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ABSTRACT 

In this thesis, the current status of the Organisation for Economic Co-operation and Development 

(OECD) countries’ sustainable development performance towards reaching the recently 

announced 2030 Agenda (17 UN Sustainable Development Goals (SDGs)) was investigated. Over 

90 social, economic and environmental sustainability indicators were considered for the 

performance assessment of OECD countries towards reaching the targeted SDGs. The current 

weighted averaging approach used in the recent SDG Index and Dashboards Report was used as 

the benchmark and its limitations were discussed. To overcome the limitations, a novel Goal-

Specific Principal Component Analysis (GS-PCA) approach was proposed to create composite 

sustainability index scores for OECD countries, which takes into account the variance in the 

dataset and deals effectively with the deteriorating impacts of multicollinearity. The study period 

included 2017 and 2018, which covered the most recent available data. A total of 34 PCA models 

were developed, which yielded country and SDG-focused overall and goal-specific sustainable 

development index (SDI) scores.  Results were compared with recent benchmark reports published 

in 2017 and 2018; and were statistically validated. Findings indicated that the standard deviation 

of the scores and ranks were found to be substantially greater with the proposed GS-PCA approach. 

The 2017 and 2018 performances were compared visually and statistically. Even though there was 

increasing performance observed in some SDGs and some countries, there was no statistically 

significant difference found between the 2017 and 2018 years. In addition, substantial differences 

were observed in the scores and ranks of mediocre and poor performing countries compared to the 

benchmark report, while both the results were found to be strongly positively correlated. Overall, 

the UN SDG Dashboard and Index reports findings were found to be quite optimistic compared to 

the results obtained with the proposed GS-PCA approach.  
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1. INTRODUCTION 

On September 25th, 2015, 193 United Nations (UN) Sustainable Development Summit was 

convened as a high-level plenary meeting and member countries agreed up adopting a set of short 

and long term goals that address all the three pillars of sustainable development as a new 

comprehensive plan(Gokhan Egilmez, 2019) . The product of the summit was a comprehensive 

plan, which was structured around 17 Sustainable Development Goals (SDGs) (See Figure 1). 

Each of the 17 SDGs targets specific measurable outcomes to be achieved over the next 15 years, 

called as the “Envision 2030” (See Fig. 1). The newly proposed SDGs were built on the successes 

of the Millennium Development Goals while including new policy focus areas such as gender 

equality, education, technology innovation, sustainable consumption, peace, and justice, among 

other priorities; that were covered with 169 targets. The proposed 17 SDGs were aimed to cover 

social, economic, environmental, and ecological aspects of sustainable development and they are 

interconnected. Thus, successful policy-making and implementation require a thorough and series 

of efforts rather than individually focusing on specific SD paradigm e.g. environment, society, or 

economy. The SDGs work in the spirit of partnership and pragmatism to make the right choices 

now to improve life, in a sustainable way, for future generations. (“Sustainable Development Goals 

| UNDP,” 2018). 

OECD was founded in 1961, currently supports the United Nations in ensuring the success of the 

2030 Agenda for Sustainable Development by bringing together its knowledge and databases, 

world trade network, and organizational influence. OECDs network enables maintaining a strong 

track record of data collection that is key for quantifying and monitoring development performance 

(“Sustainable Development Goals | UNDP,” 2018). In addition, OECD partnerships are creating 

synergies among private and public, domestic and international, and donor and developing country 
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resources to provide countries with a strong support mechanism on which to build towards a better 

future. Successful implementation of the SDGs will require striking a balance between socio-

economic progress, sustaining the planet’s resources and ecosystems, and combatting climate 

change (Sachs et al.,2017). OECD works with its members, partnering organizations, and other 

stakeholders to ensure sound environmental management that supports the sustained achievement 

of economic development and prosperity while delivering human security and resilience. 

 

 
Figure 1. Sustainable Development Goals (SDSN, 2018a) 

Sustainable Development Solutions Network (SDSN), a lobal initiative for the UN, continuously 

track the status of sustainable development efforts worldwide, and conducts annual assessment of 

member countries. In this regard, the methods used to create composite sustainability indicators to 
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have long time been a central topic of discussion in the academic literature and still attracts 

considerable interest by government, non-profit and for-profit due to various reasons. For instance, 

composite sustainability scoring is a practical and effective approach for policy making and public 

communication, especially to provide status of countries and corporate performance in fields such 

as environment, economic, social, or technological improvement (Singh et al.,2012).  

Various sustainability scoring methods have been proposed in the literature with the aim of 

creating sustainability score/index (score and index words are interchangeably used in the 

literature and in this thesis) of individual countries and to find out how well they are performing 

towards achieving preset/ predefined sustainable development goals on time(Parris and Kates, 

2003). The type of methods includes equal weighting and aggregation, Principle component 

analysis, Analytic hierarchy process (AHP), Economic Input-output Life-Cycle Assessment (EIO-

LCA) with Principle component analysis, PCA in combination with data envelopment analysis 

(DEA), etc. The  summary of relevant literature is provided in table 2. 

Sustainability indexing greatly helps in guiding policy decisions for sustainable development as 

well as monitoring the sustainable development performance. Besides, sustainability scoring 

creates a common platform, which promotes consistent monitoring and decision making across the 

countries and organizations in the world. In this context, the Consultative Group on Sustainable 

Development Indicators (CGSDI), an international panel of a dozen experts in the field, was 

established in 1996 “to harmonize international work on indicators and to focus on the challenge 

of creating a single sustainability index(Parris and Kates, 2003). Among the well-known SD 

indices, well-being index is constructed as a country specific ranking index which addresses the 

quality of life and environment. The index consists of 88 indicators, which are aggregated into two 

sub-indexes, namely: human wellbeing and ecosystem well-being. Similarly, the environmental 
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sustainability index constructed by world economic forum comprises 68 indicators 148 countries 

in which indicators were aggregated into 5 components which assist the move towards a more 

analytically rigorous and data-driven approach to environmental decision making and tracks 

environmental trends(Parris and Kates, 2003).   

Among the sustainability indexing methods, Bertelsmann Stiftung and Sustainable Development 

Solutions Network, one of the main collaborating agencies of the UN Sustainable Development 

Knowledge Platform developed a method that consists of equal weighting and aggregation to 

create sustainability index of the member countries (Sachs et al., 2017).  2017 SDG Index and 

Dashboards report provide critical information about the overall performance of countries towards 

reaching the 17 SDGs (SDSN, 2018b). The method of sustainability scoring involves data 

collection, data preparation, weighting, and aggregation, etc.  The method follows with the min-

max normalization method of the data for each indicator by transforming it linearly to scale from 

0 to 100, which also ensures comparability. In terms of weighting, equal weight assumption was 

kept in terms of the importance of each of the 17 SDGs. 2017 SDG Index and Dashboards report 

include 83 variables for 157 out of 193 UN member countries and additional 16 variables were 

included for OECD countries in the global SDG index to create an augmented SDG index for 

OECD countries. An average of 6 indicators were selected for each SDGs. Arithmetic mean was 

used to aggregate indicators within each SDG to compute the overall index.  

Even though this method has credible advantages of unifying the sustainability performance 

according to each of the 17 SDGs, there are critical limitations in terms of the approach undertaken.  

− All the SDGs were given equal importance, but each SDG consists of a varying sub-set of 

indicators. This may bring a drawback of  the higher numbers of indicators will have a 

higher influence on the sustainability index (Hudrliková, 2013).  
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− When using equal weights, high degree of correlation among variables could cause the 

results to be skewed towards the specific SDGs which have higher multi-dimensionality 

(higher number of variables). In this context, pair-wise correlation plays a vital role in 

giving weights to the indicators (Guide, 2008).  

The aforementioned factors raise concerns towards using a weighted averaging approach. 

Therefore, in this thesis, a correlation analysis of 93 indicators used for 2017 report and 104 

indicators used for 2018 report is conducted (See Table 1). Results indicated that more than 50 % 

pair of indicators in both years had a correlation greater than 0.3, which indicates that substantial 

portion of the pairs of variables were found to have pair-wise correlation, which makes it necessary 

to propose an alternative approach, which will alleviate the deteriorating impacts of 

multicollinearity, while maintaining the degree of variance in the dataset. Maintaining the variation 

in such datasets is quite crucial for sustainability assessment of countries due to the fact that each 

country may have its own unique socio-economic, and environmental impact characteristics. Even 

though Lafortune et al. (2018)) claimed that PCA is not satisfactory for this problem; using implicit 

equal weighting could have worse impacts on the performance assessment of OECD countries 

towards reaching 17 SDGs. Correlation analysis results clearly indicate that PCA could be applied 

since more than half of the indicators were correlated with a strength of weak to strong correlation. 
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Table 1. Results of Correlation Analysis 

  2017 2018 

SDG Number 
of 

Variables  

Total 
Number 
of Pairs 

Number 
of Pairs 
with R 

>0.3 

% 
Number 
of Pairs 
with R 

>0.3 

Number 
of 

Variables  

Total 
Number 
of Pairs 

Number 
of Pairs 
with R 

>0.3 

% 
Number 
of Pairs 
with R 

>0.3 

1 3 3 1 33.3% 3 3 3 100.0% 

2 4 6 2 33.3% 6 15 3 20.0% 

3 14 91 53 58.2% 16 120 46 38.3% 

4 5 10 9 90.0% 7 21 14 66.7% 

5 5 10 6 60.0% 5 10 4 40.0% 

6 4 6 1 16.7% 4 6 1 16.7% 

7 4 6 2 33.3% 4 6 2 33.3% 

8 6 15 8 53.3% 5 10 6 60.0% 

9 9 36 35 97.2% 11 55 55 100.0% 

10 3 3 1 33.3% 3 3 3 100.0% 

11 3 3 2 66.7% 4 6 2 33.3% 

12 6 15 8 53.3% 7 21 13 61.9% 

13 6 15 6 40.0% 5 10 1 10.0% 

14 5 10 3 30.0% 6 15 3 20.0% 

15 3 3 1 33.3% 5 10 3 30.0% 

16 9 36 21 58.3% 9 36 24 66.7% 

17 4 6 3 50.0% 4 6 2 33.3% 

 

