulates continual improvements, which could result in achieving the ambitious 

targets of the IMO and by extention the IPCC.  

In recent times, the advent of the fourth industrial revolution (4IR) in shipping has 

promoted the use of technologies for data collection, including IoT, sensors, cyber 

physical systems (CPS) and data analysis, such as big data analytics applications, to 

help monitor ships in operation and provide real-time decision support to offshore 

crew and also the stakeholders ashore. 

 

The complete autonomy in ship operations will demand much more complex data 

analysis and storage for real-time monitoring and decision making, which may be 

achieved with big data analytics, AI and adequate communication infrastructure.  

 

In current times, large data sets are generated, analysed and stored at data centers 

to guarantee 24/7 accessibility by offshore and onshore staff and stakeholders. DNV-

GL in conjunction with NAPA released a Software as a Service (SaaS) application to 

optimize ship operations with the of use digital twin information of ships and 

connection to a minimum of one data collection system on board a vessel. One 

method of ensuring uninterrupted provision of such services is to deploy the 

application on a reliable and resilient data center.  

 

In addition, the anticipated increase in seaborne trade and increase in modern vessel 

construction depict more demand for computing, storage, digitalization, connectivity 

and proper monitoring. Obviously, Shipping 4.0 business decisions may depend on 

data center availability amongst all other factors.  

 

In 2018, 1752 of 4458 colocation data centers in the world were located in the USA, 

representing about 39% of the total. In 2016 more than 90 billion kilowatt-hours were 

used yearly by U.S data centers, while global datacenters used 416 terawatt-hours 
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yearly, and it was projected to increase every four years. Contrary to the projections 

in 2016, a drop in emissions was recorded in 2017 and 2018 with a benchmark of 

2015 emissions. Currently, 2019 emissions are reported to have declined from 2016 

and are further predicted to drop in 2020 (International Energy Agency, 2019).  

 

As seen in Figures 1-4, data center emissions decreased but the data center 

workloads increased which is a function of Internet traffic. 

 

With recent developments in application of big data to improve ship operations and 

the gradual migration to full ship autonomy, it is obvious that computing workload 

related to ship operations will increase. This will require more storage and real-time 

processing. An early look at the volume of emissions caused by the use of big data 

and AI tools shall prevent the likelihood of these technologies becoming another 

indirect energy related cost due to indirect emissions as a result of using these tools. 

 

       
Figure 1: Data Center energy use in 2016  Figure 2: Data Center energy use in 2017 

  Source: International Energy Agency, 2019      Source: International Energy Agency, 2019 

    (https://www.iea.org/tcep/buildings/datacenters/)            (https://www.iea.org/tcep/buildings/data centers/) 
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          Figure 3: Data Center energy use in 2018           Figure 4:Data Center energy use in 2019 

          Source: International Energy Agency, 2019            Source: International Energy Agency, 2019 

   (https://www.iea.org/tcep/buildings/data centers/)      (https://www.iea.org/tcep/buildings/data centers/) 

                  

A Data center comprises of the cooling system, racks, power supply units, servers 

and other computing devices. The power usage effectiveness (PUE) is a preferred 

metric for rating a data center, it measures the data center infrastructure efficiency 

with respect to the electrical load of IT devices (WSP Environment & Energy LLC, 

Natural Resources Defence Council, 2012), however, the scope of this research is 

limited to the power consumed by the server component of a data center. 

 

This novel research identified various external and on board sources of big data 

required for ship operations. It also described the development process of a tool 

(emission calculator) to estimate the power consumption of the server and its 

corresponding CO2 emission used to aid ship operations of a test ship. Lastly two (2) 

major models were created, and their energy consumption and corresponding 

emissions for ship and server were analysed. It was proved that CO2 emissions 

generated from big data processing were considerably low and can be optimized. 
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1.3. RESEARCH AIM AND OBJECTIVES 

1.3.1. AIM 

The purpose of this study is to develop an estimation tool to assess the amount of 

CO2 emission contributed by the use of big data analytics for ship operations. This 

research is aimed to achieve the following objectives: 

1. Identify the sources of ship operational data used for big data analytics. 

2. Conduct a requirement elicitation for the development of the emission 

calculator. 

3. Design the emission calculator graphical user interface (GUI) using Netbeans 

IDE 8.0.2 and DataGrip 2019 2.3 database management system (DBMS). 

4. Use java programming language to develop main classes and connect forms 

to the database. 

5. Test and validate fuel consumption of a test ship against results from the 

TEFLES module (European Commission, 2017). 

6. Develop a model that can be used to show the energy consumed as a result 

of using big data (real-time) analytics applications to monitor ship operations. 

 

1.3.2. SIGNIFICANCE 

This research estimates the CO2 emission contributed indirectly by a server in a data 

center using real-time applications workloads for a single voyage. The emission 

calculator developed may be used to calculate energy consumption from the ship and 

the server and their corresponding CO2 emissions.  

A guideline, standard for acquisition or subscription for big data applications used in 

ship operations by ship owners may also be developed.  

The research results could be used to establish a clear case of CO2 emission rate that 

would be contributed by the use of big data in the 4IR. 
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1.3.3. RESEARCH QUESTIONS 

The following questions will be addressed by this research:  

a. What are the various sources of ship operational data that can be used for big 

data analytics?  

b. What is the structure of the model used to show energy consumption and CO2 

emission of a ship in operation relative to that of the server used to host the 

monitoring application? 

c. What is the quantity of CO2 emissions from servers that use big data analytical 

application for ship operations for a voyage?  

d. What processes are required to create an emission calculator for the 

measurement of CO2 emissions derived by the use of big data applications? 

e. When a fleet is part of the constituent of the model, how much CO2 emission 

is generated? 

f. Is the quantity of CO2 emission resulting from big data analytics application 

commensurate to the value provided and how does this affect the global target 

of emission reduction? 

g. How can we efficiently reduce the server CO2 emissions caused by ship 

operation in view of Shipping 4.0? 

 

1.4. RESEARCH METHODOLOGY 

The mixed research method was used, which is a combination of qualitative and 

quantitative research techniques, methods and approaches. (Johnson & 

Onwuegbuzie, 2004). An overview of how the mixed method is applied in data 

collection and processing is depicted in Figure 5, and a detailed explanation is 

provided in the sub sections that follow. 
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Figure 5: Research Methodology Process 

 

1.4.1.1. DATA - QUALITATIVE RESEARCH 

Literature review method was used to determine if any work regarding the subject 

matter had been conducted. It was found that various studies had focused on the 

benefits of big data processing and identified several challenges, especially cyber 

security. Data center and server energy efficiency was addressed by a limited number 

of sources but none directly applied to ship operations. 
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The scope definition of this research was streamlined to ship operations and data 

center power consumption. Further research revealed that data centers were 

comprised of several significant energy uses (SEU), such as the cooling system, 

server and rack amongst others. The server was selected as a major component 

because it is the major device that handles storage and processing of collected data.  

The benefits big data application and current trends show that data would be the next 

most important resource in future. Thus the usefulness of large datasets stored on the 

server cannot be quantified, as it could be applied to various scenarios and used in 

many dimensions. Moreover, it was important to identify other factors, such as the 

power user effectiveness (PUE1) and the location of the data center. The location of 

the data center determines the carbon factor and carbon intensity, which greatly 

influences the quantity of CO2 emissions. In summary, the following were determined: 

i) The sources of data for ship operation 

ii) Factors that determine the fuel consumption of a ship in different operating 

modes 

iii) Factors that determine the CO2 emission of a server in a data center,  

iv) Computing workload on servers 

v) The requirements for the development of the CO2 Emission calculator 

vi) Appropriate component for the model design  

Studies were reviewed, summarized and a combined corpus of research on ship 

energy optimization, the use of IoT, big data analysis, server power optimization and 

data center efficiency was completed. 

 

1.4.1.2. DATA COLLECTION – MIXED RESEARCH 

Literature review method was also used to collect quantitative data. More insights 

about the European Union (EU) sponsored project, Technologies and Scenarios for 

low Emission Shipping (TEFLES) were gained. The EU had a target to cut down 60% 

                                                       
1 PUE an energy efficiency metric, it measures data center efficiency relative to the 
electrical load of its IT equipment. The ideal PUE is 1.0 
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of its carbon emissions by 2050, and thus sponsored TEFLES project. It was focused 

on ensuring that Short Sea Shipping (SSS) would be more environmentally 

competitive. In the project, various scenarios at sea, in coastal areas and ports were 

captured. Several after-treatment, hydrodynamic and power-generation technologies 

for emission reduction in ships were also captured and analysed. The TEFLES project 

file was used because all workable scenarios for the performance of engines of 20 

ships were already available. This data was used for analysis and development of the 

ship fuel consumption in the CO2 emission calculator. 

 

To determine the formula for the server, a literature review was conducted to 

understand the significant variables in server power calculation and determine what 

sources were available. Two server formulae - Itanium and Blade servers were 

extracted. For a more recent estimate, further research was conducted for data to 

derive a formula for a more recent server. Data was extracted from an online power 

supply calculator and used to derive a formula for an Intel Core i9 server. The 

workloads on servers when using different application types were also derived. In 

summary, as seen in Figure 5, the qualitative research method was used to collect 

quantitative data.  The outcomes of the process are listed below: 
 

i) Collection of 20 ship static data and engine information 

ii) Distance of 4 Motorways of the sea (MoS)  

iii) Power formulae for 2 server types 

iv) Derived formulae for Intel Core i9 server 

v) Appropriate component for the model design  

vi) CPU utilization rates based on workload and application types 

vii) Carbon factor and intensity based on location 

 

1.4.1.3. DATA ANALYSIS – QUANTITATIVE 
 
The Emission calculator was developed using Netbeans IDE 8.0.2, DataGrip 2019 

2.3 tools and java programming language. Tests were carried out to validate the 

results from the CO2 emission calculator. The workloads and equivalent central 

processing unit (CPU) utilization rates were used to create and implement two (2) 



 
 
 
 

  23 

models. Each model consists of 2 major components, the ship and the server. 

Quantitative data was derived after analysis and presented. 

 

1.5. DISSERTATION OUTLINE 

The dissertation comprises 6 sections as displayed in Figure 6. 

As seen in Figure 6, Chapter 2 introduces the underlying concepts of 4IR and the 

relevance of big data analytics to ship operations. This is followed by a review of 

articles related to the 4IR concept and its application to ship operations. The shortfalls 

are highlighted to identify gaps. Chapter 3 describes the methodology used to develop 

Models for measurement of CO2 emissions of a ship and server in a voyage. In 

Chapter 4, the software development of the emission calculator is discussed, and 

Chapter 5 evaluated the two model scenarios and also the discussed the results 

achieved when a different grid carbon factor is applied. The research conclusions, 

limitations and relevant work to be done are discussed in Chapter 6. 
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Figure 6: Summary of dissertation Flow 
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CHAPTERS 2: THEORETICAL FRAMEWORK 
 

2.1. THE FOURTH INDUSTRIAL REVOLUTION CONCEPTS 

AND SHIPPING 4.0 

The discussion below deals with the underlying concepts of the fourth industrial 

revolution, and a summary of the research conducted in-line with the subject matter 

is provided. 

 

Technology played a major role in the transition from agrarian to industrialized society, 

which is known as the Industrial Revolution. The term first came in the lexicon in 1799 

(Nardinelli, n.d.) and is generally known to have taken place between 1770 and the 

mid-1870s.The resulting technological change enabled humans to harness 

mechanical and electrical forces in their endeavours (Skilton & Hovespian, 2018).  

