
University of Dayton University of Dayton 

eCommons eCommons 

Biology Faculty Publications Department of Biology 

5-24-2019 

Hippo Signaling in Cancer: Lessons from Drosophila Models Hippo Signaling in Cancer: Lessons from Drosophila Models 

Kirti Snigdha 

Karishma Sanjay Gangwani 

Gauri Vijay Lapalikar 

Amit Singh (0000-0002-2962-2255) 

Madhuri Kango-Singh 

Follow this and additional works at: https://ecommons.udayton.edu/bio_fac_pub 

 Part of the Biology Commons, Biotechnology Commons, Cell Biology Commons, Genetics Commons, 

Microbiology Commons, and the Molecular Genetics Commons 

https://ecommons.udayton.edu/
https://ecommons.udayton.edu/bio_fac_pub
https://ecommons.udayton.edu/bio
https://ecommons.udayton.edu/bio_fac_pub?utm_source=ecommons.udayton.edu%2Fbio_fac_pub%2F248&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=ecommons.udayton.edu%2Fbio_fac_pub%2F248&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/111?utm_source=ecommons.udayton.edu%2Fbio_fac_pub%2F248&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/10?utm_source=ecommons.udayton.edu%2Fbio_fac_pub%2F248&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/29?utm_source=ecommons.udayton.edu%2Fbio_fac_pub%2F248&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/48?utm_source=ecommons.udayton.edu%2Fbio_fac_pub%2F248&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/31?utm_source=ecommons.udayton.edu%2Fbio_fac_pub%2F248&utm_medium=PDF&utm_campaign=PDFCoverPages


fcell-07-00085 May 22, 2019 Time: 18:12 # 1

REVIEW
published: 24 May 2019

doi: 10.3389/fcell.2019.00085

Edited by:
SrinivasVinod Saladi,

Harvard Medical School,
United States

Reviewed by:
Sirisha M. Cheedipudi,

University of Texas Health Science
Center at Houston, United States

Rizaldy Paz Scott,
Northwestern University,

United States

*Correspondence:
Madhuri Kango-Singh

mkangosingh1@udayton.edu;
kangosmz@notes.udayton.edu

Specialty section:
This article was submitted to

Signaling,
a section of the journal

Frontiers in Cell and Developmental
Biology

Received: 04 March 2019
Accepted: 03 May 2019
Published: 24 May 2019

Citation:
Snigdha K, Gangwani KS,
Lapalikar GV, Singh A and

Kango-Singh M (2019) Hippo
Signaling in Cancer: Lessons From

Drosophila Models.
Front. Cell Dev. Biol. 7:85.

doi: 10.3389/fcell.2019.00085

Hippo Signaling in Cancer: Lessons
From Drosophila Models
Kirti Snigdha1, Karishma Sanjay Gangwani1, Gauri Vijay Lapalikar2, Amit Singh1,3,4,5 and
Madhuri Kango-Singh1,3,4,5*

1 Department of Biology, University of Dayton, Dayton, OH, United States, 2 Department of Biochemistry and Biophysics,
Texas A&M University, College Station, TX, United States, 3 Pre-Medical Programs, University of Dayton, Dayton, OH,
United States, 4 Center for Tissue Regeneration and Engineering at Dayton, University of Dayton, Dayton, OH, United States,
5 Integrated Science and Engineering Center, University of Dayton, Dayton, OH, United States

Hippo pathway was initially identified through genetic screens for genes regulating organ
size in fruitflies. Recent studies have highlighted the role of Hippo signaling as a key
regulator of homeostasis, and in tumorigenesis. Hippo pathway is comprised of genes
that act as tumor suppressor genes like hippo (hpo) and warts (wts), and oncogenes
like yorkie (yki). YAP and TAZ are two related mammalian homologs of Drosophila
Yki that act as effectors of the Hippo pathway. Hippo signaling deficiency can cause
YAP- or TAZ-dependent oncogene addiction for cancer cells. YAP and TAZ are often
activated in human malignant cancers. These transcriptional regulators may initiate
tumorigenic changes in solid tumors by inducing cancer stem cells and proliferation,
culminating in metastasis and chemo-resistance. Given the complex mechanisms (e.g.,
of the cancer microenvironment, and the extrinsic and intrinsic cues) that overpower
YAP/TAZ inhibition, the molecular roles of the Hippo pathway in tumor growth and
progression remain poorly defined. Here we review recent findings from studies in whole
animal model organism like Drosophila on the role of Hippo signaling regarding its
connection to inflammation, tumor microenvironment, and other oncogenic signaling
in cancer growth and progression.

Keywords: Drosophila, hippo pathway, cell proliferation, cell death, cell-polarity, cancer

INTRODUCTION

Cancer is a complex genetic disease where cells divide uncontrollably and infiltrate normal cells
causing debilitating effects often leading to death (Balmain and Akhurst, 2004). Cancer cells activate
mechanisms that remove the normal checks on growth and promote tumor growth and survival
(Hanahan and Weinberg, 2000, 2011). The current standard of care is surgery, often followed by
radiation- or chemo-therapy for treating cancer. However, cancer cells show remarkable abilities
to evade immune-surveillance mechanisms and are often resistant to these therapies (Berns and
Bernards, 2012). A key question is what are the key cellular events that occur in early stages of
cancer? Further, what are the environmental or internal cues that trigger these changes? Although
these questions remain unresolved, the vast body of work has revealed the role of cellular signals
induced by oncogenic pathways in cancer growth and progression (Zhao et al., 2011). In addition,
the focus of such studies is to develop targeted therapies that are more effective and benefit the
patients. Specifically, oncogene activation induces signaling outputs that are unique, and cause
activation of effectors that promote uncontrolled proliferation of cancer cells (Ohsawa et al., 2014;
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Enomoto et al., 2015b). One such key effector is the YAP/Yki
transcriptional co-activator that acts downstream of the Hippo
pathway (Zhao et al., 2008a; Kango-Singh and Singh, 2009; Choi,
2018; Kim and Jho, 2018). In this review, we focus on the insights
provided by studies in the Drosophila model system, where
the pathway was initially identified, on the role of Hippo/Yki
signaling in cancer.

HIPPO SIGNALING IN Drosophila
AND MAMMALS

The regulation of growth through signaling pathways plays
a critical role in maintaining tissue homeostasis through the
regulation of key cellular processes like cell proliferation and
cell death. Signaling pathways comprise of cascade of regulatory
proteins that respond to stimulators like growth factors, and
influence changes in gene expression that control differentiation,
cell migration, cell–cell interaction, immunity, polarity, and
metabolism (Davis, 2000; Chen and Wang, 2002; Halder and
Johnson, 2011; Bejsovec, 2013; Kim and Jho, 2014, 2018).
Disruption of signaling pathways causes an imbalance in the
regulation of such mechanisms and leads to diseases such
as neuro/muscular degeneration, cancer, diabetes, etc. The
Hippo Pathway is a prime example of an important growth
regulatory pathway that coordinately controls cell proliferation
and survival to regulate organ size (Kango-Singh and Singh, 2009;
Kim and Jho, 2018).