The recent literature that aims to create a composite sustainability index by using a high volume 

of indicators is reviewed. To the best knowledge of the author, the state of art has not addressed 

the limitations of the approach used in the SDG Index and Dashboards report, which is the main 

focus of this study. To overcome potential negative impacts of weighted averaging method, this 

thesis proposes a novel Goal Specific Principal Component Analysis (GS-PCA) approach. PCA is 

a robust nonparametric approach, which is typically used to group a set of indicators to form a set 

of principal components (PCs) (whose number is typically less than the number of the variables in 
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a dataset). PCA retains the majority of variability in the multi-variable dataset with the newly 

created PCs, while eliminating the potentially deteriorating impacts of multicollinearity among the 

variables with the newly created PCs (Guide, 2008); (Hudrliková, 2013). The rest of the thesis is 

organized as follows. Section two provides the recent literature review about the methods of 

sustainability performance indexing. Section three introduces the proposed methodology. Results 

are depicted and compared with the SDG Index and Dashboards report in section four. Discussion 

is provided in section five. Conclusions, future work, and limitations are provided in section six. 
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2. LITERATURE REVIEW  

An index is typically termed “synthesis of numerous factors into one given factor”(Sainz, 1989). 

The use of indices in the field of sustainable development facilitates the understanding and 

interpretation of indicators of a given phenomenon, particularly for the public and other 

stakeholders (Tanguay et al.,2010).  One of the most prominent sustainability indices, launched in 

1999, was created jointly by S&P Dow Jones Sustainability Indices (DJSI). DJSI focuses on the 

measurement and evaluation of thousands of S&P companies in terms of their operations’ 

economic, environmental and social impacts (Searcy and Elkhawas, 2012). In addition to DJSI, 

various methods have been proposed in the literature, which aim to create a sustainability index 

for the evaluation of sustainability performance of entities such as countries, cities, regions, 

industries, etc.  

Sustainability indices can be categorized as follows. 1) Innovation, knowledge and technologies 

indices  which includes Summary Innovation Index(European Commission, 2017), Investment in 

the knowledge-based economy, Technology Achievement Index, etc. 2) Development indices 

which include Human Development Index, index of sustainable and economic welfare, etc. 3) 

Market and economy based indices which include, Internal Market Index, Genuine Savings (GS) 

index, Business climate index etc.  4) Ecosystem-based Indices which includes Sustainability 

Performance Index (SPI), Living Planet Index (LPI), Ecological Footprint (EF), Fossil Fuel 

Sustainability Index (FFSI) etc. Moreover, other indices include Environment Sustainability 

Index, Environment Quality Index, City Development Index, The Sustainable Cities Index, 

Environmental Performance Index, Environmental Vulnerability Index, Well-Being Index (Singh 

et al., 2012).  
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The state of art consists of an abundant number of methods, which have been proposed to develop 

a sustainability index. The process of developing an index could be termed as follows. 1) Indicator 

selection and grouping, 2) data collection, preparation (e.g. imputation of missing data, taking care 

of outliers, etc.), 3) Implementation of multivariate analysis, weighting, and aggregation, 4) 

Normalization of results, and calculation of the proposed index (Guide, 2008). In these series of 

steps, weighting and aggregation substantially effects the results of a sustainability index. 

Correlation and compensability issues among indicators need to be considered and either be 

corrected for or treated as features of the phenomenon that need to retain in the analysis (Guide, 

2008).  

In addition, weights could have a significant effect on the overall composite index and the country 

rankings when used in a benchmarking framework. In this regard, there are various approaches 

used in the literature for weight assignment. For instance, assumption of equal weights (the most 

commonly used approach in the literature), using weights derived from a statistical analysis, using 

benefit of the doubt, using public or expert opinion through surveys (Guide, 2008). This study 

holds the equal weight assumption to be consistent with the UN SD report, where each of the 17 

SDGs has equal importance on the derivation of the composite sustainability index. 

Principal component analysis (PCA) is a commonly used multivariate technique for creating 

indices, which is very robust in reducing the multi-dimensionality in a dataset without losing 

relevant information (Park et al.,2015). It is used to obtain coefficients that assign correct weights 

according to the statistical importance of each included variable in the index and is increasingly 

used in welfare measurements (Lindman, 2011). It is also suggested by European Commission 

(EC) and OECD guidelines in developing the composite indicators (Guide, 2008). In a typical 

PCA study, findings exhibit how different variables change in relation to each other and how they 



17 

 

are associated (Mainali and Silveira, 2015). PCA is an appropriate and robust method for problems 

where the researcher(s) need(s) to deal with the high number of variables, which makes the 

indexing a challenging task. Often times, datasets that consists of higher number of variables hold 

high levels of pair-wise correlation and the researcher needs to reduce the dimension of the analysis 

(number of variables) to a smaller number of non-correlated factors (independent factors) to 

prevent the results being impacted by multicollinearity (Constantin, 2014). In this regard, it is 

important to note that the literature is still emerging in the context of reaching to a consensus in 

terms of the best methods to employ for sustainability performance assessment and indexing 

(Searcy and Elkhawas, 2012). 

In terms of the applications of PCA, it was used to develop an energy-focused sustainability 

performance of rural communities (Doukas et al.,2012), area-based socio-economic index 

(Krishnan, 2010), energy technology index for rural electrification (Mainali and Silveira, 2015), 

sustainability water index (Ali, 2009), construction of composite sustainable indicators(Li et al., 

2012), assessment of aggregated indicators of sustainability (Rovira & Rovira, 2009), eco-

efficiency analysis (Park et al., 2015), human development index (HDI) (Biswas and Caliendo, 

2001). The application of (Krishnan, 2010) resulted in a socio-economic index derived with PCA, 

which was found to be very effective in differentiating disadvantaged areas from privileged ones. 

In another work, (Doukas et al., 2012) employed PCA to assess’ energy sustainability of rural 

communities based on the outputs of two European “Intelligent Energy for Europe” projects on 

the Mountainous and Agricultural Communities and Islands regions. The results of the study they 

believed to support the monitoring of such communities’ progress, which is an especially valuable 

parameter as concerns the development and main implementation of their Sustainable Energy 

Action Plans.  
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Moreover, the sustainability performance of energy technologies applied in rural electrification 

was evaluated using PCA ( Mainali and Silveira, 2015).   In this study, the focus of sustainability 

indexing was on creating energy technology sustainability index (ETSI). The index was then used 

to assess the sustainability performance of ten energy systems in India. In another work,  Hosseini 

and Kaneko, (2011) applied PCA to develop macro sustainability indicators of selected countries 

to track sustainability in a dynamic manner. Countries were ranked based on the resulting principal 

components. In anoter work, Lai, (2012) used weighted PCA to measure and analyze the progress 

of human development in Chinese provinces since 1990. He also compared his scores with the 

Human Development Index (HDI) scores and found that the results obtained from the PCA and 

HDI report of China by UNDP were highly similar. (Jollands et al., 2004) provides a unique 

analysis using PCA to eco-efficiency indicators in New Zealand and the results from their analysis 

showed that application of PCA is an effective approach for aggregating eco-efficiency indicators 

and assisting decision makers by reducing redundancy in an eco-efficiency indicators matrix. 

(Adler et al.,, 2010a) used PCA was integrated with data envelopment analysis (DEA) to measure 

the relative performance of developing countries  in utilizing domestic and external resources. Park 

et al., 2015) developed an integrated LCA+PCA to assess the eco-efficiency of U.S. industries.  

Table 2 illustrates a list of recent works, where PCA was used to create a composite index. Indeed, 

PCA is a identified as a robust statistical approach, used to evaluate the sustainability performance 

of a large number of technological systems when compared to the other methodologies (Mainali 

and Silveira, 2015). To the best knowledge of authors, application of PCA or similar statistical 

approach has not been addressed to the OECD countries’ sustainable development indexing based 

on 17 SDGs. The methodology that was used in UN SDG Index and Dashboard’s report was based 

on a linear aggregating approach with normalized data and equal weights, where the deteriorating 
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impacts of multicollinearity and working with over 90 indicators were not addressed sufficiently 

(SDSN, 2018b). 

In this study, the current status of OECD countries’ sustainable development performance towards 

reaching the recently announced 17 UN sustainable development goals (SDGs) is investigated. 

Total of 93 social, economic and environmental indicators are considered as sub-indicators 

(variables_ of the SDGs in parallel with the UN’s SDG Index and Dashboards report. A novel 

Goal-Specific Principal Component Analysis (GS-PCA) model is developed to create composite 

index scores for OECD countries. The proposed GS PCA approach is explained in detail in the 

following section.  