 

Before mechanization, humans used their hands and animals to build, work, and 

travel - sails were used for ship transport. The successful steam engine, invented by 

James Watt, was used for powering manufacturing, production and agricultural 

machinery.  In 1886, steam engines were capable of producing 10,000 horsepower 

and were used in large scale ocean steam ships. This was the first industrial 

revolution. By the end of the 19th century came the 2nd industrial revolution which saw 

industrial scale electrification and electric motors, the use of petrochemical 

combustion engines, mass production and globalization to meet with the increasing 

population. In the 20th century came the world war that lead to change in global power, 

the beginning of nuclear power and electronics, information systems, automation of 

manufacturing and production, telecommunication, new insights in biology, 

miniaturization, transportation, media and engineering and consumerization. The 

drivers were the Asian markets particularly China and India due to geopolitics, 
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proximity of labour force, natural resources and colonisation (Skilton & Hovespian, 

2018). This was termed the third industrial revolution, which in summary was a digital 

revolution characterized by the move from analogue mechanical technology to 

digitization. As for shipping, is it characterized by satellite guided navigation and digital 

transportation of information (Skilton & Hovespian, 2018). 

 

The 4IR, often termed cyber-physical system, is based on interconnections between 

the physical, digital and biological sphere. It is characterised by extreme automation, 

connectivity of cyber physical systems driven by Artificial Intelligence (AI), Machine 

learning, and robotics. This technological breakthrough covers a wide range of fields 

such as 3D printing, nanotechnology, biotechnology, quantum computing, the Internet 

of things (IoT), and energy storage to mention a few (Schwab, 2017). 

 

According to Lehmacher (2017), the 4IR is expected to bring networks of autonomous 

vehicles. One obvious factor to be considered for the successful transition to 

autonomy is the increasing need for energy. The first revolution reduced the use of 

human labour and directed the use of energy through mechanization to do more work. 

The same happened with the 2nd and 3rd revolutions, all in the bid to improve 

efficiency. The 4th industrial revolution, as it moves to autonomy, must be mindful of 

trade-offs. The use of cyber physical systems, artificial intelligence, and internet of 

things also require more energy, which will also lead to an increase in GHG emissions 

if not properly managed. The International Energy Agency (IEA) is already aware of 

the growing need for energy, thus they invest in research to discover sustainable fuels 

like hydrogen, biomass, geo-thermal, wind, solar energy and the like as the current 

energy reserves decline. Some important challenges such as storage, transport of 

fuel and the quantity available for sustenance are salient and require more time for 

solutions to be developed. For the immediate the best strategy is to generally improve 

energy efficiency and energy management. 

 

The Energy Management Standards ISO 50001, which follows the PDCA (Plan-Do-

Check-Act) cycle, emphasizes the importance of monitoring as one of its critical 

success factors. To monitor energy consumption, it is required to first identify 

significant energy uses (SEUs), and identify the baseline consumption pattern and 
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related variables that can affect the identified baseline. Then areas for energy 

efficiency can be clearly seen and methods for implementation derived. After 

implementation, the need for monitoring is still sacrosanct to detect faults, understand 

the equipment / facility, verify if methods implemented produce the required results, 

and aid in making decisions (Standard ISO 50001:2011). The importance of 

monitoring cannot be over emphasized as it aids process improvements and creates 

visibility for the stakeholders and top management.  

 

As for the shipping sector, EnMS ISO 50001 can also be applied to reduce energy 

consumption of ships in operation as illustrated in Ghaforian (2018); and to achieve 

shore visibility in near real-time, the use of some technology concepts is inevitable. 

AI, machine learning and robotics enabled by cyber physical systems characterize the 

4th IR. Some of the 4IR terms as relates to shipping are briefly discussed below. 

 
2.1.1. CYBER PHYSICAL SYSTEM 

Cyber-Physical System (CPS) basically involve the integration of computation and 

physical processes. It utilizes embedded computers and networks to monitor and 

control the physical processes, and then provides feedback for computation where 

physical processes affect computation and vice versa (Lee, 2006 &Neuman 2009). It 

may have the capability to constantly store data at a high velocity and transmit data 

to other systems. An example is the AIS transponder, which is used to collect, store 

and transmit data. Such data can be used to provide insights to detect waste and 

faults, improve management of resources, develop policies, and develop new areas 

of research to mention a few.  

 

2.1.2. BIG DATA 

Data is classified as big data when it possesses features such as high volume, variety, 

velocity, value, veracity, variability, viscosity, and virality (Wu, Guo, Li, & Zeng, 2016). 

In a literature, Kazumazu (2016) stated that the success of the 4th industrial age is 

data dependent, which is evident in the shipping industry.  Currently, electronic data 
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is gathered by disparate systems installed by the ship owner to monitor cargo, 

operation, safety and performance. These data grow over time and are currently used 

to analyse, learn and predict systems and processes. Traditionally, Classification 

Societies have been the custodians of the vast amount of ship data and are crucial 

for successful transition to smart shipping due to the volume of data available.  

An example is the ABS vessel performance service, it has data monitoring and 

collection capabilities and is supported by ABS nautical systems voyage performance 

software. It organizes the data into standard reports that can be acted upon without 

delay. The ABS system collects data variables such as speed, power, fuel 

consumption, voyage information, weather conditions, fuel switching, and wastewater 

handling. These data are collected and used to generate reports for statutory 

verification (Jan de Kat. ABS, 2017). 

 

Koga (2015) focused on the Voyage Data Recorder (VDR), one of the sources of data 

on board vessels. He reviewed several definitions of big data, its features, scenarios 

for its application in maritime, the challenges to develop maritime big data, and 

proffered solutions. The application of big data analytics in shipping provides a 

platform for collaboration with ports, agents, regulators and ship operators. Big data 

analytics can be used to make decisions regarding vessel maintenance based on 

performance, such as use of fuel consumption data for cost-benefit analysis of vessel 

maintenance, including hull cleaning.   

 

Ship big data are generated from sensors, CPS, IoT and other available ship data 

sources. Big data acquisition onboard ships consume relatively little energy for data 

collection and data transmission (Baldi, Johnson, Gabrielii, & Andersson , 2015). 

However, the conventional database applications software cannot properly handle the 

storage of various kinds of big data, thus, advanced technology storage was designed 

to handle big data.  Its repository is most often located offshore at a data center which 

consumes more energy in relation to ship big data acquisition. 

 

As more ships seek better monitoring and gradually migrate to autonomy, it is 

anticipated that ship big data analytics will face the challenges of large-scale data 
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analytics. Although parallel framework and architectures are most appropriate to 

process big data, these processes give rise to more consumption of energy and other 

resources. The growth rate of IoT, data, computationally intensive big data analytics 

and processing may increase energy consumption, thereby increasing GHG 

emissions. 

 

2.1.3. BATCH PROCESSING 

 

This is one of the techniques used for processing historical data. It is used for 

scenarios that are not time-critical such as training procedure for most machine 

learning algorithms. This form of processing is necessary for widely shared resources 

and is very efficient due to the offline processing mode and flexibility in processing 

time. The batch size can affect the efficacy thus it is necessary to know the maximum 

processing limit of a batch processor. Vouros, et al.(2018) 

 

2.1.4. ARTIFICIAL INTELLIGENCE 

 

Artificial intelligence (AI), refers to computational tools that utilize data generated from 

physical work processes for the purpose of efficiently performing such tasks either in 

similar conditions or newly learned conditions. It uses big data captured by CPS or 

other means to analyse relationships between variables, learn patterns / build models 

and predict situations – in essence automate tasks. The training process is known as 

machine learning, which is discussed below. 

 

2.1.4.1. MACHINE LEARNING  

This concept is associated with Intelligent systems / Agents, which exhibit the ability 

to adapt or learn from experience and respond to their environment, thus elevating 

the agent to a higher level of ability (Skilton & Hovespian, 2018).  

 

Machine learning tasks are of two kinds: classification and regression. Classification 

basically categorizes data into sets that have a family resemblance, while regression 



 
 
 
 

  30 

aids that system to make a prediction based on extrapolated data trends. Machine 

learning has the potential to solve categories of learning problems such as 

classification, clustering, regression, and optimization. Various types of machine 

learning exist, namely supervised learning, unsupervised, model-based, memory 

based, deep and reinforcement learning. The machine learning lifecycle comprises of 

these iterative processes: 

1. Goal definition, identification of problem type 

2. Data collection and training  

3. Create/design the model, evaluate and optimize the model  

4. Check if the model can make a valid prediction and its performance with new 

data 

Machine learning algorithms are based on single layer perception (clustering, decision 

trees, dimensionality reduction, kernel approaches, Bayesian, regression analysis 

and deep learning) and multilayer perception (Neural network) (Skilton & Hovespian, 

2018) can be applied in this research depending on the varying factors that determine 

the energy consumption of ships. 

 

2.1.5. SATELITE COMMUNICATION SYSTEM 

In the 1800s, transatlantic cables were installed for the capability of the ship to shore 

communication, which was limited to voice, telex and morse (DNV GL, 2015). In the 

1990s, satellite communication was introduced to support the Global Maritime 

Distress Safety System (GMDSS) for digital communication. However, mid-2012 the 

capacity of the transatlantic system was 49.5 Terabytes per second (Tbps). As a result 

of improvement of communication methods with the use of sensors and data 

analytics, we now have connected vessels. Ship connectivity creates a platform for 

data to be collected and retransmitted. The drivers of these developments were 

distress and safety, navigational aids and reporting, operational applications, welfare, 

and entertainment. 
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2.1.5.1. INTERNET OF THINGS (IoT) 

Internet of Things refers to connection between the digital and physical world. 

According to Ray (2018), it is a collection of numerous active physical things, 

actuators, sensors, cloud services, specific IoT protocol, communication layers, users, 

developers and enterprise layer.  

 

The IoT system requires a communication protocol for data exchange amongst 

devices. An IoT should have dynamic and self-adapting capability, and ability to self-

configure, support interoperable communication protocols, possess a unique identifier 

such as Internet protocol (IP) address or Uniform resource Locator (URL), be context 

aware, make intelligent decisions and be able to integrate into information frameworks 

(Sebastian & Ray, 2015). Two examples of IoT devices in shipping are, the Kiber 

helmet, which is used to support engineers offshore and drones used for sniffing CO2 

emissions 

 

2.1.5.2. CYBER SECURITY 

When data is made available over a network and is strongly relied upon for feedback 

and decision making, there is a need for security to avoid cyber criminals such as war 

divers and Distributed Denial of Service (DDoS) to mention a few. In 2017, 33% of 

businesses were reportedly affected by DDoS. Moreover, a Danish Shipping survey 

discovered that 69% of Shipping companies experienced cyber-attacks in 2017. 

Several cases were reported, such as the IRISL (Islamic Republic of Iranian Shipping 

Lines) 2011, Saudi Aramco Oil and gas Operator in 2012 and Danish Maritime 

Authority, 2012 (Miranda, 2018). This indicates the importance of protecting data to 

avoid manipulation and loss. The IMO has already taken action. In the 94th session 

of the MSC meeting, on agenda 4 in 2014, Canada and USA co-presented a proposal 

to be adopted by the committee: Measures towards enhancing maritime cyber 

security. In this document, the committee was requested to develop voluntary IMO 

cyber security guidelines. In 2015, co-sponsors BIMCO, ICS, INTERTANKO and 

INTERCARGO also proposed that the committee develop industry guidelines on 

cyber security on board ships at the 95th session of the MSC meeting in 2015. At the 
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98th session the guidelines were approved and will enter into force on January 2021 

(IMO, 2017)  

 

2.2. LITERATURE REVIEW 

Several studies have been conducted to demonstrate the use of big data in the 

optimization of energy consumption during ship operations and, conversely, measure 

its indirect contribution to GHG. 

 

Koga (2015) reviewed DNV-GL, LRF and e-Navigation interpretation of big data, and 

identified and categorized four (4) major challenges, Sound competitive conditions, 

Technology, Human Resources and Security, for which he proffered solutions. Also 

Rødseth, Perera, & Prasad (2017) identified  seven (7) sources of big data for ships, 

discussed eleven (11) problem areas, categorized the data sources and related 

problem areas and proferred solutions to some.  The authors further discused three 

(3) axes of management of ship data on and off shore, and the use of principal 

component analysis (PCA) for  data compression (volume and storage axes). On the 

data quality axes, outlier detection, understanding sensor systems, and statistical and 

trending methods were used to check for quality.The third axes, data analytics dealt 

with the transformation of data to information with the use of existing models / 

hypothesis and use of statistical techniques to determine relationships between 

parameters, and machine learning techniques for classification and regression 

analysis. 

