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ABSTRACT 

Over several decades, railroad Ultrasonic Testing (UT) industry techniques have 

primarily been developed through simple analytical modelling and experimental approaches. 

However, with present-day computational capabilities, we can use numerical techniques like the 

Elastodynamic Finite Integration Technique (EFIT) to fine-tune systems for complex 

applications before the fabrication process begins. EFIT is well-established as a useful method in 

numerical analysis of ultrasonic wave propagation with distinct advantages over the Finite 

Difference Time Domain method. Several software packages exist that use EFIT as the primary 

method for simulating the behavior of ultrasonic waves over time in 2 or 3 dimensions, but none 

of them are well-suited for railroad UT research and development. This thesis explores the 

complete development of a custom tool for this purpose which was designed to: (1) allow for the 

input of various profile geometries, boundary conditions, and material inclusion geometries 

(such as a bolt hole in a railroad track); and (2) allow for the input of specific ultrasonic impulses 

from varying emitter designs. The custom software produced results that closely matched 

expected wave propagation behavior. The results were processed into useful visual 

representations of that behavior. 
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CHAPTER I: Ultrasonic Testing in Rail Applications and Relevant Numerical 

Solutions 

How do we predict an imminent train derailment on railroad track that has been in service 

for 80 years or more? How do we determine that a brand new gas cylinder is likely to explode if 

it is put into service? In cases like these and many others, the answer is Ultrasonic Testing (UT), 

a subset of nondestructive evaluation (NDE). UT is, at its core, concerned with inducing 

ultrasonic waves into a material and making inferences about the material’s internal structure 

based on the exiting ultrasonic waves. Feasible candidates for UT include product forms that are 

wrought, cast, welded, composite, or other materials as long as they have: (a) surface and 

internal geometries suitable for the application of UT; and (b) relevant defect definitions that are 

of shapes and orientations that conducive to ultrasonic inspection [1]. UT is used to ensure the 

safety of many types of system components and structures, including train wheels, pressurized 

tanks, railroad tracks, tubes, pipes, ammunition, airplane parts, and structural beams. Many of 

these components are inspected using UT techniques both at the time of manufacture and while 

in service.  

UT is a well-established application of acoustic science. The basic principle is the same 

as SONAR: a sound wave is emitted, it reflects off of some feature of interest, and the reflection 

is detected and interpreted. The departure from large scale sensing techniques is driven by the 

frequencies used. SONAR mainly uses frequencies in the human audible range (20-20,000 Hz), 

while ultrasonic waves are by definition above 20 kHz. Attenuation is proportional to the square 

of frequency, so detection range decreases at higher frequencies, but resolution and sensitivity 

increase. An important note is that at ultrasonic frequencies, sound cannot propagate any useful 

distance in air. UT is typically conducted in the MHz range (0.5-25 MHz) [1].  
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Ultrasonic waves are typically generated by piezoelectric transducers, which exploit the 

piezoelectric effect, in which structural deformation is induced by applied voltage and vice versa. 

This characteristic allows them to both emit ultrasonic waves and convert incoming ultrasonic 

signals into electrical signals, which can then be recorded and interpreted by the rest of the 

system. Transducer configurations include pulse-echo (the emitting transducer is also the 

detecting transducer), pitch-catch (a second transducer acts as the detector for reflections of an 

angled ultrasonic beam), and through-transmission (similar to pitch-catch, but with the 

transducers located on opposite sides of the target material).  

Since railroad track inspection is one of the primary motivators of this project, a more 

thorough background of that specific UT application is appropriate. While the details of the 

application are complex, the general concept is relatively simple: a fluid-filled wheel probe with 

several transducers held at fixed angles inside it rolls down the track, continuously collecting 

measurements (Figure 1). The ultrasonic beam propagates from each transducer, through the 

wheel fluid, through the membranous tire, through a film of liquid couplant sprayed on the rail to 

eliminate air gaps, and into the railroad track. From there, if the beam strikes a discontinuity 

roughly orthogonal to its propagation direction, it will reflect back along the same path up into 

the wheel probe and be received by the same transducer that emitted the pulse. There are a 

number of different defect types which occur at various positions and angles within railroad 

tracks, so an array of transducers at various positions and angles must be used to find them.  



   
 

3 
 

 
Figure 1: UT wheel probe layout. Wheel probes are rolled along in-service railroad tracks to detect many 
different types of flaws. The wheel probe shown here contains a typical array of transducers. Adapted 
from [2]. 

Railroad tracks experience a multitude of cyclic and transient loading conditions, 

including vertical loading from trains, lateral loading from trains, lateral creep forces at the 

rail/wheel interface, thermal stresses, and residual stresses from manufacturing or welding 

processes [3]. Due to these complex loading patterns which span decades or longer, there are 

many different types of defects which may develop in the rail and eventually cause failure. One 

of the most common defect types is the transverse fissure, which is a crosswise fracture 

originating from a nucleus inside the head and spreading outward orthogonally to the length of 

the rail. They are impossible to detect visually until the rail has already broken, but they can be 

found with a 70º angled transducer in a wheel probe. Another common defect type is the vertical 

split head, a progressive longitudinal fracture near the middle of the head along the length of the 

rail. They are typically not visible from the surface until they have grown several feet long. 

Vertical split heads are particularly prone to causing derailments after complete mechanical 

failure. Luckily, they can be found using 0º or 45º angled transducers. 
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Many discontinuities appropriate for UT in general fall under the categories of cracks, 

gaps, or other inclusions that behave approximately like rigid reflectors. Scattering of acoustic 

waves has well-established solutions for very simple geometries – for example, scattering of a 

propagating plane wave from a rigid sphere has been thoroughly explored [4]–[6]. However, as 

complexity is added to the reflector geometry, the incident waveform, or the boundary 

conditions, analytical solutions quickly become very cumbersome or impossible. At this point, 

more advanced numerical tools and techniques are required. As applicable to UT, these include 

semi-analytical techniques like the geometric theory of diffraction and the boundary element 

method (BEM), and numerical techniques operating directly on the fundamental equations of 

motion, among them finite difference time domain methods (FDTD), and finite element methods 

(FEM) [7].  

This paper will focus on the Finite Integration Technique (FIT), an explicit hyperbolic 

time-domain solver, as applied to the acoustic and elastodynamic cases. In the case of the 

Acoustic Finite Integration Technique (AFIT), the model directly develops the fundamental 

governing equations into a parallelized solver for simulation of acoustic wave propagation in 

fluids in 3 dimensions. The Elastodynamic Finite Integration Technique (EFIT) is an analogous 

model for ultrasonic wave propagation in isotropic homogeneous solid media. 

To better understand the general FIT, it is useful to first compare it to FDTD. Both 

methods generally use a cubic hexahedral or cylindrical grid, though advanced meshing 

techniques such as subgridding can be applied [8]. They both use Yee’s staggered grid structure 

(primary grid and offset secondary grid), first presented in 1966 for electromagnetic simulation 

(Figure 2) [9]. FIT and FDTD both use a marching-in-time leapfrog scheme, meaning that the 

pressure updates alternate with the velocity updates a half timestep apart. By using this explicit 
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time integration scheme, no iteration is involved in the solution procedure. This also means that 

the maximum possible time step is determined by Courant-Friedrich-Lewy-criterion,  

Δ𝑡 ≤ Δ𝑡𝑚𝑎𝑥 =
1

√𝑛

Δ𝑥

𝑐𝑚𝑎𝑥

(1) 

Δ𝑥 ≈
𝜆min

10
(2) 

where n is the number of spatial dimensions and 𝑐𝑚𝑎𝑥 is the highest wave propagation speed in 

the simulation. The minimum wavelength 𝜆min drives the maximum spatial discretization size 

Δ𝑥. Due to the inverse relationship between frequency and wavelength, high-frequency 

simulations are forced to finer resolutions, increasing computational requirements. The 

maximum temporal discretization size Δ𝑡𝑚𝑎𝑥 is directly proportional to the chosen Δ𝑥, so higher 

frequencies also force a finer time resolution. 

In both models, the use of a fixed mesh causes spatial discretization error. A material 

property discretization error also occurs [10]. Additionally, FDTD and FIT are full-wave 

propagation methods as opposed to spectral methods, which are numerical techniques that 

operate in the frequency domain. 

The key difference between FIT and FDTD is form of the governing field equations on 

which they are based. The FDTD approach uses the differential form of these equations, while 

the FIT is based on the integral forms of the field equations. This means that for a fixed mesh 

(which includes an inherent spatial discretization error), no additional equation discretization 

error is introduced when passing from the continuous to the discrete form [11]. In other words, 

FIT contains less inherent error than FDTD. 
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Figure 2: Staggered grid architecture.  Yee's staggered grid method can be applied to FIT for the 
simplified model of acoustic wave propagation in fluids (left) or the full elastodynamic model in solids 
(right). The corresponding leapfrog update schemes are shown as well (below). The Cartesian velocity 
vector v is positioned at the center of each face of the primary grid and the center of each edge of the 
secondary grid. The scalar pressure value for fluids p is shown in the center of the primary grid and at 
the corner of the secondary grid. The normal components of the Cauchy stress tensor T are positioned at 
the center of the primary grid, while the shear components are on the center of each edge of the primary 
grid. Adapted from [12].  

FIT and FDTD can be compared with FEM as a single grouping. As discussed in [13], 

FIT and FDTD are both more widely implemented than FEM mainly due to the relative 

simplicity of their programming. FEM is formulated using unstructured grids, which give it 

greater versatility for complex geometries but require advanced knowledge of mesh generation in 

order to properly implement. FEM requires far more computational resources than FDTD and 
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FIT for relatively simple geometric cases; however, the typical strategy for handling complex 

geometry in FDTD and FIT is to use a finer mesh, either globally or locally. Due to this 

limitation, FEM can be the more computationally efficient method for certain complex 

geometries. FEM is also generally superior to FDTD when material interfaces are involved, but 

FIT can easily account for continuity conditions at these interfaces.  

For Acoustic FIT, propagation is only simulated through fluids, so no shear stresses can 

be carried in the material. The governing field equations are derived from conservation of mass, 

conservation of momentum, and a thermodynamic equation of state [14]. This leads to equations 

for the pressure p and velocity vector 𝐯 in real cartesian space 𝐑 and time t, 

𝛿

𝛿𝑡
𝐣(𝐑, 𝑡) = −∇𝑝(𝐑, 𝑡) + 𝐟(𝐑, 𝑡) (3) 

𝛿

𝛿𝑡
𝑆(𝐑, 𝑡) = ∇ ∙ 𝐯(𝐑, 𝑡) + ℎ(𝐑, 𝑡) (4) 

where 𝐣 is the momentum density vector, 𝐟 is the volume force density vector, S is the scalar 

deformation, and h is the injected deformation rate. This is the differential form used in FDTD. 

To create the integral form of these equations for AFIT, Equations 3 and 4 are first 

combined with the constitutive material equations, 

𝐣(𝐑, 𝑡) = 𝜌𝑎0(𝐑)𝐯(𝐑, 𝑡) (5) 

𝑆(𝐑, 𝑡) = −κ(𝐑)𝑝(𝐑, 𝑡) (6) 

where 𝜌𝑎0 is the acoustic mass density at rest and κ is the compressibility. The constitutive 

equations limit the scope of this model to linear, inhomogeneous, anisotropic, instantaneously 

and locally reacting media. Gauss’ and Stokes’ Theorems are then applied [12], [15] to arrive at 

the integral forms of the governing field equations, 
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∭ ρ𝑎0(𝐑)𝐯̇(𝐑, 𝑡)𝑑𝑉
𝑉

= − ∯ 𝑝(𝐑, 𝑡)𝐝𝐒
𝑆=δ𝑉

+ ∭ 𝐟(𝐑, 𝑡)𝑑𝑉
𝑉

(7) 

𝐯(𝐑, 𝑡) = 𝐯(𝐑, 𝑡0) + ∫ 𝐯̇(𝐑, 𝑡′)𝑑𝑡′
𝑡

𝑡0

(8) 

∭ κ(𝐑)𝑝̇(𝐑, 𝑡)𝑑𝑉
𝑉

= − ∯ 𝐯(𝐑, 𝑡) ∙ 𝐝𝐒
𝑆=𝛿𝑉

− ∭ℎ(𝐑, 𝑡)𝑑𝑉
𝑉

(9) 

𝑝(𝐑, 𝑡) = 𝑝(𝐑, 𝑡0) + ∫ 𝑝̇(𝐑, 𝑡′)𝑑𝑡′
𝑡

𝑡0

. (10) 

The integral forms are then directly converted into the numerical matrix update equations 

for AFIT, 

{𝐯̇}(𝑛𝑡−1/2) = [𝛒̃𝑎0]−1 [𝐑̃]−1[𝐠𝐫𝐚𝐝̃]{𝐩}(𝑛𝑡−1/2) + [𝛒̃𝑎0]−1{𝐟}(𝑛𝑡−1/2) (11) 

{𝐯}(𝑛𝑡) = {𝐯}(𝑛𝑡−1) + ∆𝑡{𝐯̇}(𝑛𝑡−1/2) (12) 

{𝐩̇}(𝑛𝑡) = −[𝛋]−1[𝐝𝐢𝐯][𝐑]−1{𝐯}(𝑛𝑡) − [𝛋]−1{𝐡}(𝑛𝑡) (13) 

{𝐩}(𝑛𝑡+1/2) = {𝐩}(𝑛𝑡−1/2) + ∆𝑡{𝐩̇}(𝑛𝑡) (14) 

where 𝑛𝑡 is an integer time step counter such that 𝑡 = ∆𝑡 𝑛𝑡 and the ~ operator indicates that a 

matrix is defined on the secondary grid. This direct, one-to-one mapping of the field equations is 

the reason FIT does not have the equation discretization error found in FDTD and other 

numerical techniques. 