Table 2.Summary of Sustainability Indexing Methods with PCA 

Study Index  Focus Method 

Krishnan, 

(2010) 

Socio-Economic index Development of a 

socioeconomic index to 

compare disadvantaged vs. 

privileged areas in a 

multivariate context 

PCA 

Park et al., 

(2015) 

Eco-efficiency  The relationship between the 

U.S. manufacturing and 

transportation industries 

EIO-LCA+PCA 

Jollands et 

al., (2004) 

Eco-efficiency index Development of aggregate 

measures of eco-efficiency for 

use by policymakers 

PCA 

Adler et al , 

(2010b) 

Socio-Economic index Estimation the relative 

efficiency of developing 

countries in utilizing both their 

domestic and external 

resources to achieve the 

Millennium Development 

Goals 

PCA+DEA 

Mainali and 

Silveira, 

(2015) 

Sustainability  Evaluation of the sustainability 

performance of energy 

technologies applied in rural 

electrification 

PCA 



20 

 

Hosseini 

and Kaneko, 

(2011) 

Sustainability indicators  Attempt to develop macro 

sustainability indicators of 

selected countries to track 

sustainability in a dynamic 

manner 

PCA 

Lai, (2012) Human development index Measurement and analysis of 

the progress of human 

development in Chinese 

provinces  

PCA 

Ali (2009) Water Sustainability index A conceptual framework 

incorporating a variety of 

physical, socio-economic and 

environmental elements of 

water status in the Arab region 

PCA 

Li et al. 

(2012) 

Sustainability indicators Development of a 

comprehensive and effective 

quantitative method to measure 

the overall sustainability 

performance of manufacturing 

companies. 

PCA 

Biswas and 

Caliendo 

(2001) 

Human development index Measures of human 

development and comparison 

of the index with HDI itself  

PCA 

Dong et al., 

(2015) 

Natural Gas Industry 

Sustainability Index 

Trends in natural gas 

consumptions  

PCA 

Zhao (2015) Sustainability index Judgment of countries based on 

sets of sustainability indicators  

PCA 

Choi et al. 

(2015) 

Air Quality Index Development of an aggregate 

air quality index to help prepare 

decision makers, which could 

rank a state according to the 

different levels of multiple air 

pollutants 

PCA 

Dong et al. 

(2016) 

Sustainability assessment  Development of the assessment 

process to help soybean 

farmers document practices 

and verifiable advances in 

community, environmental and 

economic sustainability 

PCA-DEA 
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Si (2006) External debt sustainability 

index 

construction of an external debt 

sustainability index to capture 

the overall 

effects of external debt 

indicators on economic growth 

PCA 

Hag (2017) Sustainability index Assessing and monitoring eight 

community-based water supply 

management in four different 

states in Sudan 

PCA 

Haberland 

(2008) 

Environmental 

performance index 

establishment of an 

international composite 

environment index 

PCA and Equal 

Weighting  

 

To calculate SDG index, it is very important that the constituent components be weighted and 

aggregated with the right approach because weighing individual goal can have vital implications 

on countries ranking and their sustainability performance. Different weighting methods has been 

used, for instance equal weighing, experts’ weight, PCA, subjective /flexible weight etc. In this 

study  PCA as a method of giving weights is chosen  to constituent variables to derive SDG index. 

The reason of choosing this method is to avoid multicollinearity in the large number of data set. 

PCA are commonly used to assign weights to individual variables correlated among each other 

and measuring a common underlying factor(Lafortune et al., 2018).As per  correlation analysis 

conducted on this research (Table 1) shows higher number of correlation between the variables , 

therefore this research is motivated to employ PCA as a nonparametric analytical approach for 

developing sustainability index score. 
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3. METHODOLOGY 

A hierarchical methodology that proposes PCA, as a multivariate data analysis approach is 

developed to create a composite sustainability index for OECD countries. In this regard, a step by 

step procedure is carried out which consists of data collection, data cleaning and preparation, 

normalization, PCA, statistical analysis, and discussion.  The approach is defined as GS-PCA, 

since the PCA is implemented for each SDG to be able to create a composite index for each goal, 

then creating an overall Sustainable Development Index considering the entire set of 17 SDGs. 

Thus, 17 PCA models are developed over a series of iterations. Goal-specific sustainability index 

scores are derived from the principal components and finally, composite sustainability index is 

calculated by taking the average of the individual index scores of 17 goals, and countries were then 

ranked according to the overall sustainability index. The proposed approach is compared and 

validated with the 2017 and 2018 SDG Index and Dashboards report (Geus and Satchs, 2017). The 

hierarchical methodology is depicted in Figure 2. 

 

Figure 2. Summary of the Proposed Methodology 

Step 1

•Data Collection

•Data 
Preparation and 
Cleaning

Step 2

•Correlation 
Analysis

Step 3

•Goal Specific 
PCA

Step 4 

•Results 
Interpretation 
and validation

Step 5

•Conclusions
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3.1. Data Collection 

In this study, the main objective is to create a novel sustainability performance index for 35 OECD 

countries considering recently proposed 17 SDGs. The 2017 and 2018 UN SDG Index and 

Dashboards Report was used to classify and choose variables for the 17 SDGs (Sachs et al., 2017). 

The raw dataset consisted of indicators that have a substantial range of data, which necessitates 

carrying out a normalization procedure. The normalized data consisted of 93 indicators for 2017 

and 104 indicators for 2018, where 2-13 indicators were classified under each of the 17 SDGs 

(Sachs et al., 2017). Then, Kaiser-Meyer-Olkin (KMO) and Bartlett’s test of sphericity is 

conducted to assess the proximity of correlation matrices to the identity matrix for each SDG.  

Resulting significance (p) values of the test that are less than 0.05, indicate that factor analysis 

(PCA) could be effectively applied to the set of variables under an SDG (Lolli anddi Girolamo, 

2015) (See Table 6). 

3.2. Goal Specific Principal Component Analysis (GS-PCA) 

PCA (Principal Component Analysis) is a mathematical procedure that uses orthogonal 

transformation to convert a set of observation of possibly correlated variable into a set of values 

of linearly uncorrelated variables called principal components. The principal components (PCs) 

are ordered so that the first component accounts for the largest possible amount of variation in the 

original variables. The second component is completely uncorrelated with the first component and 

accounts for the maximum variation that is not accounted in the first. The third accounts for the 

maximum variation that the first and the second PCs did not account for, and so on (Krishnan, 

2010).  
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The first step carried out to determine the principal components of multiple variables data set is to 

standardize/normalization of the scale of the data. It is done by transferring data set into scale from 

0 to 100. The variables were transferred  linearly to a scale between scale 0 and 100 using the 

following normalized  equations (Brijesh Mainali & Silveira, 2015). 

 
X’ =

𝑋 − 𝑀𝑖𝑛 (𝑥)

𝑀𝑎𝑥(𝑥) − 𝑀𝑖𝑛(𝑥)
 

 

(1) 

where x is the raw data value; max/min denote the bounds for best and worst performance, 

respectively; and x’ is the normalized value after rescaling. 

After, the correlation matrix of the normalized variable is calculated.  Correlation is a measure of 

how two or more variables related to each other. A correlation has direction and can be either 

positive or negative i.e. the value ranges from -1 to 1 which means values towards 1 are highly 

positively correlated and values towards -1 is highly negatively correlated. Zero indicates no 

relationship between the two variables and r = 1.00 or r = -1.00 indicates a perfect relationship 

between the variables.  

The eigenvalues and eigenvectors of the correlation matrix are calculated. An eigenvalue indicates 

the extent of variance in the data. The eigenvector with the highest eigenvalue is, therefore, 

identified as the principal component. In this process, the principal components with the largest 

eigenvalues are retained as they contain the largest portion of the variance in the data. The main 

intuition behind the calculation of the eigenvalues is the use of the following determinant equation. 

   (𝑅 −  𝜆𝐼)  =  0 (2) 
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where R is the correlation matrix (n × n), λ is the symbol for eigenvalues and I is the unit matrix 

(Doukas et al., 2012).  

Solving for λ, an nth degree polynomial equation is obtained and n eigenvalues, which corresponds 

to the correlation matrix, thus R is calculated. The eigenvalue with the largest rate is the one that 

holds most of the variation and the eigenvalues with very small rate are usually ignored and the 

solution of the problem is getting simpler(Doukas et al., 2012). Furthermore, to derive the 

eigenvectors, the following matrix equation is solved  

 (𝑅 −  𝜆𝑗𝐼)𝐹𝑗 =  0 (3) 

where R is the correlation matrix, λj is the corresponding eigenvalue, I is the identity matrix, and 

Fj is the matrix of the eigenvector corresponding to the λj eigenvalue (Doukas et al., 2012). 

 
As PCA is sensitive to the difference in the units of measurements of variables, therefore Min- 

Max normalization method is adopted (Krishnan, 2010). After data is collected, cleaned, and 

prepared, 17 PCA models were built that will account for all the SDGs. Models were built by using 

SPSS software v25. After running experiment, factor scores (fi) were obtained and used as the PC 

weights for composite non-standardized index (NSI) computation. The composite NSI is 

calculated using the following equation.  

 

𝑁𝑆𝐼𝑘  =
𝜆1𝑘 ∗ 𝑓1𝑘  + 𝜆2𝑘 ∗ 𝑓2𝑘 + · · ·  +𝜆𝑛𝑘 ∗ 𝑓𝑛𝑘 

𝜆1𝑘 + 𝜆2𝑘 + · · ·  + 𝜆𝑛𝑘
                                                           (4) 

 
where NSIk is the non-standardized sustainability index of the kth country and λj is the 

corresponding eigenvalue (Krishnan, 2010). There are n PCs It is important to note that the number 

of variables vary from one SDG to another. The final composite sustainable development index 
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derived from the above equation could be either positive or negative, which creates difficulties in 

interpretation. Therefore, the NSI scores were standardized by using Eq. 6, which yields the Goal-

Specific-PCA Sustainable Development Index (GS-PCA SDI) (Park et al., 2016). This approach 

was repeated for all 17 SDGs. 