 

Gonzalez, Lund, & Hagestuen (2018) also did not use data from noon reports due to 

the level of accuracy, rather data was sourced from a ship performance management 

(SPM) application collected via various flow meters, which captured data at a high 

frequency of 15 seconds (in-line with ISO 19030) and averaged every 15 minutes. 

Relevant parametric analysis was conducted and used to determine ship operational 

performance. Two LNG sister ships with dual fuel engine were used as a case study 

to determine which was more time efficient and energy based on the analysis of high 
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frequency data collected. Excerpts from the analysis shall inform the ship operator of 

which ship is more energy efficient.  

 

Aldous (2016) considered various performance optimization models, including real-

time optimization and developed an uncertainty framework for ship performance. 

Relative uncertainty of noon reports and continuous monitoring based methods were 

compared, and performance models were tested. Data to understand the generalities 

of ship performance were analysed and a hybrid model for monitoring ship operational 

performance was developed. This was used to quantify the total uncertainty of the 

ship performance indicator and was validated with datasets from continuous 

monitoring and noon reports. In the report, speed sensor and sample size parameters 

were shown to improve precision and speed sensor trueness whilst sample averaging 

frequency parameters reduce precision, and finally showed that with continuous 

monitoring the uncertainty achieved was tenfold better than the use of noon report in 

combination with other data acquisition parameters. 

 

Perera & Mo (2016), focusing on data management, proposed the compression of big 

data identified by machine learning, the data classification (with the use of Gaussian 

mixture model -GMMs) of a marine engine during operation and the implementation 

with an algorithm called Expectation maximization (EM). This compressed data was 

transmitted to shore and expanded with the use of auto-encoder (deep learning a 

machine intelligence technique). Then an integrity test was conducted on the ship-

expanded data and concluded with a data regression process in which expanded data 

points were used to estimate the needed parameters for navigational and ship 

performance information. Information derived from this process could aid decision 

making as relates to energy efficiency in ships. Similarly, Chaal (2018) carried out a 

study using a VLCC case ship, where machine learning tools and black box method 

were used to develop ship operational predictive models and optimization with genetic 

algorithm. Four (4) models were compared: Decision tree, AdaBoosted decision tree, 

K- Nearest Neighbor and Artificial Neural Network, and the ANN model produced the 

best result. The project demonstrated the optimization of ship voyage by minimizing 

fuel consumption. 
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Vouros, et al.(2018) proposed datAcron system architecture for real–time big data 

analysis incorporating aviation and marine transport data, which computes statistical 

data like speed and/or acceleration. All data sources were represented in a knowledge 

graph. Real-time prediction of data manager, trajectory detection and visual analytics 

were also included. The use of Patern Markov chain was suggested for streaming 

data, and machine learning for archived data to build prediction models. DatAcron 

used Apache Flink for processing stream components, Apache Spark for batch 

processing and Apache Kafka for communication in real-time. However, the focus was 

on trajectory for Air Traffic Management (ATM), while Mirović, Miličević, & Obradović 

(2017), discussed improvements achieved with big data application for road 

transportation. 

 

Kurashiki (2016), top classification society, ClassNK in conjunction with NAPA Green, 

CMAXS LC-A. and ShipDC developed  big data smart tools with a 3 step approach; 

maintenance assist, operation assist and IT platforms. These tools can use data from 

ECDIS, VDR, engine data logger, ballast control system to optimize trim, monitor 

performance, engine performance, and remote maintenance in real-time and 

feedback transmitted to ship yard, engine manufacturer, ship equipment manufacturer 

and other related stakeholder.  However an energy life cycle analysis (LCA) was not 

carried out as this would deomnstrate if techniques used to develop these solutions 

are  equally energy efficient. 

 

Amini, Gerostathopoulos, & Prehofer (2017) proposed a comprehensive architecture 

to analyze big data for real-time traffic control - Intelligent Transport System (ITS). 

The architecture deployed batch analytics processing and stream analytics for  

historiscal and live data, respectively. Tools like Hadoop Distributed File System 

(HDFS) and Cassandra were selected for batch processing while Kafka, Flink and 

Spark were used for stream processing.  

 

Ahmed (2014) utilized Apache Flux to collect live data, apache sqoop to transfer data 

to Hadoop for batch pre-processing. Data was then processed with Apache Hive, 

Apache Pig and Cloudera Impala. Also Apache Mahout and Cloudera Oryx was used 
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to mine data; R was used for statistical analysis and to determine energy efficiency. 

However, this was applied for buildings not ships. 

 

Perera (2017) proposed a data handling framework rather than the conventional 

mathemathical model to overcome some big data challenges. It was supported by top 

down and bottom up approaches of the e-navigation framework (with AIS) and 

integrated bridge system (with navigation and ship operation performance data), 

respectively. The framework had 2 parts, data pre-processing and post- processing. 

The earlier consists of  on-board application supported by a data model. In real-time  

the model should handle sets of big data in a flexible manner and it exists in a three 

dimension vector space. The result could be used for energy efficiency and applied 

to system reliability in the visualization layer.  

 

Wang, Yan, Yuan & Li (2016) used Wavelet Neural Network (WNN) to predict the 

working navigation condition and real-time optimization method of ship energy 

efficiency (EE), through the use of established ship EE optimization model. Wavelet 

analysis is based on mathematical theory and WNN, characterized by self learning  

and fault-tolerant of nueral network. Its challenges cannot be ignored such as complex 

construction and dimension disaster. 

 

Kai Wang et al (2016) illustrated that in an ideal situation, once the real-time engine 

speed is derived, a reduction of the fuel consumption per unit distance by 19.04% and 

lowering engine speed can improve energy efficiency. Additionally, short distance 

ahead of ship related to navigation environment factors was predicted with the 

Wavelet Neural Network (WNN) method and best speed for optimal energy efficiency 

was derived, thus real-time optimization under different navigational environmental 

factors was achieved. 

Noting the role of big data acquisition, Gonzalez, (2017), Kyma vessel performance 

analyst examined the role of the VDR in the analysis of ship performance. The VDR 

is a piece of equipment installed on most ships since 2002 (SOLAS 1974); it records 

data during a voyage. It is used for data analysis when an accident occurs. Some 

VDRs interfaces with many ship sensors that are used to collect data for ship 
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performance analysis.  

Rødseth, Perera, & Prasad (2016) highlighted one of the major characteristics of 

Shipping 4.0, which is cyber physical system (CPS) and big data. Various data 

sources that generate ship big data were identified, such as bridge data network, 

conventional automation, CPS, ship performance monitoring, ship reporting, external 

ship monitoring system, weather data and port call. It also reviewed several issues in 

collection of ship data, such as context dependent data quality, safety and security, 

data entry errors, measurement of complex external phenomena, wilful errors in report 

for commercial reasons, data integrity, proprietary and costly interfaces to data, 

ownership of special or derived data, lack of interface standards, artefacts in AIS base 

stations, satellite reception and cyber security issues. Some solutions proffered were 

volume and storage management, ship-shore communication, improvement in data 

quality, use of big data for data analytics to achieve online ship decision support, ship 

performance optimization, fleet optimization, and predictive analysis to mention a few.  

 

Discussions around big data challenges and solutions mentioned above excluded one 

view point; “quantity of emissions passed to data center by storage and 

processing of big data for ship operations”. 

 

While Ship operators strive to reduce fuel consumption due to the cost of doing 

business and thus utilize big data to achieve this, the Computing community also 

shares a common challenge. Economou, Rivoire, Kozyrakis, & Ranganathan (2006) 

carried out an investigation to quantitatively understand the power consumption trend 

at a system level. They used the Mantis method, which is a full system power 

modelling technique to derive a formula for an AMD Turion blade server and an intel 

Itanium 2 server. The Mantis power model was applied and the model prediction 

accuracy ranged from 0 -15% for both servers. Their aim was to use this infromation 

to accurately predict the consumption of a server. 

 

Similarly, Fan, Weber, & Barroso (2007) discussed data center cost, which was not 

related to the amount of energy used but rather to the amount of peak power 

consumed. Thus, the need for efficient utilization for the peak power was identified. It 
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was observed that between the actual and theoretical aggregate peak power usage, 

a gap  of 7-16% was identified  at the cluster level and  grew to almost 40% at the 

datacenter level. With the identified gap, two power savings approaches were 

presented, CPU voltage/frequency scaling (DVS) and improving non-peak power 

efficiency. The CPU DVS analysis showed that with a websearch workload the DVS 

produced a larger reduction relative to total power when compared to webmail and 

mapReduce workloads. The second method showed that the idle power consumption 

of servers can be reduced, thus the idle power of the servers was set at 10%. With 

this the maxiumum cluster peak power was reduced to 6-20% and corresponding 

energy savings ranged from 35% to 40%.  

 

However, Zhu, Zhu, & Agrawal (2012) stated that a 300W high end server consumes 

2628kWh yearly plus additional 748kWh for cooling and emphasized the amount of 

emissions this would cause. Then an approach for energy optimization in a virtualized 

system was presented. The pSciMapper, a power-aware consolidation framework 

which consolidates workflow tasks in a virtualized envirionment, was evaluated and 

results showed that 56% of the total consumed power is saved with a 10-15% 

performance slack. 

 

WSP Environment & Energy LLC & Natural Resources Defence Council (2012) finally 

presented an energy management analysis that higlighted application of five (5) 

criteria that influenced the quantity of emissions from servers: Effectve utilization of 

server, server refesh rate, virtualization, power usage effectiveness (PUE) and carbon 

factor. The application of a combination of these criteria was demonstrated to provide 

a 95% decrease in emissions. 

 

2.3. CHAPTER SUMMARY 

Intensives studies ranging the sources of ship big data, techniques and architectural 

framework for processing them were reviewed. One of the most important challenges 

experienced from storing and processing such datasets - energy consumption, was 

identified. However, none of the studies conducted highlighted various industries’ 

contributions and what measures could be taken from that standpoint to reduce 
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emissions. Energy management attempts at the system and data center level were 

studied. Thus, the need to quantify GHG emissions as a result of using big data 

analytics applications in ship operation is imperative, especially as we approach 

Shipping 4.0. 
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CHAPTER 3: SHIP- SERVER POWER / EMISSION 

MODEL METHODOLOGY 

3.1. SYSTEM ANALYSIS AND METHODOLOGY  

The previous chapter highlighted major concepts of the fourth industrial revolution and 

identified gaps through an intensive literature review. In this chapter, the energy 

consumption model and emission model are presented along with a discussion on 

how these models were derived. The Server workload for a ship using a real-time 

application is understudied and analysed. The output of the analysis is used to 

develop the power / emission model and scenarios described. 

 

3.2. REQUIREMENTS ELICITATION 

The first step was to understand the data acquisition system during ship operation. 

Data acquisition comprises of ship data generation, acquisition and communication. 

Data from different systems on board a ship are collected in diverse formats, 

structured, semi-structured and unstructured format. Ships have various means and 

sources of generating data, from manually completed reports, such as noon reports, 

to large sensor networks (includes wireless sensor network), IoT on board the vessels 

and even CPS. Some examples are VDR, Marine Cyber Physical Systems such as 

dynamic positioning, vessel management, and propulsion management, AIS, IBS 

Integrated Bridge System (IBS), ECDIS, flow meters and others. 

 According to Raptodimos, Iraklis, Gerasimos, Takis, & Leonidas (2016),main sources 

of big data are enterprise data, data such as vessel traffic information, weather, the 

greater percentage of which are not generated from the ship but important for the ship 



 
 
 
 

  40 

operations voyage. The energy consumption of data generation and communication 

devices on board ships is accounted for in the vessels’ fuel consumption. 

 

Noting that the various sources of data for optimizing ship operations during a voyage 

affect the workload performance on the server, a brief overview of various data 

sources was conducted to identify the data type and need. 

For the project, more insight on the data sources helped to determine what kind of 

application workload on the server would be deployed. 