For EFIT, the full elastodynamic equations must be used. The governing field equations 

for viscid fluids and solids are the linear vectorial Cauchy-Newton’s law of motion and the 

tensorial law of deformation rate, 

𝛿

𝛿𝑡
𝐣(𝐑, 𝑡) = ∇ ∙ 𝐓(𝐑, 𝑡) + 𝐟(𝐑, 𝑡) (15) 

𝛿

𝛿𝑡
𝐒(𝐑, 𝑡) = 𝑠𝑦𝑚{∇ ∙ 𝐯(𝐑, 𝑡)} + 𝐡(𝐑, 𝑡) (16) 
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where 𝐓 is Cauchy’s stress tensor of 2nd rank, 𝐒 is the deformation tensor of 2nd rank, 𝐡 is the 

injected deformation rate tensor of 2nd rank, and “sym” is a symmetric gradient operator. This is 

the differential form used in FDTD. 

To create the integral form of these equations for EFIT, Equations 17 and 18 are first 

combined with the constitutive material equations, 

𝐣(𝐑, 𝑡) = 𝜌𝑒0(𝐑)𝐯(𝐑, 𝑡) (17) 

𝐒(𝐑, 𝑡) = 𝐬(𝐑): 𝐓(𝐑, 𝑡) (18) 

where 𝜌𝑒0 is the elastodynamic mass density at rest, 𝐬 is the compliance tensor of 4th rank, and 

the colon “:” is an operator denoting a double-scalar product. The constitutive equations limit the 

scope of this model to linear, inhomogeneous, anisotropic, instantaneously and locally reacting 

media. Gauss’ and Stokes’ Theorems are then applied [12], [15] to arrive at the integral forms of 

the governing field equations, 

∭ ρ𝑒0(𝐑)𝐯̇(𝐑, 𝑡)𝑑𝑉
𝑉

= ∯ 𝐓(𝐑, 𝑡) ∙ 𝐝𝐒
𝑆=δ𝑉

+ ∭ 𝐟(𝐑, 𝑡)𝑑𝑉
𝑉

(19) 

𝐯(𝐑, 𝑡) = 𝐯(𝐑, 𝑡0) + ∫ 𝐯̇(𝐑, 𝑡′)𝑑𝑡′
𝑡

𝑡0

(20) 

∭ 𝐬(𝐑): 𝐓̇(𝐑, 𝑡)𝑑𝑉
𝑉

= ∯ 𝑠𝑦𝑚{𝐧 𝐯(𝐑, 𝑡)}𝑑𝑆
𝑆=𝛿𝑉

+ ∭ 𝐡(𝐑, 𝑡)𝑑𝑉
𝑉

(21) 

𝐓(𝐑, 𝑡) = 𝐓(𝐑, 𝑡0) + ∫ 𝐓̇(𝐑, 𝑡′)𝑑𝑡′
𝑡

𝑡0

(22) 

where 𝐧 is the unit normal at an interface. 

The integral forms are then directly converted into the numerical matrix update equations 

for EFIT, 
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{𝐯̇}(𝑛𝑡−1/2) = [𝛒̃𝑒0]−1 [𝐃𝐈𝐕̃][𝐑̃𝑽̇
𝑻 ]−1[𝐀𝑽̇

𝑻 ]{𝐓}(𝑛𝑡−1/2) + [𝛒̃𝑒0]−1{𝐟}(𝑛𝑡−1/2) (23) 

{𝐯}(𝑛𝑡) = {𝐯}(𝑛𝑡−1) + ∆𝑡{𝐯̇}(𝑛𝑡−1/2) (24) 

{𝐓̇}(𝑛𝑡) = [𝐜][𝐑𝑻̇
𝑽]−1[𝐆𝐑𝐀𝐃][𝐀𝑻̇

𝑽]{𝐯}(𝑛𝑡) + {𝐠}(𝑛𝑡) (25) 

{𝐓}(𝑛𝑡+1/2) = {𝐓}(𝑛𝑡−1/2) + ∆𝑡{𝐓̇}(𝑛𝑡) (26) 

where [𝐀𝑽̇
𝑻 ] and [𝐀𝑻̇

𝑽] are averaging matrices and g is the interface source density of injected 

deformation rate. 

Now that the update equations have been developed for AFIT and EFIT, the coding and 

implementation can begin. We apply the numerical technique to a number of simple test cases, 

then expand the capabilities beyond well-established basic FIT implementations to accommodate 

arbitrary geometries – in this case, the simulation of ultrasound in railroad track. 
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CHAPTER II: AFIT Implementation and Results 

In this chapter, the programming and technical implementations will be discussed for 

AFIT only, but much of the information here will form a basis for the EFIT discussion in the 

next chapter. The general simulation architecture is to 1) write input files using MATLAB, 2) 

perform the marching-in-time algorithm using a parallelized C++ executable program written 

specifically for this project, and 3) perform postprocessing and create graphics using VisIt, an 

open-source visualization tool developed by the U.S. Department of Energy [16]. Each of the 

three main simulation steps can be performed sequentially on a computing cluster. The system 

used for these simulation runs had a 16-core 2.10 GHz CPU and 500 GB of RAM.  

 

Figure 3: This flowchart outlines the general architecture for this FIT implementation. 

 The MATLAB script begins by defining various material, spatial, and temporal 

properties. For AFIT, these include material density, sound speed, maximum input frequency, 

number of time steps, physical size of the simulation space, and the sizes and locations of any 

scatterers. Several other parameters are then calculated; for example, the maximum input 

wavelength, spatial discretization size, and temporal discretization size are all interrelated and 

Create input files in MATLAB
• Space/time parameters
• Material properties
• Scatterers

Parallelized C++ program (OpenMPI)
• Reads input files and distributes them to any number of processors
• Sets up arrays, then does the math
• PMLs to minimize space requirements
• Periodically extracts output values

Postprocessing in VisIt (visualization and graphical analysis tool)
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dependent on the sound speed and maximum frequency. A “drive function” is defined based on 

either an analytical equation (e.g. a sine wave) or an input data file. The drive function is simply 

an array of pressure values for each time step which will later define a plane wave input at one 

end of the simulation space. Finally, a text file is written to pass all the necessary parameters 

(including the full drive function) to the C++ executable. 

The executable simulation program uses Open MPI to pass information between 

processors “nodes” [17]. One node is defined as the master, which is responsible for reading and 

preprocessing the simulation parameters from the input file, distributing the parameters to all the 

other nodes, and recording output data periodically. The rest of the nodes are defined as slaves or 

workers, which each receive an evenly divided slice of the simulation space from the master 

node and are responsible for performing the actual calculations for the marching-in-time 

algorithm. All nodes are synced to the current time step as the simulation proceeds. The 

parallelization slices are orthogonal to the propagation direction of the plane wave. 

All the calculations and array bookkeeping are defined by a ~500-line header file that is 

instantiated separately by each worker node. For each time step, every worker performs the same 

procedure independently. First, the drive function is applied as an input plane wave on only a 

single worker node. Then the pressures are updated for the entire space. Each worker node has 

one layer of overlap with its neighboring node(s), so these values must be passed and shared 

using MPI. Next, the velocities are updated for the entire space, with similar value sharing 

between nodes. This alternating update pattern is the leapfrog scheme in practice. At periodic 

intervals, the output data is extracted and sent to the master node for recording. Once all of a 

worker’s values are updated for a given time step, absorbing boundary conditions are applied to 

the outer faces of the overall simulation space. The boundary condition used is a Perfectly 
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Matched Layer (PML), which is a technique that applies an incrementally increasing reduction 

factor to each element of the layer moving towards the outer faces of the simulation space [18]. 

These layers are part of the computational simulation space but are considered sacrificial and 

cannot produce valid physical results (Figure 4).  

 
Figure 4: Example of PML's implemented in 2-D space. The method avoids reflections at the inner edge 
of a PML by matching the impedance of the PML to the impedance of the problem space. Adapted from 
[19]. 

Once the simulation is complete, a series of binary files containing the output data has 

been produced. To help VisIt interpret these binary files, a simple bash script is used to write a 

series of “brick of values” (.bov) files, which define data type and size, byte order, and other 

parameters for the corresponding data file. From there, it is relatively simple to create a 3-D plot 

of the data (Figure 5), which can be manipulated in a wide variety of ways, including video 

generation. 

The primary test case for the AFIT implementation was a rigid sphere in a fluid, which is 

a well-studied acoustics problem. The input was a standing 2.5 kHz plane wave. The pressure 

output was recorded for only the even element positions in each principal direction, resulting in 

an 87.5% reduction of overall data file size. The expected interference patterns due to reflections 

from the sphere can be seen in Figure 6. The expected diffraction patterns behind the sphere 

were also observed. The simulation used PMLs on 5 faces of the computational space (Figure 7). 

In this implementation, the source face does not have a PML, so the sphere was spaced far 
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enough from the source face that reflections from it were not a concern for the simulation time 

duration. 

There are far more interesting problems which can be solved using this implementation 

of AFIT, but for this thesis, AFIT is primarily used as a stepping stone on the way to the 

motivating problem of EFIT in arbitrary geometry. 

 
Figure 5: Half-space 3-D view of the rigid sphere AFIT simulation. Note the clearly visible attenuation at 
the outer faces caused by the PML's. 
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Figure 6: AFIT results: rigid sphere. 2-D slice of a 3-D simulation of a 2.5 kHz plane wave reflecting 
from a rigid sphere. Results are shown at simulation time steps 345, 620, 740, 900, and 1180, with 1 time 
step = 11.43μs. 

 
Figure 7: AFIT PML illustration. The PML's in this simulation space (boxed in red) are not valid physical 
results, so they are generally omitted from final figures. Only 3 PMLs are shown here because the figure 
is a 2-D slice of a 3-D simulation. Result is shown at simulation time t=13.5 ms. 
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CHAPTER III: EFIT Implementation and Results 

When transitioning from AFIT to EFIT, the general simulation structure remains more or 

less the same. There are two key differences that add a nontrivial complexity to the 

implementation of EFIT. First, instead of pressure, all six components of the Cauchy stress 

tensor must be used since solid materials can support shear stresses (Figure 8). This complicates 

bookkeeping and calculations. The second difference is specific to the intended application of 

this work: UT does not typically involve full-space plane waves, so a localized transducer 

definition must be developed to include the drive function in a localized “drive region.”  

 
Figure 8: The Cauchy stress tensor is composed of six unique stress vectors. Image from [20]. 

In order to simplify the implementation of a discretized transducer definition, several 

assumptions are made. One of the largest simplifications is the limitation of transducer geometry 

to circular drive regions. There are many situations in which this leads to a slight departure from 

real-world physics, such as an ultrasonic beam striking the inspected material at an angle (which 

would create an oblong drive region) or a rectangular transducer being used (which creates a 
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drive region that is not quite circular, but not quite round). However, for most situations, a 

circular drive region can be assumed to introduce an acceptably low error into the simulation. 

Another simplification is the limitation of velocity input values to the direction orthogonal to the 

drive region, which can only be placed within the top plane of the simulation space. This is 

accurate for transducer beams propagating in the same direction (0º transducers in rail testing), 

but again, it introduces some error for angle beams, which realistically strike the test material 

with a total velocity parallel to the beam path.  

Angled transducer orientations are crucial in many UT applications (with 37.5° and 45° 

being two of the most commonly used beam angles), so the addition of this feature was highly 

desirable. Angled propagation paths in the inspected material were generated using 2-D array 

beam steering [21].The drive function time delay for each spatial element is calculated from 

Equation 27 using the center of the transducer as a reference point, then offset so that all 

elements have a nonnegative time delay value. This delay time τ𝑖𝑗 is defined as  

τ𝑖𝑗 =
𝑧𝑖

𝑐
sinθcosϕ +

𝑦𝑗

𝑐
sinθsinϕ (27) 

where θ is the angle from incident normal (the 0º direction) towards positive z, ϕ is the 

clockwise angle from the positive z direction, and c is the longitudinal speed of sound. Once this 

delay array is set, the same drive function is used throughout the drive region with some 

elements simply calling a drive function value from an earlier timestep.  

Another feature included in this EFIT implementation is the ability to import arbitrary 

geometry as the simulation space. UT is rarely performed on rectangular prisms, so defining 

other geometries is essential to creating a useful simulation tool. This is accomplished using 

stereolithography (STL) files as inputs. STL is a common filetype that represents 3-D geometry 

using interconnected triangular faces (Figure 9). In the initial MATLAB setup script, the STL 
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file is processed into a logical cubic mesh defining whether material exists at any given Cartesian 

coordinate within the simulation space (Figure 10). The coarseness of this mesh will determine 

the order of the spatial discretization error. A finer mesh is always more accurate, but 

computational requirements increase rapidly as discretization length decreases. Anywhere 

material does not exist will be treated as vacuum in the simulation, so the stresses and velocities 

in those elements will always be zero. This assumption is minor due to the extreme impedance 

differential between air and most solids relevant to UT.  