𝐺𝑆 − 𝑃𝐶𝐴 𝑆𝐷𝐼 =
𝑁𝑆𝐼𝑖 − 𝑀𝑖𝑛 [𝑁𝑆𝐼𝑘]

𝑀𝑎𝑥 [𝑁𝑆𝐼𝑘] − 𝑀𝑖𝑛 [𝑁𝑆𝐼𝑘]
∗ 100                                                      (5) 

For instance, the NSI of Australia for SDG 3 is calculated as follows (See Eq. 4) based on the 

factor scores given in Table 3.  

Table 3. Factor Scores for Australia for SDG 3 

Country f1 f2 f3 

Australia -0.0098 -1.1219 0.27 

  

𝑁𝑆𝐼 =
44.197 ∗ (−0.0098) + 21.306 ∗ 1.1219 + 9.782 ∗ 0.27

75.286
    =   0.346         
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4. RESULTS 

This section is organized into seven subsections. In the initial subsection, descriptive statistics of 

the results are provided. The second and third sub-sections introduce the results of the proposed 

GS-PCA for 2017 and 2018, respectively. The fourth and fifth sub sections provide the comparison 

of GS-PCA results in terms of index scores and ranks of the OECD countries with SDG Index and 

Dashboards report 2017/2018 and PCA SDI scores of 2017 and 2018, respectively. The sixth sub 

section provides the summary of top 5 best performing and 5 worst performing countries in the 

consecutive years. Lastly, SDG specific analysis and results are provided in subsection seven. 

4.1. Descriptive Statistics of Results 

Table 4 depicts the descriptive statistics of the 17 SDGs’ SDI scores obtained with the proposed 

GS-PCA approach for the calendar year 2017. For instance, the mean of the SDG 17 - Partnership 

for the goal (Revitalize the global partnership for sustainable development goal) and SDG 13 - 

Climate action (Take urgent action to combat climate change and its impacts) are relatively lower 

than that of the other SDGs. It can be seen from the table 7 that only Denmark and Netherlands 

have an impressive score on SDG 13 while all other countries are relatively very low on the same. 

Being the top ranked country, Sweden has a score of 54.2/100 on climate action. The range of 

standard deviation is between 18 and 30, while the range of mean SDI scores were between 57 and 

80. In Table 4, the Zskewness and ZKurtosis results indicate that majority of the SDGs SDI scores 

are out of -1.96 and +1.96 range, which is strong indication of non-normality in the results dataset 

(Taylor et al.,2012). It is also important to note that using PCA as a nonparametric approach could 

be of importance and a more suitable approach to such problems where normality assumption is 

not met. 
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Table 4. Descriptive Statistics of the SDI Score in 2017 

SDG N Min Max Mean Std. Dev. Skewness1 Kurtosis2 ZSkewness ZKurtosis 

1 35 0.00 100.00 57.39 26.71 -0.232 -0.767 -0.583 -0.986 

2 35 0.00 100.00 71.41 18.99 -2.573 7.531 -6.465 9.680 

3 35 0.00 100.00 74.85 23.84 -1.733 2.688 -4.354 3.455 

4 35 0.00 100.00 71.83 22.11 -1.760 3.241 -4.422 4.166 

5 35 0.00 100.00 71.60 20.53 -1.351 2.987 -3.394 3.839 

6 35 0.00 100.00 74.90 23.71 -1.670 2.322 -4.196 2.985 

7 35 0.00 100.00 58.91 17.20 -0.751 3.946 -1.887 5.072 

8 35 0.00 100.00 78.06 24.27 -1.838 3.241 -4.618 4.166 

9 35 0.00 100.00 59.37 24.00 -0.607 0.336 -1.525 0.432 

10 35 0.00 100.00 66.17 23.29 -1.272 1.892 -3.196 2.432 

11 35 0.00 100.00 65.37 25.84 -0.950 0.230 -2.387 0.296 

12 35 0.00 100.00 53.94 27.78 -0.018 -0.993 -0.045 -1.276 

13 35 0.00 100.00 38.60 21.11 0.637 1.379 1.601 1.772 

14 35 0.00 100.00 51.28 21.29 0.074 0.308 0.186 0.396 

15 35 0.00 100.00 57.48 25.55 -0.433 -0.577 -1.088 -0.742 

16 35 0.00 100.00 56.92 29.43 -0.433 -0.984 -1.088 -1.265 

17 35 0.00 100.00 29.93 24.92 1.327 1.712 3.334 2.201 

 
1 Std. Error=0.398 
2 Std. Error=0.778 
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Table 5 represents the descriptive statistics of the individual SDI score for the year 2018. SDG 6 

i.e. Clean water and sanitation has the highest average SDI score of 85.21 while SDG 9 i.e. 

Industry, Innovation and Infrastructure has the lowest average SDI score. 

Table 5.Descriptive Statistics of the SDI Score in 2018 

SDG N Min Max Mean Std. Dev. Skewness Kurtosis ZSkewness ZKurtosis 

1 35 0 100 75.71 22.1 -1.54 
2.81 

-0.41 0.01 

2 35 0 100 75.26 17.11 -2.73 
10.68 

-1.49 1.72 

3 35 0 100 77 21.63 -1.8 
3.89 

-0.65 0.25 

4 35 0 100 56.06 24.50 -0.322 
-0.23 

0.03 -0.33 

5 35 0 100 65.8 22.76 -1 
1.13 

0.08 -0.36 

6 35 0 100 85.21 7.85 -1.647 
2.99 

0.59 -0.75 

7 35 0 100 76.11 5.86 -1.141 
4.24 

-1.67 2.40 

8 35 0 100 67.28 25.11 -1.32 
1.37 

-0.21 -0.30 

9 35 0 100 48.61 26.09 -0.1 
-0.51 

0.89 -0.71 

10 35 0 100 72.37 23.12 -1.42 
2.30 

-0.30 -0.10 

11 35 0 100 84.64 5.85 -0.173 
0.00 

-0.35 -0.06 

12 35 0 100 56.54 24.63 -0.1 
-0.31 

0.89 -0.67 

13 35 0 100 81.13 12.49 -3.26 
13.50 

-1.72 1.80 

14 35 0 100 51.38 9.66 0.44 
2.12 

1.26 -0.64 

15 35 0 100 47.48 28.19 -0.1 
-1.20 

0.89 -0.86 

16 35 0 100 60.59 25.56 -0.44 
-0.71 

0.59 -0.75 

17 35 0 100 59.67  13.38 0.931 
1.27 

1.58 -0.64 
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4.2. Results of the proposed GS-PCA for 2017  

The results of KMO tests and p values after arranging variables are provided in Table 6. There are 

some goals that has KMO value less than 0.5, but their significance value is less than 0.05, which 

indicates that the proposed PCA model is applicable to the variables and the obtained principal 

components are statistically reliable. All of the significance values were found to be less than 0.05, 

which indicates that all PCA models are valid, and the resulting PCs could be used for calculating 

the composite sustainability index scores for the OECD countries. 

In this regard, it is crucial to carry out the KMO and Bartlett’s tests in a PCA study. Usually two 

test KMO and Bartlett’s test of sphericity are conducted to check suitability of analysis. The 

Bartlett’s test of sphericity is a test performed on the correlation matrix to verify how close it is to 

the identity matrix: the closer the correlation matrix is to the identity matrix, the more the variable 

indicators are uncorrelated. Significance (p) values of the test that are less than 0.05 and KMO 

greater than 0.5 indicate that PCA could be effectively applied to the studied problem (Lolli & di 

Girolamo, 2015). 

In this study, after implementing PCA to each SDG, it was found that two of the SDGs (SDG #1: 

No Poverty, and SDG #13: Climate action) unsuitable for carrying out PCA, as their significance 

level was higher than the acceptable value of 0.05, which was preventing the work to be proceeded 

to composite sustainability index calculations. The main reason of this problem was attributed to 

having low number of variables under these SDGs compared to others. To deal with this issue, it 

was found an SDG that is closely related to the SDG with insignificant sigma value and moved a 

variable and performed PCA again. For instance, one variable from SDG #2 (No Hunger) was 

moved to SDG #1 (No Poverty) and two variables were added to SDG #13 (Climate action) from 

SDG #12 (Responsible consumption). The PCA was performed again, and the results of the two 
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PCA models built for SDG 1 and SDG 13 were acceptable. Table 6 indicates the KMO and 

Bartlett’s test results (significance), accordingly. 

