
University of New Haven University of New Haven

Digital Commons @ New Haven Digital Commons @ New Haven

Master's Theses Student Works

8-2019

Application of Elastodynamic Finite Integration Technique (EFIT) Application of Elastodynamic Finite Integration Technique (EFIT)

to Three-Dimensional Wave Propagation and Scattering in to Three-Dimensional Wave Propagation and Scattering in

Arbitrary Geometries Arbitrary Geometries

Sean M. Raley
University of New Haven

Follow this and additional works at: https://digitalcommons.newhaven.edu/masterstheses

 Part of the Mechanical Engineering Commons

Recommended Citation Recommended Citation
Raley, Sean M., "Application of Elastodynamic Finite Integration Technique (EFIT) to Three-Dimensional
Wave Propagation and Scattering in Arbitrary Geometries" (2019). Master's Theses. 149.
https://digitalcommons.newhaven.edu/masterstheses/149

https://digitalcommons.newhaven.edu/
https://digitalcommons.newhaven.edu/masterstheses
https://digitalcommons.newhaven.edu/studentworks
https://digitalcommons.newhaven.edu/masterstheses?utm_source=digitalcommons.newhaven.edu%2Fmasterstheses%2F149&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.newhaven.edu%2Fmasterstheses%2F149&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.newhaven.edu/masterstheses/149?utm_source=digitalcommons.newhaven.edu%2Fmasterstheses%2F149&utm_medium=PDF&utm_campaign=PDFCoverPages

THE UNIVERSITY OF NEW HAVEN

APPLICATION OF ELASTODYNAMIC FINITE INTEGRATION

TECHNIQUE (EFIT) TO THREE-DIMENSIONAL WAVE

PROPAGATION AND SCATTERING

IN ARBITRARY GEOMETRIES

A THESIS

submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

BY

Sean M. Raley

University of New Haven
West Haven, Connecticut

August, 2019

iii

ACKNOWLEDGMENTS

Sincerest thanks to Professor Eric A. Dieckman, Ph.D. for his patience and
support in teaching me the many, many things I needed to know to complete this thesis.

Special thanks also to Meredith C. Powell, Ph.D. and John E. Leonard; and

appreciation to UNH.

iv

ABSTRACT

Over several decades, railroad Ultrasonic Testing (UT) industry techniques have

primarily been developed through simple analytical modelling and experimental approaches.

However, with present-day computational capabilities, we can use numerical techniques like the

Elastodynamic Finite Integration Technique (EFIT) to fine-tune systems for complex

applications before the fabrication process begins. EFIT is well-established as a useful method in

numerical analysis of ultrasonic wave propagation with distinct advantages over the Finite

Difference Time Domain method. Several software packages exist that use EFIT as the primary

method for simulating the behavior of ultrasonic waves over time in 2 or 3 dimensions, but none

of them are well-suited for railroad UT research and development. This thesis explores the

complete development of a custom tool for this purpose which was designed to: (1) allow for the

input of various profile geometries, boundary conditions, and material inclusion geometries

(such as a bolt hole in a railroad track); and (2) allow for the input of specific ultrasonic impulses

from varying emitter designs. The custom software produced results that closely matched

expected wave propagation behavior. The results were processed into useful visual

representations of that behavior.

v

TABLE OF CONTENTS

ABSTRACT ... iv

LIST OF FIGURES ... vi

CHAPTER I: Ultrasonic Testing in Rail Applications and Relevant Numerical Solutions 1

CHAPTER II: AFIT Implementation and Results .. 11

CHAPTER III: EFIT Implementation and Results ... 16

CHAPTER IV: Conclusions and Future Work ... 30

APPENDIX ... 32

MATLAB Code: Input File Generation .. 33

MATLAB Code: Arbitrary Geometry Importing and Processing .. 37

C++ Code: ‘efit.cpp’ ... 41

C++ Code: ‘space.h’ ... 53

C++ Code: ‘transducer.h’ ... 68

SELECTED REFERENCES .. 71

vi

LIST OF FIGURES

Figure 1: UT wheel probe layout. ... 3

Figure 2: Staggered grid architecture. ... 6

Figure 3: This flowchart outlines the general architecture for this FIT implementation. 11