 
Figure 9: Calibration rail modeling. A 3-D CAD model (left) of a calibration rail used in the UT industry. 
In the STL version of the same part (right), a high density of triangular faces can be seen intersecting at 
the hole locations. 
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Figure 10: Calibration rail meshing. This coarse mesh is an example of the cubic grid output of the 
processed STL rail. 

Multiple 3-D test cases were solved for the EFIT implementation. In all cases, the output 

was the magnitude of the velocity vector for each recorded element – again, only the even 

element positions were used in order to reduce data file size. EFIT Case 1 was a simple 

rectangular aluminum block with a small void inside it and a round 1 MHz transducer emitting a 

5-period sine pulse normal to the top face (in other words, the drive region was defined as a 

circle at the top of the simulation space with no time delays). In the very simple Case 1, correct 

wave propagation behavior was observed, including reflections from the void and tip diffraction 

about the void (Figure 11).  
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Figure 11: EFIT Case 1 – simple block with void. A 2-D slice through the center of the 3-D block allows 
clear visualization of the wave’s interaction with the void. The tip diffraction around the edges of the void 
are an expected physical response to this ultrasonic pulse. 

EFIT Case 2 was a smaller rectangular aluminum block (50x50x100mm) with no 

inclusions. The transducer was a 1.5 MHz source with a 21.4mm radius located at the “top” of 

the block emitting a 1-period sine pulse (Figure 12). Case 2 includes three separate simulations 

with the only difference being the angle of propagation produced by the time delay beam 

steering: 0º, 37.5º, and 70º. This comparison validates the methodology used to produce angled 

beams in the test material. In both angle beam simulations, a leading longitudinal wave is 

expected to travel at 6,235 m/s in the desired direction, while a slower shear wave is expected to 

travel at 3,139 m/s at a shallower angle. In all three simulations, surface (Rayleigh) waves are 

expected to travel at 2,906 m/s along the plane in which the transducer is located [22]. Using a 

rough, image-based interpolation technique, the actual propagation speed of the longitudinal 

wave in the 70º simulation is 5,963 m/s. The calculated shear wave speed is 2,981 m/s and the 

calculated surface wave speed is 2,793 m/s. All of these are within 4-5% of expected values, 

which is acceptable given the approximate method used to measure them. 
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Figure 12: EFIT Case 2 – simple block comparison (no void). The same 1.5 MHz transducer was applied 
to the same solid rectangular block three times at different angles: 0º from normal (left), 37.5º from 
normal (center), and 70º from normal (right). The 2-D slice is taken at the center of the 3-D block. 

Now that the basic simulation functions are validated, complex simulations in arbitrary 

geometry can be performed – for EFIT Cases 3-6, that geometry is a 12-inch-long section of 

steel railroad track. Processing this geometry in MATLAB with a spatial discretization of 

0.212mm/element takes several hours since it can only be done by a single processor core. 

Fortunately, the processed geometry file can be used for multiple test cases if the transducer 

definition text file is altered manually. The executable phase of the simulation takes about 177 

minutes on 8 processor nodes, or 111 minutes on 12 processor nodes. During executable 

initialization, RAM usage climbs to ~120 GB, then levels out at ~85 GB for the majority of the 

simulation. The output binaries, again only using data from even element positions, are 885.4 

MB each – Cases 3-6 each produced 300 output files, taking up 266.5 GB of storage per 

simulation. 

EFIT Case 3 is a 0º, ¾-inch, 2.25 MHz 1-period sine pulse at the top center of the rail 

(Figure 14). The ultrasonic wave reflects from the surface of a flat-bottom hole drilled in the 
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bottom of the rail, traveling back to the same location where the pulse was emitted. In applied 

UT testing, the pulse will continue up into the wheel probe, where it will excite the transducer 

and register a premature reflection in the UT software. In this simulation, the length of time for 

the wave to reach the hole was used to calculate the simulated propagation speed, which matched 

exactly the longitudinal speed of sound used in the original simulation setup. This is a good 

indicator that the simulation matches the physics.  

 
Figure 13: Cutting planes for 2-D slices of 3-D rail space. The cross-sectional view cuts across the rail, 
while the longitudinal view slices down the length of the rail. Model shown with longitudinal slice active. 
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Figure 14: EFIT Case 3 – beam in rail, 0º, 2-D slices. The ultrasonic wave enters through the head, 
travels straight down through the web, reflects from the flat-bottom hole drilled into the bottom of the 
rail, and passes back up to the pulsing transducer. 
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Figure 15: EFIT Case 3 – beam in rail, 0º, 2-D slice (longitudinal). In this view, the rail is sliced in half 
lengthwise at t=31.655 μs. The pulse can be seen reflecting from the flat-bottom hole. Other drilled holes 
in the rail are seen outlined by the outer edges of the wave. 

 
Figure 16: EFIT Case 3 – beam in rail, 0º, 3-D view. The head of the rail can be seen slowly filling with 
scattered reflections from the main wave’s path. 
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EFIT Cases 4-6 are various angle beams which must be interpreted with an important 

caveat. To understand that caveat, we must first understand mode conversion and refraction. 

When an incident longitudinal wave passes between media with different sound speeds (more 

generally, with different characteristic impedances) at an angle, several things happen. First, a 

longitudinal wave propagates into the second medium at a refracted angle determined by the 

ratio of the sound speeds. Depending on the incident angle a shear wave may also be created and 

propagate in the second medium at a different angle. Since the shear wave speed is always less 

than the longitudinal wave speed, this angle is always less than the longitudinal wave (Figure 

17).  

This incident angle at which the refracted longitudinal wave becomes greater than 90˚ 

and only the shear wave propagates in the medium is known as the first critical angle, and the 

incident angle at which the shear wave no longer propagates is defined as the second critical 

angle. For incident angles beyond this, surface waves may be created [1]. In applied UT, most 

angle beams are positioned past the first critical angle so that only the shear wave propagates in 

the material under test to simplify signal interpretation. Unfortunately, the time delay beam 

steering method cannot create an input wave beyond the first critical angle. This means that the 

results for EFIT Cases 4-6 are not truly representative of the application; in real testing, only a 

shear wave would be present, and not a shear wave and a longitudinal wave. However, the 

results are no less physical because of this limitation – if a shallower incident angle was used in 

the UT wheel probe, it would create the waves shown in the following results. 
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Figure 17: Snell's Law for acoustics in two solids. The angles of the incident longitudinal (P) wave and 
the reflected P wave are the same. The angle of the reflected shear (S) wave is determined by a ratio of 
the shear and longitudinal acoustic velocities of Medium 1 (upper material). The angles of the refracted P 
and S waves are determined by the ratios of acoustic velocities of Medium 1 and Medium 2. From [23]. 

The transducer for each of EFIT Cases 4-6 is a ¾-inch, 2.25 MHz 1-period sine pulse at 

the top of the rail with an offset to align with the appropriate drilled hole. EFIT Case 4 is angled 

at 56.4º, Case 5 at 37.5º, and Case 6 at 70º from normal. In each of these simulations, a 

longitudinal wave can be seen reflecting from the aligned flat-bottom hole, while a shear wave 

propagates slower and at a smaller angle (Figure 19-Figure 23). 

 
Figure 18: EFIT Case 4 – beam in rail, 56.4º, 3-D view. Though the center of the longitudinal wave is 
reflecting from the flat-bottom hole, the outer region of the wavefront continues propagating past the 
hole. 
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Figure 19: EFIT Case 4 – beam in rail, 56.4º, 2-D slice. The longitudinal wave can be seen reflecting 
directly from an angled flat-bottom hole drilled in the rail head. This transducer is used in practice to 
inspect the sides of the rail head for near-vertical defects. 
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Figure 20: EFIT Case 5 – beam in rail, 37.5º, 2-D slice (longitudinal). The longitudinal wave can be seen 
reflecting from a long, narrow flat-bottom hole drilled at an angle into the bottom of the rail. By 
happenstance, the shear wave is propagating directly toward the center-bottom hole. 

 
Figure 21: EFIT Case 5 – beam in rail, 37.5º, 3-D view. Though the center of the longitudinal wave is 
reflecting from the flat-bottom hole, the outer region of the wavefront continues propagating past the 
hole. The low-energy far outer regions of the wavefront can be seen filling the rail with small 
reverberations. 
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Figure 22: EFIT Case 6 – beam in rail, 70º, 2-D slice (longitudinal). The longitudinal wave can be seen 
reflecting from a long, narrow flat-bottom hole drilled at an angle into the end of the rail. 

 
Figure 23: EFIT Case 6 – beam in rail, 70º, 3-D view. Though the center of the longitudinal wave is 
reflecting from the flat-bottom hole, the outer region of the wavefront continues propagating past the 
hole.  
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CHAPTER IV: Conclusions and Future Work  

The primary goals of this thesis were achieved: development of a tool for simulating, 

visualizing, and analyzing ultrasonic wave propagation in arbitrary geometry. However, there are 

still many opportunities for improvements and further exploration. Two features were 

implemented in this tool with only partial success, and thus were not included in the results 

chapter: multi-node transducer definition and transducer curvature mapping. Multi-node 

transducer definition passes information about transducer definition, drive function, time delays 

for beam steering, etc. from the processor node which contains the transducer center point to any 

other nodes that the transducer spans on the spatial domain. The drive function was able to 

execute correctly, but at times late in the simulation, linear time-growth instability artifacts begin 

to appear near the nodal boundaries of the transducer space. Very similar instabilities occur when 

applying transducer curvature mapping, which drops each transducer element “down” from the 

top of the simulation space until it reaches the top of the material geometry, thus projecting the 

transducer onto the surface. Both features would be beneficial, but their exclusion can be 

overcome for many test cases, including those in this thesis. Multi-node transducer definition can 

be avoided by simply examining the size and location of the transducer and planning the number 

of processor nodes used accordingly. It limits the speed of the simulation but does not affect the 

results – and as noted in EFIT Case 3, the longest simulation run time was only 3 hours. 

Transducer curvature mapping can be avoided by trimming the top of the simulation geometry 

before exporting it from the modeling software, such that the top surface of the geometry ends up 

being coplanar with the top face of the simulation space (which is where the transducer is 

defined, by default). This approach requires a small amount of additional setup work and is a 

minor approximation but does not significantly impact results for the geometry in EFIT Case 3. 
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Other features were not attempted in this implementation that could add considerable 

value. For instance, a multiphysics AFIT/EFIT simulation with transducers defined within a fluid 

region would be a more accurate representation of what is physically happening in a UT wheel 

probe. This would allow multiple angle beams to be focused on one area of the fluid-solid 

boundary, enabling simulation of the interactions of several ultrasonic beams fired at the same 

time. One of the largest limitations that would be eliminated is the lack of true refraction and 

mode conversion in the current implementation. Additionally, this method would be ideal for 

defining transducers at arbitrary locations and angles, eliminating the need to use time delay 

beam steering.  

Beyond adding features, an important step would be performing experimental validation 

of the simulation results. For the tool to be truly useful as a development aid, the results must be 

tested against real-world experiments to build confidence in the implementation. This could be 

done first for very simple setups like EFIT Case 2 to prove the basic functionality, then expanded 

to more complex tests like EFIT Cases 3-6. The input parameter would be recorded at the center 

of the transducer in the simulation and scaled using the drive function to match the experimental 

data. 

Though the simulation tool has limited applicability to R&D as it stands, there are many 

ways it can be used. The visualizations created in VisIt give great clarity to a process that is 

invisible to human senses – it may add significant value to educational materials on UT and the 

science of acoustics. In fact, the video results are so intuitive that it is possible to use them as 

communication tools to explain ultrasonic phenomena to non-technical parties who do not have 

formal education in the field. Most importantly, though, the code can be used as a basis for future 

research and exploration in the field of numerical simulation of acoustics. 
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APPENDIX 
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MATLAB Code: Input File Generation 

% EFIT_cart_3D_inputfiles.m 

% Generates configuration files for EFIT simulations 

 

%% Material Parameters 

% Steel, 1020 

% den = 7710; % kg/m^3 

% cL = 5890; % m/s  

% cT = 3240; % m/s  

% mu = den*cT^2; % Pa 

% lambda = den*cL^2-2*mu; % Pa 

 

% Aluminum 

den = 2698; % kg/m^3 

cL = 6235; % m/s 6374 

cT = 3139; % m/s 2906 

mu = den*cT^2; % Pa 

lambda = den*cL^2-2*mu; % Pa 

 

% Brass 

% den = 8400; % kg/m^3 

% cL = 4400; % m/s 

% cT = 2200; % m/s 

% mu = den*cT^2; % Pa 

% lambda = den*cL^2-2*mu; % Pa 

 

cmax = cL; 

cmin = cT; 

clear cL cT 

 

%% Simulation Parameters 

fmax = 1.5*10^6; % max frequency (Hz) 

wavelength=cmin/fmax; 

ds=.7*wavelength/6.1 % step size (m) -> here we assign number of 

points per wavelength (>6) 

 

% Size of simulation space (in mm): 

z_mm = 100; % 304 for rail  

y_mm = 50; % 152 for rail  

x_mm = 50; % 152 for rail  

 

% Convert size from m to steps: -> must be even! 

maxz = ceil(z_mm/(1000*ds)) 

maxy = ceil(y_mm/(1000*ds)) 

maxx = ceil(x_mm/(1000*ds)) 

 

maxt = 501; % max simulation time in steps (+1) 

outputevery = 5; % output 3D volume how often 

dt = 1/(cmax*sqrt(3/(ds^2))) % time step (s) 
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%% Choose a flaw type (everything should be in number of steps) 

 

% Arbitrary fullspace scatterer: 

% nS=1;                   % numref // numbers scatterers 

% rftype=[5];             % typ    // Reflector type: 5 - arbitrary 

(fullspace) 

% nsx1  =[0];             % p1     // not used 

% nsx2  =[0];             % p2     // not used 

% nsx3s =[0];             % start3 // not used 

% nsx3e =[0];             % end3   // not used 

% rrad  =[maxz*maxy*maxx]; % rad    // not used 

% rden  =[-1];             % dd     // not used 

% rmu   =[-1];             % mu     // not used 

% rlambda= [-1];           % lambda // not used 

% % inputs: filename, ds, adjustment of origin (xyz in m), space size 

(xyz in m) 

% [arbscatt, ~] = import_stl_scatterer('Test Block Curved Top x-50 y-

50 z-100.STL', ds, [0 0 0], [x_mm/1000 y_mm/1000 z_mm/1000]); 

% if(size(arbscatt) ~= [maxy maxx maxz]) 

%     disp('Error in Arbitrary scatterer definition. Terminating 

script.') 

