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Abstract.

 

—Eared Grebes (

 

Podiceps nigricollis

 

) encounter a variety of climatic regimes in their annual cycle. The
most dramatic occur while on staging areas in autumn. We investigated the thermoregulatory abilities of the Eared
Grebe to determine how they coped with these climate changes during staging. The basal metabolic rate (BMR)
was higher than predicted. Mass-specific BMR was 1.212 mL O

 

2

 

/g·h for birds averaging 317 g. The thermoneutral
zone is wide and extended from 15°C to 38°C. Minimal thermal conductance and average body temperature were
not unusual. We conclude that Eared Grebes live most of the year under thermoneutral conditions and that food
availability, not temperature extremes, determines the timing of their winter migration. 
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The Eared Grebe (

 

Podiceps nigricollis

 

), al-
so called the Black-necked Grebe in Europe
and Africa, has a complex life history, migrat-
ing into several areas with different and vari-
able climates (Cullen 

 

et al.

 

 1999). In North
America, they breed throughout much of
the western interior of the northern United
States and southern Canada. They remain
on the breeding grounds from mid-spring to
late summer, then begin to migrate to stag-
ing areas from late July. Two hypersaline ar-
eas at similar latitudes and relatively similar
altitudes, Mono Lake, California (38°N,
2,100 m) and Great Salt Lake, Utah (41°N,
1,400 m), account for 99% of staging Eared
Grebes in North America (Jehl 

 

et al.

 

 2003).
Although the temperature is warm when
they arrive, the climate in both regions cools
through the autumn and may become cold
before they leave. Sometime between mid-
November and December, the grebes mi-
grate south, mostly into the Gulf of Califor-
nia, Mexico, where they remain for one or
two months before beginning their north-
ward migration. This migration return takes
most of them first to the Salton Sea, Califor-
nia, where they remain for several weeks. Fol-
lowing that, they return to their breeding
grounds, sometimes visiting Great Salt Lake
(Jehl and McKernan 2002; Jehl 

 

et al.

 

 2003).

Despite their migrations, these birds are
flightless most of the year, undergoing rapid
atrophy of their breast muscles and existing
solely as foot-propelled swimmers and divers
for as much as ten months of every year (Jehl
1997; Jehl 

 

et al.

 

 2003). Consequently, they
may be subjected to climate changes from
which they cannot rapidly escape. The most
dramatic climatic shift occurs on the staging
lakes in autumn, where they arrive in the
heat of the late summer and remain until
early winter. During autumn staging, Eared
Grebes show rapid gain of mass, mostly fat.
They do not lose mass, even in the coldest
weather, until they are ready to migrate.
Thermoregulatory abilities of Eared Grebes
in the autumn staging lakes protect them
from heat stress in late summer and early au-
tumn as well as cold stress at the end of their
staging sojourn. We examined their metabol-
ic responses to a variety of temperatures to
assess their physiological ability to cope with
varying regimes while staging.

 

M

 

ETHODS

 

We used two groups of grebes captured at Mono
Lake, California in August-September from 1984 to
1991 and returned to the wild at the end of the study.
Members of one group (N = 20) were transported with-
in 24 h to San Diego, California, where they were main-
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tained outdoors for several weeks. Metabolic measure-
ments were begun within a week of capture; some birds
were measured over a period of as much as ten weeks.
Approximately 12-14 h prior to a measurement, they
were placed in a holding cage and deprived of food. We
made metabolic measurements on a second group (N =
22), captured in August between 1986 and 1991 at
Mono Lake after the birds were judged postabsorptive
(i.e., deprived of food for 

 

≥

 

14 h) and then released
them at the lake within 36 h of capture.

Metabolic rates were measured as oxygen consump-
tion in chambers connected in open circuit (Depocas
and Hart 1957) to a two-channel Applied Electrochem-
istry S-3A® oxygen analyzer; oxygen concentration was
measured in CO

 

2

 

-free, dry air. Birds were allowed to
equilibrate in a 20 L plexiglass chamber or a 30 L titani-
um chamber for about an hour before measurements
were begun. Measurements continued for a minimum
of two hours and until a minimal level of oxygen con-
sumption was reached. Activity of birds in the chamber
could be heard or recorded as changes in oxygen con-
sumption; measurements of active birds were not used.
Air flow rates ranged from about 1.7 to 3.3 L/h, with
higher rates in the larger chamber. All birds were in the
dark. Daytime measurements were begun and ended
during real time daylight. Nighttime measurements
were begun at least one hour after the onset of outdoors
darkness and often were conducted for considerably
longer times. If a second run was conducted the same
night, it typically began after midnight.