The Hippo pathway is named after the “big-headed”
phenotype [reminiscent of Hippos] of mutants isolated from
genetic screens in flies (Figures 1A,A′). Once characterized, these
mutations were found to belong to three key genes, warts (wts
a.k.a. large tumor suppressors, lats), salvador (sav a.k.a. sharpei,
shrp) and hippo (hpo, a.k.a. Drosophila mammalian Ste-20 kinase,
dMst) (Justice et al., 1995; Xu et al., 1995; Kango-Singh et al.,
2002; Tapon et al., 2002; Harvey et al., 2003; Jia et al., 2003;
Pantalacci et al., 2003; Udan et al., 2003; Wu et al., 2003). Hpo
coded for a Serine Threonine kinase and was orthologous to the
Ste-20 kinases that were previously found to play an important
role in pheromone sensing and mating in yeast (S. cerevisiae)
(Creasy and Chernoff, 1995; Dan et al., 2001). Studies further
showed that the Hippo kinase functioned with Lats (or Wts)
another previously discovered Serine-Threonine kinase in flies
which is a Nuclear Dbf2-related (NDR) family kinase (Justice
et al., 1995; Xu et al., 1995). Hpo and Wts were also shown
to interact with Sav, a WW-domain containing adaptor protein
(Kango-Singh et al., 2002; Tapon et al., 2002). Interestingly, loss
of sav, hpo, or wts in somatic clones caused tissue overgrowths
(Figures 1A,A′) and extra interommatidial cells in the pupal
retina. The characterization of these phenotypic defects showed
that these genes possess the rare ability to promote proliferation
and suppress apoptosis simultaneously (Edgar, 2006). These early
discoveries lead to the birth of the Hippo pathway in 2003 as
a nascent network that is capable of simultaneously regulating
two key processes – cell proliferation and apoptosis, and plays
important role in maintaining homeostasis. The Hippo pathway
gained tremendous attention when Yorkie (Yki, Drosophila

homolog of mammalian YAP/TAZ) was identified in a yeast
two-hybrid screen for Wts binding protein (Huang et al., 2005).
YAP (Yes-Associated Protein) was identified in vertebrates much
before Yki was identified in the fruitfly (Sudol, 1994). With the
identification of these key components (Figures 1B, 2), it was
soon clear that the Hippo pathway is conserved in mammals,
plays a key role in development, and is misregulated in many
disease conditions.

YAP was initially discovered via its ability to associate with
the Src family member Yes, while its paralog transcriptional
coactivator with PDZ-binding motif (TAZ a.k.a. WW domain-
containing transcription regulator 1, WWTR1) as a novel 14-3-3
binding protein (Sudol, 1994; Kanai et al., 2000), and many
seemingly unconnected properties of YAP/TAZ were reported
(Figure 2). For example, studies showed that WW domain of
YAP can bind directly to proline-rich PPXY motifs in proteins
named WBP-1 and WBP-2, and this was the very first molecular
function ascribed to YAP (Chen and Sudol, 1995; Sudol et al.,
1995; Pirozzi et al., 1997; Wang et al., 2009; Sudol, 2010).
Other subsequent studies showed that YAP and TAZ have
transcriptional co-activator activity via association with nuclear
DNA binding transcription factors like TEAD p73, p53BP-2,
SMAD7, ERBB4, PEBP2α, and RUNX2 (Strano et al., 2001;
Vassilev et al., 2001; Hong and Guan, 2012; Misra and Irvine,
2018). Yet another report showed that majority of the YAP/TAZ
proteins were sequestered in the cytoplasm in complexes with 14-
3-3 proteins that directed them for proteasomal degradation (Ma
et al., 2018). Nonetheless, YAP/TAZ functions were not properly
understood until the paramount discovery of Yki and its different
regulatory mechanisms, which had a great impact on the field of
Hippo signaling.

Yki overexpression caused overgrowth phenotypes similar
to sav, hpo, and wts loss of function suggesting that Yki is
an oncogene. Biochemical and genetic studies in Drosophila
revealed that Yki is required for normal tissue growth and
its activity is inhibited by Wts-mediated phosphorylation (Wu
et al., 2003; Dong et al., 2007; Zhao et al., 2008b). Furthermore,
the overgrowth phenotypes associated with inactivation of
tumor suppressor genes (sav, hpo, or wts) were diminished by
loss of yki, suggesting that Yki is key effector of the Hippo
pathway (Wu et al., 2003; Dong et al., 2007; Zhao et al.,
2008b). The Drosophila Yki and its mammalian counterpart YAP
are WW-domain proteins that share 45% sequence similarity
(Wang et al., 2009; Sudol, 2010; Chan et al., 2011; Salah and
Aqeilan, 2011), and are regulated by phosphate dependent and
independent mechanisms (Oh and Irvine, 2009; Oh et al., 2009;
Meng et al., 2016).

Regulation of Yki/YAP by
Phosphorylation
Yki/YAP are regulated by the action of the kinase cascade
comprised of the Hpo and Wts/Lats kinases (Figures 1B, 2),
and their cognate adaptor proteins Sav and Mob as a Tumor
Suppressor (Mats) (Oh and Irvine, 2009; Chen et al., 2019). The
upstream kinase Hpo phosphorylates Sav, and the activated Hpo-
Sav complex in turn phosphorylates and activates Mats and the
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FIGURE 1 | The Drosophila Hippo pathway Network. (A,A′) Compared to Wild type (A), loss of function of Hippo pathway genes wtsX1 (eyFLP; FRT82B cl
w+/FRT82B wtsX1) causes significant overgrowth of the Drosophila head. (A,B) Schematic diagram of the Hippo pathway in Drosophila. Cells are shown with
Sub-apical region and basolateral junctions. Hippo pathway components in Drosophila are shown in different colors, with pointed and blunt arrowheads indicating
activating and inhibitory interactions, respectively. Continuous lines indicate known interactions, whereas dashed lines indicate unknown mechanisms. See text for
further details. Crb, Crumbs; Dco, Disks overgrown; Dlg, Disks large; Ds, Dachsous; Ex, Expanded; Hth, Homothorax; Jub, Ajuba; Lgl, Lethal giant larvae; Mer,
Merlin; Mats, Mob as a tumor suppressor; Rassf, Ras-associated factor; Sav, Salvador; Scrib, Scribble; Sd, Scalloped; TEA domain protein; Tsh, Teashirt; Yki,
Yorkie; hpo, Hippo; wts, warts; aPKC, atypical protein kinase C; Wbp2, WW domain binding protein 2; Mop, Myopic; Zyx, Zyxin; STRIPAK, striatin-interacting
phosphatase and kinase; Mad, Mothers against Decapentaplegic; Tgi, Tondu-domain containing growth inhibitor; Ft, Fat; Lft, Lowfat.