%     return 

% end 

 

% Rectangular: 

nS     = 0;                      % numref // number of scatterers 

rftype = [3];                    % typ    // Reflector type: 3 - Right 

Rectangular Prism 

nsx1   = [round(25/(1000*ds))]-1;  % p1     // z-start (z-end will be 

to side of space) 

nsx2   = [round(75/(1000*ds))]-1;  % p2     // z-end 

nsx3s  = [round(10/(1000*ds))]-1;  % start3 // y-start 

nsx3e  = [round(60/(1000*ds))]-1;  % end3   // y-end 

rrad   = [round(20/(1000*ds))]-1;  % rad    // x-start 

rden   = [round(24/(1000*ds))]-1;  % maxx-1; % dd     // x-end 

rmu    = [0];                    % mu     // null 

rlambda= [0];                    % lambda // null 

if((nsx1>nsx2) || (nsx3s>nsx3e) || (rrad>rden)) 

    disp('Error in Rectangular scatterer definition. Terminating 

script.') 

    return 

end 

 

%% Transducer info (everything in number of steps) 

ntrans = 1; 

transducer_z = [round(50/(1000*ds))]; % transducer z position 

transducer_y = [round(25/(1000*ds))]; % transducer y position 

transducer_x = [maxx-1]; % transducer x position; (maxx - 1) is 

positioned on top 

transducer_rad = [round(10.7/(1000*ds))]; % transducer radius 
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transducer_theta = deg2rad(70); % Angle of desired beam path from 

normal, rad 

transducer_phi = deg2rad(0); % Angle of desired beam path from +z 

direction, rad 

 

dffreq = fmax;  % Pulse Frequency (Hz) 

cycles = 1; % Pulse cycles 

dfpulselen = cycles*(1/dffreq);  % number of cycles times single pulse 

length (seconds) 

 

df(1:maxt) = 0; 

dfl = ceil(dfpulselen/dt); 

 

amplitude = 10^6; 

% df(1:dfl) = amplitude*sin((0:(dfl-1))*dt*dffreq*2*pi);  % sine wave 

duty = 50; 

df(2:(dfl+1)) = (0.5*amplitude)+0.5*amplitude*square((0:(dfl-

1))*dt*dffreq*2*pi,duty);  % square wave, needs to start at 0 

 

drivelen = length(df); 

 

%% Write files 

%=====================================================================

===================== 

% Write Inputfiles for simulation - % DO NOT CHANGE THE ORDER OF THIS 

PART 

%=====================================================================

===================== 

[fname,pname] = uiputfile('in.file', 'Save Configuration'); 

fp=fopen('in.file','w'); 

 

fprintf(fp, ' %8.0f ' , maxz);      % simparams[0] - num1 (will be +2) 

fprintf(fp, ' %8.0f ' , maxy);      % simparams[1] - num2 

fprintf(fp, ' %8.0f ' , maxx);      % simparams[2] - num3 

fprintf(fp, ' %2.20f ', ds);        % simparams[3] - ds 

fprintf(fp, ' %2.20f ', dt);        % simparams[4] - dt 

 

fprintf(fp, ' %15.6f ', den);       % simparams[5] - den 

fprintf(fp, ' %15.6f ', lambda);    % simparams[6] - lm 

fprintf(fp, ' %15.6f ' , mu);       % simparams[7] - mu 

fprintf(fp, ' %8.0f ' , maxt);          % maxt 

fprintf(fp, ' %8.0f ' , outputevery);   % outputevery 

 

fprintf(fp, ' %8.0f ' , nS);            % numref 

for i = 1:nS                                              % 

addReflector 

    fprintf(fp, ' %8.0f ' ,  rftype(i));    % rpars[0]        typ 

    fprintf(fp, ' %8.0f ' , nsx1(i));      % rpars[1]        p1 

    fprintf(fp, ' %8.0f ' , nsx2(i));      % rpars[2]        p2 

    fprintf(fp, ' %8.0f ' ,  nsx3s(i));     % rpars[3]        start3 

    fprintf(fp, ' %8.0f ' ,  nsx3e(i));     % rpars[4]        end3 

    fprintf(fp, ' %8.0f ' , rrad(i));      % rpars[5]        rad 
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    fprintf(fp, ' %15.6f ' , rden(i));      % rpars[6]        dd 

    fprintf(fp, ' %15.6f ' , rmu(i));       % rpars[7]        mu 

    fprintf(fp, ' %15.6f ' , rlambda(i));   % rpars[8]        lambda 

end 

 

%fprintf(fp, ' %s ', [ pname ]);        % working directory 

fclose(fp); 

 

    

[fname,pname] = uiputfile('trans.file', 'Save Configuration'); 

fp=fopen('trans.file','w'); 

fprintf(fp, ' %8.0f ' , ntrans);                    % numtrans 

for i=1:ntrans 

    fprintf(fp, ' %8.0f ' , transducer_z(i) );      % tparams[0] // 

tposz; // transducer z location  

    fprintf(fp, ' %8.0f ' , transducer_y(i) );      % tparams[1] // 

tposy; // transducer y location 

    fprintf(fp, ' %8.0f ', transducer_x );               % tparams[2] 

// tposx; // transducer x location  --> because always on top 

    fprintf(fp, ' %8.0f ', transducer_rad(i));     % tparams[3] // 

trad;  // transducer radius 

    fprintf(fp, ' %8.0f ', drivelen);           % tparams[4] // 

drivelen; // length of drive function 

     

    fprintf(fp, ' %15.6f ' , transducer_theta); % tparams[6] - 

transducer_theta 

    fprintf(fp, ' %15.6f ' , transducer_phi);   % tparams[7] - 

transducer_phi 

 

    fprintf(fp, ' %15.6f ', df(1:maxt));            % drive[i] where i 

= tparams[4] MUST BE ALTERED TO INCLUDE MULTIPLE Drive functions 

end 

    

fclose(fp); 

 

% [fname,pname] = uiputfile('arbscatt.file', 'Save Configuration'); 

% fp=fopen('arbscatt.file','w'); 

% for iz=1:maxz 

%     for iy=1:maxy 

%         for ix=1:maxx 

%             fprintf(fp, ' %d', arbscatt(iy,ix,iz)); 

%         end 

%     end 

% end 

%  

% fclose(fp); 
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MATLAB Code: Arbitrary Geometry Importing and Processing 

% import_stl_scatterer.m 

% Imports STL file and creates array of scattering boundary for use in 

FIT sims 

% stlread based on 'cad2matdemo' 

% 

% Dependencies: INPOLYHEDRON, drawMesh (part of the geom3d package) 

 

function [arbscatt, isinside] = import_stl_scatterer(filename, ds, 

objorigin, spacesize) 

 

[faces, vertices, ~] = stlread(filename); % import STL file - origin 

must be correct and scale in mm 

 

transverts = vertices; % vertices translated to new origin (and y-

corrected) 

for idx = 1:3 

   transverts(:,idx) = transverts(:,idx) + objorigin(idx)*1000; % move 

object origin (given in m) 

   if max(transverts(:,idx)) > spacesize(idx)*1000 || 

min(transverts(:,idx)) < (0-ds/2) % ensure all values are within the 

simspace 

       disp('Scatterer placement not possible - outside of space'); 

       return; 

   end 

end 

 

ssverts = vertices; % convert from mm scale to simspace scale (using 

ds) 

for idx = 1:3 

   ssverts(:,idx) = transverts(:,idx)/(ds*1000);  

end 

 

% Find points inside this object - to save memory, focus only on space 

where scatterer is located 

scatstart = floor(min(abs(ssverts))); 

scatend = ceil(max(ssverts)); 

scatspace = scatend-scatstart+1; % for easier indexing and sizing 

isinside = inpolyhedron(faces, ssverts, scatstart(1):1:scatend(1), 

scatstart(2):1:scatend(2), scatstart(3):1:scatend(3)); 

 

% % View results: 

% [xgrid,ygrid,zgrid] = meshgrid(scatstart(1):1:scatend(1), 

scatstart(2):1:scatend(2), scatstart(3):1:scatend(3)); 

% figure; hold on; 

% plot3(ygrid(isinside), xgrid(isinside), 

zgrid(isinside),'bo','MarkerFaceColor','b'); 

% % plot3(ygrid(~isinside), xgrid(~isinside), zgrid(~isinside),'ro'), 

axis image; hold off; 

% xlabel('Y'); ylabel('X'); zlabel('Z'); 
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% clear xgrid ygrid zgrid; 

 

% Now create logical array for entire space as input to simulation 

fullspace = [ceil(spacesize(2)/ds), ceil(spacesize(1)/ds), 

ceil(spacesize(3)/ds)]; % size of full space (steps) 

arbscatt = false(fullspace); % this could get big quickly - use 

logical to reduce size 

 

% Cuts off last face in each dimension (vertices --> nodes) 

if (size(isinside,2)==(scatend(1)-scatstart(1)+1) && 

(size(isinside,2)-1)==fullspace(2)) % nothing got switched around, 

sizes are correct 

    

arbscatt(scatstart(2)+1:scatend(2),scatstart(1)+1:scatend(1),scatstart

(3)+1:scatend(3)) = isinside(1:scatspace(2)-1,1:scatspace(1)-

1,1:scatspace(3)-1); 

else 

    disp('Something wrong with logical array'); 

end 

 

% % View results for whole space - MAY BE BIG!! 

% [xgrid,ygrid,zgrid] = 

meshgrid(1:1:fullspace(2),1:1:fullspace(1),1:1:fullspace(3)); 

% figure; hold on; 

% plot3(ygrid(arbscatt), xgrid(arbscatt), 

zgrid(arbscatt),'bo','MarkerFaceColor','b'); 

% plot3(ygrid(~arbscatt), xgrid(~arbscatt), zgrid(~arbscatt),'ro'); 

hold off; 

% xlabel('Y'); ylabel('X'); zlabel('Z'); 

 

function [fout, vout, cout] = stlread(filename) 

% Reads ASCII stl file and returns a vertex list and face list for 

Matlab patch command 

 

fid=fopen(filename, 'r'); %Open the file, assumes STL ASCII format. 

if fid == -1  

    error('File could not be opened, check name or path.') 

end 

 

% STL files of form: 

%    

%solid BLOCK 

%  color 1.000 1.000 1.000 

%  facet 

%      normal 0.000000e+00 0.000000e+00 -1.000000e+00 

%      normal 0.000000e+00 0.000000e+00 -1.000000e+00 

%      normal 0.000000e+00 0.000000e+00 -1.000000e+00 

%    outer loop 

%      vertex 5.000000e-01 -5.000000e-01 -5.000000e-01 

%      vertex -5.000000e-01 -5.000000e-01 -5.000000e-01 

%      vertex -5.000000e-01 5.000000e-01 -5.000000e-01 

%    endloop 
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% endfacet 

% 

% The first line is object name, then comes multiple facet and vertex 

lines. 

% A color specifier is next, followed by those faces of that color, 

until 

% next color line. 

% 

CAD_object_name = sscanf(fgetl(fid), '%*s %s');  %CAD object name, if 

needed. 

%                                                %Some STLs have it, 

some don't.    

vnum=0;       %Vertex number counter. 

report_num=0; %Report the status as we go. 

VColor = 0; 

% 

while feof(fid) == 0                    % test for end of file, if not 

then do stuff 

    tline = fgetl(fid);                 % reads a line of data from 

file. 

    fword = sscanf(tline, '%s ');       % make the line a character 

string 

% Check for color 

    if strncmpi(fword, 'c',1) == 1     % Checking if a "C"olor line, 

as "C" is 1st char. 

       VColor = sscanf(tline, '%*s %f %f %f'); % & if a C, get the RGB 

color data of the face. 

    end                                % Keep this color, until the 

next color is used. 

    if strncmpi(fword, 'v',1) == 1     % Checking if a "V"ertex line, 

as "V" is 1st char. 

       vnum = vnum + 1;                % If a V we count the # of V's 

       report_num = report_num + 1;    % Report a counter, so long 

files show status 

       if report_num > 249 

           fprintf('Reading vertex num: %d.\n',vnum); 

           report_num = 0; 

       end 

       v(:,vnum) = sscanf(tline, '%*s %f %f %f'); % & if a V, get the 

XYZ data of it. 

       c(:,vnum) = VColor;              % A color for each vertex, 

which will color the faces. 

    end                                 % we "*s" skip the name 

"color" and get the data.                                           

end 

%   Build face list; The vertices are in order, so just number them. 