 

The total energy consumed would be the addition of the energy used by IoT, CPS, 

and sensors to generate data, energy used for transmitting data collected and the 

energy used to store, process and manage collected data. 

  

Some ship data sources were identified and are discussed below. 

 

3.2.1. MARINE ANEMOMETER 

The anemometer is used to measure wind speed; the accuracy of measurement 

depends on the ship hull and superstructure. Its error rate of about 10% depends on 

the position of the anemometer (Moat, Yelland, Molland, & Pascal, 2005). 

Suggested positions are above the platform, above the deck – on foremast in the bow 

of the ship, at a distance over three times the mast diameter from cylindrical masts, 

but ideally above the front edge of the bridge. Wind speed is measured in meters per 

second (m/s) thus large data sets are generated within 1 hour. 

 

3.2.2. INCLINOMETER 

The electronic inclinometer used on a ship measures pitch angle, heel angle, roll 

period, and amplitude (port and starboard). It should be in-line with IMO performance 

standard MSC.363 (92) and functional compliance, additional BSH type approved by 

IEC 60945 (Environmental condition). The inclinometer must be powered from the 

ships main power source. The possibility to operate it from the ship’s emergency 

electrical source should be there as well as the possibility to integrate with other 
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systems, such as the VDR.  The electronic inclinator sensors should be accessible by 

the VDR and provide data at the rate of 5Hz.  The data accuracy rate should be, for 

angle measurement, 5% of reading or ± 1 degree or whichever is larger, and for time 

measurement, 5 per cent reading or ± 1s or whichever is larger. And it may also 

provide a warning that a set heel angle has been exceeded. It should have a digital 

interface, roll period and roll amplitude. (IMO, 2013). 

 

3.2.3. VOYAGE DATA RECORDER 

The VDR was designed originally for safety but in recent times it has been applied to 

improve ship operation performance. It records information continuously and in 

various formats. It keeps track of the vessel position, movement, physical status, date 

and time, speed and heading, command and control of ship over a period, bridge 

audio, ECDIS, echo sounder, main alarms, rudder order and response, hull (doors) 

opening status, speed and acceleration, hull stress, and wind speed and direction.  

The VDR has a DCU that pulls all the integrated sources; it is made up of a data 

processing unit, interface modules and backup batteries. According to IMO MSC.333 

(90), the VDR should be powered directly by the ship’s main power, emergency power 

and from a reserved power source capable of 2 hour storage when electrical power 

fails. In this case, bridge audio shall record for a period of 2 hours, after which all 

recoding should automatically stop. The storage should have data items for at least 

30 days / 720 hours on long-term storage and 48hrs on the fixed and float-free 

recording media else data may be overwritten. VDR which is akin to a “Black Box” on 

airplanes – stores position, movement, physical status, command and control of a 

ship over the period (IMO, 2002). 

 

3.2.4. RADAR 

Radar has been used for S-band and X- band frequency to navigate and is a very 

important component. It is mainly used for safety, but not within the scope of this 

dissertation. There are different applications of radars for vessel traffic management. 
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3.2.5. ECDIS 

Electronic Chart Display and Information System uses AIS data, echo sounder, radar, 

and electronic charts – computer based navigation chart that is IMO compliant, it is 

used for  continuous position and navigation safety information (IMO, 1995). 

 
3.2.6. FUEL FLOWMETER 

There are many types of fuel flow meters, which are classified based on the type of 

fuel, presence and output type, system of transmitting data, indicator availability and 

others. Some examples are Coriolis, thermal and magnetic induction devices 

(Korobiichuk, et al., 2015). It is used to determine fuel consumption, the fuel flowing 

into the engine is heated, then the distribution of temperature field created by the 

heater is measured. The changes of temperature field with engine fuel flow are 

determined by the definite functional dependence on fuel consumption value.  

 

3.2.7. SENSORS 

Data quality is the major issue with use of sensors for data acquisition on board 

vessels, but as highlighted in Aldous (2016), provided the sensor rate of data 

collection is high and continuous when compared to manual method of data collection, 

it definitely has more data quality. 

 

Other data sources from a ship include engine data logger, echo sounder, speed log, 

exhaust gas analysers, VHF and ballast sensors.  

Noting that there are several thousands of sensors on a ship and several data 

collection points, the scope will be limited to data sources related to energy efficiency 

during operation of a ship. 
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3.2.8. AUTOMATIC IDENTIFICATION SYSTEM 

The AIS was initially designed for exchange of navigational information between AIS- 

equipped terminals.  It has been mandatory since 2004 for all passenger vessels and 

all commercial vessel over 299 gross tonnage (GT) engaged in international shipping 

to carry a class A AIS transponder, while smaller vessels can have Class B AIS 

transponders. Ships equipped with AIS transponders can transmit ship data to the 

AIS-receiving stations (MarineTraffic network) and share it with the MarineTraffic 

database. The data are transmitted in packets.  The formats of the packets are in 

NMEA sentences (64-bit plain text) that would have to be decoded to be understood. 

The MarineTraffic database receives and process data and stores the most important 

data including geographic data. It has a Global Positioning System (GPS) that 

receives vessel position and movements. Dynamic and static information is 

broadcasted at regular intervals automatically via a VHF transmitter with two channels 

161.975Mhz and 162.025Mhz – 87 and 88 old VHF channels. 

 

AIS data are grouped in 3 sections: 

 Dynamic information: This is subject to vessel position, speed, current course 

and rate of turn 

 Static information: Vessel name, IMO number, MMSI number, dimension 

 Voyage-specific information: vessel destination, ETA and draught. 

 

After data is received form an AIS, it is processed and depicted on a chart plotter or 

on computers. It can be received by another AIS or by satellite Sat – AIS. Against the 

backdrop of specifically using AIS information for navigation, it is used for diverse 

aspects including ship monitoring and operation performance. 

 

3.2.9. EXTERNAL DATA SOURCE 

3.2.9.1. DIGITAL TWIN 

The digital twin of a ship is a virtual copy of the physical ship, which shows all sensor 

networks and data sources. It gives information about engine performance and hull 

integrity, the use of a virtual model during operation that allows visualization of all 
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important components, carry out analysis and improve the ships structural and 

functional components. With this concept, the operator can create visual models of 

the ship and systems, such as the engine, and record fuel consumption distributed to 

energy use, such as boilers, engine, and batteries.  

 

A brief overview of the AIS dynamic data gave more insight into ship operations in 

conjunction with the digital twin data, weather and vessel traffic information. These 

are used to monitor ships in operation by DNV-GL /NAPA and We4Sea. The services 

offered require less installation on physical ships, requiring only a subscription; this is 

called Software as a Service (SaaS). One obvious need for effective provision of such 

a service is constant connectivity to the Internet; this would require a server located 

in a data center. 

 

3.2.10. DATA STORAGE / DATA CENTER 

After a review of the requirements for data acquisition and communication, it was 

identified that the ship accounts for power consumption during these processes. 

However, for data storage and processing, the shipping company’s in-house server is 

used for such applications, which is then captured in their energy map. While 

companies that subscribe to a software as a service (SaaS) provider or host their 

servers at a data center, the energy consumed is accounted for by the CIO of the data 

center. However, noting the urgency to reduce GHG in all dimensions, the shipping 

sector should be aware of the kind of service they subscribe to and ensure that energy 

is optimized. 

 

Figure 7 shows that total power utilized for big data analytics is comprised of energy 

consumed for data acquisition, transmission, processing and management. However, 

more focus would be on data processing and management. In data management, 

data is collected from various sources, formats and sizes, transformed to a structured 

collection and processed with the use of software applications. Data processing 

includes real time processing and batch processing jobs, which would be done on a 
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server machine. For reliable accessibility, data centers are best suited for hosting 

such applications; however, they are big energy users.  

 
Figure 7: Total energy used for real-time applications in ship operations 

 

3.2.11.  SHIP- SERVER ANALYSIS 

In order to identify specific parameters required for the calculation of emissions from 

a server located in a data center used for ship operation modelling, an Eriksson-

Penker use case model (see Figure 8) was designed using Enterprise architect 

application.  

 

In the diagram, the actor is a Ship operator / Ship owner whose aim is to determine 

how much power / equivalent CO2 emission is used /generated by using big data 

analytics applications. The ship owner has already benefited from monitoring and 

controlling cost by using real-time big data applications.  The case model is used to 

generate more questions that lead to more streamlined parameters. 
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Figure 8: Eriksson-Penker use case model 

 

From the use case scenario, a sequence diagram was developed to display the 

system boundary and other users of the application / tool. The sequence diagram is 

used to show clarity of the objectives of the application to all actors involved in the 

use of the application. 

 
Figure 9: Sequence Diagram 

From the sequence given in Figure 9, the tasks to derive the ship fuel consumption, 

server power consumption and their corresponding emissions were clearer.  
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The key understanding required were ship data required for calculating fuel 

consumption, emission and server formula for determining power consumption of the 

server and its corresponding CO2 emissions. 

 

3.3. POWER CONSUMPTION MODEL 

The model comprises of two types,.one is a model for calculating the power / energy 

consumption of the server and the ship, while the second is the model for calculating 

the emissions as a result of the voyage. 

 
3.3.1. SERVER DATA REQUIREMENT 

For the computation of the Server power, three servers were selected. Two were from 

literature reviews, the AMD Turion processor (blade server) and Intel processor 

(Itanium server) with defined specification. This concept was used to derive a formula, 

as the most significant variable detected was the CPU utilization rate.  The formulae 

below show the variables that relate to power: 

P
blade = 14.45 + 0.236. Ucpu − (4.47E − 8). Umem + 0.00281. U

disk + (3.1E − 8). Unet 

Pitanium = 635.62 + 0.1108. Ucpu + (4.05E − 7). Umem + 0.00405. U
disk + 0. Unet 

Where Ucpu  = CPU Utilization 

            Umem = off-chip memory access count 

            U
disk 

 = Hard disk I/O rate 

            Unet  = network I/O rate 

 

Extreme Outer Vision (2019) is an online application that provides power estimation 

for server systems. It was used to generate data. The selected server had the 

specifications shown in Table 1: 
 

Table 1: Intel Core i9 Server specification 
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With the online application, 66 runs were carried out to extract the following 

data in Table 2: 

 
Table 2: Data collection - Required power for Intel i9 server at different utilization rates 

COMPUTER 
UTILIZATION 

TIME (HR) 

CPU 
UTILIZATION 

(%) 

UPS 
RATING 

(VA) 

PSU 
WATTING 

(W) 

POWER 
(W) 

POWER 
(kW) 

1 100 650 362 312 0,312 

2 100 650 364 314 0,314 

4 100 650 364 314 0,314 

8 100 650 367 317 0,317 

16 100 650 375 325 0,325 

24 100 650 378 328 0,328 

1 95 600 355 305 0,305 

2 95 600 357 307 0,307 

4 95 600 357 307 0,307 

8 95 600 360 310 0,31 

16 95 600 368 318 0,318 

24 95 650 370 320 0,32 

1 90 600 348 298 0,298 

2 90 600 350 300 0,3 

4 90 600 350 300 0,3 

8 90 600 353 303 0,303 

16 90 600 360 310 0,31 

24 90 650 363 313 0,313 

1 85 600 341 291 0,291 

2 85 600 343 293 0,293 

4 85 600 343 293 0,293 

8 85 600 346 296 0,296 

S/N SYSTEM Intel Core i9-7900x 
Server

1. CPU 3.3GHz Vcore1.2V

2. Memory
4x4GB DDR4
module FB DIMMS

3. Storage 4 Sata 7.2k RPM
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COMPUTER 
UTILIZATION 

TIME (HR) 

CPU 
UTILIZATION 

(%) 

UPS 
RATING 

(VA) 

PSU 
WATTING 

(W) 

POWER 
(W) 

POWER 
(kW) 

16 85 600 353 303 0,303 

24 85 600 355 305 0,305 

1 80 600 334 284 0,284 

2 80 600 336 286 0,286 

4 80 600 336 286 0,286 

8 80 600 339 289 0,289 

16 80 600 346 296 0,296 

24 80 600 348 298 0,298 

1 75 600 327 277 0,277 

2 75 600 329 279 0,279 

4 75 600 329 279 0,279 

8 75 600 331 281 0,281 

16 75 600 338 288 0,288 

24 75 600 340 290 0,29 

1 70 600 320 270 0,27 

2 70 600 322 272 0,272 

4 70 600 322 272 0,272 

8 70 600 324 274 0,274 

16 70 600 331 281 0,281 

24 70 600 333 283 0,283 

1 65 600 313 263 0,263 

2 65 600 315 265 0,265 

4 65 600 315 265 0,265 

8 65 600 317 267 0,267 

16 65 600 323 273 0,273 

24 65 600 326 276 0,276 

1 60 600 306 256 0,256 

2 60 600 308 258 0,258 

4 60 600 308 258 0,258 

8 60 600 310 260 0,26 

16 60 600 316 266 0,266 

24 60 600 318 268 0,249 

1 55 600 299 249 0,251 

2 55 600 301 251 0,251 
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COMPUTER 
UTILIZATION 

TIME (HR) 

CPU 
UTILIZATION 

(%) 

UPS 
RATING 

(VA) 

PSU 
WATTING 

(W) 

POWER 
(W) 

POWER 
(kW) 

4 55 600 301 251 0,253 

8 55 600 303 253 0,259 

16 55 600 309 259 0,261 

24 55 600 311 261 0,242 

1 50 500 292 242 0,242 

2 50 500 294 244 0,244 

4 50 500 294 244 0,244 

8 50 500 296 246 0,246 

16 50 600 301 251 0,251 

24 50 600 303 253 0,253 

 

The mean of each category of data with the same utilization degree was calculated 

and the mean average power consumption of the server was derived. 