FIGURE 2 | Domain structure of Hippo pathway proteins. The domain
structure of Hippo pathway components is shown along with the length of
each protein (indicated in parentheses). FERM, Kinase, WW, TEAD, PPXY.
PPAY, SARAH, and C2-domains are the prominent domains through which
major protein-protein interactions occur in the Hippo pathway.

downstream kinase Wts (Udan et al., 2003; Wu et al., 2003;
Huang et al., 2005; Lai et al., 2005; Dong et al., 2007; Wei et al.,
2007; Zhao et al., 2007; Oka et al., 2008; Avruch et al., 2012). The
activated Wts-Mats complex phosphorylates Yki that controls its
activity and nuclear availability (Figures 1B, 2) (Edgar, 2006; Wei
et al., 2007; Praskova et al., 2008). In Drosophila, Wts regulates
Yki by phosphorylating it at site Ser168 (Dong et al., 2007; Hao
et al., 2008; Oh and Irvine, 2009). This phosphorylation leads
to binding of the 14-3-3 proteins which decreases the nuclear
localization of Yki (Oh and Irvine, 2008; Zhang J. et al., 2008;
Zhao et al., 2008b; Ren et al., 2010). Growth inhibitory proteins
like dRASSF1 (Ras-associated domain family) were identified
as interactors of Hpo/MST kinases and Sav/hWW45. RASSF1
competes with Sav for its binding to Hpo through its SARAH
domain, and impacts Hpo activity (Colombani et al., 2006;
Polesello et al., 2006; Donninger et al., 2011). Wts activity is
negatively impacted by the actions of the LIM domain containing
proteins Ajuba (Jub), Daschous (Dachs) and Zyxin (Zyx), which
affect Wts function by relocalization of Wts to the junctions, or
by downregulation of Wts or Expanded levels (Das Thakur et al.,
2010; Rauskolb et al., 2011; Enomoto et al., 2015a; Gaspar et al.,
2015). Similarly, in mammals (Table 1) activation of Hippo or
mammalian MST1/2 kinase is dependent on phosphorylation by
the TAO family kinases (TAO1-3) at Thr180/183, respectively
(Boggiano et al., 2011; Poon et al., 2011). This phosphorylation
event is not only essential for increased catalytic activity but also
in the case of MST1/2, in the formation of complexes with the
adaptor protein WW-domain containing 1 (SAV1), and Mps One
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TABLE 1 | Drosophila and Mammalian Hippo pathway components.

Drosophila Mammals Conserved domains

Hippo MST1/2 Ste20 Ser/Thr kinase and SARAH domains

Warts LATS1/2 NDR Ser/Thr kinase domain

Salvador WW45/SAV1/WWP4 WW and SARAH

Mats MOBKL1 A and B Cys2-His2 zinc-binding site/Mob1/phocein domain

Yorkie YAP/TAZ WW/PDZ and TEAD binding domain

Scalloped TEAD 1-4 transcription factors TEA/ATTS and Yki/YAP-binding domains

Merlin NF2 FERM domain

Kibra WWC1/WWC2 WW and C2 domains

Expanded FRMD6 or Willin (human expanded) FERM domain

Tao-1 TAO 1-3 Protein kinase domain

Crumbs CRB 1-3 EGF like and Laminin G domains, PDZ and FERM binding motifs

Lethal giant larvae Lethal Giant Larvae 1-2 LGL2 domain

aPKC aPKCλ, aPKCς PKC kinase, PB1 and C1 domains

Mop His domain phosphotyrosine phosphatase (HDPTP) PTP motifs

dJub Ajuba, LIM proteins/LIMD1/WTIP LIM domains

dZyx or Zyx102 Zyxin C-terminal LIM domains

Fat Fat 1-4/Fat-j EGF-like, Laminin G and Cadherin repeat domains

Daschsous Dchs 1/2 Cadherin repeat domain

Disk overgrown CK1δ, CK1ε Ser/Thr kinase domain

Low fat Lix1, Lix1L Unknown

Scribble Scribble PDZ domains

Disks large Disks Large L27/PDZ/SH3 domains

dMnt Mad Basic helix-loop-helix-zipper, Sin-interacting domain

Homothorax MEIS1 HM (Homothorax-Meis) domain and homeodomain

Tea-shirt TSH3 Zinc finger domain

Pat J PAT J Common L27 domain

Par 1/6 PAR1/6 PDZ domains

dRASSF RASSF1-6 Ras association and SARAH domains

Stardust PALS-1/Mpp5 L27/PDZ/SH3 domain and guanylate kinase like domain

Tgi VGLL4 TDU domains

dSTRIPAK PP2A STRIPAK PP2A PP2A Ser/Thr phosphatase complex

Binder kinase activator-like 1A and 1B (MOB1A/B or collectively,
MOB1) (Hong and Guan, 2012; Liu et al., 2012). The MST/Sav
complex phosphorylates large tumor suppressor 1/2 (LATS1/2).
LATS1/2, in turn, binds MOB1/2 and phosphorylates YAP as
well as its paralog, TAZ. Phosphorylated forms of Yki/YAP/TAZ
associate with 14-3-3 and are sequestered in the cytoplasm. This
prevents them from entering the nucleus and interacting with
transcription factors (i.e., TEAD family members and others)
and regulating downstream gene targets (Meng et al., 2016; Kim
and Jho, 2018; Misra and Irvine, 2018; Plouffe et al., 2018). The
Drosophila Hippo pathway components and their mammalian
counterparts with respective conserved domains are summarized
in Table 1 (Roh et al., 2002; Wu et al., 2003; Albertson et al.,
2004; Katoh and Katoh, 2004; Praskova et al., 2004; Wang et al.,
2004; Loo et al., 2005; Callus et al., 2006; Gallagher and Knoblich,
2006; Willecke et al., 2006; Hao et al., 2008; Mao et al., 2009;
Richter et al., 2009; Hyman-Walsh et al., 2010; Yu et al., 2010;
Boggiano et al., 2011; Hergovich, 2011; Guo et al., 2013; Jansen
et al., 2015; Schimizzi and Longmore, 2015; Sen et al., 2015;
Jagannathan et al., 2016; Koch et al., 2016; Simon et al., 2017;
Ghosh et al., 2018).

Recent studies have discovered multiple phosphorylation sites
on Yki/YAP. Whilst Ser168/Ser127 sites are the most important
for Yki/Yap regulation, other crucial Wts/Lats phosphorylation
sites exist. Ser111 and Ser250 are involved in Yki regulation.
Mutations in these sites has shown to reduce phosphorylation of
Ser168, thus affecting the regulation of Yki (Oh and Irvine, 2008,
2009; Ren et al., 2010). Studies have also found four additional
YAP phosphorylation sites that might influence YAP activity
(Ser61, Ser109, Ser164, and Ser381) (Zhao et al., 2007, 2008b; Hao
et al., 2008). Though mutation of all five sites in the YAP protein
shows stronger YAP activation, Ser381 is a key amino acid that
plays a critical role in YAP activation (Zhao et al., 2007, 2010).