Table 6. KMO values and significance 2017 

SDG Number of Variables KMO Value  Significance  

1 3 0.534 0.029 

2 4 0.489 0.040 

3 14 0.71 0.048 

4 5 0.703 0.050 

5 5 0.58 0.000 

6 4 0.433 0.020 

7 4 0.482 0.000 

8 6 0.665 0.000 

9 9 0.806 0.000 

10 3 0.533 0.000 

11 3 0.592 0.000 

12 6 0.544 0.000 

13 6 0.672 0.060 

14 5 0.447 0.050 

15 3 0.544 0.000 

16 9 0.682 0.000 

17 4 0.506 0.002 

 

The sustainable development performance index score (SDI score) of OECD countries is shown 

in Table 7. Each country is ranked according to their average index score of the 17 SDGs. In the 

table 7, Sweden was ranked as the best performer with the average index score of 83.6, which was 

followed by Finland, Norway, Denmark and Netherland. In contrast, Mexico was ranked as the 

worst performer with the average index score of 15.3 over 100. It is important to note that even 

though the country Sweden was outperformed by countries such as Finland and Norway in SDGs 

#4, #5, #11, and #14, its overall score was ranked as the highest. The top two countries, Sweden 

and Finland, scored low on SDG #13, 
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Table 7. OECD countries’ SDI scores obtained with the proposed GS-PCA approach 2017 

Countries\SDG 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 GS-PCA SDI 

Sweden 64.7 80.8 100.0 82.9 94.5 88.7 86.6 99.5 90.5 82.4 95.9 72.7 54.2 63.6 69.6 95.0 100.0 83.6 

Finland 47.8 80.6 95.7 87.5 95.4 91.8 76.2 87.6 95.3 83.2 97.5 39.9 48.5 100.0 79.2 92.6 67.3 80.4 

Norway 34.3 76.0 96.8 89.9 100.0 72.4 89.9 99.1 86.9 81.2 100.0 17.8 66.3 86.3 60.6 97.2 83.0 78.7 

Denmark 78.5 83.0 86.5 83.1 92.8 84.3 65.6 96.4 100.0 78.7 87.8 38.0 85.6 14.7 81.8 76.9 93.8 78.1 

Netherlands 80.9 82.1 90.2 82.0 82.7 79.3 50.8 98.8 70.4 81.9 85.6 45.7 100.0 24.1 92.0 93.7 39.8 75.3 

Iceland 67.2 76.5 94.1 77.1 96.2 83.7 100.0 95.4 98.2 79.4 92.3 70.7 30.4 54.9 31.5 77.7 33.2 74.0 

Belgium 89.9 81.3 82.4 77.6 91.8 48.9 55.0 81.3 64.0 92.8 79.5 81.0 53.2 41.2 100.0 65.4 44.9 72.4 

Germany 97.4 86.8 87.2 81.5 76.6 83.6 57.9 99.0 58.4 76.8 65.6 62.4 54.1 30.4 80.2 80.1 34.0 71.3 

Switzerland 73.2 82.8 96.3 81.5 83.9 89.1 71.3 100.0 77.1 74.0 74.9 30.4 53.3 51.3 58.4 100.0 5.6 70.8 

France 84.1 74.5 83.0 74.9 80.6 90.1 67.4 78.8 57.0 86.3 73.0 50.8 34.2 56.8 60.7 67.8 48.9 68.8 

Austria 92.2 84.7 84.1 67.5 69.8 91.7 69.6 92.7 64.2 82.7 59.3 37.3 47.9 51.3 56.3 71.3 32.9 67.9 

UK 91.2 66.7 85.0 91.5 84.9 84.6 54.7 91.8 66.8 56.6 87.3 52.5 49.1 41.4 47.4 84.2 6.2 67.2 

Czech Republic 77.1 78.1 78.3 66.4 62.7 92.3 57.5 81.2 57.9 100.0 78.9 91.9 25.9 51.3 78.4 36.9 17.6 66.6 

Slovenia 58.5 72.3 83.1 83.0 85.7 78.9 60.8 83.1 58.5 87.7 39.3 93.8 40.1 29.4 78.9 37.2 37.9 65.2 

New Zealand 68.1 64.7 76.2 81.3 89.4 87.8 72.2 95.0 71.6 66.4 82.3 24.8 24.3 44.5 26.2 79.5 42.0 64.5 

Luxembourg 58.1 76.0 84.5 66.6 72.8 54.8 25.7 90.9 78.5 77.8 77.5 23.1 43.6 51.3 96.3 81.1 31.2 64.1 

Japan 57.1 100.0 93.7 98.0 41.8 87.8 54.8 96.5 67.4 66.5 50.6 70.6 32.6 52.3 44.5 61.2 7.1 63.7 

Canada 52.2 66.9 86.1 100.0 83.7 55.2 66.0 92.2 57.0 61.1 85.7 9.2 10.0 81.1 49.0 77.9 33.7 62.8 

Australia 25.4 67.0 89.0 86.6 80.6 100.0 51.3 93.4 74.1 60.4 79.6 12.2 42.2 59.4 36.3 65.9 31.3 62.0 

Estonia 31.4 76.9 67.0 91.1 65.9 87.3 43.9 90.6 70.7 53.5 63.7 62.5 32.9 65.0 85.5 51.1 4.6 61.4 

USA 96.5 57.7 62.6 78.1 72.8 85.8 55.6 87.3 56.4 32.8 75.0 25.3 9.5 60.1 30.9 73.5 31.4 58.3 

Ireland 100.0 71.4 85.5 80.4 70.5 35.0 53.9 79.4 66.8 69.1 41.9 0.0 42.5 29.4 73.0 73.9 15.0 58.1 

Spain 11.3 74.9 85.6 70.9 83.4 79.0 64.0 66.6 52.3 54.7 89.0 37.1 42.7 30.6 46.1 52.9 29.6 57.1 

South Korea 46.5 79.4 80.4 87.0 36.6 25.0 55.1 79.1 76.8 69.6 46.7 93.5 33.6 77.8 32.7 31.7 9.3 56.5 

Portugal 13.5 81.5 77.8 55.0 85.1 93.1 68.3 61.0 45.3 56.5 66.5 44.3 21.4 50.7 60.7 44.4 30.3 56.2 

Italy 46.6 79.9 85.7 63.3 56.7 75.3 58.2 55.7 36.4 60.1 61.5 53.3 42.7 34.3 67.5 17.9 31.5 54.5 

Slovak Republic 67.3 71.2 53.8 57.6 59.5 93.9 59.1 67.9 55.2 94.5 0.0 75.9 16.9 51.3 75.6 17.5 1.3 54.0 

Poland 47.9 72.1 55.9 80.9 60.0 71.2 48.7 70.0 30.8 72.5 39.2 97.9 24.0 0.0 72.6 28.4 12.6 52.0 

Latvia 28.9 74.9 31.3 72.7 63.8 55.9 59.9 84.1 42.7 52.3 11.5 100.0 60.7 37.2 83.3 25.2 0.0 52.0 

Greece 28.7 80.5 71.5 53.8 44.6 86.5 56.5 51.6 35.5 57.0 86.4 34.0 41.8 56.8 50.3 15.3 33.4 52.0 

Hungary 72.5 74.3 42.6 44.5 62.1 98.5 38.4 64.1 29.9 91.9 21.2 71.4 22.3 51.3 61.2 5.7 19.0 51.2 

Israel 30.9 71.9 92.6 79.4 67.1 22.1 57.6 83.9 63.6 40.9 64.2 35.7 40.0 36.6 12.3 65.9 5.0 51.2 

Chile 55.6 39.9 43.4 25.3 48.8 91.4 57.7 23.3 11.2 0.0 69.2 74.7 23.9 79.7 17.8 43.0 8.9 42.0 

Turkey 33.2 12.4 11.7 14.8 0.0 76.4 51.6 0.0 10.6 33.3 45.6 66.9 0.6 86.9 15.0 4.3 10.2 27.9 

Mexico 0.0 0.0 0.0 0.0 63.3 0.0 0.0 15.0 0.0 1.4 13.6 90.7 0.0 61.8 0.0 0.0 14.8 15.3 
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4.3. Results of the proposed GS-PCA for 2018 

The table 8 depicts the values of KMO and Bartlett’s test of Sphericity to verify the significance 

of PCA application in the 2018 data. Except for SDGs 6,11,13,14 and 17, all SDGs were found to 

be suitable for the implementation of PCA. For those SDGs which are not suitable for PCA, SDI 

scores from UN SDG Index and Dashboard Report 2018 was kept the same. The SDI scores of 

OECD countries for the year 2018 is given in table 9. In 2018, the top 5 performing countries 

remains the same with minor changes in their rank. Mexico and Turkey were still found to be 

among the worst performing countries. The changes in the score and their ranks are more explained 

on the comparison section of this report. 

Table 8. KMO and values of significance 2018 

SDG  Number of Variables KMO Value  Significance  

1 3 0.591 0.000 

2 6 0.459 0.000 

3 16 0.565 0.000 

4 8 0.698 0.000 

5 5 0.509 0.000 

6 4 0.536 0.092 

7 4 0.446 0.000 

8 5 0.723 0.000 

9 11 0.815 0.000 

10 3 0.571 0.000 

11 4 0.422 0.324 

12 7 0.675 0.000 

13 5 0.548 0.071 

14 6 0.571 0.110 

15 5 0.544 0.000 

16 9 0.693 0.000 

17 4 0.512 0.089 
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Table 9. OECD countries’ SDI scores obtained with the proposed GS-PCA approach 2018 