Figure 4: Example of PML's implemented in 2-D space. ... 13

Figure 5: Half-space 3-D view of the rigid sphere AFIT simulation. ... 14

Figure 6: AFIT results: rigid sphere.. 15

Figure 7: AFIT PML illustration... 15

Figure 8: The Cauchy stress tensor ... 16

Figure 9: Calibration rail modeling... 18

Figure 10: Calibration rail meshing. ... 19

Figure 11: EFIT Case 1 – simple block with void. ... 20

Figure 12: EFIT Case 2 – simple block comparison (no void). .. 21

Figure 13: Cutting planes for 2-D slices of 3-D rail space. .. 22

Figure 14: EFIT Case 3 – beam in rail, 0º, 2-D slices. ... 23

Figure 15: EFIT Case 3 – beam in rail, 0º, 2-D slice (longitudinal). .. 24

Figure 16: EFIT Case 3 – beam in rail, 0º, 3-D view. .. 24

Figure 17: Snell's Law for acoustics in two solids. ... 26

Figure 18: EFIT Case 4 – beam in rail, 56.4º, 3-D view. ... 26

Figure 19: EFIT Case 4 – beam in rail, 56.4º, 2-D slice. .. 27

Figure 20: EFIT Case 5 – beam in rail, 37.5º, 2-D slice (longitudinal). 28

Figure 21: EFIT Case 5 – beam in rail, 37.5º, 3-D view. ... 28

vii

Figure 22: EFIT Case 6 – beam in rail, 70º, 2-D slice (longitudinal). .. 29

Figure 23: EFIT Case 6 – beam in rail, 70º, 3-D view. .. 29

1

CHAPTER I: Ultrasonic Testing in Rail Applications and Relevant Numerical

Solutions

How do we predict an imminent train derailment on railroad track that has been in service

for 80 years or more? How do we determine that a brand new gas cylinder is likely to explode if

it is put into service? In cases like these and many others, the answer is Ultrasonic Testing (UT),

a subset of nondestructive evaluation (NDE). UT is, at its core, concerned with inducing

ultrasonic waves into a material and making inferences about the material’s internal structure

based on the exiting ultrasonic waves. Feasible candidates for UT include product forms that are

wrought, cast, welded, composite, or other materials as long as they have: (a) surface and

internal geometries suitable for the application of UT; and (b) relevant defect definitions that are

of shapes and orientations that conducive to ultrasonic inspection [1]. UT is used to ensure the

safety of many types of system components and structures, including train wheels, pressurized

tanks, railroad tracks, tubes, pipes, ammunition, airplane parts, and structural beams. Many of

these components are inspected using UT techniques both at the time of manufacture and while

in service.

UT is a well-established application of acoustic science. The basic principle is the same

as SONAR: a sound wave is emitted, it reflects off of some feature of interest, and the reflection

is detected and interpreted. The departure from large scale sensing techniques is driven by the

frequencies used. SONAR mainly uses frequencies in the human audible range (20-20,000 Hz),

while ultrasonic waves are by definition above 20 kHz. Attenuation is proportional to the square

of frequency, so detection range decreases at higher frequencies, but resolution and sensitivity

increase. An important note is that at ultrasonic frequencies, sound cannot propagate any useful

distance in air. UT is typically conducted in the MHz range (0.5-25 MHz) [1].

2

Ultrasonic waves are typically generated by piezoelectric transducers, which exploit the

piezoelectric effect, in which structural deformation is induced by applied voltage and vice versa.

This characteristic allows them to both emit ultrasonic waves and convert incoming ultrasonic

signals into electrical signals, which can then be recorded and interpreted by the rest of the

system. Transducer configurations include pulse-echo (the emitting transducer is also the

detecting transducer), pitch-catch (a second transducer acts as the detector for reflections of an

angled ultrasonic beam), and through-transmission (similar to pitch-catch, but with the

transducers located on opposite sides of the target material).