% 

fnum = vnum/3;      %Number of faces, vnum is number of vertices.  STL 

is triangles. 

flist = 1:vnum;     %Face list of vertices, all in order. 

F = reshape(flist, 3,fnum); %Make a "3 by fnum" matrix of face list 

data. 
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% 

%   Return the faces and vertexs. 

% 

fout = F';  %Orients the array for direct use in patch. 

vout = v';  % " 

cout = c'; 

% 

fclose(fid); 
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C++ Code: ‘efit.cpp’ 

/* efit.cpp 

* 

* Sean M. Raley (UNH) 

* based on code by Eric A. Dieckman (WM) 

* Last edited: 27 March 2019 SMR 

*/ 

 

//#include "pch.h" // for Microsoft VS only 

 

#include <mpi.h> 

#include <iostream> 

#include <fstream> 

#include <string> 

#include <sstream> 

#include <time.h> 

#include <math.h> 

#include "space.h" 

 

using namespace std; 

 

void master(); 

void slave(); 

int* DistributeSimulationParameters(); 

void DistributeTransducers(int *xposs); 

void dump3Dbin(int t); 

 

int mpirank, numworkers; 

int maxt, outputevery, maxz, numtransducers; 

int* EvenVolDims = new int[3]; 

 

int main(int argc, char *argv[]) // initialize MPI 

{ 

 MPI_Init(NULL, NULL);  

 MPI_Comm_rank(MPI_COMM_WORLD, &mpirank); 

 MPI_Comm_size(MPI_COMM_WORLD, &numworkers);  /* get number of 

nodes */ 

 numworkers--; 

 

 if (mpirank == 0) 

  master(); 

 else 

  slave(); 

 

 MPI_Finalize(); 

 return 0; 

} 
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// 

======================================================================

==== 

// Master node! -- Distributes simulation space and receives data for 

output 

// 

======================================================================

==== 

void master() { 

 time_t start, end; 

 time(&start); 

 

 int *zstartpos = new int[numworkers]; 

 

 cout << "Master node is online! \n"; 

 

 zstartpos = DistributeSimulationParameters(); // Initialize each 

node 

 DistributeTransducers(zstartpos); 

 

 // writes text file for binary->bov bash command 

 string fname = "bin2bovCmd.ascii"; 

 ofstream outFile(fname.c_str(), ios::out); 

 outFile<<"bash makebovs "; 

 outFile<<maxt<<" "; 

 outFile<<outputevery<<" "; 

 for(int e=2;e>=0;e--) 

  outFile<<EvenVolDims[e]<<" "; 

 outFile.close(); 

 

 for (int t = 0; t < maxt; t++) { 

  if (t%outputevery == 0 && outputevery != 1) { 

   //dump3Dascii(t); 

   //cout << "Saved pressure data as ASCII at time: " << 

t << "\n"; 

   dump3Dbin(t); 

   cout << "Saved pressure data as binary at time: " << t 

<< "\n"; 

   //dump3Dvtk(t); 

   //cout << "Saved pressure data as vtk at time: " << t 

<< "\n"; 

  } 

 } 

 

 time(&end); 

 printf("Total Run Time: %.2lf seconds\n", difftime(end, start)); 

 return; 

} 

 

// 

======================================================================

== 
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// Slave node! -- Does the grunt work 

// 

======================================================================

== 

void slave() { 

 // --- Receive sim parameters from master and initialize --- 

 MPI_Status  status; 

 MPI_Status status1; 

 MPI_Status status2; 

 MPI_Status status3; 

 MPI_Status status4; 

 MPI_Status status5; 

 MPI_Status status6; 

 MPI_Request request1; 

 MPI_Request request2; 

 MPI_Request request3; 

 MPI_Request request4; 

 MPI_Request request5; 

 MPI_Request request6; 

 

// int tosend0 = 0; // to use when sending a 0 in MPI is desired 

 

 double simparams[11]; 

 MPI_Recv(&simparams, 11, MPI_DOUBLE, 0, 201, MPI_COMM_WORLD, 

&status); 

 

 space simspace(simparams); 

 maxt       = static_cast<int>(simparams[9]); // total number of 

time steps 

 outputevery   = static_cast<int>(simparams[10]); // output every 

this many time steps 

 double cL = sqrt((simparams[6]+2*simparams[7])/simparams[5]); // 

default speed of sound, calculated 

 

 if (mpirank == 1){ // node is on left 

  simspace.type = 1; 

  cout<<"slave is type "<<simspace.type<<endl; 

 } 

 else if (mpirank == numworkers){ // node is on right 

  simspace.type  = 3; 

  cout<<"slave is type "<<simspace.type<<endl; 

 } 

 else{ 

  simspace.type  = 2; // node is in middle 

  cout<<"slave is type "<<simspace.type<<endl; 

 } 

 

 // -- Receive reflector parameters --- 

 int nr; 

 double *rpars = new double[9]; 

 MPI_Recv(&nr, 1, MPI_INT, 0, 203, MPI_COMM_WORLD, &status); 
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 for (int i = 0; i < nr; i++) { 

  MPI_Recv(&rpars[0], 9, MPI_DOUBLE, 0, 204, MPI_COMM_WORLD, 

&status); 

  simspace.addReflector(rpars[0], rpars[1], rpars[2], 

static_cast<int>(rpars[3]), static_cast<int>(rpars[4]), rpars[5], 

rpars[6], rpars[7],rpars[8]); 

 } 

 delete[] rpars; 

 cout << "num_z in slave(mpirank="<<mpirank<<") is: " << 

simspace.num_z << endl; 

 

 // --- Receive transducer parameters --- 

 double tparams[8]; 

 bool done = false; 

 

 while (done == false){ 

  MPI_Recv(&tparams, 8, MPI_DOUBLE, 0, 211, MPI_COMM_WORLD, 

&status); 

  int drvlen=static_cast<int>(tparams[4]); 

  int min_tau_local, min_tau_global; 

 

  if (tparams[0] == -1) done = true; 

  else{ 

   transducer 

t(tparams[0],tparams[1],tparams[2],tparams[3],static_cast<int>(tparams

[5]),maxt,tparams[6],tparams[7],simspace.num_y,simspace.num_z,simspace

.zbeg,simspace.dtods); 

 

   if (drvlen > 0){ 

    double *drive = new double[drvlen]; 

    MPI_Recv(&drive[0], drvlen, MPI_DOUBLE, 0, 212, 

MPI_COMM_WORLD, &status); 

    min_tau_local = t.setDelays(cL); 

    MPI_Send(&min_tau_local, 1, MPI_INT, 0, 213, 

MPI_COMM_WORLD); 

    MPI_Recv(&min_tau_global, 1, MPI_INT, 0, 214, 

MPI_COMM_WORLD, MPI_STATUS_IGNORE); 

 

    t.setDriveFunction(drvlen,drive,min_tau_global); 

   } 

   simspace.addTransducer(t); 

  } 

 } 

 

 // --- Run simulation --- 

 for (int t = 0; t < maxt; t++) { 

  if (mpirank == 1 && t%10==0) 

   cout << " timestep: " << t << "     " << 

simspace.num_z << ", " << simspace.num_y << ", " << simspace.num_x << 

endl; 

  simspace.drivetime = t; 

     simspace.UpdateTransducers(t); 
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  if (t%outputevery == 0) { // sends output to master node 

   int len = simspace.GetEvenVolLen(); // get even num_z 

length for each node 

   double* x = simspace.GetEvenVol(len); 

 

   MPI_Send(&len, 1, MPI_INT, 0, 1101, MPI_COMM_WORLD); 

   MPI_Send(&x[0], len, MPI_DOUBLE, 0, 1102, 

MPI_COMM_WORLD); 

 

   delete[] x; 

  } 

 

     // --- Update V's --- 

     simspace.UpdateVs(1,1);     // Update left 

boundary 

     simspace.UpdateVs(simspace.num_z-2,simspace.num_z-2);    

 // Update right boundary 

 

     if (mpirank>1){       // send 

left 

      MPI_Isend(&simspace.vy[simspace.Lyx], simspace.Lyx, 

MPI_DOUBLE, (mpirank-1), 301, MPI_COMM_WORLD, &request1); 

      MPI_Isend(&simspace.vx[simspace.Lyx], simspace.Lyx, 

MPI_DOUBLE, (mpirank-1), 302, MPI_COMM_WORLD, &request2); 

     } 

 

     if (mpirank<numworkers){    // send  right 

      MPI_Isend(&simspace.vz[(simspace.num_z-2)*simspace.Lyx], 

simspace.Lyx, MPI_DOUBLE, (mpirank+1), 303, MPI_COMM_WORLD, 

&request3); 

     } 

 

     simspace.UpdateVs(2,simspace.num_z-3); // update inner nodes 

 

     if (mpirank<numworkers){    // receive  from 

right 

   MPI_Recv(&simspace.vy[(simspace.num_z-

1)*simspace.Lyx], simspace.Lyx, MPI_DOUBLE, (mpirank+1), 301, 

MPI_COMM_WORLD, &status1); 

   MPI_Recv(&simspace.vx[(simspace.num_z-

1)*simspace.Lyx], simspace.Lyx, MPI_DOUBLE, (mpirank+1), 302, 

MPI_COMM_WORLD, &status2); 

     } 

 

     if (mpirank>1){       // receive 

from left 

      MPI_Recv(&simspace.vz[0], simspace.Lyx, MPI_DOUBLE, 

(mpirank-1), 303, MPI_COMM_WORLD, &status3); 

     } 
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     if (mpirank>1){        // Wait 

for sends to complete 

      MPI_Wait(&request1,&status1); 

      MPI_Wait(&request2,&status2); 

     } 

 

     if (mpirank<numworkers){ 

       MPI_Wait(&request3, &status3); 

     } 

 

     // --- Update T's --- 

     simspace.UpdateTs(1,1);                        // Update left 

boundary 

     simspace.UpdateTs(simspace.num_z-2,simspace.num_z-2);    // 

Update right boundary 

 

     if (mpirank>1){                                // send Trz, 

Tzp left 

      MPI_Isend(&simspace.T11[simspace.Lyx], simspace.Lyx, 

MPI_DOUBLE, (mpirank-1), 311, MPI_COMM_WORLD, &request4); 

     } 

 

     if (mpirank<numworkers){                       // send Tzz, 

Trp right 

      MPI_Isend(&simspace.T12[(simspace.num_z-2)*simspace.Lyx], 

simspace.Lyx, MPI_DOUBLE, (mpirank+1), 313, MPI_COMM_WORLD, 

&request5); 

      MPI_Isend(&simspace.T13[(simspace.num_z-2)*simspace.Lyx], 

simspace.Lyx, MPI_DOUBLE, (mpirank+1), 314, MPI_COMM_WORLD, 

&request6); 

     } 

 

     simspace.UpdateTs(2,simspace.num_z-3);              // update 

inner nodes 

 

     if (mpirank<numworkers){                       // reveive 

Trz, Tzp from right 

      MPI_Recv(&simspace.T11[(simspace.num_z-1)*simspace.Lyx], 

simspace.Lyx, MPI_DOUBLE, (mpirank+1), 311, MPI_COMM_WORLD, &status4); 

     } 

 

     if (mpirank>1){                                // receive 

Tzz, Trp from left 

      MPI_Recv(&simspace.T12[0], simspace.Lyx, MPI_DOUBLE, 

(mpirank-1), 313, MPI_COMM_WORLD, &status5); 

      MPI_Recv(&simspace.T13[0], simspace.Lyx, MPI_DOUBLE, 

(mpirank-1), 314, MPI_COMM_WORLD, &status6); 

     } 

 

 

     if (mpirank>1){     // Wait for sends to 

complete 
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      MPI_Wait(&request4, &status4); 

     } 

 

     if (mpirank<numworkers){ 

      MPI_Wait(&request5, &status5); 

      MPI_Wait(&request6, &status6); 

     } 

 } 

 return; 

} 

 

// 

======================================================================

== 

// Reads in parameter file (in.file), distributes to all workers,  

// and divides up the simulation space   

// 

======================================================================

== 

int* DistributeSimulationParameters() { 

 char inputFilename[] = "in.file"; 

 ifstream inFile; 

 inFile.open("in.file", ios::in); 

 

 if (!inFile) { 

  cerr << "Can't open input file " << inputFilename << endl; 

  exit(1); 

 } 

 

 double *simparams = new double[11]; 

 inFile >> simparams[0];     //maxz 

 inFile >> simparams[1];     //maxy 

 inFile >> simparams[2];     //maxx 

 inFile >> simparams[3];     //ds 

 inFile >> simparams[4];     //dt 

 inFile >> simparams[5];     //default den 

 inFile >> simparams[6];     //lm - default Lame constant - lambda 

 inFile >> simparams[7];     //mu - default Lame constant - mu 

 

 inFile >> simparams[9];     //maxt 

 inFile >> simparams[10];    //outevery 

 

 maxt = static_cast<int>(simparams[9]); 

 outputevery = static_cast<int>(simparams[10]); 

 maxz = static_cast<int>(simparams[0]); 

 

 // Send initial data to each node 

 int div, divaccum = 0; 

 int* xpos = new int[numworkers]; 

 EvenVolDims[0]=0; 

 EvenVolDims[1]=static_cast<int>(simparams[1]/2); 