COUNTRIES/SDG 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 GS- PCA SDI 

FINLAND 100 75.0 100 92.7 90.3 93.6 93.7 72.5 79.6 99.2 91.1 48.9 76.6 62.6 74.3 93.8 70 83.2 

SWEDEN 79.9 83.0 98 66.7 93.9 92.6 97.7 92.6 90.2 93.8 89.9 46.3 84.9 54.5 61.4 88.2 96.4 82.9 

DENMARK 87.7 90.1 85.9 73.5 87 89 88.7 88.7 100 89.5 88.5 41.4 87.4 51.4 81.2 78.9 87.2 82.1 

ICELAND 95.7 81.4 99.3 66.9 94.8 85 98.9 100 91.4 100 89.3 60.8 88.9 28 6 77.5 65.2 78.2 

NORWAY 87.8 71.4 98.6 83.4 100 84.7 97.4 76.3 78.3 99.3 87.7 20.7 62.2 65.2 27.9 95.6 89.7 78.0 

GERMANY 93.5 92.1 84.1 57.3 71.4 86.3 88 89.9 45.7 85.8 91.1 43 88.1 44.3 58.8 80.4 77.2 75.1 

IRELAND 94.2 88.0 90.5 61.5 59.6 85 86.7 89.9 58.4 86.6 83.2 52.2 89.7 52.5 79 71.6 32 74.2 

NETHERLANDS 92.6 84.4 90.2 64.0 74.5 90.9 85 90.3 58.1 92.2 88.7 29.8 71.3 39.8 60 94.6 49 73.8 

SLOVENIA 89.6 80.0 87 64.3 86.9 87.1 90.3 67.4 46.6 84.2 85.5 81.8 91.8 50 55.9 49.2 57.1 73.8 

FRANCE 93.7 87.4 81 39.9 90.6 89.5 94.6 59.4 48.9 89.2 89.6 50.2 84.8 61.3 54.6 68.2 71.3 73.8 

UNITED KINGDOM 90.8 81.8 81 84.4 78.1 92.6 87.7 82.2 59.6 63.3 91.2 35.5 80.9 53.9 58.6 86 42.1 73.5 

NEW ZEALAND 94.2 72.7 70.5 64.2 84.7 88.9 92.7 90 56.7 70 80.7 71.7 87.6 56.7 9.2 82.1 65 72.8 

ESTONIA 67.2 71.7 71.6 80.5 54.2 87.3 81.4 73.1 58.5 59 88.5 82 81.5 81.5 89.5 58.1 51.2 72.8 

SWITZERLAND 95.7 81.6 96.3 44.1 76.8 93.6 94.2 95.1 62.9 75.4 97.3 8.5 87.4 46.5 11.7 100 51.4 71.7 

BELGIUM 86.5 82.9 83.2 44.5 85.1 77 85.9 68.4 46.7 93.5 84.5 46.4 79 47.2 71.5 64.9 58.9 70.9 

AUSTRIA 85.7 92.3 85.6 44.4 58.1 94.4 89.1 83.6 55 90.9 83.9 32.3 83.2 46.5 42.9 69.9 66 70.8 

CZECH REPUBLIC 90 84.9 80.6 31.1 53.2 87.4 87.2 68.6 47 86.7 86.9 84.7 87.9 46.5 79.4 43.4 49.3 70.3 

JAPAN 62.5 83.5 98.2 98.0 15.8 90.7 88.3 82.1 58.8 70 74.1 60.4 85.2 56.4 34.7 72.4 57.3 69.9 

CANADA 70.6 71.7 75.1 100.0 75.2 75.4 91.5 77.7 40.8 78.3 81.9 54.4 66.4 54 24.3 79.8 63.4 69.4 

POLAND 93.1 73.5 67.7 53.9 64.4 83.1 81.8 55.5 29 71.5 77.2 100 87.5 45.2 80.5 34.5 48.6 67.5 

PORTUGAL 58.5 67.7 73.4 53.3 81.8 82.3 90.4 65.5 43.9 63.9 83.6 58.8 89.5 54.4 74.9 47.1 57.3 67.4 

KOREA, REP. 67.9 100.0 85.7 83.4 24.1 79.9 88.6 61.7 78.9 62.5 80 70.2 85.4 56 13.2 45.9 49.8 66.7 

LUXEMBOURG 96.2 76.6 90.4 22.4 71 86.4 66.7 83.6 33.5 92.5 95.4 0 80.7 46.5 28.6 82.7 50.9 64.9 

AUSTRALIA 87.5 64.2 85.9 68.5 71.2 86.7 84 81.6 65.1 63 84.5 43 23.3 55 17 63.5 59 64.9 

SPAIN 46.4 68.3 87.4 69.3 73.6 84.6 90.6 49.1 32.9 72 87.9 49.5 88.9 47.5 40.3 52.6 55 64.5 

ISRAEL 68.6 68.5 88.9 52.7 72 66.9 89.7 75.9 80.2 51.7 82.2 37.8 88.4 35.8 9.9 68.7 52.4 64.1 

LATVIA 56.2 73.2 49.4 66.9 51.6 84.7 86.3 70 15.7 58.1 83.2 75.7 84.2 55.6 100 29 47.6 64.0 

UNITED STATES 61.4 82.6 56 54.8 63.7 90.6 87.8 75.5 50.1 40.4 86.8 48.3 65.3 49.7 30.7 73.7 57.1 63.2 

SLOVAK REPUBLIC 55.7 72.8 60.6 26.7 56.4 89.6 88.1 52.3 38 82.9 80.9 83.6 76.2 46.5 70.6 29.9 50.4 62.4 

HUNGARY 73.7 78.9 52.2 0.0 51 86 85.2 49.5 9.3 82.8 83 86.1 84.1 46.5 73.4 23.3 49.6 59.7 

ITALY 40.7 81.4 89.3 56.9 56.5 83.2 87.7 25.2 19.3 73.4 71.9 51.4 82.1 43.3 55.6 30.9 58.5 59.3 

GREECE 30.6 76.5 79.4 30.2 54.8 85.8 86.9 15 13.3 62.6 78.3 43.9 78.1 59.4 52.9 24.3 53.8 54.5 

CHILE 72.1 49.1 44 7.3 32.4 94.2 87.5 44 0.9 13.5 79.6 85.5 92.4 62.9 28.2 36.6 73.8 53.2 

TURKEY 83.4 44.5 28.2 33.8 0 67.7 80.8 0 0 35.4 73.2 95.3 86.8 36.9 0 23.2 63.5 44.3 

MEXICO 0 0.0 0 20.6 48.4 59.7 80 2.8 8 0 81.2 98.7 88.1 58.4 5.2 0 61.6 36.0 
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4.4. Comparison of the GS PCA with the UN SDG Index and Dashboards Reports  

The result obtained from the PCA is compared with the SDG Index and Dashboards Report 

2017(Sachs et al., 2017) and 2018. The results are shared in Table 10. It was found that except a 

few top performing countries such as Sweden (ranked and scored as almost the same with the SDG 

Index and Dashboards report, mediocre or poor performing countries were found to have 

substantial score differences with the SDG Index and Dashboards report. For instance, Hungary, 

Luxemburg, and the US were found to have significant differences in their ranks with the SDG 

Index and Dashboards report. On the other hand, countries like Sweden, France, Portugal, Italy, 

and Greece were found to have the same ranking but significant score differences.  

SDG Index and Dashboards report is using equal weighting approach for the calculation of overall 

sustainable development index while this study proposes using PCA, a multivariate data analysis 

technique for the same. It is very crucial to understand the actual relationship between the approach 

adopted or compare the two or more method of measurements. In this study, the regression analysis 

for the score and rank difference is conducted to understand the relationship between scores and 

rank with two different methods  The regression line of the rank (Figure 3 and 4) and score 

difference ( Figure 5 and 6) is given below. The R2 value of the rank difference is 0.75 and 0.875 

for the year 2017 and 2018 which suggest that the GS-PCA model explains 75 % and 87.5 % of 

the variation in the rank of SDG Index and Dashboards report of the year 2017 and 2018 

respectively. The GS-PCA model of the year 2018 seems more robust than 2017 model. Also, the 

high R2 values validates our proposed GS- PCA model of the score for the year 2017 and 2018.The 

corresponding R2 values for the year 2017 and 2018 are 0.78 and 0.874 respectively. The high R2 

values is the strong indication of model validation. 

 



36 

 

Table 10. Comparison of (UN Report vs. GS-PCA SI 2017) 

Countries (1)UN  

SDG Index  

(2)GS-PCA  

SDI 

Absolute [(1)-(2)] (3) UN-SDG Rank  (4) GS-PCA SDI 

Rank  

Absolute 

[(3)-(4)] 

Sweden 85.6 83.6 2 1 1 0 

Denmark 84.2 78.1 6.1 2 4 2 

Finland 84.0 80.4 3.6 3 2 1 

Norway 83.9 78.7 5.2 4 3 1 

Czech Rep. 81.9 66.6 15.3 5 13 8 

Germany 81.7 71.3 10.4 6 8 2 

Austria 81.4 67.9 13.5 7 11 4 

Switzerland 81.2 70.8 10.4 8 9 1 

Slovenia 80.5 65.2 15.3 9 14 5 

France 80.3 68.8 11.5 10 10 0 

Japan 80.2 63.7 16.5 11 17 6 

Belgium 80 72.4 7.6 12 7 5 

Netherlands 79.9 75.3 4.6 13 5 8 

Iceland 79.3 74 5.3 14 6 8 

Estonia 78.6 61.4 17.2 15 20 5 

UK 78.3 67.2 11.1 16 12 4 

Canada 78 62.8 15.2 17 18 1 

Hungary 78 51.2 26.8 18 31 13 

Ireland 77.9 58.1 19.8 19 22 3 

New Zealand 77.6 64.5 13.1 20 15 5 

Slovak Rep. 76.9 54 22.9 21 27 6 

Spain 76.8 57.1 19.7 22 23 1 

Australia 75.9 62 13.9 23 19 4 

Poland 75.8 52.0 23.7 24 28 4 

Portugal 75.6 56.2 19.4 25 25 0 

Italy 75.5 54.5 21 26 26 0 

South Korea 75.5 56.5 19 27 24 3 

Latvia 75.2 52.0 23.1 28 29 1 

Luxembourg 75 64.1 10.9 29 14 15 

Greece 72.9 52.0 20.9 30 30 0 

USA 72.4 58.3 14.0 31 21 10 

Chile 71.6 42.0 29.6 32 33 1 

Israel 70.1 51.1 18.9 33 32 1 

Mexico 69.1 15.3 53.8 34 35 1 

Turkey 68.5 27.9 40.7 35 34 1 

Mean 77.7 61.1 16.6 18.0 17.9 3.7 

Std. Dev. 4.3 13.9 10.3 10.3 10.3 3.7 
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Figure 3. Scatter plot of the Country Ranks Obtained from GS-PCA vs. UN Report 2017 

 

 

Figure 4. Scatter plot of the Country Ranks Obtained from GS-PCA vs. UN Report 2018 
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Figure 5. Scatter Plot of the SDI scores Obtained from GS-PCA vs. UN Report 2017 

 

 

Figure 6. Scatter Plot of the SDI scores Obtained from GS-PCA vs. UN Report 2018 
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4.5. Comparison of 2017 and 2018 based on the proposed GS-PCA Approach 

4.5.1. Graphical Comparison 

The following figures depicts the changes in the scores and the ranks of OECD countries between 

years 2017 and 2018. The difference on the rank and scores is calculated from 2017 minus 2018.  