Table 3: CPU Utilization Vs Power required 

 
 

Table 3 was used to plot a graph (see Figure 10) to get a linear relationship between 

power and CPU utilization rate and thus the formula was derived.: 

 

Pcore i-9 = 1.432.Ucpu+175.08 

 

CPU
UTILIZATIO

N (%)

POWER 
(W)

100 318,333

95 311,167

90 304,000

85 296,833

80 289,833

75 282,333

70 275,333

65 268,167

60 261,000

55 254,000

50 246,667
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Figure 10: Power and CPU utilization linear relationship 

 

3.3.1.1. GRID SOURCES AND CARBON EMISSION  

To determine the CO2 of electricity especially in this case the data center / server 

location is a big factor that influences the amount of emissions. The value varies from 

country to country and is a function of how energy is generated. The CO2 that was 

used in this model is 0.26. 

3.3.1.2. SERVER APPLICATION TYPE AND WORKLOAD DEFINITION 

 
The application type deployed on a server used for monitoring vessels has been 

categorized based on data requirement; see Tables 4 and 5: 
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Table 4: Server application and workload 

 

 

 
 
 
 
 
 
 
 
 
  

APPLICATION 
TYPE

REQUIREMENTS CHARACTERISTICS DATA REQUIREMENT

High data storage

Low user access

High Hard disk 
utilization

Low CPU utilization
(on average)

High user access Digital twin data 

Medium data storage
Weather data is accessed
in realtime

High CPU utilization
Vessle Traffic also 
accessed inrealtime.

High user access
Current data from ship is 
also accessed inreal time.

High CPU utilisation

High hard disk 
utilization

High user access 

Combination of batch and 
realtime

Batch 
processing 
application 
(Mapreduce)

Cluster dedicated to 
running massive batch 
jobs offline. 

Uses multiple nodes in 
parallel. 

Activity level not 
related to time of the 
day

Digital twin data stored can 
be used with historical data 
/ near real time data 
(weather, traffic, and ship) 
to develop models.

Real-time 
application 

Data handling of 
stream data, requires 
processing in real time, 
access to several data 
sources

Combination of 
real-time and 
batch 
processing

Combination of batch 
and realtime
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Table 5: Server specification 

 

 

The Intel Core i9 server was used. Other studies show that CPU utilization is the main 

variable for machine – level activity of a server. (WSP Environment & Energy LLC, 

Natural Resources Defence Council, 2012). It varies based on the type and size of 

workload on the server. For instance, a web search requires high data processing and 

intensity varies in the time of the day. MapReduce (used for batch processing) 

requires multiple servers. The pattern of usage varies because it is not called in real-

time, whilst webmail requires more disk I/O usage. (Fan, Weber, & Barroso, 2007) 

To determine the CPU utilization to be used, an average of collected values is 

normally generated; however, Table 6 displays some extracted CPU utilization rates 

from the literature, which was used in each model deployment with two use case 

scenarios and accessed. Two scenarios were used because for each defined voyage 

the ships operation is monitored in three different modes. For container ships while at 

the port less monitoring is required, thus in the model design, the port is classified to 

the average case scenario.  

 

 

 

 

 

 

COMPONENT TYPE BLADE 
SERVER

ITANIUMSERVE
R

VCORE SERVER

CPU TYPE & SPEED
2.2 GHz AMD 
Turion

4x 1.5 Hz 
Itanium 2 3.3GHz Vcore 1.2 V

MEMORY 512MB SDRAM 1 GB
4 x 4GB DDR4 
module FB DIMMS

STORAGE 40GB 2.5”Hard 
disk

36GB 3.5”Hard 
disk

4 Sata 7.2k RPM

NETWORK
10/100Mbit
Ethernet

10/100Mbit
Ethernet 10/100Mbit Ethernet
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Table 6: Server CPU utilization rates based on best practice to worst case 

 
Note: That based on PUE, energy for non-virtualised in-house is not equal to non-virtualized hosted 

externally, but for the purpose of the server energy consumption and scope they are categorized as same 

 

3.3.2. SHIP OPERATION MODES 

Ship operations are normally monitored during the 3 operating modes but at varying 

degrees. With respect to energy consumption of the server used for monitoring, high 

request is done mostly during the sailing and manoeuvring modes (depending on the 

CASE 
SCENARIO

SERVER CPU
UTILIZATION REFERENCE

Worst case 5%

WSP Environment & 
Energy LLC & Natural 
Resources Defence 
Council, 2012
(Forrester Consulting, 
2009)
(Otto, 2010)

Best practice 
case 25% (Cole, 2009)                   

CASE 
SCENARIO

SERVER CPU
UTILIZATION REFERENCE

6% In-house
7% Private cloud

Average case 30%

WSP Environment & 
Energy LLC & Natural 
Resources Defence 
Council, 2012
(Koomey, 2011)
(VMware, 2018)

CASE 
SCENARIO

SERVER CPU
UTILIZATION REFERENCE

Worst case 7% (Liu, 2011)

Average case 40%

WSP Environment & 
Energy LLC & Natural 
Resources Defence 
Council, 2012
(Koomey, 2011)
(VMware, 2018)

1. NON-VIRTUALIZED SERVER (IN-HOUSE / SERVER 
HOSTED EXTERNALLY 

Average case 10%

2. VIRTUALIZED IN-HOUSE SERVER / PRIVATE CLOUD 

Worst case (Kaplan, Forrest, &
Kindler, 2008)

Best practice 
case

60%

3. PUBLIC CLOUD 

Best practice 
case

70%
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ship type such as container vessels), thus workload on the servers at these times 

would be higher than at port time. 

 

3.3.3. MODEL FOR ENERGY CONSUMPTION  

The energy consumption model developed for server depends on the two scenarios 

and is defined below: 

1. Energy consumption model for Server (non-virtualized) and Ship on a single 

voyage is: 

Server energy consumption1 = Pcore i-9 at Sea (25% Ucpu).t + Pcore i-9 at Man 

(25% Ucpu ).t + Pcore i-9 at Port (10% Ucpu ).t 

 

2. For a scenario where Virtualized servers are used for a fleet of Ships in a single 

voyage, the formula below was used to determine the server energy 

consumption. 

Server energy consumption2 =Pcore i-9 at Sea (70% Ucpu).t + Pcore i-9 at Man 

(70% Ucpu ).t + Pcore i-9 at Port (40% Ucpu ).t 

 

            where t = time at sea, manoeuvring or at port for a voyage 

 

While the energy consumption model for a Ship is defined below: 

Ship energy consumption = ETfoc at Sea + ETfoc at Man + ETfoc at Port 

 

                   where                           ETfoc  =        EHfoc × T 
                                                                           ---------------  (tons) 
                                                                             1000 

                                                      EHfoc =   Peng × SFOC 
                                                                      -----------------   (kg/H) 
                                                                        1000 
 

where EHfoc   = Engine hourly fuel oil consumption 

                      Peng     = Engine power 

                      SFOC = Specific fuel oil consumption 
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3.4. EMISSION MODEL 

 
The emission model for server is calculated based on the grid carbon factor 

which differs from location based source of energy used. 

 

The carbon factor used to calculate emissions from ships are defined by the 

IMO which is based on the type of fuel used for propulsion. Thus the server 

and ship emissions are defined below: 

Server Emission = Server energy consumption. Cgf 

 where Cgf = Grid Carbon factor 

 

Ship Emission = ETfoc at Sea .Cf + ETfoc at Man . Cf + ETfoc at Port . Cf  

where Cf = Carbon for fuel type used 

 
 

3.5. CHAPTER SUMMARY 

In this chapter, the required information needed for development of the emission 

calculator was gathered. The sequence diagram was developed highlighting the 

actors and their roles. Ship static data source was identified - the EU TEFLES file, 

formulae to calculate the power consumed by two server types was extracted from a 

research paper and formula for an Intel core i-9 server was derived. Also the energy 

consumption model for a server used during a voyage by a ship was also derived. In 

the next chapter the process for development of the emission calculator is described. 
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CHAPTER 4: IMPLEMENTATION WITH JAVA 

PROGRAM 

4.1. POWER / EMISSION CALCULATOR 

Chapter 3 dealt with the requirements from data acquisition system to communication, 

storage and processing, identified 3 operational modes in ship operations, derived  

formula for the Core i9 server with defined specification, and dealt with the 

development of energy consumption and emission models. In this chapter, these 

models and formulae are used to develop the emission calculator. 

 

Three major object oriented concepts used in this chapter are defined below: 

1. Objects: An object in java is comprised of data and procedures. It has a state 

and behaviour. The state is stored in variables, while the behaviour is shown 

by functions or methods. 

2. Attributes: Is an element that makes up a row in a database; they can also 

be referred to as a field. 

3. Class: It defines the properties and behaviour of objects. 

 

4.2. DESIGN, IMPLEMENTATION & TESTING 

 
Based on the scope for the development of the emission calculator, which is limited 

to CO2 emission, the formulae derived in conjunction with deeper analysis helped to 

determine the variables required and thus the following steps were carried out: 

1. Create the database with DataGrip DBMS 

2. Design the GUI  

3. Script in java  

4. Compile and execute 
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5. Populate the database with test data 

6. Test and validate functions 

7. Fix bugs  

8. Re-factor program 

9. Test and validate function 

 

The scope of this application is limited to: 

1. Three (3) modes of a ship in operation: 

a. Sailing mode: It is assumed that the ship is operating in stable mode, 

thus no change in engine parameter is noticed.  

b. Maneuvering mode: the mode of operation when approaching coastal 

area, entering or leaving port. 

c. Port mode 

2. In this research, a voyage is assumed to be the distance from point of one sail 

to point at the port. 

3. The server resource usage is known in advance 

 

4.2.1. DATABASE SCHEMA  

From the requirements gathered and analysis made, the two major objects identified 

were ship and server, thus the two Tables major “the Ship” and “the Server” were 

created. Other objects while other objects are required to achieve the objective of the 

software application. The 7 (seven) objects and their related attributes listed below 

were first created using sql statements: 

1. tblship               

2. tblmos 

3. tblshipengine 

4. tblfueltype 

5. tblconsumpttype 

6. tblserver   

7. tblemission 

See below sql statement used to create tblfueltype object: 

 create table tblfueltype 
( 
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    id           int            not null 
        primary key, 
    fueltype           varchar(100)   null, 
    carbonfactor  decimal(18, 2)  null 
); 

The attribute “id” is defined as a primary key i.e. as a unique identifier and can be 

used to reference attributes by other objects. 