 EvenVolDims[2]=static_cast<int>(simparams[2]/2); 
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 for (int n = 1; n <= numworkers; n++) { 

  div = (maxz/numworkers); 

  if ((n-1) <= (maxz%numworkers)) 

   div++;   // divide space along z direction 

  simparams[0] = static_cast<double>(div); 

  cout << "Divided space (div) is " << div << "\n"; 

  simparams[8] = static_cast<double>(divaccum); // tells the 

worker where its starting z location is 

  cout << "Worker's starting locations (divaccum) is " << 

divaccum << "\n"; 

  MPI_Send(&simparams[0], 11, MPI_DOUBLE, n, 201, 

MPI_COMM_WORLD); 

     xpos[n-1] = static_cast<int>(simparams[8]); 

  divaccum = divaccum + div; 

 

  if(div%2==0) 

   EvenVolDims[0]+=(div/2); // len if num_z is even 

  else 

   EvenVolDims[0]+=((div-1)/2); // len if num_z is even 

 } 

 

 cout << "Total simulation timesteps (maxt) = " << maxt << endl; 

 delete[] simparams; 

 

 

 // --- Read in reflectors and distribute to all workers --- 

 int numref; 

 inFile >> numref; 

 double *rpars = new double[9]; 

 cout << "  Number of reflectors:  " << numref << endl; 

 for (int n = 1; n <= numworkers; n++) { 

  MPI_Send(&numref, 1, MPI_INT, n, 203, MPI_COMM_WORLD); 

 } 

 

 for (int i = 0; i < numref; i++) { 

  inFile >> rpars[0];  // reflector type 

  inFile >> rpars[1];  // reflector position in x1 

  inFile >> rpars[2];  // reflector position in x2 

  inFile >> rpars[3];  // reflector position in x3 - (start 

for cylinder) 

  inFile >> rpars[4];  // reflector position in x3 - (end for 

cylinder) 

  inFile >> rpars[5];  // refector radius 

  inFile >> rpars[6];  // refector density 

  inFile >> rpars[7];  // refector mu 

  inFile >> rpars[8];  // refector lambda 

 

  for (int n = 1; n <= numworkers; n++) { 

   MPI_Send(&rpars[0], 9, MPI_DOUBLE, n, 204, 

MPI_COMM_WORLD); 

  } 
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 } 

 delete[] rpars; 

 

 inFile.close(); 

 return xpos; 

} 

 

// 

======================================================================

============= 

// Reads in transducer file (trans.file) and distributes to the 

correct workers 

// 

======================================================================

============= 

void DistributeTransducers(int *zposs){ 

 double tparams[8]; 

 int numtrans, worker; 

 int min_tau=0; 

 int min_tau_recv=0; 

 

 char inputFilename[] = "trans.file"; 

 ifstream inFile; 

 inFile.open("trans.file", ios::in); 

 

 if (!inFile){ 

  cerr << "Can't open input file " << inputFilename << endl; 

  exit(1); 

 } 

 

 inFile >> numtrans; 

 cout << "  number of transducers: " << numtrans << endl; 

 numtransducers = numtrans; 

 

 for (int tr = 0; tr<numtrans; tr++){ 

  inFile >> tparams[0];  // transducer z location 

  inFile >> tparams[1];  // transducer y location 

  inFile >> tparams[2];  // transducer x location 

  inFile >> tparams[3];  // transducer radius 

  inFile >> tparams[4];  // len of drive function 

  int drvlen = static_cast<int>(tparams[4]); 

 

  tparams[5] = static_cast<double>(tr); 

 

  inFile >> tparams[6];  // transducer theta 

  inFile >> tparams[7];  // transducer phi 

 

 

  double *drive{nullptr}; 

  if (tparams[4]>0){ 

   drive = new double[drvlen]; 

   for (int i = 0; i<drvlen; i++){ 
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    inFile >> drive[i]; 

   } 

  } 

 

  // --- Figure out which workers get the transducer --- 

  worker = 0; 

  for (int tosend = 1; tosend<numworkers; tosend++) 

    if (tparams[0] >= zposs[tosend-1] && tparams[0] < 

zposs[tosend]) worker = tosend; 

    if (tparams[0] >= zposs[numworkers-1] && tparams[0] < 

maxz) worker = numworkers; 

    else if (worker == 0) cout << "error: transducer postion 

not found: zpos - " <<  tparams[0] << ", " << zposs[numworkers-1] << 

", " << maxz << endl; 

 

  // --- Send transducer info to worker --- 

  if (worker > 1){ 

   if ((tparams[0] - tparams[3]) <= zposs[worker-1]){ 

    MPI_Send(&tparams[0], 8, MPI_DOUBLE, worker-1, 

211, MPI_COMM_WORLD); 

    if (tparams[4]>0){ 

     MPI_Send(&drive[0], tparams[4], MPI_DOUBLE, 

worker-1, 212, MPI_COMM_WORLD); 

     MPI_Recv(&min_tau_recv, 1, MPI_INT, worker-

1, 213, MPI_COMM_WORLD, MPI_STATUS_IGNORE); 

     if(min_tau_recv<min_tau) min_tau = 

min_tau_recv; 

     MPI_Send(&min_tau, 1, MPI_INT, worker-1, 

214, MPI_COMM_WORLD); 

    } 

   } 

   if ((tparams[0] - tparams[3]) <= zposs[worker-2]){ 

    MPI_Send(&tparams[0], 8, MPI_DOUBLE, worker-2, 

211, MPI_COMM_WORLD); 

    if (tparams[4]>0){ 

     MPI_Send(&drive[0], tparams[4], MPI_DOUBLE, 

worker-2, 212, MPI_COMM_WORLD); 

     MPI_Recv(&min_tau_recv, 1, MPI_INT, worker-

2, 213, MPI_COMM_WORLD, MPI_STATUS_IGNORE); 

     if(min_tau_recv<min_tau) min_tau = 

min_tau_recv; 

     MPI_Send(&min_tau, 1, MPI_INT, worker-2, 

214, MPI_COMM_WORLD); 

    } 

   } 

  } 

 

  MPI_Send(&tparams[0], 8, MPI_DOUBLE, worker, 211, 

MPI_COMM_WORLD); 

  if (tparams[4]>0){ 

   MPI_Send(&drive[0], tparams[4], MPI_DOUBLE, worker, 

212, MPI_COMM_WORLD); 
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   MPI_Recv(&min_tau_recv, 1, MPI_INT, worker, 213, 

MPI_COMM_WORLD, MPI_STATUS_IGNORE); 

   if(min_tau_recv<min_tau) min_tau = min_tau_recv; 

   MPI_Send(&min_tau, 1, MPI_INT, worker, 214, 

MPI_COMM_WORLD); 

  } 

  if (worker < numworkers){ 

   if ((tparams[0] + tparams[3]) >= zposs[worker]){ 

    MPI_Send(&tparams[0], 8, MPI_DOUBLE, worker+1, 

211, MPI_COMM_WORLD); 

    if (tparams[4]>0){ 

     MPI_Send(&drive[0], tparams[4], MPI_DOUBLE, 

worker+1, 212, MPI_COMM_WORLD); 

     MPI_Recv(&min_tau_recv, 1, MPI_INT, 

worker+1, 213, MPI_COMM_WORLD, MPI_STATUS_IGNORE); 

     if(min_tau_recv<min_tau) min_tau = 

min_tau_recv; 

     MPI_Send(&min_tau, 1, MPI_INT, worker+1, 

214, MPI_COMM_WORLD); 

    } 

   } 

   if ((tparams[0] + tparams[3]) >= zposs[worker+1]){ 

    MPI_Send(&tparams[0], 8, MPI_DOUBLE, worker+2, 

211, MPI_COMM_WORLD); 

    if (tparams[4]>0){ 

     MPI_Send(&drive[0], tparams[4], MPI_DOUBLE, 

worker+2, 212, MPI_COMM_WORLD); 

     MPI_Recv(&min_tau_recv, 1, MPI_INT, 

worker+2, 213, MPI_COMM_WORLD, MPI_STATUS_IGNORE); 

     if(min_tau_recv<min_tau) min_tau = 

min_tau_recv; 

     MPI_Send(&min_tau, 1, MPI_INT, worker+2, 

214, MPI_COMM_WORLD); 

    } 

   } 

  } 

  delete[] drive; 

 } 

 

 // --- Let all workers know we are done distributing transducers 

--- 

 tparams[0] = -1;tparams[1] = -1;tparams[2] = -1;tparams[3] = -

1;tparams[4] = -1;tparams[5] = -1; 

 for (int n = 1; n <= numworkers; n++){ 

  MPI_Send(&tparams[0], 8, MPI_DOUBLE, n, 211, 

MPI_COMM_WORLD); 

 } 

 

 inFile.close(); 

 return; 

} 
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// 

======================================================================

== 

// Dump data to file! 

// 

======================================================================

== 

void dump3Dbin(int t) // pressure data as binary 

{ 

 MPI_Status  status; 

 double *data3d{nullptr}; 

 int len; 

 

 stringstream strm; 

 strm << t; 

 string fname = "data3d_at_t_" + strm.str() + ".bin"; 

 ofstream outFile(fname.c_str(), ios::binary); 

 

 for (int n = 1; n <= numworkers; n++) { 

  MPI_Recv(&len, 1, MPI_INT, n, 1101, MPI_COMM_WORLD, 

&status); 

  data3d = new double[len]; 

  MPI_Recv(&data3d[0], len, MPI_DOUBLE, n, 1102, 

MPI_COMM_WORLD, &status); 

 

  for (int i = 0; i < len; i++) { 

   outFile.write((char *)(&data3d[i]), 

sizeof(data3d[i])); 

  } 

 

  delete[] data3d; 

 } 

 

 outFile.close(); 

 return; 

} 
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C++ Code: ‘space.h’ 

/* space.h 

 * Sets up the transducers and reflectors for the Cartesian EFIT 

simulation 

 * Redesigned integration of 'setup_cart_space.h' and 'array3D.h' 

(Dieckman) 

 * 

 *  Created on: March 27, 2019 

 *      Author: Sean M. Raley (UNH) 

 */ 

 

#ifndef SPACE_H_ 

#define SPACE_H_ 

 

#include <iostream> 

#include <fstream> 

#include <stdlib.h> 

#include <algorithm> 

#include "transducer.h" 

 

using namespace std; 

 

class space{ 

 

public: 

 space(double *params); 

 ~space(); 

 

 int num_z, num_y, num_x; // number of grid points in each 

direction 

 int num_zB, num_yB, num_xB; // number of Boundary grid points in 

each direction 

 

 int abc;    // number of abc points on each end 

 

 double ds; // spatial step size (meters) 

 double dt; // time step size (seconds) 

 

 double den; // default density (kg/m^3) 

 double lm; // default Lame constant - lambda 

 double mu; // default Lame constant - mu 

 

 int zbeg; // z start position (where divvacuum ends) 

 int type; // type -> 1 = left, 2 = middle, 3 = right (for MPI) 

 

 double *vz; // velocities in z-dir 

 double *vy; // velocities in y-dir 

 double *vx; // velocities in x-dir 

 double *T11;// zz normal stress 

 double *T22;// yy normal stress 
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 double *T33;// xx normal stress 

 double *T12;// zy normal stress 

 double *T23;// yx normal stress 

 double *T13;// zy normal stress 

 

 double *d; // density 

 double *lmd;// Lame parameter - lambda 

 double *muu;// Lame parameter - mu 

 

 int *B;  // Boundary array 

 

 int drivetime; 

 

 transducer *trans{nullptr}; 

 int numtrans; 

 

 int Lyx; // array length of entire x-y plane 

 int Lzyx; // array length of entire x-y-z volume 

 int LyxB; // array length of entire x-y plane (Boundary array) 

 int LzyxB; // array length of entire x-y-z volume (Boundary 

array) 

 

 double dtods; // time step over spatial step 

 

private: 

 double lmdtods; 

 double l2mdtods; 

 double mdtods; 

 

 int iz, iy, ix; // counters for spatial loops 

 int pp1,pm1; 

 

 double PIo2; 

 

 //======================================================== 

 // low-level initialization function 

 template <class SomeType> 

 SomeType *init(SomeType def){ 

  SomeType *temparray = new SomeType[Lzyx]; 

  clear(temparray,def); 

  return temparray; 

 } 

 

 // special version for B array 

 int *initB(int def){ 

  int *temparray = new int[LzyxB]; 

  clearB(temparray, def); 

  return temparray; 

 } 

 

public: 
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 // 

======================================================================

============= 

 // Update velocities and stresses 

 // 

======================================================================

============= 

 void UpdateVs(int zs, int zend){ 

  int tau_time; 

  int tau_count = 0; 

 

  for (iz = zs; iz <= zend; iz++){ 

   setindx(iz,0,0); 

   for (iy = 0; iy < num_y; iy++){ 

    setindxB(iz+1,iy+1,1); 

    for (ix = 0; ix < num_x; ix++){ 

 

    // --- vy --- 

     if (vB(B)==0){ 

      sv(vy, v(vy) + 

2*dtods/(v(d)+vyp(d))*((v(T12)-vzm(T12))+(vyp(T22)-v(T22))+(v(T23)-

vxm(T23)))); 

     } 

     else if (vB(B)==2 || vzmB(B)==2 || 

vxmB(B)==2) {} // because vy requires elements in direction vxm() and 

vzm() 

     else if (vypB(B)==2){ 

      sv(vy, v(vy) + 2*dtods/(v(d)+v(d))*(-

2*(v(T22)))); 

     } 

     else if (vymB(B)==2){ 

      sv(vy, v(vy) + 

2*dtods/(v(d)+v(d))*(2*(vyp(T22)))); 