 

 

Figure 7. Changes in the SDI Ranks from 2017 to 2018 

The figure 7 depicts the rank difference of 2017 and 2018 years. The country Ireland has 

significantly improved their rank with the improvement of 14 rank followed by countries like 

Poland, Estonia, Israel and Slovenia with the improvement in their rank by 8,7,6 and 5 respectively. 

On the other hand, countries like Belgium, United States, Luxembourg  has seen significantly 

lower ranking in 2018 than in 2017.These countries are ranked 15,28 and 21 in the year 2018 while 

their rank was 7,21 and 14 in 2017 respectively .Some of the top performing countries like Sweden, 

Finland , New Zealand and low performing countries like Mexico, Turkey Chile ,Latvia 
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experienced no changes in their ranks in two consecutive years even having some improvements 

in their SDI scores. 

The figure 8 shows the score difference of 2017 and 2018. Most of the countries is seen increment 

in the SDI score in 2018. The countries Mexico, Turkey, Ireland, Poland and Israel has 

significantly increased in the sustainability score. Netherland, Sweden and Norway, on the other 

hand, were found to have lower SDI score in 2018 than 2017.The average SDI score in the 2018 

is increased by almost 6.7% with the reduced standard deviation of 11.26 in 2018 as compared to 

13.70 in 2017. 

 

Figure 8. Changes in the SDI Scores from 2017 to 2018 
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Statistical comparison tests were conducted to compare the SDIs of OECD countries in 2017 and 
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result of normality test, ANOVA or a non-parametric test would be used. Most of them is found 

to have p value less than 0.05 which indicate the non-normal data set (Table 11). To deal with the 

non-normal data set, non-parametric test Kruskal Wallis test is performed. The results are provided 

in Table 12. It was shown in the table that the SDGs 1,4,7,8,11 ,13 and 17 have p-values less than 

0.05 meaning there is significant difference in the score between 2017 and 2018. All other goals 

have p-values that are greater than 0.05, which results in the failure to reject the null hypothesis, 

thus no significant difference between 2017 and 2018 SDIs. Results indicate that the OECD 

countries did not experience a statistically significant change from 2017 to 2018 in the majority of 

the 17 SDGs. But, only 7 SDGs had significant difference from 2017 to 2018. However, the overall 

p value is less than 0.05 which means we reject null hypothesis and conclude that the average SDI 

scores for the OECD countries for the year 2018 statistically different than the average SDI scores 

of 2017 as the P value for overall is less than 0.05. 

Table 11. Results of the Normality Test 

Year/Test P- Value 

SDG 1 SDG 2 SDG 3 SDG 4 SDG 5 SDG 6 SDG 7 SDG 8 SDG 9 

2017 Kolmogorov-

Smirnov 

0.200 0.000 0.000 0.005 0.200 0.000 0.006 0.000 0.034 

2018 0.006 0.000 0.003 0.072 0.200 0.200 0.000 0.013 0.200 

2017 Shapiro-Wilk 0.481 0.000 0.000 0.000 0.005 0.000 0.002 0.000 0.155 

2018 0.000 0.000 0.000 0.022 0.028 0.171 0.000 0.001 0.453 

Year/Test P- Value 

SDG 10 SDG 11 SDG 12 SDG 13 SDG 14 SDG 15 SDG 16 SDG 17 Overall  

2017 Kolmogorov-

Smirnov 

0.101 0.070 0.200 0.000 0.145 0.200 0.061 0.003 0.033 

2018 0.081 0.001 0.200 0.000 0.077 0.200 0.200 0.200 0.077 

2017 Shapiro-Wilk 0.003 0.010 0.405 0.164 0.601 0.405 0.060 0.000 0.009 

2018 0.001 0.001 0.397 0.000 0.482 0.134 0.171 0.124 0.023 
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Table 12. Results of Kruskal Wallis Test 

SDG P- Value 

1-No Poverty 0.002 

2-Zero Hunger 0.164 

3-Good Health and Well Being 0.673 

4-Quality Education 0.002 

5-Gender Equality 0.253 

6-Clean Water and Sanitation 0.101 

7-Affordable and Clean Energy 0.000 

8-Decent Work and Economic Growth 0.010 

9-Industry, Innovation and Infrastructure 0.054 

10-Reduced Inequality 0.131 

11-Sustainable Cities and Communities 0.000 

12-Responsible Consumption and Production 0.644 

13-Climate Action 0.000 

14-Life Below Water 0.888 

15-Life on Land 0.112 

16-Peace and Justice Strong Institutions 0.652 

17-Partnerships to Achieve the Goal 0.000 

Overall  0.012 

 

The following Whisker and box plots depicts the variation in the score for the years 2017 and 2018 

along with the five number summary .For instance, Minimum, First Quartile ,Median , Third 

Quartile and Maximum value of the data set .From this, we can visualize the variation in the score 

between two consecutive years with the amount of variation, outliers , minimum and maximum 

value in the data set. For example, the SDG 1 in the year 2017, has a first quartile value of around 

38 which means approximately 25% of the countries (i.e. 4) has a score less than 38 with median 

score of approx. 59 and maximum of 100. Where in 2018 the size of the box reduces and the first 

quartile range increase from 38 to approx. 62. In 2018, 25 % of the countries has score greater than 

90, the value for the same in the 2017 was slightly less than 80. 
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Figure 9. The Whisker and Box plot for 17 SDG of the Year 2017 and 2018 

 

4.6. Comparison of top 5 performers and worst performers between the year 2017 and 2018 

The following table 12 and table 13 depicts the top 5 and worst 5 performing countries in the 2017 

and 2018 along with their best and worst SDG. It can be seen from the table 12 that there are few 

changes on the ranking of top performing countries where Sweden is ranked first in 2017 and 

Finland achieved the first rank in 2018 with 100 % achievements on No Poverty and Good Heal 

and Well-being. The worst SDG of the top performing countries in the year 2018 is Responsible 

Consumption and Production with the average score of only 34.2%. 
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Table 13. Top 5 best performers and their best and worst SDGs 

  TOP 5 BEST PERFORMERS 

2017 ID  Country BEST SDG (SI) WORST SDG MEAN  STDEV 95% CI 

OF SDG 

1 Sweden Goal 17-Partnerships to achieve the Goal-100% Goal 13-Climate Action-54.2% 83.62 13.77 (76.56, 

90.64) 

2 Finland Goal 14-Life Below Water-100% Goal 12-Responsible Consumption and 

Production-39.9% 

80.36 18.25 (70.94, 

89.66) 

3 Norway Goal 5/11-Gender Equality/Sustainable Cities and 

Communities -100% 

Goal 12-Responsible Consumption and 

Production-17.8% 

78.69 22.49 (67.13, 

90.27) 

4 Denmark Goal 9-Industry, Innovation and Infrastructure-100% Goal 14-Life Below Water-14.7% 78.08 20.85 (67.36, 

88.74) 

5 Netherlands Goal 13(100)-Climate Action-100% Goal 14-Life Below Water-24.1% 75.29 21.32   

2018 I

D 

 Country BEST SDG (SI) WORST SDG MEAN  STDEV 95% CI 

OF SDG 

1 
Finland 

Goal1/3-No Poverty/Good Health and Well-being-100% Goal 12-Responsible Consumption and 

Production-48.09% 
83.2 

16.77 (74.41, 

89.84) 

2 
Sweden 

Goal 17-Partnerships to achieve the Goal-100% Goal 12-Responsible Consumption and 

Production-46.30% 
82.9 

16.33 (74.36, 

91.90) 

3 
Denmark 

Goal 9-Industry, Innovation and Infrastructure-100% Goal 12-Responsible Consumption and 

Production-48.09% 
82.1 

15.12 (73.76, 

89.79) 

4 
Iceland 

Goal 8/10-Decent Work and Economic Growth/Reduced 

Inequality-100% 

Goal 15-Life on Land-6.03% 
78.2 

23.10 (62.74, 

91.44) 

5 
Norway 

Goal 12-Responsible Consumption and Production-

48.09% 

Goal 12-Responsible Consumption and 

Production-20.7% 
78.0 

23.94 (64.64, 

90.16) 

 