 
                                                   EHfoc =    Peng ൈ	SFOC 
                                                                         ----------- 
                                                                           1000 
where EHfoc   = Engine hourly fuel oil consumption 
           Peng         = Engine power 

           SFOC = Specific fuel oil consumption 

 

When an engine is used for a time T (in hours), the fuel consumption for the period T 

is: 

                                                    ETfoc  =         EHfoc ൈ T 
                                                                       --------------- 
                                                                         1000 
 

Also noted from the analysis, the SFOC of a ship engine varies based on the fuel 

type, the engine manufacturer and the engine type. Each engine type has 3 fuel 

options; HFO, MDO and MGO and a ship uses a combination of one or more main 

engines, one or more auxiliary engines, and the boiler power during a voyage.  

 

Moreover, during any operation mode (sailing, manoeuvring or at port) a minimum of 

two engine types are used to power the vessel. From studies conducted with the 

TEFLES excel file, mostly at sea mode, the main engine, auxiliary engine and boiler 

are used. From the ships listed, 8 of 20 ships run without the auxiliary engine during 

sea time. 

At manoeuvring mode, the three types are used, while at port the auxiliary engine and 

boiler power are used.  

 

Based on the above analysis, the tblshipengine object attributes were defined as 

seen below to enable it to hold parameters for each engine type used during a mode 

of operation: 

 Table attributes                 Character types /size                   
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    enginetype                varchar(5)    null 
    engineno                    varchar(20)               null 
    regulation                 decimal(18, 4)           null 
    enginerpm                 decimal(18, 4)           null 
     
    smaineenginerpm     decimal(18, 4)           null 
    smainenginepower   decimal(18, 4)           null 
    smainengsfoc            decimal(18, 4)           null 
    smaxspeed                 decimal(18, 4)          null 
    sauxginerpm             decimal(18, 4)         null 
    sauxenginepower      decimal(18, 4)         null 
    sauxengsfoc               decimal(18, 4)          null 
    sauxmaxspeed          decimal(18, 4)          null 
    sboilersfoc                decimal(18, 4)           null 
    sboilerengpower      decimal(18, 4)           null 
     
    mvmenginerpm       decimal(18, 4)           null 
    mvmainenginepo     decimal(18, 4)           null 
    mvmainengsfoc       decimal(18, 4)            null 
    mvsmaxspeed          decimal(18, 4)            null 
    mvauxginerpm             decimal(18, 4)   null 
    mvauxenginepower     decimal(18, 4)   null 
    mvauxengsfoc             decimal(18, 4)   null 
    mvauxmaxspeed         decimal(18, 4)   null 
    mvboilersfoc                decimal(18, 4)   null 
    mvboilerengpower       decimal(18, 4)   null 
    bowthrusterpower   decimal(18, 4)   null, 
    bowthrusteropime   decimal(18, 4)   null, 
    winchpower         decimal(18, 4)   null, 
    winchoptime        decimal(18, 4)   null, 
     
    pmenginerpm              decimal(18, 4)   null, 
    pMAINENGPOWER     decimal(18, 4)   null, 
    pmainengsfoc       decimal(18, 4)   null, 
    pmmaxspeed         decimal(18, 4)   null, 
    pauxginerpm               decimal(18, 4)   null, 
    pauxenginepower    decimal(18, 4)   null, 
    pauxengsfoc           decimal(18, 4)   null, 
    pauxmaxspeed       decimal(18, 4)   null, 
    pboilersfoc             decimal(18, 4)   null, 
    pboilerengpower    decimal(18, 4)   null, 
 
     sailtime           decimal(18, 4)   null 
 
Where “enginerpm “ is the attribute name  

“decimal (18, 4) “ is the character type with “18 “specifying the maximum 

length and “4” the maximum decimal place of the attribute and “null” 

represents that the no value for that attribute has been entered. 

 

Based on the 3 formulae below, tblserver attributes defined were servername, cpu, 

memory,storage and network to define specification of the 3 types of server. 
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P
blade = 14.45 + 0.236. Ucpu − (4.47E − 8). Umem + 0.00281. U

disk + (3.1E − 8). Unet 

Pitanium = 635.62 + 0.1108. Ucpu + (4.05E − 7). Umem + 0.00405. U
disk + 0. Unet 

Pcore i-9 = 1.432.Ucpu+175.08 

 

4.2.2. SOFTWARE IMPLEMENTATION 

With the Netbeans IDE, the project called bc2emissions was created; by default, a 

source package and library folder is also created. In the source package, 18 classes 

were created. The first set of classes created were to mirror the tables created in the 

database; ship.java, mos.java, shipengine.java, fueltype.java, consumptype.java, 

server.java and emission.java. In these classes, the attributes created are those 

required in the application for in tblship. Ten attributes were created, while in class 

ship only seven variables were publicly declared, see Figure 11 

 

 

 

 

 

 

 

 

Figure 11: Class tblship 

 
Other classes created are displayed in Figure 12. 
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Figure 12: View of classes created 

The two main classes, NewJFrame1.java and JEmissions.java provide an interface 

for the user and display the results. NewJFrame1 contains the code for all 

computations, while JEmissions holds GUI components that are used to display 

results. The code behind these frames retrieves and posts data to and from the 

dababase bc2emission. The NewJFrame1 class collects data from the required 

tables, computes and posts data to tblemission, while the JEmissions retrieves posted 

(computed) values from the tblemissions table and uses tblview to coordinate selected 

attributes from the tblemissions table for view by the user of the application. Figure 13 

shows the emission form in design state while Figure 14 shows the form in executable 

state. Figure 15 is used to display the results of the emission calculation. 

 

The GUI components used to develop a comprehensive user interface were 

frames, jbuttons, combobox, textfield, panels,l abels and jbuttons. 

The two forms designed were NewJframe and JEmissionsFrame, which contains the 

main classes. For the design of the NewJFrame, panels, labels, textfields, combobox 

and jbuttons GUI components were used.: 
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Figure 13: Emission form at design stage 

 

 
Figure 14: Emission form at run time 
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Figure 15: Detailed view of energy consumption and emissions 

 
Based on the analysis and formulae, the major codes used for computation of fuel 

consumption, ship emission, computer power utilization and CO2 emission are 

displayed in Figures 16 and 17: 

 

 
Figure 16: Script for calculating fuel consumption 
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Figure 17: Script for calculating power consumption of server 

 

4.2.3. TESTING AND RESULTS 

The testing phase was carried out 23 times; it was a system level test with a short test 

script generated. The value for each operation mode’s fuel consumption was tested 

against results from the EU TEFLES file to authenticate. The scope of testing was 

limited to the use of one fuel type (MDO) for all engine types used in all three modes. 

Fuel oil consumption of Ship 2 was calculated using MDO fuel type for all engines in 

all modes, with sailing time of 29.6 hours, manoeuvring time at 1 hour and port time 

at 12 hours. The total fuel consumption derived was 44.7148 tons. See Figures 18 

and 19. The total fuel oil consumption derived from the TEFLES file for same test case 

gave 44.846tons. 
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Figure 18: Test result for calculating fuel consumption 

 

 
Figure 19: Verification of test result using Crystalball and TEFLES file 

 

Carbon factor for MDO 3.21 was used to determine the CO2 emission in the Emission 

calculator program. 
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To validate the power consumption of the Server, the power is checked with the 

formula. if CPU utilization is 0%, 10% and 55% for all three servers was tested. Figure 

20, 21 and 22 displays the results for all three servers when the CPU utilization is set 

at 0%. 

 

 
Figure 20: AMD blade server test screenshot 

 

 
               Figure 21:  Intel core i9 server test screenshot 

 

 
Figure 22: Itanium Server test screenshot 



 
 
 
 

  68 

  

4.3. CHAPTER SUMMARY 

The design, implementation and testing phases used for the development of the 

Emission calculator were described. The next chapter discusses in detail the results 

from these models. 
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CHAPTER 5: CASE STUDY 

5.1. CASE STUDY ANALYSIS 

 
The previous chapter discussed the development of the CO2 emission calculator. In 

Chapter 5, the two models scenarios (non-virtualized and virtualized server) created 

in Chapter 3 were executed, final results were also discussed and analysed. 

Additionally, a new carbon emission intensity factor is applied and interesting results 

are discussed. The Two models were created, describing the application of varying 

CPU utilization at different modes of operation, and the power consumed by the 

Server during monitoring of the ship was displayed 

 

5.2. MODEL DATA INPUT EXCLUSION, CONSTANTS AND 

VARIABLES 

 
The following are exclusions for the models and scenarios: 

1. Energy consumed during the life cycle of the development of the monitoring 

application. 

1. Weather variance during the voyage (affect the voyage time and fuel 

consumption) 

2. Hull maintenance and maintenance of other related capital equipment 

3. Other data center computing devices, Racks, Power supply unit, UPS, Power 

Distribution System 

4. Abatement technologies deployed by each vessel 

5. Embedded energy of capital equipment and their energy use not directly 

related to servers and associated equipment.  

Seven major criteria listed were kept constant: 
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1. MoS – Baltic MoS 

2. Fuel type for all engines– MDO 

3. Fuel type equivalent carbon factor - 3.21 

4. Server type – Intel Core i9 

5. Carbon factor -0.26 

6. Maneuvering time – 1 hour  

7. Port time – 12 hours  

The server workload variable, CPU utilization varied for the three operating modes 

and also the sea time for each ship. 

 

5.2.1. MODEL APPLICATION FOR A NON-VIRTUALIZED SERVER  

The study quantified one application against 2 (two) deployment scenarios by 

multiplying the energy consumed by the Server CPU by the time taken to complete 

each operational mode. 

 

The total fuel consumed by 20 ships was compared to the total energy for the Server. 

The CPU utilization rate is a factor that reflects the workload on the server. For the 

deployment scenario of a non-virtualized in-house server or server hosted externally, 

the CPU utilization during the 3 ship operating modes was considered and the best 

case assumed to be: 

 

Table 7: Server CPU utilization rate per mode of operation for scenario 1 

 

 

The sailing time for the Baltic MoS is displayed in Table 8, while the manoeuvring time 

of 1 hour and Port time of 12 hours are constant for all ships. These values were 

extracted from the TEFLES file. The carbon conversion factor used for Server Power 

for the voyage is 0.26  

 

SHIP OPERATION
MODE

SERVER CPU
UTILIZATION

Sailing 25%

Maneuvering 25%

Berth /Port 10%

1. NON-VIRTUALIZED SERVER (IN-HOUSE \ 
HOSTED EXTERNALLY)



 
 
 
 

  71 

 

 
Table 8: Ships sailing time for the Baltic Sea MoS 

 

Based on the defined input specification, the fuel consumption by each ship and the 

corresponding power consumed by each server are displayed in the Table 9. The 

Table provides the fuel consumed at various modes by the different engines and gives 

the sum total considering the number of hours for each mode. 