Interestingly, recently additional phosphorylation sites were
discovered in Yki/YAP. These include two sites in Yki (Ser169 and
Ser172) and five additional sites in Yap (Thr63, Ser138, Ser281,
Ser351, and Ser384). In YAP, Ser384 is phosphorylated by Casein
Kinase I (CK I) which recruits ubiquitin ligase to negatively
regulate YAP via the phosphodegron DSGXS (Zhao et al., 2007,
2010; Feng and Irvine, 2009; Sopko et al., 2009). Although a
similar phosphodegron is not conserved in Yki, Disks overgrown
(Dco, Drosphila CK1δ/ε ortholog) inhibits Yki that supports an
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evolutionarily conserved Yki/YAP-CKI regulatory axis, although
different mechanisms may be employed between Drosophila and
mammals. Besides CK I, a nuclear kinase called PRP4K negatively
regulates Yki/YAP by phosphorylation of Yki/YAP in the nucleus
to prevent its nuclear accumulation (Cho et al., 2018). This
phosphorylation occurs on subset of Wts/LATS phosphorylation
sites, inhibits binding of Yki/YAP to Sd/TEAD and exports Yki
back to the cytoplasm. Yki was recently shown to shuttle between
the cytoplasm and nucleus in response to upstream stimuli.
Using live multiphoton microscopy to assess Yki localization,
it was recently reported that Yki rapidly shuttles between the
cytoplasm and nucleus in epithelial organs. In wts mutant cells,
the downregulation of Hippo signaling affects the rate of nuclear
import of Yki. Yki localization is also linked to the cell cycle
where Yki remains cytoplasmic during interphase but during
mitosis Yki is nuclear and chromatin enriched in Sd-dependent
manner (Manning et al., 2018). Together, these interactions
control aberrant gene regulation by prolonged accumulation of
Yki in the nucleus, and may constitute a fail-safe mechanism for
restricting Yki/YAP activity. Yet another regulatory mechanism
causes YAP to switch from an oncogene to a tumor suppressor
through phosphorylation by the non-receptor tyrosine kinase
Abelson murine leukemia viral oncogene (c-Abl) under DNA
damage condition. This leads to the association of YAP with
the transcription factor p73. P73 is a paralog of p53 involved
in DNA damage response. Phosphorylation of YAP by c-Abl
reduces its ability to bind TEAD but promotes binding to p73
and promotes activation of pro-apoptotic genes (Gong et al.,
1999; Tsai and Yuan, 2003; Levy et al., 2008; Keshet et al., 2015).
However, phosphorylation of Yki is not an absolute determinant
of its localization or stability, as phosphorylation independent
regulation of Yki is also reported.

Phosphorylation Independent Regulation
of Yki/YAP
These interactions occur via the association of the WW-domains
and the PPxY motifs found in several components of the Hippo
signaling pathway (Sudol and Harvey, 2010; Salah and Aqeilan,
2011). These interactions occur at several points within the
signaling cascade (Figures 1B, 2). Within the kinase cascade, both
Hpo [Mst1/2] and Wts [Lats1/2] contain PPxY motif whereas
Sav/hWW45 is a WW-domain containing protein. In terms of the
pathways effectors, Yki/YAP [TAZ] are WW-domain containing
proteins, and WW domains are important for the transcriptional
coactivation function of Yki/YAP. Amongst the upstream
regulators, Kibra and Itch are WW-domain containing proteins,
whereas the PPxY motif is found in flies and mammalian forms
of Expanded, Myopic, Dachsous, Fat, Crumbs, and WBP2. Other
PPxY containing proteins that interact to regulate the Hippo
pathway include Angiomotin, Angiomotin-Like, p73, ASPP1/2,
ERB-B4, SMAD1, RUNX, and DVL2 (Salah and Aqeilan, 2011).
The WW-domain of YAP also interacts with the PPPY motif of
the p73 (Strano et al., 2005). In Drosophila, direct interaction of
Yki via its WW-domains with the PPxY motif of Ex, Wts and
Hpo regulate pathway activity by sequestering Yki in protein
complexes by the apical membrane (Badouel and McNeill, 2009;

Badouel et al., 2009; Oh et al., 2009). In phosphorylation-
independent regulation of Yki, overexpression of PPxY motif of
Ex and Wts suppressed Yki mediated transcriptional activation
regardless of mutation of the Wts phosphorylation site on Yki
(Oh and Irvine, 2009; Oh et al., 2009; Ren et al., 2010). Wpb2
and Myopic (Mop) are two other proteins that contain the
PPxY motif which interact with the WW-domains on Yki and
aid in regulation of the Hippo pathway (Gilbert et al., 2011;
Zhang et al., 2011). Mop, when overexpressed, regulates Yki
activity by tethering it to the cytoplasm. Thus, the WW-domain-
PPxY motif interactions are used frequently by the constituents
of the Hippo pathway, thus playing an important role in its
regulation. The unusually high number of WW- and PPxY-motif
containing proteins in the Hippo pathway (Figure 2) suggests
a modular and iterative mechanism of regulation of pathway
activity (Salah and Aqeilan, 2011).

Yki/YAP/TAZ Function With DNA-Binding
Proteins
Yki/YAP/TAZ are transcriptional co-activator proteins without
their own DNA binding domain. Thus, Yki/YAP/TAZ works
in conjunction with other DNA-binding transcription factors
(Figure 1B). Multiple lines of evidence revealed that Scalloped
(Sd)/TEAD, is the major binding partner of Yki/YAP/TAZ in
regulating gene expression and tissue growth (Goulev et al.,
2008; Wu et al., 2008; Zhang L. et al., 2008). A few other
DNA partners have been discovered for Yki/YAP/TAZ. For
example, in Drosophila Yki can bind Homothorax (Hth) which
works in a complex with two other DNA-binding proteins
called the Extradenticle and Teashirt (Alarcon et al., 2009;
Peng et al., 2009; Oh and Irvine, 2011; Rauskolb et al., 2011).
These interactions regulate transcription of target genes that
regulate cell cycle progression (e.g., cyclin E, A, B, and D), cell
survival [Drosophila inhibitor of apoptosis protein 1 (Diap1,
Survivin, Xiap1)], and cytoskeletal architecture (F-actin, Merlin,
Expanded). Yki/YAP/TAZ can interact with other TGFβ signaling
pathway DNA binding factors like Mothers against Dpp (Mad) in
Drosophila, or SMAD1-4 and 7 in mammals (Padgett et al., 1998;
Ferrigno et al., 2002; Varelas et al., 2008; Alarcon et al., 2009). The
interaction of these binding factors with Yki/YAP/TAZ influences
cell proliferation, development, and homeostasis.

Sd/Yki Dependent Events
Normally the Yki/Sd complexes induce expression of target genes
(ex, diap1, etc.), however, the Drosophila E2F1 impedes the
binding of Yki to Sd, which results in release of Yki from Sd
and suppression of target gene expression (Zhang et al., 2017).
These studies provided new insights on how Yki/Sd dependent
functions can be impacted by the action of other pathways like
Rb/E2F that influence formation of the Yki/Sd complexes (Zhang
et al., 2017). The emergence of these non-canonical inputs into
Hippo signaling along with the complexities of transcriptional
regulation of Yki target genes by more than one pathway (e.g.,
regulation of diap1 by JNK, Yki, and JAK-STAT pathways) lead
to the development of genetic strategies/tools that will allow
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confirmation of Yki/Sd dependent events using epistasis based
approaches (Yu and Pan, 2018).