Since railroad track inspection is one of the primary motivators of this project, a more

thorough background of that specific UT application is appropriate. While the details of the

application are complex, the general concept is relatively simple: a fluid-filled wheel probe with

several transducers held at fixed angles inside it rolls down the track, continuously collecting

measurements (Figure 1). The ultrasonic beam propagates from each transducer, through the

wheel fluid, through the membranous tire, through a film of liquid couplant sprayed on the rail to

eliminate air gaps, and into the railroad track. From there, if the beam strikes a discontinuity

roughly orthogonal to its propagation direction, it will reflect back along the same path up into

the wheel probe and be received by the same transducer that emitted the pulse. There are a

number of different defect types which occur at various positions and angles within railroad

tracks, so an array of transducers at various positions and angles must be used to find them.

3

Figure 1: UT wheel probe layout. Wheel probes are rolled along in-service railroad tracks to detect many
different types of flaws. The wheel probe shown here contains a typical array of transducers. Adapted
from [2].

Railroad tracks experience a multitude of cyclic and transient loading conditions,

including vertical loading from trains, lateral loading from trains, lateral creep forces at the

rail/wheel interface, thermal stresses, and residual stresses from manufacturing or welding

processes [3]. Due to these complex loading patterns which span decades or longer, there are

many different types of defects which may develop in the rail and eventually cause failure. One

of the most common defect types is the transverse fissure, which is a crosswise fracture

originating from a nucleus inside the head and spreading outward orthogonally to the length of

the rail. They are impossible to detect visually until the rail has already broken, but they can be

found with a 70º angled transducer in a wheel probe. Another common defect type is the vertical

split head, a progressive longitudinal fracture near the middle of the head along the length of the

rail. They are typically not visible from the surface until they have grown several feet long.

Vertical split heads are particularly prone to causing derailments after complete mechanical

failure. Luckily, they can be found using 0º or 45º angled transducers.

4

Many discontinuities appropriate for UT in general fall under the categories of cracks,

gaps, or other inclusions that behave approximately like rigid reflectors. Scattering of acoustic

waves has well-established solutions for very simple geometries – for example, scattering of a

propagating plane wave from a rigid sphere has been thoroughly explored [4]–[6]. However, as

complexity is added to the reflector geometry, the incident waveform, or the boundary

conditions, analytical solutions quickly become very cumbersome or impossible. At this point,

more advanced numerical tools and techniques are required. As applicable to UT, these include

semi-analytical techniques like the geometric theory of diffraction and the boundary element

method (BEM), and numerical techniques operating directly on the fundamental equations of

motion, among them finite difference time domain methods (FDTD), and finite element methods

(FEM) [7].

This paper will focus on the Finite Integration Technique (FIT), an explicit hyperbolic

time-domain solver, as applied to the acoustic and elastodynamic cases. In the case of the

Acoustic Finite Integration Technique (AFIT), the model directly develops the fundamental

governing equations into a parallelized solver for simulation of acoustic wave propagation in

fluids in 3 dimensions. The Elastodynamic Finite Integration Technique (EFIT) is an analogous

model for ultrasonic wave propagation in isotropic homogeneous solid media.

To better understand the general FIT, it is useful to first compare it to FDTD. Both

methods generally use a cubic hexahedral or cylindrical grid, though advanced meshing

techniques such as subgridding can be applied [8]. They both use Yee’s staggered grid structure

(primary grid and offset secondary grid), first presented in 1966 for electromagnetic simulation

(Figure 2) [9]. FIT and FDTD both use a marching-in-time leapfrog scheme, meaning that the

pressure updates alternate with the velocity updates a half timestep apart. By using this explicit

5

time integration scheme, no iteration is involved in the solution procedure. This also means that

the maximum possible time step is determined by Courant-Friedrich-Lewy-criterion,