S/N SHIP NAME

BALTIC SEA   TIME 
FOR SAILING (H)

1 Auto Baltic (St Nazire‐Vigo) 29,6

2 Auto Baltic (Vigo‐St Nazire) 26,6

3 Star Aurora 37,9

4 Overseas Joyce 26,5

5 Cap San Nicolas 44,2

6 Coral Leader 32,1

7 Viking Chance 32,1

8 Morning Mead 25,2

9 Viking Drive 34,2

10 Autoprimer 40,8

11 Magnee Cours Express 33,1

12 MV Spica Leader 35,8

13 Bouzas 30,5

14 Galicia 39,9

15 L'Audace 30,3

16 Suar Vigo 29

17 Tenerife Car 30,3

18 Grand Canaria Car 37,9

19 Emerald Leader 34,2

20 TEST SHIP 34,2
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Table 9: Ship -Server Energy Consumption and emissions for a voyage 

SHIP NAME

FUEL 
CONSUMPTIO

N AT MSEA 
(TONS)

FUEL 
CONSUMP

TION AT 
AUXSEA 
(TONS)

FUEL 
CONSUM

PTION AT 
BOSEA

FUEL 
CONSUMPT

ION AT 
MMAN 
(TONS)

FUEL 
CONSUM

PTION AT 
AUXMAN

(TONS)

FUEL 
CONSUM

PTION AT 
BOMAN

FUEL 
CONSU

MPTIO

N AT 
MPORT 
(TONS)

FUEL 
CONSUMP

TION AT 
AUXPORT(

TONS)

FUEL 
CONSUM

PTION AT 
BOPORT

TOTAL 
SEA

TOTAL 
MAN

TOTAL 
PORT

TOTAL FUEL 
CONP (tons)

TOTAL FUEL 
CONP 
(kWH)

TOTAL CO2 
EMISSION 
(kgCO2)

SERVER 
POWER 
CONSUMPT

ION AT SEA 
(kW)

SERVER 
POWER 
CONSUMP

TION AT 
MAN

SERVER 
POWER 
CONSUMPT

ION AT 
PORT

TOTAL 
SERVER 
POWER 
FOR 
VOYAGE 
(kWH)

1 Auto Baltic (St Nazire‐Vigo) 61,4129096 0 0,7403 0,195627 0,0651 0,025 0 0,5208 0,3001 62,15 0,2857 0,82092 63,2598623 73521,8771 202,4315593 6,242344 0,21089 2,272848 8,726082

2 Auto Baltic (Vigo‐St Nazire) 38,4882392 0 0,66527 0,237848 0,0651 0,025 0 0,5208 0,3001 39,15 0,328 0,82092 40,3023835 46840,2361 129,370651 5,609674 0,21089 2,272848 8,093412

3 Star Aurora 83,010096 3,14991 0,94788 1,416425 0,0651 0,025 0 0,5208 0,3001 87,11 1,5065 0,82092 89,4353369 103943,537 286,193078 7,992731 0,21089 2,272848 10,476469

4 Overseas Joyce 70,8589789 2,20259 0,66277 0,340541 0,0651 0,025 0 0,5208 0,3001 73,72 0,4307 0,82092 74,9759026 87138,4935 239,9228883 5,588585 0,21089 2,272848 8,072323

5 Cap San Nicolas 26,3709783 3,67351 1,10544 0,342895 0,0651 0,025 0 0,5208 0,3001 31,15 0,433 0,82092 32,4038518 37660,4046 103,6923256 9,321338 0,21089 2,272848 11,805076

6 Coral Leader 33,1952993 2,66786 0,80282 0,270579 0,0651 0,025 0 0,5208 0,3001 36,67 0,3607 0,82092 37,847592 43987,2284 121,1122945 6,769569 0,21089 2,272848 9,253307

7 Viking Chance 31,0843447 2,66786 0,80282 0,277349 0,0651 0,025 0 0,5208 0,3001 34,56 0,3675 0,82092 35,743408 41541,7036 114,3789054 6,769569 0,21089 2,272848 9,253307

8 Morning Mead 76,2588327 2,0944 0,63025 0,376629 0,0651 0,025 0 0,5208 0,3001 78,98 0,4667 0,82092 80,2711407 93292,7251 256,8676502 5,314428 0,21089 2,272848 7,798166

9 Viking Drive 27,5454709 2,8424 0,85534 0,257278 0,0651 0,025 0 0,5208 0,3001 31,24 0,3474 0,82092 32,4115173 37669,3136 103,7168552 7,212438 0,21089 2,272848 9,696176

10 Autoprimer 17,3884837 3,39093 1,02041 0,186304 0,0651 0,025 0 0,5208 0,3001 21,8 0,2764 0,82092 22,8971545 26611,5309 73,27089441 8,604312 0,21089 2,272848 11,08805

11 Magnee Cours Express 31,7292941 2,75097 0,82783 0,318522 0,0651 0,025 0 0,5208 0,3001 35,31 0,4086 0,82092 36,5376516 42464,7894 116,920485 6,980459 0,21089 2,272848 9,464197

12 MV Spica Leader 26,3201572 2,97537 0,89536 0,320501 0,0651 0,025 0 0,5208 0,3001 30,19 0,4106 0,82092 31,4224201 36519,7651 100,5517443 7,549862 0,21089 2,272848 10,0336

13 Bouzas 41,249214 0 0,76281 0,212021 0,0651 0,025 0 0,5208 0,3001 42,01 0,3021 0,82092 43,1350701 50132,4411 138,0322242 6,432145 0,21089 2,272848 8,915883

14 Galicia 22,5860934 0 0,9979 0,179205 0,0651 0,025 0 0,5208 0,3001 23,58 0,2693 0,82092 24,6742275 28676,8806 78,95752785 8,414511 0,21089 2,272848 10,898249

15 L'Audace 41,5169264 0 0,7578 0,212093 0,0651 0,025 0 0,5208 0,3001 42,27 0,3022 0,82092 43,3978521 50437,8517 138,8731269 6,389967 0,21089 2,272848 8,873705

16 Suar Vigo 45,0059141 0 0,72529 0,216322 0,0651 0,025 0 0,5208 0,3001 45,73 0,3064 0,82092 46,8585564 54459,9514 149,9473806 6,11581 0,21089 2,272848 8,599548

17 Tenerife Car 40,7165456 0 0,7578 0,17201 0,0651 0,025 0 0,5208 0,3001 41,47 0,2621 0,82092 42,5573881 49461,0476 136,183642 6,389967 0,21089 2,272848 8,873705

18 Grand Canaria Car 24,3331322 0 0,94788 0,153074 0,0651 0,025 0 0,5208 0,3001 25,28 0,2432 0,82092 26,3451156 30618,8203 84,30437005 7,992731 0,21089 2,272848 10,476469

19 Emerald Leader 32,5714233 2,8424 0,85534 0,319632 0,0651 0,025 0 0,5208 0,3001 36,27 0,4097 0,82092 37,4998235 43583,0449 119,9994353 7,212438 0,21089 2,272848 9,696176

20 TEST SHIP 32,5716884 2,8424 0,85534 0,319632 0,0651 0,025 0 0,5208 0,3001 36,27 0,4097 0,82092 37,5000886 43583,353 120,0002836 7,212438 0,21089 2,272848 9,696176

879,476343 978561,642 2814,727322 189,79008
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Table 10 compares the server power consumed during the voyage to the total fuel 

consumed for that voyage.  

 

Table 9: Ship to Server energy consumption 

 

 

To understand the relationship between the energy consumed by the server and 

ship for that voyage, a graph was plotted; see Figure 23. 

 

 
Figure 23: Ship fuel Vs Server CPU power consumption 

 

S/N SHIP NAME

TOTAL 
FUEL 
CONP 
(kWH)

TOTAL 
SERVER 
POWER 
FOR 
VOYAGE 
(kWH)

1 Auto Baltic (St Nazire-Vigo) 73521,88 8,73
2 Auto Baltic (Vigo-St Nazire) 46840,24 8,09
3 Star Aurora 103943,54 10,48
4 Overseas Joyce 87138,49 8,07
5 Cap San Nicolas 37660,40 11,81
6 Coral Leader 43987,23 9,25
7 Viking Chance 41541,70 9,25
8 Morning Mead 93292,73 7,80
9 Viking Drive 37669,31 9,70

10 Autoprimer 26611,53 11,09
11 Magnee Cours Express 42464,79 9,46
12 MV Spica Leader 36519,77 10,03
13 Bouzas 50132,44 8,92
14 Galicia 28676,88 10,90
15 L'Audace 50437,85 8,87
16 Suar Vigo 54459,95 8,60
17 Tenerife Car 49461,05 8,87
18 Grand Canaria Car 30618,82 10,48
19 Emerald Leader 43583,04 9,70
20 TEST SHIP 43583,35 9,70

TOTAL 978561,64 189,79
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Table 11 compares the direct and indirect emissions of 20 ships by the use of big data 

analytical applications but limited to the server power consumption. 

 

Table 10: Ship - Server emission for Model  scenario for non-virtualized server 

 

 

 

5.2.1.1. NON-VIRTUALIZED SERVER MODEL EVALUATION 

For each ship, 21 events occurred during implementation. Thus, a total of 420 events 

represents the data set produced; 410 events were used for model fitting, while 10 

events (2.38% equivalent) were used for validation of the dataset.  

 

The general observation from Figure 23 shows that the relationship between ship fuel 

consumption and server power consumption for a voyage are not linear in nature; 

thus, it creates an avenue for optimization.  

 

As seen in Table 9 and Figure 23, Ship 3 consumed the highest quantity of fuel during 

the voyage on the Baltic MoS route, 89.44 tons of fuel and server power consumption 

of 10.48kWh, while Ship 18 used 84.30 tons of fuel and server power consumption 

was also 10.48kWh. The server used for both Ships 3 and 18 were similar because 

S/N SHIP NAME

TOTAL 
CO2 
EMISSIO
N 
(kgCO2)

SERVER 
EQU 
CO2e 
EMISSIO
N 
(kgCO2)

SERVER 
TO SHIP 
EMMISSI

ON %
1 Auto Baltic (St Nazire‐Vigo) 202,43 2,27 1,12076

2 Auto Baltic (Vigo‐St Nazire) 128,97 2,10 1,63164

3 Star Aurora 286,19 2,72 0,95176

4 Overseas Joyce 239,92 2,10 0,87478

5 Cap San Nicolas 103,69 3,07 2,96003

6 Coral Leader 121,11 2,41 1,98647

7 Viking Chance 114,38 2,41 2,10341

8 Morning Mead 256,87 2,03 0,78933

9 Viking Drive 103,72 2,52 2,43066

10 Autoprimer 73,27 2,88 3,93457

11 Magnee Cours Express 116,92 2,46 2,10459

12 MV Spica Leader 100,55 2,61 2,59442

13 Bouzas 138,03 2,32 1,67941

14 Galicia 78,96 2,83 3,58869

15 L'Audace 138,87 2,31 1,66135

16 Suar Vigo 149,95 2,24 1,49111

17 Tenerife Car 136,18 2,31 1,69416

18 Grand Canaria Car 84,30 2,72 3,23101

19 Emerald Leader 120,00 2,52 2,10085

20 TEST SHIP 120,00 2,52 2,10083

TOTAL 2 814,32 49,35 1,75337
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the time taken to complete a voyage was the same. To substantiate this point, Ship 8 

used 80.27tons of fuel and server power of 7.80kWh (the least server power) for the 

same trip.  

 

Since the time of a voyage affects the power consumption of the server, Ship 5 had 

the highest indirect emission (server emission) 3.07kgCO2. One known measure for 

fuel reduction in ship operation is slow steaming. This implies that if a ship owner 

monitors vessels with real–time big data applications, slow steaming may have an 

effect on server consumption and by extension increase emissions indirectly (passed 

to data centers). If the time is reduced to decrease the indirect emissions, due to the 

speed time relationship, it implies that the speed would increase, more fuel consumed 

and direct emission would increase. In this case, the application of trade-off principle 

is applied. 

 

The results also imply that the size of the ship and engine power do not directly 

influence the power consumption of a server in a data center. Rather the type of 

business applications accessed (which determines the workload) is one important 

factor. The best method to reduce emission is thus to subscribe to vendors that 

provide SaaS; thus, the ship operator uses and pays only when the service is used 

on a voyage. 