     } 

     else{ 

      sv(vy, v(vy) + 

2*dtods/(v(d)+vyp(d))*((v(T12)-vzm(T12))+(vyp(T22)-v(T22))+(v(T23)-

vxm(T23)))); 

     } 

 

 

    // --- vz --- 

     if (vB(B)==0){ 

      sv(vz, v(vz) + 

2*dtods/(v(d)+vzp(d))*((vzp(T11)-v(T11))+(v(T12)-vym(T12))+(v(T13)-

vxm(T13))));  // middle 

     } 

     else if (vB(B)==2 || vymB(B)==2 || 

vxmB(B)==2) {}  //b/c vz needs elements in the vym() and vxm() 

directions 

     else if (vzpB(B)==2){ 
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      sv(vz, v(vz) + 2*dtods/(v(d)+v(d))*(-

2*(v(T11)))); //right end (only called if at last node) 

     } 

     else if (vzmB(B)==2){ 

      sv(vz, v(vz) + 

2*dtods/(v(d)+v(d))*(2*(vzp(T11)))); //left end (only called if at 

first node) 

     } 

     else{ 

      sv(vz, v(vz) + 

2*dtods/(v(d)+vzp(d))*((vzp(T11)-v(T11))+(v(T12)-vym(T12))+(v(T13)-

vxm(T13)))); 

     } 

 

 

    // --- vx --- 

     if (vB(B)==0){ 

      sv(vx, v(vx) + 

2*dtods/(v(d)+vxp(d))*((v(T13)-vzm(T13))+(v(T23)-vym(T23))+(vxp(T33)-

v(T33))) ); 

     } 

     else if (vB(B)==2 || vymB(B)==2 || 

vzmB(B)==2) {} 

     else if ( vB(B)>=9000){ 

      sv(vx, v(vx) + 2*dtods/(v(d)+v(d))*(-

2*(v(T33)))+ 2*dtods/(den+den)*(-trans[vB(B)-

9000].drivef(drivetime))); 

     } 

     else if ( vB(B)>=1000){ 

      giveindx(); 

      tau_count = 

currentloc[0]*num_y+currentloc[1]; 

       if(trans[vB(B)-

1000].tau[tau_count]<drivetime){ 

        tau_time = drivetime - 

trans[vB(B)-1000].tau[tau_count]; 

       } 

       else{ 

        tau_time=0; 

       } 

      sv(vx, v(vx) + 2*dtods/(v(d)+v(d))*(-

2*(v(T33)))+ 2*dtods/(den+den)*(trans[vB(B)-1000].drivef(tau_time))); 

     } 

     else if (vxpB(B)==2){ 

      sv(vx,  v(vx) + 2*dtods/(v(d)+v(d))*(-

2*(v(T33)))); //top 

     } 

     else if (vxmB(B)==2){ 

      sv(vx, v(vx) + 

2*dtods/(v(d)+v(d))*(2*(vxp(T33)))); //bottom 

     } 

     else{ 



   
 

57 
 

      sv(vx, v(vx) + 

2*dtods/(v(d)+vxp(d))*((v(T13)-vzm(T13))+(v(T23)-vym(T23))+(vxp(T33)-

v(T33))) ); 

     } 

 

     incindx(); 

     incindxB(); 

    } 

   } 

  } 

 } 

 

 void UpdateTs(int zs, int zend){ 

  for (iz = zs; iz <= zend; iz++){ 

   setindx(iz,0,0); 

   for (iy = 0; iy < num_y; iy++){ 

    setindxB(iz+1,iy+1,1); 

    for (ix = 0; ix < num_x; ix++){ 

 

    // --- Tii --- 

     if (vB(B)==2 || vymB(B)==2 || vxmB(B)==2 || 

vzmB(B)==2) {} // 1 is iz, 2 is iy, 3 is ix 

     else{ 

      sv(T11, 

v(T11)+dtods*(v(lmd)+(2*v(muu)))*(v(vz)-

vzm(vz))+dtods*(v(lmd))*((v(vy)-vym(vy))+(v(vx)-vxm(vx)))); 

      sv(T22, 

v(T22)+dtods*(v(lmd)+(2*v(muu)))*(v(vy)-

vym(vy))+dtods*(v(lmd))*((v(vz)-vzm(vz))+(v(vx)-vxm(vx)))); 

      sv(T33, 

v(T33)+dtods*(v(lmd)+(2*v(muu)))*(v(vx)-

vxm(vx))+dtods*(v(lmd))*((v(vz)-vzm(vz))+(v(vy)-vym(vy)))); 

     } 

 

    // --- T13 --- 

     if (vB(B)==2 || vzpB(B)==2 || vzmB(B)==2 || 

vxpB(B)==2 || vxmB(B)==2 || vymB(B)==2 || vzxpB(B)==2) {}  

     else{ 

      sv(T13, 

v(T13)+dtods*(4/(((1/v(muu))+(1/vzp(muu))+(1/vxp(muu))+(1/vzxp(muu))))

)*((vxp(vz)-v(vz))+(vzp(vx)-v(vx)))); 

     } 

 

    // --- T23 --- 

     if (vB(B)==2 || vypB(B)==2 || vymB(B)==2 || 

vxpB(B)==2 || vxmB(B)==2 || vzmB(B)==2 || vyxpB(B)==2) {} 

     else{ 

      sv(T23, 

v(T23)+dtods*(4/((1/(v(muu))+(1/vyp(muu))+(1/vxp(muu))+(1/vyxp(muu))))

)*((vxp(vy)-v(vy))+(vyp(vx)-v(vx)))); 

     } 
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    // --- T12 --- 

     if (vB(B)==2 || vypB(B)==2 || vymB(B)==2 || 

vzpB(B)==2 || vzmB(B)==2 || vxmB(B)==2 || vzypB(B)==2) {} 

     else{ 

      sv(T12, 

v(T12)+dtods*((4/((1/v(muu))+(1/vzp(muu))+(1/vyp(muu))+(1/vzyp(muu))))

)*((vyp(vz)-v(vz))+(vzp(vy)-v(vy)))); 

     } 

 

     incindx(); 

     incindxB(); 

    } 

   } 

  } 

 } 

 

 // 

======================================================================

============= 

 // Add/update transducers  

 // 

======================================================================

============= 

 void UpdateTransducers(int t){ 

  int tr; 

     for (int i1 = 1; i1<num_z-1; i1++){ 

      for (int i2 = 0; i2<num_y-1; i2++){ 

    if (valB(B,i1+1,i2+1,num_x) >= 1000){ 

     tr = valB(B,i1+1,i2+1,num_x)-1000; 

//transducer ID 

     trans[tr].record[t] =  trans[tr].record[t] 

+ val(vx,i1,i2,num_x-1); //record holds recorded info 

    } 

      } 

     } 

 } 

 

 

 void addTransducer(transducer t){ 

  numtrans = numtrans+1; 

     transducer *temp = new transducer[numtrans]; // of class 

transducer, length numtrans 

 

     for (int i = 0; i<numtrans-1; i++){ // loops from 0 to actual 

number of transducers 

      temp[i] = trans[i]; 

     } 

 

     temp[numtrans-1] = t; 

     trans = temp; 

     int nelems = 0; 

  for (int i1 = 1; i1<num_z-1; i1++){  
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      for (int i2 = 0; i2<num_y; i2++){ 

       if (((i1+zbeg-trans[numtrans-1].posi1)*(i1+zbeg-

trans[numtrans-1].posi1)+(i2-trans[numtrans-1].posi2)*(i2-

trans[numtrans-1].posi2)) <= (trans[numtrans-1].radius*trans[numtrans-

1].radius)){ 

        setB(B,i1+1,i2+1,t.posi3+1,1000+numtrans-1); 

//executes if (z-zo)^2+(y-yo)^2<=rad^2, ie, if within a circle of 

transducer radius then set B >1000 

        nelems++; 

       } 

      } 

  } 

 

  if(nelems != trans[numtrans-1].tau_values){ 

   cout<<"WARNING! For worker starting at 

z="<<zbeg<<"Number of transducer elements defined by addTransducer() 

does NOT equal number of transducer elements in delay array tau. 

Transducer errors likely."<<endl; 

  } 

 

  temp[numtrans-1].numelems = nelems;  

 

 } 

 

 // 

======================================================================

============= 

 // Add/update relectors - different types defined below 

 // 

======================================================================

============= 

 void addReflector(double typ, double p1, double p2, int start3, 

int end3, double rad, double dd, double mu, double lambda){ 

 

     // --- 3D RECTANGULAR VOID --- 

     else if (typ == 3){ 

      for (int i1 = 0; i1 < num_z; i1++){ 

       for (int i2 = 0; i2 < num_y; i2++){ 

        for (int i3 = 0; i3 < num_x; i3++){ 

         if ((i1+zbeg-1 >= p1) && (i1+zbeg-1 <= p2) 

&& (i2 >= start3) && (i2 <= end3) && (i3 >= rad) && (i3 <= dd)){ 

          setB(B,i1+1,i2+1,i3+1,2); // Stress-

free void 

         } 

        } 

       } 

      } 

  } 

 

  // --- arb 3d scatterer from STL file --- 

  else if (typ == 5) 

  { 
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   char inputFilename[] = "arbscatt.file"; 

   ifstream inFile; 

   inFile.open("arbscatt.file", ios::in); //arbscatt file 

follows (x,y,z) orientation 

 

   if (!inFile){ 

          cerr << "Can't open input file " << inputFilename 

<< endl; 

          exit(1); 

   } 

 

   int tss = rad; // total size of space 

   int *scatterspace = new int[tss]; 

   for (int i = 0; i<tss; i++){ 

       inFile >> scatterspace[i]; // read in entire space 

including scatterer 

      } 

 

   int tempB; 

         for (iz = 0; iz < num_z; iz++){ 

          for (iy = 0; iy < num_y; iy++){ 

           for (ix = 0; ix< num_x; ix++){ 

            tempB = valB(B,iz+1,iy+1,ix+1); 

            if ((scatterspace[(iz+zbeg)*num_y*num_x + 

iy*num_x + ix] != 1) && (tempB != 1) && (tempB != 2)){ 

             if ((lambda == -1) && (mu == -1) && 

(dd == -1)){ 

              setB(B,iz+1,iy+1,ix+1,2); 

             } 

             else{ 

              set(lmd,iz,iy,ix,lambda); 

              set(muu,iz,iy,ix,mu); 

              set(d,iz,iy,ix,dd); 

             } 

            } 

            //i++; 

           } 

          } 

         } 

   inFile.close(); 

   delete[] scatterspace; 

  } 

 } 

 

 

 int round(double a){ 

  return int(a+0.5); 

 } 

 

 //======================================================== 

 // Array Manipulation 
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private: 

 int ci; // current index 

 int ciB; // current Boundary index (used for Boundary array only) 

 int currentloc[3]; // for storing current zyx location 

 

public: 

 // Returns value at i_z, i_y, i_x 

 template <class SomeType> 

 SomeType val(SomeType *a, int i_z, int i_y, int i_x){ 

  return a[(i_z*Lyx)+(i_y*num_x)+i_x]; 

 } 

 

 // Sets value at i_z, i_y, i_x 

 template <class SomeType> 

 void set(SomeType *a, int i_z, int i_y, int i_x, SomeType val){ 

  a[(i_z*Lyx)+(i_y*num_x)+i_x] = val; 

 } 

 

 // Returns Boundary Array value at i_z, i_y, i_x 

 template <class SomeType> 

 SomeType valB(SomeType *a, int i_z, int i_y, int i_x){ 

  return a[(i_z*LyxB)+(i_y*num_xB)+i_x]; 

 } 

 

 // Sets Boundary Array value at i_z, i_y, i_x 

 template <class SomeType> 

 void setB(SomeType *a, int i_z, int i_y, int i_x, SomeType val){ 

  a[(i_z*LyxB)+(i_y*num_xB)+i_x] = val; 

 } 

 //======================================================== 

 // Quick Access Methods 

 

 // sets index ci 

 void setindx(int iz, int iy, int ix){ 

  ci = (iz*Lyx)+(iy*num_x)+ix; 

 } 

 // increments index counter by 1 

 void incindx(){ 

  ci = ci+1; 

 } 

 void sv(double *a, double x){a[ci]=x;    } // 

sets value at ci 

 

 template <class SomeType> 

 SomeType v(SomeType *a)  {return a[ci];   }

 // equiv of a[iz][iy][ix] 

 template <class SomeType> 

 SomeType vzp(SomeType *a) {return a[ci+Lyx];  } // 

equiv of a[iz+1][iy][ix] 

 template <class SomeType> 

 SomeType vzm(SomeType *a) {return a[ci-Lyx];  } // 

equiv of a[iz-1][iy][ix] 
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 template <class SomeType> 

 SomeType vyp(SomeType *a) {return a[ci+num_x]; } // equiv 

of a[iz][iy+1][ix] 

 template <class SomeType> 

 SomeType vyp2(SomeType *a) {return a[ci+2*num_x]; } // 

equiv of a[iz][iy+2][ix] 

 template <class SomeType> 

 SomeType vym(SomeType *a) {return a[ci-num_x]; } // equiv 

of a[iz][iy-1][ix] 

 template <class SomeType> 

 SomeType vxp(SomeType *a) {return a[ci+1];   } // 

equiv of a[iz][iy][ix+1] 

 template <class SomeType> 

 SomeType vxm(SomeType *a) {return a[ci-1];  } // equiv 

of a[iz][iy][ix-1] 

 template <class SomeType> 

 SomeType vzxp(SomeType *a) {return a[ci+1+Lyx]; } // equiv 

of a[iz+1][iy][ix+1] 

 template <class SomeType> 

 SomeType vyxp(SomeType *a) {return a[ci+1+num_x]; } // 

equiv of a[iz][iy+1][ix+1] 

 template <class SomeType> 

 SomeType vzyp(SomeType *a) {return a[ci+Lyx+num_x];} // equiv 

of a[iz+1][iy+1][ix] 