Δ𝑡 ≤ Δ𝑡𝑚𝑎𝑥 =
1

√𝑛

Δ𝑥

𝑐𝑚𝑎𝑥

(1)

Δ𝑥 ≈
𝜆min

10
(2)

where n is the number of spatial dimensions and 𝑐𝑚𝑎𝑥 is the highest wave propagation speed in

the simulation. The minimum wavelength 𝜆min drives the maximum spatial discretization size

Δ𝑥. Due to the inverse relationship between frequency and wavelength, high-frequency

simulations are forced to finer resolutions, increasing computational requirements. The

maximum temporal discretization size Δ𝑡𝑚𝑎𝑥 is directly proportional to the chosen Δ𝑥, so higher

frequencies also force a finer time resolution.

In both models, the use of a fixed mesh causes spatial discretization error. A material

property discretization error also occurs [10]. Additionally, FDTD and FIT are full-wave

propagation methods as opposed to spectral methods, which are numerical techniques that

operate in the frequency domain.

The key difference between FIT and FDTD is form of the governing field equations on

which they are based. The FDTD approach uses the differential form of these equations, while

the FIT is based on the integral forms of the field equations. This means that for a fixed mesh

(which includes an inherent spatial discretization error), no additional equation discretization

error is introduced when passing from the continuous to the discrete form [11]. In other words,

FIT contains less inherent error than FDTD.

6

Figure 2: Staggered grid architecture. Yee's staggered grid method can be applied to FIT for the
simplified model of acoustic wave propagation in fluids (left) or the full elastodynamic model in solids
(right). The corresponding leapfrog update schemes are shown as well (below). The Cartesian velocity
vector v is positioned at the center of each face of the primary grid and the center of each edge of the
secondary grid. The scalar pressure value for fluids p is shown in the center of the primary grid and at
the corner of the secondary grid. The normal components of the Cauchy stress tensor T are positioned at
the center of the primary grid, while the shear components are on the center of each edge of the primary
grid. Adapted from [12].

FIT and FDTD can be compared with FEM as a single grouping. As discussed in [13],

FIT and FDTD are both more widely implemented than FEM mainly due to the relative

simplicity of their programming. FEM is formulated using unstructured grids, which give it

greater versatility for complex geometries but require advanced knowledge of mesh generation in

order to properly implement. FEM requires far more computational resources than FDTD and

7

FIT for relatively simple geometric cases; however, the typical strategy for handling complex

geometry in FDTD and FIT is to use a finer mesh, either globally or locally. Due to this

limitation, FEM can be the more computationally efficient method for certain complex

geometries. FEM is also generally superior to FDTD when material interfaces are involved, but

FIT can easily account for continuity conditions at these interfaces.

For Acoustic FIT, propagation is only simulated through fluids, so no shear stresses can

be carried in the material. The governing field equations are derived from conservation of mass,

conservation of momentum, and a thermodynamic equation of state [14]. This leads to equations

for the pressure p and velocity vector 𝐯 in real cartesian space 𝐑 and time t,

𝛿

𝛿𝑡
𝐣(𝐑, 𝑡) = −∇𝑝(𝐑, 𝑡) + 𝐟(𝐑, 𝑡) (3)

𝛿

𝛿𝑡
𝑆(𝐑, 𝑡) = ∇ ∙ 𝐯(𝐑, 𝑡) + ℎ(𝐑, 𝑡) (4)

where 𝐣 is the momentum density vector, 𝐟 is the volume force density vector, S is the scalar

deformation, and h is the injected deformation rate. This is the differential form used in FDTD.