 

5.2.2. MODEL APPLICATION FOR A VIRTUALIZED SERVER 

 
In this scenario, the total energy consumed for a fleet of 20 ships is compared with 

energy for total energy to power a virtualized server. Virtualization requires fewer 

physical servers, thus we have one physical server and other virtual servers 

depending on the virtualization ratio. The ratio used in this model is 5:1, which implies 

a fleet of 5 ships are grouped to access ship operation monitoring tools from 1 physical 

server. With a mix of workload consolidation and CPU voltage and frequency scaling 

(DVS), the CPU utilization was assumed to be at 70% maximum at sea and 

manoeuvring while at port the CPU utilization is 40%. 
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Table 12: Sever CPU utilization rate per mode of operation for Model scenario 2 

 

 

5.2.1.2. VIRTUALIZED MODEL EVALUATION 

Table 13 shows a breakdown of the consumption of the virtualized server running at 

a ratio of 5:1. This implies that five ships share one physical server for the real-time 

monitoring of the ships in operation, but each has its own virtual server. The CPU 

utilization increased because the workload increased by five. This optimized the 

server CPU utilization rate to a large extent when compared to one ship using a single 

server for monitoring. Forrester Consulting (2009), Otto (2010) and Kaplan, Forrest, 

& Kindler (2008) observed that in an average case the CPU utilization of a server 

ranges from 6 -10 %. 

 

Thus, the workload increase maximizes CPU utilization rate and also the power 

consumed to power the server.  

  

SHIP OPERATION
MODE

SERVER CPU
UTILIZATION

Sailing 70%

Maneuvering 70%

Berth /Port 40%

2. VIRTUALIZED IN-HOUSE SERVER / CLOUD 
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Table 13: Server power consumption and CO2 emission for a virtualized environment 

 

 

This model was designed with one additional assumption, that all vessels within the 

selected time (the largest time amongst the set) would access their applications and 

complete a voyage. 

 

In this model, each ship’s operation application is not located on individual physical 

servers. A virtualization ratio of 5:1 was used and there was a great decrease in the 

power consumed by the server and its related emissions. Servers 1 – 5 indirect 

emissions produced by a fleet of 20 ships were 14.84kgCO2 when server power 

consumption at maximum sea time of 44.21hours was 57.08kWh.  

 

Whilst the fuel consumption and equivalent emission of the 20 ships (the fleet) remain 

the same for both models, there was a huge reduction (69.92%) in server power 

consumption and its corresponding emissions when the 2 Models were compared; 

see Figure 24.  

 

SHIP NAME

SERVER 
POWER 
CONSUMP

TION AT 
SEA

SERVER 
POWER 
CONSUM

PTION AT 
MAN

SERVER 
POWER 
CONSUM

PTION AT 
PORT

TOTAL 
SERVER 
POWER 
FOR 
VOYAGE 
(kWH)

SERVER 
EQU 
CO2e 
EMISSIO
N 
(kgCO2)

SERVER 1: 
Cap San Nicolas
Auto Baltic (Vigo‐St Nazire)
Star Aurora
Overseas Joyce 
Auto Baltic (St Nazire‐Vigo) 12,17 0,28 2,79 15,23 3.96

3.72

SERVER 2:
Coral Leader
Viking Chance
Morning Mead

Viking Drive
Autoprimer 11,23 0,28 2,79 14,30

3.65

3.51

14,05

SERVER 3:
Magnee Cours Express
MV Spica Leader
Bouzas

Galicia

L'Audace

SERVER 4:
Suar Vigo
Tenerife Car
Grand Canaria Car
Emerald Leader
TEST SHIP

10,99 0,28 2,79

10,44 0,28 2,79 13,50

57,08 14,84TOTAL
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Figure 24: Comparison of Model scenarios 1 and 2 

TSPFV: Total server power consumption for a voyage 

TSCO2E: Total server CO2 emission 

MODEL 1: Non-virtualized server scenario 
MODEL 2: Virtualized server scenario 

 

 

Thus, adopting model scenario 2 can optimize the server power of a fleet, where a 

fleet of 10 ships can use one virtual server (with virtualization ratio of 10:1) to reduce 

the indirect emissions from using big data analytics application, or any real-time 

application required for ship operation. 

 

5.2.3. CARBON FACTOR IMPACT  

One major criteria that brings the best improvements in the emissions is the location 

of the server (data center). The location is based on the source of electrical energy; 

the energy source influences the amount of emissions a great deal. Sweden’s carbon 

emission intensity was 0.013 as published in the European Environmental Agency for 

2016; applying this value to both model scenarios, the results gave a tremendous 

reduction on emissions from the server; see Figure 25:  
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Figure 25: Comparison of Models 1 and 2 after new carbon factor is applied  

 
From the Figure 26, there is an additional 1.75% (49.35kg) of CO2 emitted indirectly 

by the total 20 ships, which is their corresponding server emission. Applying the 

carbon factor of 0.013 to model 1 (Figures 27 and 29) shows a 95% reduction of CO2 

emitted by the server. This is possible if all the individual servers for the 20 ships are 

located in Sweden and the carbon intensity of 0.013 is constant. Thus, the emission 

would decrease from 49.35kg CO2 to 2.47kg CO2. Whilst on application to Model 2, it 

would decrease from 14.34kg CO2 to 0.74kg CO2.  

 

 

 
Figure 26:  Model 1- Ship Vs Server power consumption and emission  

TEC: Total energy consumption 
TECO2E: Total CO2 emission 
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Figure 27: Model 1- Ship Vs Server power consumption and emission result with new CF applied  

 
Figure 28: Model 2 – Servers Vs Fleet power consumption and emissions  

 

 
Figure 29: Model 2- Ship Vs Server power consumption and emissions with new CF applied  
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5.3. CHAPTER SUMMARY 

The above analysis estimates a 1.75% increase in indirect emissions (caused by the 

server) compared to the total ship emissions from a total of 20 ships involved in SSS 

in the Baltic MoS for only one voyage for Model 1. The emission rate depends on the 

workload, the server type, and the carbon factor. Model 2, due to same factors 

including virtualization, resulted in a 0.53% increase in emissions as compared to ship 

emissions, a 70% decrease compared to server emissions in Model 1.  

 

When a carbon factor of 0.003 was applied to both, Model 1 produced about 0.087% 

additional emissions compared to ship emissions. For Model 2, it produced 0.026% 

compared to ship emissions for the fleet of 20 ships. 
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CHAPTER 6: CONCLUSION AND FURTHER 

RESEARCH 

 

6.1. CONCLUSION 

The first technological revolution in shipping started in 1800 where ship propulsion 

migrated from sail to mechanized power and the use of steam engines. This was 

followed by the introduction of electric power and internal combustion engines and 

next the introduction of computerized control systems in the 1970’s. The third 

industrial revolution allowed all important engine control functions to be operated from 

the bridge and thus transformed ship operations radically. 

 

Shipping 4.0, which is currently a hot topic in the maritime sector, is characterised by 

certain technologies - cyber physical system, IoT, and big data analytics to mention a 

few. While the benefits abound, the speed of migration is already limited by the 

readiness gap exhibited by countries and regions in the maritime sector due to their 

different priorities.  

 

Big data technology, one of the concepts of the 4IR and Shipping 4.0, is very important 

to other concepts; the CPS, augmented reality, Internet of things at sea, simulation, 

optimization, AI, 3D printing, robotics and autonomy, which all rely on data. The 

processing of big data requires special data processing and high computing resources 

especially when accessed in real–time. The shipping sector has already adopted 

some of its applications especially in optimizing ship operations.  

 

This research examined the quantity of emissions generated by ships in operation 

while using real-time processing applications to optimize performance. Three model 

scenarios were applied to optimize power consumption of the servers used for storage 
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and processing of ship data transmitted. The aim was to quantify the amount of GHG 

emitted by the use of such telemetry services and establish measures to reduce 

indirect emission from Ship operations towards Shipping 4.0.  

 

The investigation has been possible with the use of quantitative data sampled from 

the EU funded TEFLES project, which constitutes data from 20 ships with engine 

parameters for the main engine, auxiliary engine, shaft and boilers used during ship 

operation. 

This data source was very useful as it considered several factors such as hull 

maintenance, after treatment, routes in the Motorway of the seas and so on.  

 

Another useful source of information was derived from the literature; Economou et al 

(2006) utilized the Mantis model to derive formulae for a blade server and an Itanium 

server. After proper review of the formulae, it was established that the central 

processing unit (CPU) utilization rate was the most significant variable to determine 

the power consumption of a server. Thus, to derive a power formula for an intel Core 

i9- 7900 server, data extraction and statistical analysis was used to develop the 

formula employed in this research. 

For the Server, the level of workload on the CPU at sea affects power consumption, 

which is always high, same at port. For a Container ship, server power consumed 

when at port was estimated to be lower than that at sea because port activities for 

such vessels require less monitoring. The workload is characterised by the CPU 

utilization. 

 

For a ship in operation, the three modes were considered, sailing, manoeuvring and 

port mode. The ship energy model considered the various engines used in these 3 

modes. Extracts from the data set of 20 ships show that 60% operate with main, 

auxiliary engines and boilers during sea time. At manoeuvring, mainly the auxiliary 

engines and boilers are used while at port boiler and auxiliary engine are used. For 

ship fuel consumption, the formula used to calculate the fuel consumption of each 

engine is based on the fuel type and the SFOC defined by the engine manufacturer. 

The server power is based on the CPU utilization, which is normally determined after 

several measurements of the amount of workload and transactions carried out by the 

server.  
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Noting the above, two main models, the model for energy consumption and the model 

for emissions calculation were developed.  

 

The first model was implemented with data from 20 ships in the EU TEFLES project 

file. The maximum voyage time applied was 44.5 hours and the results showed that 

for the 20 ships only 0.019% of additional power was consumed by using real-time 

applications for ship operations and a 1.75% increase of CO2 additional emissions 

was realised. When the model was implemented for virtualized servers for a fleet, 

more reductions in power consumption and emissions were realised. 

 

Generally, it was observed that ship fuel consumption and server power consumption 

for a voyage are not linear. Moreover, the server power does not depend on the size 

of the ship and engine power of a ship rather it is time dependent. The best method 

to reduce emissions by using real-time application is to subscribe to vendors that 

provide Software as a Service (SaaS); thus, the ship operator pays only when the 

service is used on a voyage.  

 

With the information gathered, a tool was developed using Netbeans IDE 8.0.2, 

DataGrip 2019 2.3 database management system (DBMS) and java-programming 

language to calculate the power consumption and corresponding emissions of a ship 

and the server used for real-time big data analytics during a voyage. 

 

Towards Shipping 4.0, it has been demonstrated that with adequate implementation 

of a mixture of measures from the data center providers, there would be little fear of 

the amount of additional emissions the sector would contribute compared to the value 

produced. 

 

This currently shows that the value derived from real-time processing outweighs the 

negative externality. Currently, different measures exist to drastically reduce the 

emission rate, but going by the rate of increase in data and its utilization, the amount 

of energy used for its processing needs, in future, needs to be re-evaluated and 

monitored.  
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6.2. LIMITATIONS 

The greatest limitation encountered during this research was companies approached 

did not provide access to data or assistance. 

 

6.3. FUTURE RESEARCH 

With the exponential growth anticipated in IoT’s, CPS and big data technologies, there 

is need for continuous monitoring to ensure that GHG emissions contributed are kept 

in check. 

 

One area that requires further research is the full estimation of data centers as a 

whole; this research was limited to only the server. Although the location of a server 

or data center, implementation of cloud computing and also development of Hyper 

scale data centers are said to be more energy efficient, other significant energy uses 

such as the cooling system which uses about 28% of power compared to the server 

(Zhu, Zhu, & Agrawal, 2012) and rack system needs further research. 

 

Data center facilities may lack on-line power monitoring and data collection systems 

that could be used to study power provisioning. This also requires more research. 

 

With regard to the shipping sector, the need to utilize energy bills generated from the 

use of weather reports, access to vessel traffic services, onshore computing facilities 

and satellite communication devices needs to be conducted to evaluate the emissions 

produced. Also a full life cycle analysis of the use of big data from the point of 

development of the tools, programming the applications, installation of fibre optic 

channels (communication channels) until the end of life needs to be conducted. 
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The role of the shipping sector may also digress a little, as the issue of secret data 

theft, cyber- crimes, denial of service (DoS) may increase exponentially and the need 

to develop and control its own data would be paramount.  

 

The Shipping sector could also earmark and gain extra points indicating that it has 

gone the extra mile to reduce emissions by ensuring that ship operations comply with 

several measures to reduce emissions through  the use of big data analytics 

applications. 
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