Hippo Pathway in Mechanotransduction
The Hippo pathway plays a role in mechanotransduction, as Yki
activity is affected in response to the mechanical stretch forces
in both mammals and flies (Fletcher et al., 2018). In mammals,
mechanical forces acting via Integrin adhesion and actin
cytoskeleton can induce YAP/TAZ nuclear translocation and
activation of target genes leading to cell proliferation. Although
Integrins do not seem to be involved in mechanotransduction
and Yki mediated induction of cell proliferation in flies, other
mechanisms that respond to biomechanical stretch forces have
been identified. For example, the tension-dependent recruitment
of Ajuba family proteins by a-catenin to the adherens junctions
affect Yki activity by inactivation of the Wts kinase. Thus,
a-catenin acts as a mechanotransducer that affects regulation
of Yki activity (Alegot et al., 2019). Mechanical forces can also
activate Yki in response to stretching of the apical domain which
affects concentration of Crumbs, Expanded, Merlin and Kibra,
and reduced the apical Hippo kinase dimerization (Fletcher
et al., 2018). Recently, transcription independent function of
Yki was shown where Yki accumulation at the cell cortex in
the apical junctional regions promotes activation of myosin
through Stretchin-Mlck, a myosin regulatory light chain kinase
(Xu et al., 2018).

UPSTREAM REGULATORS OF HIPPO
PATHWAY

Several other components that influence cell contact/junction,
cell polarity, and stress induced response were identified as
regulators of the Hippo pathway from the receptor to the nucleus
in a cell intrinsic manner (Figures 1B, 2).

Cell Contact/Junction
These comprise the FERM- (4.1, Ezrin, Radixin, and Moesin)
domain proteins Merlin (Mer) and Expanded (Ex), the WW-
and C2-domain containing protein Kibra that form a complex
in the subapical region and respond to signals from the
apical transmembrane protein Crumbs (Crb) (Figures 1B, 2)
(Hamaratoglu et al., 2006). Loss of function of these genes
caused overgrowth phenotypes in somatic clones, suggesting that
these upstream components acted as activators of the Hippo
pathway. Mer and Ex associate with each other, and are partially
redundant genes. Simultaneous loss of mer and ex show defects
that resemble effects of loss of wts or hpo, or overexpression of
Yki; and activate Yki and its transcriptional targets (Hamaratoglu
et al., 2006, 2009; Chen et al., 2010). Overexpression of
mammalian Merlin homolog, Neurofibromatosis Type 2 (NF2)
can activate Lats and cause inhibition of YAP activity (Zhao
et al., 2007; Zhang et al., 2009). A third component called Kibra,
associates with Mer and Ex, and co-localizes to form a complex
that aids in the phosphorylation of Wts and Hpo (Baumgartner
et al., 2010; Genevet et al., 2010; Yu et al., 2010). These three
members form protein complexes that influence pathway activity.

For example, Mer and Kibra can bind to Sav, whilst Ex binds to
Hpo, and Kibra binds to Wts (Baumgartner et al., 2010; Genevet
et al., 2010; Yu et al., 2010). In addition to binding to the Hippo
kinase cascade, Kibra can also bind to Yki, thus keeping Yki in the
cytoplasm (Badouel and McNeill, 2009; Badouel et al., 2009; Oh
et al., 2009). Drosophila Crumbs (Crb), a cell surface regulator for
the Hippo pathway, has an intracellular FERM-binding domain
that binds to Ex and controls its stability and localization, thus
impacting its activity on Hpo kinases and Yki (Chen et al., 2010;
Grzeschik et al., 2010; Ling et al., 2010; Robinson et al., 2010;
Varelas et al., 2010). A second group of cell-junction related
upstream regulators of the Hippo pathway is comprised of the
proto-cadherin Fat (Ft) and its interacting components like Dco
and Lowfat that negatively regulate the atypical Myosin Dachs
and Zyxin to negatively regulate Wts (Bennett and Harvey,
2006; Cho et al., 2006; Silva et al., 2006; Willecke et al., 2006;
Baumgartner et al., 2010; Chen et al., 2010; Rauskolb et al., 2011;
Matakatsu and Blair, 2012; Verghese et al., 2012a; Choi, 2018).
This non-canonical branch of the Hippo pathway ultimately
influences the regulation of Yki by the Wts kinase (Cho et al.,
2006; Choi, 2018). Together, these components provided the
framework for signal transduction from the membrane to the
kinase cascade within the cell, a key intracellular signal relay
mechanism in Hippo pathway.

Cell Polarity
Cell polarity regulating complexes have emerged as major
upstream interactors of Hippo pathway that control growth by
regulating Yki activity (Figure 1B) (Verghese et al., 2012a).
Overexpression of Atypical Protein Kinase C (aPKC), which
belongs to the Par apical complex, can induce Yki activity
and tissue proliferation (Grzeschik et al., 2010; Parsons et al.,
2010; Sun and Irvine, 2011). One mechanism is the activation
of Jun N-terminal kinase (JNK) which in conjunction with
aPKC regulates Yki activity in a context dependent manner
(Karpowicz et al., 2010; Staley and Irvine, 2010; Sun and Irvine,
2011). Another complex known as the Scribble (Scrib) complex
is antagonistic to the Par apical complex (Leong et al., 2009;
Skouloudaki et al., 2009; Verghese et al., 2012a). Reduction in
scrib leads to loss of polarity and cell adhesion, and causes tumor
growth in part due to activation of Yki (Verghese et al., 2012a;
Waghmare and Kango-Singh, 2016). Although some gaps remain
in how exactly each of these inputs feeds into the core kinase
cascade (Figure 1B), the identification of these interactions lead
to recognition of the Hippo network and how different inputs are
integrated into the Hippo pathway.

Hippo Pathway and Apoptosis
Hippo overexpression was shown to induce apoptosis by activation
of the proapoptotic gene head involution defective (hid) (Udan
et al., 2003). Work from our lab showed that Hpo gain of function
induces Dronc (Drosophila Caspase-9 homolog) expression and
downregulation of dronc can inactivate Hpo-mediated apoptosis
(Verghese et al., 2012b). Key regulators of apoptosis include
p53 (Dmp53 in Drosophila melanogaster) and its homologs P63
and P73 that comprise members of the p53 family of tumor
suppressor genes. In Drosophila, p53 is activated in response
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to DNA damage or other stress, and induces transcription of
proapoptotic genes ultimately causing cell death. Hippo pathway
is activated in response to stress induced by ionizing radiation in
a Dmp53 dependent manner (Colombani et al., 2006). Further, IR
mediated cell death is reduced in cells mutant for hpo, wts, sav, or
Dmp53. Furthermore, pro-apoptotic gene reaper (rpr) is regulated
by Yki and dmp53; and is shown to trigger apoptosis via activation
of the Hippo pathway (Shlevkov and Morata, 2012). Together
these studies showed that Hpo activation is required for cell
death in response to IR or ectopic expression of Dmp53. In other
studies, LATS mediated phosphorylation of ASPP1 was shown
to cause association of ASPP1 and p53, and promote expression
of pro-apoptotic genes like reaper, hid, grim, and sickle (Zhang
and Cohen, 2013). Another mechanism by which Hippo pathway
affects apoptosis is via miRNA mediated translational control of
apoptosis causing genes. For instance, Yki regulates miR2 family
miRNAs to regulate the translation of reaper (Thermann and
Hentze, 2007), or the bantam miRNA to control translation of
hid (Brennecke et al., 2003; Nolo et al., 2006; Thompson and
Cohen, 2006). Anoikis is a special type of cell death induced
due to detachment of cells from the extracellular matrix (ECM).
Resistance to anoikis is a hallmark of cancer. Cell detachment
activates the Hippo pathway kinases Lats1/2 and leads to YAP
phosphorylation and inhibition. In contrast, in cancer cells with
deregulated Hippo pathway, anoikis is restored by knockdown of
YAP/TAZ (Zhao et al., 2012). Overall, the Hippo pathway plays
a role in regulating developmental apoptosis, anoikis, and other
cellular interactions in response to stress (e.g., cell competition)
that ultimately trigger cell death.