Two protocols were used. For all birds measured at
Mono Lake and initially for the San Diego birds, flow
rates of dry air were measured with Brooks® rotameters
calibrated to a 1% error by a 2.0 L SKC® soap film vol-
umeter, and F

 

O2

 

’s (fraction of oxygen in the airstream)
were recorded on an Omniscribe® recorder, then con-
verted to standard conditions using the temperature of
air flowing through the rotameter and the barometric
pressure during the experiment. In later San Diego ex-
periments, flow rates were measured using Tylan FM
380® mass flow meters; oxygen concentrations (F

 

O2

 

),
flow rates, and chamber temperatures were recorded
every 20 s by a computer, following A/D conversion by
a MetraByte DAS-8 ® board and after averaging ten data
points for each.

Chamber temperatures were monitored continu-
ously with a copper-constantin thermocouple connect-
ed to the DAS-8® via a MetraByte EXP-16® board or
with a Yellow Springs Instrument telethermometer with
a YSI 401® probe. In San Diego, those chamber temper-
atures were maintained ±1°C by a Hotpack® refrigerat-
ed incubator. Body temperatures (T

 

b

 

) for metabolic
experiments were measured within one minute of ter-
mination of an experiment by use of a YSI telethermom-
eter with a YSI 402® small animal probe inserted into
the grebe’s proventriculus.

All values for thermal conductance come from the
San Diego group, where the thermal neutral zone
(TNZ) was determined and air temperatures below
thermoneutrality could be maintained. Most nighttime
measurements on staging birds were made on the Mono
Lake group. All values of oxygen consumption are re-
ported as dry gas at standard temperature and pressure
(STPD). Conversions of measured O

 

2

 

 consumption to
SI units assume an RQ of 0.71 (King 1957; cf. Ellis and
Gabrielsen 2001). For this paper, we define basal meta-
bolic rate (BMR) as the metabolic rate measured in
these birds while at rest, in their thermal neutral zone,

and while post-absorptive; there was no circadian effect
(see below).

Statistical tests were made with Quattro Pro 8®, Sta-
tistica 5®, or SPSS 8®. All our measurements of central
tendency and dispersion are means and standard devia-
tions, unless otherwise noted. To prevent pseudorepli-
cation (Hurlbert 1984), all BMR data were averaged for
each bird prior to analysis, unless otherwise noted.

 

R

 

ESULTS

 

Basal metabolic data were pooled after
detecting no circadian and group differenc-
es. Mass-specific BMR of eight birds mea-
sured at night was 10.5% less than that of 32
birds measured in the daytime, but the range
fit within the daytime range and was not sig-
nificantly different. There was also no signif-
icant difference between the San Diego and
Mono Lake groups. The pooled value for
BMR was 385.1 ± 86.6 mL O

 

2

 

/h (mean mass
= 317.4 ± 51.3 g; N = 40), which is 30% higher
than predicted by the time-insensitive allom-
etric equation of Lasiewski and Dawson
(1967) for a nonpasserine species of its size.
Comparisons of BMR with other allometric
equations are given in Table 1. Mass-specific
BMR was 1.212 ± 0.195 mL O

 

2

 

/g·h.
Mass-specific metabolism is plotted against

air temperature in Fig. 1. In experiments
conducted at temperatures from -12.5°C to
38.6°C, the thermoneutral zone (TNZ) ranged
from 15.0°C to 38.1°C. One measurement at
1.2°C (1.077 mL O

 

2

 

/g·h, T

 

b

 

 = 39.7°C) was
indistinguishable from BMR.

Like most birds, Eared Grebes maintain
body temperature by mixing chemical and
physical responses to temperatures below
TNZ (Schmidt-Nielsen 1977; McNab 1980).
Consequently, they exhibited different val-
ues of thermal conductance, which appear
as slopes in Fig. 1; the highest and lowest are
presented there. Minimal thermal conduc-
tance (i.e., a purely chemical or metabolic
response to decreasing temperature) is
0.0501 ± 0.0036 mL O

 

2

 

/g·h·°C (N = 8 exper-
iments on five birds). This is 10% higher
than the time-insensitive value predicted by
Lasiewski 

 

et al.

 

 (1967) for a nonpasserine
bird of this size (309.1 ± 41.2 g, where the
small difference in mass from BMR reflects
differences in the birds measured). Two mea-
surements on different birds at the lowest
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temperature (-12.5°C) did not indicate an
expected low thermal conductance, but
both were measured in March during a time
of heavy molt, which could have compro-
mised their insulation; these two individuals
increased their oxygen consumption by 2.87

 

×

 

 BMR.

Body temperatures (T

 

b

 

) stayed nearly
constant (39.6 ± 0.9°C). Within the TNZ,
daytime and nighttime average T

 

b

 

 were in-
distinguishable, varying by only 0.05°C. Out
of a total of 121 metabolic experiments at
different air temperatures, only three values
for body temperature exceeded 41.0°C. The

 

Table 1. Allometric comparisons of basal metabolic rate (BMR) and thermal conductance (TC) of Eared Grebes.