The table 13 represents the 5 worst performing countries in the year 2017 and 2018. The three worst performing countries Mexico, 

Turkey and Chile remains on the bottom of the table for both years with very low score. However, the worst performing country, Mexico, 

is seen to have achieved higher score on the goal # 12 Responsible consumption and Production with score of 90.7 % and 98.7 % in the 

year 2017 and 2018 respectively. The worst performing countries have scored highest on the SDG like Responsible Consumption and 

Production, Clean water and Sanitation, Good health and well-being etc.  
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Table 14. Top 5 worst performers and their best and worst SDGs 

  WORST PERFORMERS 

2017 ID  Country BEST SDG (SI) WORST SDG MEAN  STDEV 95% CI OF 

SDG 

1 Mexico Goal 12-Responsible Consumption and 

Production-90.7 % 

Goal 1-4/6-7/9/13-15:No Poverty/Zero Hunger/Good Health and 

Well-being/Quality Education/Clean Water and 

Sanitation/Affordable and Clean Energy/Industry, Innovation and 

Infrastructure/Climate Action/ Life Below Water/Life on Land-

0% 

15.3 27.3 (1.26, 29.34) 

2 Turkey Goal 14-Life Below Water-86.9% Goal 5/8-Gender Equality/Decent Work and Economic Growth-

0% 

27.9 27.2 (13.92, 41.88) 

3 Chile Goal 6-Clean Water and Sanitation-91.4% Goal 10-Reduced Inequality-0% 42.0 26.0 (28.63, 55.37) 

4 Israel Goal 3-Good Health and Well-being-92.6% Goal 17-Partnerships to achieve the Goal-5% 51.2 24.8 (38.45, 63.95) 

5 Hungary Goal 6-Clean Water and Sanitation-98.5% Goal 16-Peace and Justice Strong Institutions-5.7% 51.2 25.7 (37.99, 64.41) 

2018 ID  Country BEST SDG (SI) WORST SDG MEAN  STDEV 95% CI OF 

SDG 

1 Mexico Goal 12-Responsible Consumption and 

Production-98.7% 

Goal 1/2/3/7/10/16-No Poverty/Zero Hunger/Good Health and 

Well-being/Affordable and Clean Energy/Reduced 

Inequality/Peace and Justice Strong Institutions-0% 

38.29 34.0 (18.51, 58.07) 

2 Turkey Goal 12-Responsible Consumption and 

Production-95.3% 

Goal 4/5/8/9/15/17-Quality Education/Gender Equality/Decent 

Work and Economic Growth/Industry, Innovation and 

Infrastructure/Life on Land/Partnerships to achieve the Goal- 0% 

41.83 34.9 (24.33, 59.33) 

3 Chile Goal 6-Clean Water and Sanitation-94.2% Goal 9-Industry, Innovation and Infrastructure-1% 51.99 30.0 (35.39, 68.60) 

4 Greece Goal 7-Affordable and Clean Energy-86.9% Goal 9-Industry, Innovation and Infrastructure-13.31% 55.94 26.3 (42.76, 69.14 

5 Italy Goal 3- Good Health and Well-being 89.3% Goal 17-Partnerships to achieve the Goal-5.6% 60.41 27.0 (48.76, 72.36) 
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4.7. SDG-focused Analysis 

In this section, results are provided with a specific focus on each of the 17 SDGs. Results of 

average SDI score for each SDGs in 2017 is provided in Fig. 9 and results of 2018 data is provided 

in Fig. 10. According to figure 9, which presents the average SDI Score for the year 2017, the 

lowest performance was observed in SDG 17, “Partnership to achieve the Goal” with an average 

score of 34% and the highest achieving goal was found to be SDG 8 “Decent Work and Economic 

Growth” with average score of almost 80%. The average SDG score of the OECD countries in the 

year 2017 was found to be 61.09 %. 

 

Figure 10. Average and Standard Deviation of SDI scores in 2017 
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For instance, the average SDI score of SDG 13 was found to be 81.1, which indicates the average 

of all OECD countries for that specific goal. The average goal score of OECD countries for the 

years 2017 and 2018 are provided in the separate figures below, which depicts the OECD 

countries’ overall performance on individual SDGs and also the standard deviation of the SDIs, 

which are shown with error bars in both graphs. 

 

Figure 11. Average and Standard Deviation of SDI scores in 2018 
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5. DISCUSSION 

The objective of proposing a PCA approach in this thesis was to aggregate a largest set of 

sustainability indicators to form a composite sustainability index score for OECD countries. It was 

found that significant differences exist in the ranks and SDI scores of the OECD countries with 

the newly proposed GS-PCA approach compared to the equal weighting method adopted by the 

UN’s benchmark report (Sachs et al., 2017). The reason behind this difference is attributed to the 

inherent correlations among the majority of the pairs of variables in the data. As a nonparametric 

approach, PCA effectively dealt with the multicollinearity in the data by developing factor 

variables (principal components). 

SDI scores describe the OECD countries’ progress towards achieving the targets of 17 SDGs and 

also indicates areas requiring faster progress and more effective policy making. Significant shifts 

in the SDI scores were found for some SDGs. For Instance, SDG 13 “climate action”, the average 

SDI score significantly jumped from 38.6% to 81.13% in 2018. Similarly, OECD countries 

experienced progress in SDG1 “No Poverty” with an increase of 14.36% compared to 2017. 

However, there are some SDGs such as SDG 4 “Quality Education”, SDG 6 “Clean Water and 

Sanitation”, SDG 8 “Decent Work and Economic Growth”, SDG 15 “Life on Land” in which the 

average SDI scores were found to be lower in 2018 compared to 2017. So, OECD countries should 

be more focused on those goals in which they are performing poor, to reach the set target in defined 

time i.e. by the end of 2030. SDG17,” Partnership to achieve goal” was found to be the lowest 

performing goal of OECD countries. And, this is a particularly tragic result since sustainable 

development solely requires effective partnerships among the OECD countries and among the 

organizations within each and every OECD country.  
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6. CONCLUSION, LIMITATIONS, AND FUTURE WORK 

What Peter Drucker quoted for business organizations is true for the sustainable development: if 

we can’t measure the sustainable development, we cannot improve it. Thus, sustainability 

performance indexing is crucially important for sustaining the sustainable development initiatives 

in the direction of successful implementation of socially acceptable, economically viable, and 

environmentally benign policies. In this regard, country specific sustainable development indexing 

has been the focal point of the UN Sustainable Development reports. In the recent UN SDG 

performance assessment reports, linear weighted averaging method have been typically employed, 

which is quite robust and practical to apply but had a few shortcomings. Among the shortcomings, 

not accounting for the multi collinearity and correlation among the variables that are used to assess 

the 17 SDGs was crucial and was the focus of this study. This study proposes a Principal 

Component Analysis-based approach to assess the sustainability performance of the OECD 

countries, which is aimed to alleviate the deteriorating impacts of the shortcomings on the 

sustainability indexing.  

The data is collected from SDG Index and Dashboards report, which consist of 35 rows (OECD 

countries) and 93 variables for 2017 and 104 variables for 2018, which account for 17 SDGs. Each 

SDG has 2-9 variables, that are the representative variables for the specific SDG. Data cleaning 

and normalization steps were carried out prior to the implementation of Goal Specific PCA 

approach. The PCA models were built for all 17 SDGs and factor scores were recorded to be used 

for sustainability index scores (0-100). It was found that Sweden had the first rank, which was 

followed by Finland, Norway, and Denmark, while Mexico was ranked as the last.  

The results of the GS PCA were compared with the UN’s sustainable development scores of 2017 

and 2018 (Sachs et al., 2017, 2018). It was found that except a few top performing countries such 
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as Sweden (ranked and scored as almost the same with the SDG Index and Dashboards report, 

mediocre or poor performing countries were found to have substantial score differences with the 

SDG Index and Dashboards report . For instance, Hungary, Luxemburg, and the US were found 

to have significant differences in their ranks with the SDG Index and Dashboards report. On the 

other hand, countries like Sweden, France, Portugal, Italy, and Greece were found to have the same 

ranking but significant score differences. 

All in all, it was found that there is a strong positive correlation between the proposed method (GS 

PCA) and the UN SDG index, however, substantial difference in the standard deviation of the 

scores and ranks were found, which were more attributed to the correlation and collinearity effects 

of the high volume of input variables and the relationship of the input variables with multiple 

SDGs. There are obviously limitations in the current study, which are targeted to be part of the 

future work. For instance, equal weighting assumption was kept the same as it was in the SDG 

Index and Dashboards report to have a fair comparison with the literature. The weights of the 17 

SDGs might not have to be the same for all countries given the socio-economic, cultural, and other 

differences exist among the OECD countries, which requires further research.  In addition, the 

literature is still in evolution stage in terms of identifying the importance of social, economic, and 

environmental sustainability indicators towards realizing SDGs more effectively.  This limitation 

could be extended with the integration of expert judgment or further literature review on weight 

assignments to SDGs, which will reflect the relative importance of SDGs. It would be interesting 

to integrate expert judgment, multi-criteria decision analysis with the proposed GS PCA approach 

to address the non-equal weight assignments and compare with the literature. 
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APPENDIX 

Appendix folder includes data, modeling and experimentation results, which could be reached at:  

https://drive.google.com/file/d/1hPmV95UPp8XD9T-jTVL9sdHNVupF3hfU/view?usp=sharing 

 

  

https://drive.google.com/file/d/1hPmV95UPp8XD9T-jTVL9sdHNVupF3hfU/view?usp=sharing
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