HIPPO PATHWAY AND Drosophila
CANCER MODELS

Drosophila with its rich repository of mutant genes has played
a central role in identifying genes underlying cancer, e.g.,
lethal(2) giant larva (lgl), and disks-large (dlg) represent the
earliest polarity mutants showed dramatic effects on growth,
invasion and malignant metastasis (Gateff and Schneiderman,
1969; Bryant and Schubiger, 1971; Gateff, 1978). Since then, a
large array of oncogenes and tumor suppressor genes have been
identified in Drosophila. In addition, the powerful genetic toolkit
in Drosophila has played a central role in developing techniques
that allow generation of clonal patches of tumors by loss- or gain-
of-function of tumor suppressor genes or oncogenes, or using
the Mosaic Analysis with Repressible Cell Marker (MARCM)
technique which allows for expression of genes in somatic clones
marked positively by reporter genes like GFP (Lee and Luo, 2001).
The MARCM technique allows for simultaneous manipulation of
two or more genes to generate complex genotypes. For example,
mosaic clones can be induced for loss of function of a tumor
suppressor genes and in the same cells an oncogene or cell cycle
regulator can be overexpressed (Waghmare and Kango-Singh,
2016). These clonal tumors in developing Drosophila tissues like
imaginal disks, gut, muscles, blood cells, ovaries, or CNS can be
studied for changes in cell–cell interactions, signaling and gene
expression, and the identification of inhibitory drugs (Figure 3).

ONCOGENIC COOPERATION-MODELS
FOR CELL–CELL INTERACTIONS,
TUMOR SIGNALING, AND ALTERED
GENE EXPRESSION

The first mosaic cancer models in Drosophila were reported when
activation of oncogenic Ras or Notch was combined with loss of
polarity mutants in mosaic clones in imaginal disks (Brumby and
Richardson, 2003). These RasV12 scrib- or NAct scrib- MARCM
clones showed remarkable properties like increased proliferation,
reduced apoptosis, and key changes linked to tumor invasion and
metastasis. Using similar approaches, a genetic mosaic screen was
conducted to identify metastasis causing genes in flies (Pagliarini
and Xu, 2003). These studies identified second site mutations
that cooperated with activated Ras to cause tumorigenesis. The
development of these epithelial tumor models opened up the field
for studying the step-wise progression of cancer especially the
initial changes underlying the transformation of cells, and the
resulting changes in cell behavior and gene expression. Over the
last 15 years the oncogenic cooperation models (RasV12 scrib−)
have resulted in an improved understanding of the addiction to
Yki activation in cancer cells (Ma et al., 2018), the interaction
of Yki with other signaling pathways (Zecca and Struhl, 2010;
Sun and Irvine, 2013; Enomoto et al., 2015a; Piersma et al.,
2015), and ectopic activation of network of transcription factors
(Kulshammer et al., 2015; Atkins et al., 2016).

Yki Addiction in Cancer Cells
The epithelial tumor models of oncogenic cooperation which
involved activation of oncogenes in polarity deficient cells (e.g.,
RasV12 scrib−) result in increased Yki activity which is required
for aggressive tumor growth (Brumby and Richardson, 2003;
Uhlirova et al., 2005; Suijkerbuijk et al., 2016). Similarly, models
of intestinal adenomas (APC−/− cells) show increased Yki
activity that promotes tissue growth (Hall et al., 2010; Chen
L. et al., 2012; Chen C.L. et al., 2012; Suijkerbuijk et al.,
2016). Drosophila intestinal stem cell tumors (ISC) induced by
Notch suppression cause displacement of enterocytes from the
epithelium and induce increased Yki activity which promotes
tumor growth (Patel et al., 2015). Other cancer models in several
Drosophila tissues or cell types also revealed a tendency to
elevate Yki expression and activity. Examples of such models
include intestinal malignancies (Chen L. et al., 2012; Meng et al.,
2016), melanotic hematopoietic tumors caused by activation of
Hopscotch (Hop) the Drosophila Janus Kinase (JAK) (Anderson
et al., 2017), and ovarian cancer (Hall et al., 2010). Recently,
Yki was shown to cooperate with microRNA mir8 and cause
neoplastic tumors (Sander et al., 2018). In a separate study, cell
competition, a key cell–cell interaction mechanism that compares
relative fitness of cells was shown to act as a tumor suppressor
mechanism that regulates Yki activity. Cells where relative
Yki activity levels are low (e.g., scrib−/− cells) are eliminated
by competition mediated apoptosis, however, elevation of Yki
activity is sufficient to induce neoplastic growth in such cells (e.g.,
Yki, scrib−/− cells) (Chen C.L. et al., 2012). Using Drosophila
cancer models the high nutritional demands of activated Ras/Src
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FIGURE 3 | Drosophila cancer models. (A) Cartoon showing various larval organs/cells in which Drosophila cancer models have been developed. The many tissue
specific manipulations possible in Drosophila have generated tissue specific tumor models like epithelial tumors, glioma, hematopoietic tumors, intestinal tumors,
and germ-cell tumors. Examples of some models are shown in (B–D). (B,B′) show confocal images of GFP marked glial cells in normal versus a glioma brain model.
Note the enlarged brain lobes and increased number of GFP expressing glial cells. (C–D′) Epithelial tumors modeled in imaginal disks are shown. Panels show a
comparison of a normal eye disk (C) with a disk carrying GFP labeled tumors (C′) caused by overexpression of oncogenic Ras in polarity deficient scribble mutant
cells (RasV12, scrib−/−) induced by MARCM technique. (D,D′) Wild type wing imaginal disk showing a stripe of GFP expression in the patched-GAL4 domain
(ptcGAL4>UASGFP) is compared to overgrowths caused by overexpression of the activated form of Hippo pathway effector Yki (ptcGAL4>UASGFP, UASYki3SA).

cancer cells revealed interesting links between high sugar diet
(obesity), cancer growth and downregulation of Hippo pathway
(Hirabayashi et al., 2013; Hirabayashi and Cagan, 2015). This
study revealed that Ras/Src transformed cells are sensitive to
upstream Hippo signals, and that Yki dependent signaling
through activation of the Salt Inducible Kinase (SIK) is a key feed-
forward mechanism for evasion of insulin resistance and tumor
growth in diet-induced obesity and cancer.