 

N

 

a

 

Mass (g) Measured value

 

b

 

 Percentage of predicted values

Lasiewski

 

c

 

Aschoff

 

d

 

: 

 

α

 

Aschoff

 

d

 

: 

 

ρ

 

Reynolds & Lee

 

e

 

BMR 40 317 ± 51.3 1.212 ± 0.1195 129.8 110.8 137.9 129.0
TC 5; 8 309 ± 41.2 0.0502 ± 0.0036 109.7 84.9 149.7 NA

 

a

 

Number of birds: for TC number of birds followed by number of measurements.

 

b

 

BMR in mL O

 

2

 

/g·h; TC in mL O

 

2

 

/g·h·°C.

 

c

 

For BMR, Lasiewski and Dawson (1967); for TC, Lasiewski 

 

et al.

 

 (1967).

 

d

 

For BMR, Aschoff and Pohl (1970); for TC, Aschoff (1981); 

 

α

 

 and 

 

ρ

 

 are the active and resting circadian phases
of birds, for grebes daytime and nighttime, respectively.

 

e

 

Reynolds and Lee (1996).

Figure 1. Thermoregulatory profile for 42 Eared Grebes in 121 experiments. The San Diego (N = 20) and Mono
Lake (N = 22) measurements are noted separately; nighttime measures are filled symbols. All experiments below
the thermal neutral zone (TNZ) were on San Diego birds. Thermal conductance values of 0.0654 and 0.0501 mL
O2/g·h·°C are shown next to the metabolic lines that they describe. A conversion to SI units is provided, using a
conversion factor of 5.5 W/mL O2, assuming RQ = 0.71 in postabsorptive birds.



 

278 W

 

ATERBIRDS

 

highest value of 44.1°C was for a bird whose
metabolic rate (1.186 mL O

 

2

 

/g·h at air tem-
perature = 32.3°C) did not suggest a prob-
lem arising from overheating.

D

 

ISCUSSION

 

Eared Grebes and many other nonpasse-
rines fail to show the sizable circadian differ-
ence in metabolic rate first documented by
Aschoff and Pohl (1970), and discussed by
Ellis and Gabrielsen (2001). Although ther-
mal conductance increased with molt, we
could find no concomitant increase in BMR,
unlike Lindström 

 

et al.

 

 (1993) and Klaassen
(1995). This could be because most of our
metabolic experiments (all for the San Di-
ego birds) occurred in birds that were not
molting remiges. Schieltz and Murphy
(1997) reported that the White-crowned
Sparrow (

 

Zonotrichia leucophrys

 

) did not show
elevated metabolic rates if plumage replace-
ment is low or temperatures are high. Per-
haps because grebes are always in some stage
of body molt (Storer and Jehl 1985), any ad-
ditional cost associated with the main preba-
sic molt is too small to be detectable.

Because of its wide zone of thermoneu-
trality, the Eared Grebe is unlikely to be ther-
mally stressed at autumn staging areas. Heat
stress at Mono Lake is unlikely because air
temperatures rarely reached 28°C and the
birds can use the water, which never exceeds
22°C in the summer, as a heat sink. As nights
become longer and colder in late autumn,
the water cools appreciably, but by then
grebes are obese and highly buoyant. They
can also gain heat by sunbathing (Storer and
Jehl 1985; Jehl 1988) or reduce heat loss by
tucking their feet on their backs. Under ex-
treme conditions, they can increase their
heat production considerably as seen in the
two individuals at -12.5°C that increased
their oxygen consumption by 2.87 

 

×

 

 BMR.
That one grebe was able to maintain a low
metabolic rate at 1.2°C (see Fig. 1) suggests
that minimal thermal conductance might be
even lower under some circumstances.

By winter, Eared Grebes generally have
migrated south. However, if brine shrimp re-
main available, they will remain longer and a

few will attempt to overwinter; in one year,
many grebes stayed into early February (Jehl
1988). Conditions in the staging areas in late
autumn and winter must become even more
demanding, as winds accompany colder tem-
peratures in the air and water temperature
continues to drop. We were unable to dupli-
cate this combination of conditions in the
laboratory. However, metabolic measure-
ments of grebes sitting on water ranging
from 5°C to 24°C showed no unequivocal in-
fluence of water temperature on metabolic
rate (H. Ellis, unpubl.). We think this is prob-
ably the case with wild grebes as well, because
they remain obese until shortly before migra-
tion and accordingly have buoyancy, which
keeps them floating high. The fact that
Eared Grebes will remain on their staging ar-
ea into the winter, as long as prey are ade-
quate, argues that cold climate does not
dictate their distributions. The high cost of
migration in this species (18-33 

 

×

 

 BMR; Jehl

 

et al.

 

 2003) is more likely to discourage emi-
gration, even in the face of harsh climate, un-
til food requirements leave no other option.
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