 

 // sets array for z,y,x at current index ci 

 void giveindx(){ 

  currentloc[0] = ((ci / num_x) / num_y) % num_z; // z 

position 

  currentloc[1] = (ci / num_x) % num_y; // y position 

  currentloc[2] = ci % num_x; // x position 

 } 

 

 //======================================================== 

 // Quick Access Methods (Boundary array) 

 

 // sets index ciB 

 void setindxB(int iz, int iy, int ix){ 

  ciB= (iz*LyxB)+(iy*num_xB)+ix; 

 } 

 

 // increments Boundary index counter by 1 

 void incindxB(){ 

  ciB = ciB+1; 

 } 

 void svB(double *a, double x){a[ciB]=x;    }

 // sets value at ciB 

 

 template <class SomeType> 

 SomeType vB(SomeType *a) {return a[ciB];   } // 

equiv of a[iz][iy][ix] 

 template <class SomeType> 
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 SomeType vzpB(SomeType *a) {return a[ciB+LyxB];  } // 

equiv of a[iz+1][iy][ix] 

 template <class SomeType> 

 SomeType vzmB(SomeType *a) {return a[ciB-LyxB];  } // 

equiv of a[iz-1][iy][ix] 

 template <class SomeType> 

 SomeType vypB(SomeType *a) {return a[ciB+num_xB]; } // 

equiv of a[iz][iy+1][ix] 

 template <class SomeType> 

 SomeType vyp2B(SomeType *a) {return a[ciB+2*num_xB]; } // 

equiv of a[iz][iy+2][ix] 

 template <class SomeType> 

 SomeType vymB(SomeType *a) {return a[ciB-num_xB]; } // 

equiv of a[iz][iy-1][ix] 

 template <class SomeType> 

 SomeType vxpB(SomeType *a) {return a[ciB+1];   } // 

equiv of a[iz][iy][ix+1] 

 template <class SomeType> 

 SomeType vxmB(SomeType *a) {return a[ciB-1];  } // 

equiv of a[iz][iy][ix-1] 

 template <class SomeType> 

 SomeType vzxpB(SomeType *a) {return a[ciB+1+LyxB]; } // 

equiv of a[iz+1][iy][ix+1] 

 template <class SomeType> 

 SomeType vyxpB(SomeType *a) {return a[ciB+1+num_xB]; } // 

equiv of a[iz][iy+1][ix+1] 

 template <class SomeType> 

 SomeType vzypB(SomeType *a) {return a[ciB+LyxB+num_xB];} // 

equiv of a[iz+1][iy+1][ix] 

 

 //======================================================== 

 // sets all values = def 

 template <class SomeType> 

 void clear(SomeType *a,SomeType def){ 

  for(int i=0; i<Lzyx; i++){ 

   a[i]=def; 

  } 

 } 

 

 // special version for Boundary array 

 void clearB(int *a, int def){ 

  for(int i=0; i<LzyxB; i++){ 

   a[i]=def; 

  } 

 } 

 

 // sets all outer boundary surfaces for Boundary array 

 void setBoundaries(){ 

     for (int i1 = 0; i1< num_zB; i1++){ 

      for (int i3 = 0; i3< num_xB; i3++){ 

       setB(B,i1,0,i3,2);  //set x2 boundary 

       setB(B,i1,1,i3,1); 
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       setB(B,i1,num_yB-1,i3,2); 

       setB(B,i1,num_yB-2,i3,2); 

       setB(B,i1,num_yB-3,i3,1); 

      } 

     } 

 

     for (int i1 = 0; i1< num_zB; i1++){ 

      for (int i2 = 0; i2< num_yB; i2++){ 

       setB(B,i1,i2,0,2); 

       setB(B,i1,i2,1,1); 

       setB(B,i1,i2,num_xB-1,2);//set x3 boundary 

       setB(B,i1,i2,num_xB-2,2); 

 

       if ((i2>0) && (i2<num_zB-2)){ 

        setB(B,i1,i2,num_xB-3,1); 

       } 

      } 

     } 

 

     for (int i2 = 0; i2< num_yB; i2++){ 

      for (int i3 = 0; i3< num_xB; i3++){ 

       if (type == 1){ 

        setB(B,0,i2,i3,2);  // if at actual end of space 

in z set boundary 

        if ( (i2 > 0) && (i2<(num_yB-2)) && (i3 > 0) && 

(i3<(num_xB-2))){ 

         setB(B,1,i2,i3,1); 

        } 

       } 

 

       if (type == 3){ 

        setB(B,num_zB-1,i2,i3,2); 

        setB(B,num_zB-2,i2,i3,2); 

        if ( (i2 > 0) && (i2<(num_yB-2)) && (i3 >0) && 

(i3<(num_xB-2))){ 

         setB(B,num_zB-3,i2,i3,1); 

        } 

       } 

      } 

     } 

 } 

 

 //======================================================== 

 // returns 2D slice through 3D array at fixed index y 

 double* slice_fixy(double *a, int y_slice){ 

  double *slice = new double[(num_z-2)*num_x]; 

  int count = 0; 

  for(iz=1; iz<num_z-1; iz++) // does not return ends 

   for(ix=0; ix<num_x; ix++){ 

    slice[count] = val(a,iz,iy,ix); 

    count++; 

   } 
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  return slice; 

 } 

 

 //======================================================== 

 // returns 3D volume returning only the even indexes 

 double* GetEvenVol(double *a, int len){  

  double *EvenArray = new double[len]; 

  int count = 0; 

  for(iz=1+(num_z%2); iz<num_z-1; iz+=2) // does not return 

ends 

   for(iy=0; iy<num_y-1; iy+=2) 

    for(ix=0; ix<num_x-1; ix+=2){ 

     EvenArray[count] = val(a, iz, iy, ix); 

     count++; 

    } 

  return EvenArray; 

 } 

 

 // overload to retrieve magnitude of full velocity vector 

 double* GetEvenVol(int len){  

  double *EvenArray = new double[len]; 

  int count = 0; 

  double xtemp, ytemp, ztemp; 

  for(iz=1+(num_z%2); iz<num_z-1; iz+=2) // does not return 

ends 

   for(iy=0; iy<num_y-1; iy+=2) 

    for(ix=0; ix<num_x-1; ix+=2){ 

     xtemp = val(vx, iz, iy, ix); 

     ytemp = val(vy, iz, iy, ix); 

     ztemp = val(vz, iz, iy, ix); 

     EvenArray[count] = 

sqrt(xtemp*xtemp+ytemp*ytemp+ztemp*ztemp); 

     count++; 

    } 

  return EvenArray; 

 } 

 

 int GetEvenVolLen(){  

  int len; 

  if(num_z%2==0) 

   len = (num_z-1)/2*(num_y/2)*(num_x/2); // len if num_z 

is even 

  else 

   len = (num_z-2)/2*(num_y/2)*(num_x/2); // len if num_z 

is odd 

  return len; 

 } 

}; 

 

space::space(double *params){ 

 num_z = params[0]+2;  // number of nodes in z-direction 

 num_y = params[1];   // number of nodes in y-direction 
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 num_x = params[2];   // number of nodes in x-direction 

 ds = params[3];   // spatial step size (m) 

 dt = params[4];   // time step size (s) 

 

 den = params[5];   // density 

 lm = params[6];   // Lame constant - lambda 

 mu = params[7];   // Lame constant - mu 

 zbeg = params[8];   // simspace z-starting position for 

each node 

 

 Lyx = num_y*num_x; 

 Lzyx = num_z*num_y*num_x; 

 

 vz = init(0.0); 

 vy = init(0.0); 

 vx = init(0.0); 

 T11 = init(0.0); 

 T22 = init(0.0); 

 T33 = init(0.0); 

 T12 = init(0.0); 

 T23 = init(0.0); 

 T13 = init(0.0); 

 

 d = init(den); 

 lmd = init(lm); 

 muu = init(mu); 

 

 num_zB = num_z+2;  // number of Boundary nodes in z-direction 

 num_yB = num_y+2;  // number of Boundary nodes in y-direction 

 num_xB = num_x+2;  // number of Boundary nodes in x-direction 

 LyxB = num_yB*num_xB; 

 LzyxB = num_zB*num_yB*num_xB; 

 

 B = initB(0); 

 setBoundaries(); 

 

 dtods = dt/ds; 

    lmdtods  = (lm*dt)/ds; 

    l2mdtods = ((lm+2*mu)*dt)/ds; 

    mdtods   = (mu*dt)/ds; 

 

    PIo2 = 3.14159265358979/2; 

 

    numtrans=0; 

 drivetime = 0; 

    abc = 80; 

} 

 

space::~space() { 

 delete[] vz; // velocities in z-dir 

 delete[] vy; // velocities in y-dir 

 delete[] vx; // velocities in x-dir 
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 delete[] T11; 

 delete[] T22; 

 delete[] T33; 

 delete[] T12; 

 delete[] T23; 

 delete[] T13; 

 

 delete[] d;  // density 

 delete[] muu; 

 delete[] lmd; 

 

 delete[] B;  // Boundary array 

 

} 

 

#endif /* SPACE_H_ */ 
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C++ Code: ‘transducer.h’ 

 /* 'transducer.h' 
Custom transducer class for the Cartesian EFIT simulation 

Cleaned up and heavily modified version of 'transducer.h' (Bertoncini, 

Campbell-Leckey, Miller, etc) 

 

Eric A. Dieckman (WM) 

Last edited: 10 Apr 2019 SMR 

*/ 

 

using namespace std; 

class transducer{ 

public: 

 double *drive{nullptr}; // array that holds drive function 

 int dflen=0;   // length of drivefunc 

 

 double posi1=0;   // transducer center (z-direction) 

 double posi2=0;   // transducer center (y-direction) 

 double posi3=0;   // transducer center (x-direction) 

 double radius=0;  // transducer radius - meters 

 bool driven=false;  // driven: true=active (pitch or 

pitch/catch), false=passive (catch) 

 int transID=0; 

 int numelems=0;   // number of elements in simulation 

space 

 double *record{nullptr};// array that holds recorded value 

 

 double theta=0;   // beam angle from normal / x-direction - 

radians 

 double phi=0;    // beam angle from (+)z-direction - 

radians 

 int num_y = 0;   // y elements in this worker 

 int num_z = 0;   // z elements in this worker 

 int *tau{nullptr};   // yz array of element time delays for 

drive function 

 int zbeg = 0;   // starting location for this worker 

in z-direction 

 int tau_values=0;  // number of elements which have 

values in the tau array (equal to number of transducer elements on 

this node) 

 double dtods=0; 

 

 transducer() { // blank constructor 

 } 

 

 transducer(double x1, double x2, double x3, double rad, int tID, 

int maxt, double angle1, double angle2, int dim_y, int dim_z, int 

z_start, double timebyspace){ 

  posi1  = x1; 

  posi2  = x2; 
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  posi3  = x3; 

  radius = rad; 

  transID = tID; 

  driven = false; 

  record = new double[maxt]; 

  for (int i = 0; i< maxt; i++) record[i] = 0; 

 

  theta = angle1; 

  phi = angle2; 

  num_y = dim_y; 

  num_z = dim_z; 

  zbeg = z_start; 

  dtods=timebyspace; 

  tau = new int[num_z*num_y]; 

 } 

 

 ~transducer() { // blank deconstructor 

 } 

 

// 

======================================================================

============= 

// Initialize (define array and dimensions - call before using!) 

// 

======================================================================

============= 

 void setDriveFunction(int len, double df[], int 

min_tau_absolute){ 

  for(int tau_count=0; tau_count<num_z*num_y; tau_count++){ 

   tau[tau_count]=tau[tau_count]-min_tau_absolute; 

  } 

  drive = new double[len]; 

  drive = df; 

  dflen = len; 

  driven = true; 

  return; 

 } 

 

 double drivef(int t){ 

  if (t<dflen){ 

   return drive[t]; 

  } 

  else{ 

   return 0; 

  } 

 } 

 

 double setDelays(int speed){ 

  int cL = speed;  // default speed of sound, calculated 

in slave() 

  int min_tau_local=0; // minimum value of tau in this node 

  int temp_tau; 
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  for(int k=0; k<num_z; k++){ 

   for(int j=0; j<num_y; j++){ 

    if(((k+zbeg-posi1)*(k+zbeg-posi1)+(j-posi2)*(j-

posi2)) <= (radius*radius)){ 

     temp_tau=static_cast<int>( floor(((k+zbeg-

posi1)*cos(phi) + (j-posi2)*sin(phi)) * sin(theta)/cL/dtods) ); 

     tau[k*num_y+j]=temp_tau; 

     if(temp_tau<min_tau_local){ 

      min_tau_local=temp_tau; 

     } 

     tau_values++; 

    } 

    else{ 

     tau[k*num_y+j]=0; // if not within the 

circle of the transducer 

    } 

   } 

  } 

  return min_tau_local; 

 } 

}; 
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