A large body of work in mammalian models has provided
evidences for YAP/TAZ addiction in cancer cells, and increased

YAP activity and expression is associated with advanced stages
of cancer progression and poor prognosis. Several human cancer
cells show increased nuclear translocation of the YAP protein
indicating the suppression of the Hippo pathway. Similarly, in
breast cancer patient samples, elevated expression of YAP/TAZ
has been found and associated with the poor prognosis, stem
cell and metastasis. Multiple Ankyrin repeats Single KH domain
protein (Mask) was shown to be elevated in breast cancer
samples, and MASK promoted Yki expression and is required
for full activity of YAP/TEAD. Overexpression of YAP was
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sufficient to transform normal ovarian cancer cells and induce
tumorigenesis in athymic nude mice (Li et al., 2017). These
studies found that Hippo pathway and ERBB signaling pathway
to drive the ovarian tumor initiation and progression. In patient
samples and in preclinical Drosophila models, Arrestin-related
domain-containing protein-3 (ARRDC3) was downregulated
in the colorectal cancer specimens. ARRDC3 promoted YAP
degradation, increased drug sensitivity of the tumor cells and
was proposed as a potential drug target (Shen et al., 2018).
In another study, loss of Mst1/2 or conditional overexpression
of YAP in response to bile acid induced injury in liver cells
was shown to cause Hepatocellular carcinoma (HCC) in mice
models. However, recent studies also show that yap/taz mutant
mice can also develop liver adenomas possibly by creating an
environment that mimics chronic liver injury. Liver damage
and associated conditions like liver fibrosis and cirrhosis is
known to create tumor-promoting microenvironment formed
by chronic inflammation, and leads to activation of Hippo/YAP
and other signaling pathways, ultimately causing hepatocellular
carcinoma (Piersma et al., 2015; Kodama et al., 2018; Lu
et al., 2018). Evidence supports the role of Hippo signaling
transcriptional co-activator TAZ in promoting Glioma, a primary
brain tumor, through transition of glioma stem cells (GSCs)
to the Mesenchymal type (MES) (Bhat et al., 2011; Waghmare
et al., 2014). These transitions are marked by transition from
proneural (PN) gene expression profile to mesenchymal (MES) –
a signature linked to glioma recurrence and therapy resistance.
Recently, the glycoprotein CD109 was shown to associate with
many cancers including GBM; and CD109 and YAP/TAZ are
known to regulate some overlapping biological pathways in
cancer. Using mammalian and Drosophila glioma models it was
shown that CD109 (Tep 1 in Drosophila) regulates YAP/TAZ
transcriptional activity via a conserved pathway. These studies
propose that the conserved regulation of YAP/TAZ pathways by
CD109 could be a therapeutic target in GBM (Minata et al., 2019).
In summary, increased Yki/YAP activity resulting from feedback
loops or overexpression of Yki/YAP is frequently associated with
aggressive tumorigenesis. Further, both in flies and mammalian
models, addiction to Yki is a key property of cancer cells.

INTERACTION OF Yki WITH OTHER
SIGNALING PATHWAYS DURING
TUMOR PROGRESSION

Drosophila cancer models revealed that a complex cross-talk
between Hippo effector Yki and other signaling pathways is
required for tumor growth and progression. In the oncogenic
cooperation model where activated Ras oncogene is expressed
in polarity deficient cells (RasV12; scrib−), the Ras-MAPK
pathway is activated downstream of Ras (Doggett et al., 2011;
Enomoto et al., 2015b). In addition, several signaling pathways
are induced during tumorigenesis (Sanchez-Vega et al., 2018).
Studies in the RasV12; scrib− metastasis model have shown
interaction with EGFR, JNK, Wingless, JAK-STAT, TNF, TGFb,
microRNAs, GPCRs (G-proteins), which are briefly described in
the sections below.

Hippo and EGFR-Ras-Raf-MAPK
Pathway
Activated Ras (RasV12/ or other KRAS/BRAF mutations) is
found in one-fifth of all cancers, and is associated with
activation and amplification in EGFR and its downstream
effectors. Studies in Drosophila and other model systems showed
that hyperactivation of Ras causes only mild over-proliferation
or hyperplasia. However, oncogenic Ras when co-occurring
with other mutations like p53, loss of cell polarity proteins
[scrib− and dlg−], or components of the JNK and Hedgehog
(Hh) signaling pathways caused aggressive metastatic tumors
(Scheffler et al., 2018). Using Drosophila mosaic models, it
was shown that Hippo switches Ras activation from promoting
cellular differentiation to aggressive cellular proliferation by
directly controlling two Ras pathway genes- the transcription
factor Pointed (Pnt) and the repressor protein Capicua (Cic)
(Pascual et al., 2017). Loss of function of Cic in flies and
mammals (e.g., in Oligodendroglioma) phenocopies activation of
Ras/MAPK pathway, and uncontrolled aggressive proliferation
(Weissmann et al., 2018).

Hippo and JNK Pathway
The Jun N-terminal Kinase (JNK) is a MAPK pathway
regulated by many cellular stressors like disruption of cell
polarity, DNA damage caused by radiation or reactive oxygen
species, and activation of apoptosis etc. JNK pathway elicits
context dependent response that commonly toggles between
proapoptotic or pro-proliferation signaling. For example, in
the context of wound healing, increased JNK activity pushes
cells into apoptosis, however, when apoptosis is blocked JNK
activity switches to a pro-proliferation signal. Furthermore,
JNK signaling is activated in metastatic tumors formed by
polarity deficient cells (Igaki et al., 2006; Uhlirova and Bohmann,
2006). The earliest evidence for a connection between Hippo
pathway and the Jun N-terminal Kinase (JNK) was noted
when JNK was shown to mediate activation of Yki in polarity
deficient neoplastic cells or when pro-apoptotic genes were
expressed. This activation of Yki by JNK was thought to be
a part of regenerative response to tissue damage (Karpowicz
et al., 2010). In a separate study, Yki activation in endocytosis-
defective cells is accompanied by activation of the JNK signaling
pathway, a MAP kinase pathway that has been linked to
Drosophila neoplasia and control of Yki activity (Robinson and
Moberg, 2011). Overall, these data illustrate the paradoxical
nature of JNK signaling and its many context-dependent
interactions with Yki/YAP.

Hippo and Notch Pathway Crosstalk
The Hippo pathway interact with Notch in many cell types
suggesting that the Notch/Yki cross talk has important regulatory
roles in growth control, differentiation and in other contexts
(Reddy et al., 2010; Graves et al., 2012; Ferguson and Martinez-
Agosto, 2014). In the developing optic lobe of Drosophila
larval brain, the neuroepithelial cells are sheets of epithelial
neural progenitor cells that function as symmetrically dividing
neural stem cells. Before converting to neuroblasts (neural
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stem cells), the neuroepithelial cells undergo cell cycle arrest
that is regulated by the Hippo pathway. Neuroepithelial cells
mutant for pathway genes like wts or overexpression of activated
Yki result in overproliferation of the neuroepithelial cells and
delays differentiation. The progression of neuroepithelial cells
to neuroblasts is regulated by Notch signaling, where high
levels of the Notch ligand Delta inhibits Notch activation and
promotes neuroblast fate. The Hippo pathway impairs Delta
accumulation and thus affects differentiation of neuroblasts.
These studies showed that cross talk between Yki/Sd and
Notch pathway plays a key role in neuroepithelial growth and
differentiation (Reddy et al., 2010). The Drosophila endocytic
neoplastic tumor suppressor genes like Vps25 is part of the
Endosomal Sorting Complex Required for Transport-II (ESCRT-
II) complex. In the epithelial imaginal disk cells, loss of
vps25 causes sorting defects and activation of Notch, JAK-
STAT and JNK signaling pathways, however, mutant clones of
vps25 are unable to survive and are eliminated (Thompson
et al., 2005; Herz et al., 2006). Interestingly, before dying
vps25 mutant clones induce Notch signaling which, in turn,
non-cell autonomously induces Yki activation that results in
tissue overgrowth (Graves et al., 2012). Notch and Yki/Sd
interactions are also known for the specification of crystal cells
during hematopoiesis (Ferguson and Martinez-Agosto, 2014).
Yki and Sd regulate expression of Serrate, the ligand for
Notch, which is responsible for triggering the differentiation
program for crystal cells. These studies show a role of Yki/Sd
in progenitor cell niches that are required for specifying cell fate
(Ferguson and Martinez-Agosto, 2014).

Intersection of TOR and Hippo Pathway
Hippo and TOR pathways intersect in diverse contexts during
development and in autophagy in Drosophila. Cell growth arrest
and autophagy are important for metapmorphosis, and the
autophagic cell death of the salivary glands is an important
developmental process. Wts the terminal kinase in the Hippo
pathway was shown to be required for salivary gland degradation.
Further, Wts mediated salivary gland cell death was shown to
be dependent on PI3K pathway (Dutta and Baehrecke, 2008).
In a different study in human Hepatocellular carcinoma as
well as in Drosophila imaginal disks, PI3K signaling was shown
to affect Yki activity and vice-versa (Strassburger et al., 2012).
The nutrient dependent systemic signaling through the TOR
pathway is important for organ growth and in maintenance of
adult homeostasis in flies and mammals (Wullschleger et al.,
2006; Neto-Silva et al., 2009). Using Drosophila wing imaginal
disks as a model for growth regulation, Parker and Struhl
(2015) showed that TOR regulates Yki via an interesting
mechanism referred to as the ‘seclusion mechanism.’ In this
mechanism, inhibition of TOR leads to Yki accumulation in the
nucleus, however, Yki does not regulate transcription as TOR
inhibition impedes access to target genes of both Yki and Sd.
Thus, TOR promotes wing growth in response to two parallel
pathways, one nutrient availability, and second by controlling
Yki activity (Parker and Struhl, 2015). Mammalian studies have
also shown interactions between YAP and mTOR. Recently, it

was shown YAP downregulates PTEN by inducing miR-29 to
inhibit PTEN translation. PI(3)K-mTOR is a pathway modulated
by YAP to regulate cell size, tissue growth and hyperplasia
(Tumaneng et al., 2012).

Ectopic Activation of Transcription
Factor Networks in Cancer Cells
The different models of oncogenic cooperation demonstrated
the range of signaling interactions involved in the tumorigenic
process. Genetic, biochemical, and high-throughput RNAseq
approaches have revealed the spectacular diversity in altered
cellular signaling often via interacting transcription factors. These
aberrant interactions are central to promoting tumorigenesis.
In the oncogenic cooperation model of epithelial RasV12

scrib− tumors, the interactions between JNK and JAK-STAT
pathways was detected as activation of JNK caused induction
of Unpaired 3 (Upd3, Drosophila IL-6 like cytokine) resulting
in systemic induction of JAK-STAT signaling that promotes
tumor growth (Brumby and Richardson, 2003; Igaki et al.,
2006; Pastor-Pareja et al., 2008; Wu et al., 2010). Consistent
with the idea of STAT playing a key role in tumorigenesis, the
cooperation of oncogenic Ras with activated Stat92E (RasV12;
Stat92E) was shown to be sufficient to cause tumor growth
and invasion (Wu et al., 2010). JAK-STAT misregulation was
shown to be sufficient for melanotic and hematopoietic tumors
in Drosophila, however, many other instances where modifiers
of JAK-STAT or JNK and JAK-STAT interactions were reported.
For example, in tumors caused by cooperative interactions
between activated Ras and mitochondrial defects (Ohsawa et al.,
2012) and intestinal tumors (Kolahgar et al., 2011; Suijkerbuijk
et al., 2016). Other research on epithelial tumors revealed an
intricate interaction between JNK and Yki which was traced
to a polarity-responsive enhancer in Upd3 activated by JNK-
dependent Fos and aPKC-mediated Yki transcription. Using
unbiased approaches transcription factors of several families
that act downstream of JNK were identified. These include
bZIP protein Fos, the ETS-domain factor Ets21c and the
nuclear receptor Ftz-Fdem1. Furthermore, although all three
transcription factors were required for aggressive tumorigenesis,
the synergistic requirement of a subset of transcription factors
for invasiveness and tumor growth generated deeper insights on
the unique and overlapping functions of transcription factors
that cooperatively activate an array of tumor promoting target
genes (Kulshammer et al., 2015). Recently a JNK-dependent AP1
responsive enhancer was mapped in Wingless, and interaction
between JNK and Wingless promoted growth of epithelial tumors
(Zhang et al., 2019). Yki/Sd mediated transcriptional interactions
have also been investigated in multiple tumor models. For
example, Yki/Sd interact with Src and JNK (Enomoto and Igaki,
2013); and with Stat, AP-1, Myc and AP-4, Ftz-f1, Taiman/SRC3,
and Mef2 (Atkins et al., 2016) to promote tumorigenesis. Many
of these transcriptional interactions are also seen in mammalian
cancers suggesting that some transcriptional networks are
evolutionarily conserved. Taken together, these studies showed
that the Hippo pathway (particularly Yki/YAP) interacts with
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multiple signaling pathways to maintain homeostasis, however,
complex and unique tumor specific interaction networks are
formed during tumorigenesis where Yki/YAP interact with other
signaling pathways only in tumor cells.

FUTURE DIRECTIONS AND
CONCLUDING REMARKS

There are additional Ste-20 kinases possibly belonging to the
NDR family found in mice which might indicate that these
kinases might also have a role in phosphorylation and growth
control (Li et al., 2014; Meng et al., 2015; Zheng et al., 2015).
These kinases are thought to influence phosphorylation of
Ser127, a major regulatory site of YAP. These understudied
kinases and their Drosophila orthologs need to be further
characterized to define their cell-type and context specific roles
to better define the Hippo pathway. Further, if Wts is the sole
regulator of Yki or other NDR family components act in parallel
to Wts/Lats to control Yki/YAP, and if these pathways cross-talk
in specific contexts are interesting aspects of the Hippo pathway
function and regulation that currently are not clearly defined.
Each year new components are added to the Hippo network,
for example, recently Schip1 was shown to connect Expanded
to the Tao-1 kinase (Chung et al., 2016). However, if Schip1
interacts with other upstream components or other inputs that
influence Yki activity needs further investigation. In addition,
other genes that act upstream of the Kibra/Merlin/Expanded
complex and the Tao1 kinase remain to be identified. Thus,
in the future it will be interesting to find the missing links

within the Hippo pathway, the mechanisms underlying their
interactions with the core pathway machinery and whether it
affects tumorigenesis.
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