To create the integral form of these equations for AFIT, Equations 3 and 4 are first

combined with the constitutive material equations,

𝐣(𝐑, 𝑡) = 𝜌𝑎0(𝐑)𝐯(𝐑, 𝑡) (5)

𝑆(𝐑, 𝑡) = −κ(𝐑)𝑝(𝐑, 𝑡) (6)

where 𝜌𝑎0 is the acoustic mass density at rest and κ is the compressibility. The constitutive

equations limit the scope of this model to linear, inhomogeneous, anisotropic, instantaneously

and locally reacting media. Gauss’ and Stokes’ Theorems are then applied [12], [15] to arrive at

the integral forms of the governing field equations,

8

∭ ρ𝑎0(𝐑)𝐯̇(𝐑, 𝑡)𝑑𝑉
𝑉

= − ∯ 𝑝(𝐑, 𝑡)𝐝𝐒
𝑆=δ𝑉

+ ∭ 𝐟(𝐑, 𝑡)𝑑𝑉
𝑉

(7)

𝐯(𝐑, 𝑡) = 𝐯(𝐑, 𝑡0) + ∫ 𝐯̇(𝐑, 𝑡′)𝑑𝑡′
𝑡

𝑡0

(8)

∭ κ(𝐑)𝑝̇(𝐑, 𝑡)𝑑𝑉
𝑉

= − ∯ 𝐯(𝐑, 𝑡) ∙ 𝐝𝐒
𝑆=𝛿𝑉

− ∭ℎ(𝐑, 𝑡)𝑑𝑉
𝑉

(9)

𝑝(𝐑, 𝑡) = 𝑝(𝐑, 𝑡0) + ∫ 𝑝̇(𝐑, 𝑡′)𝑑𝑡′
𝑡

𝑡0

. (10)

The integral forms are then directly converted into the numerical matrix update equations

for AFIT,

{𝐯̇}(𝑛𝑡−1/2) = [𝛒̃𝑎0]−1 [𝐑̃]−1[𝐠𝐫𝐚𝐝̃]{𝐩}(𝑛𝑡−1/2) + [𝛒̃𝑎0]−1{𝐟}(𝑛𝑡−1/2) (11)

{𝐯}(𝑛𝑡) = {𝐯}(𝑛𝑡−1) + ∆𝑡{𝐯̇}(𝑛𝑡−1/2) (12)

{𝐩̇}(𝑛𝑡) = −[𝛋]−1[𝐝𝐢𝐯][𝐑]−1{𝐯}(𝑛𝑡) − [𝛋]−1{𝐡}(𝑛𝑡) (13)

{𝐩}(𝑛𝑡+1/2) = {𝐩}(𝑛𝑡−1/2) + ∆𝑡{𝐩̇}(𝑛𝑡) (14)

where 𝑛𝑡 is an integer time step counter such that 𝑡 = ∆𝑡 𝑛𝑡 and the ~ operator indicates that a

matrix is defined on the secondary grid. This direct, one-to-one mapping of the field equations is

the reason FIT does not have the equation discretization error found in FDTD and other

numerical techniques.

For EFIT, the full elastodynamic equations must be used. The governing field equations

for viscid fluids and solids are the linear vectorial Cauchy-Newton’s law of motion and the

tensorial law of deformation rate,

𝛿

𝛿𝑡
𝐣(𝐑, 𝑡) = ∇ ∙ 𝐓(𝐑, 𝑡) + 𝐟(𝐑, 𝑡) (15)

𝛿

𝛿𝑡
𝐒(𝐑, 𝑡) = 𝑠𝑦𝑚{∇ ∙ 𝐯(𝐑, 𝑡)} + 𝐡(𝐑, 𝑡) (16)

9

where 𝐓 is Cauchy’s stress tensor of 2nd rank, 𝐒 is the deformation tensor of 2nd rank, 𝐡 is the

injected deformation rate tensor of 2nd rank, and “sym” is a symmetric gradient operator. This is

the differential form used in FDTD.

To create the integral form of these equations for EFIT, Equations 17 and 18 are first

combined with the constitutive material equations,

𝐣(𝐑, 𝑡) = 𝜌𝑒0(𝐑)𝐯(𝐑, 𝑡) (17)

𝐒(𝐑, 𝑡) = 𝐬(𝐑): 𝐓(𝐑, 𝑡) (18)

where 𝜌𝑒0 is the elastodynamic mass density at rest, 𝐬 is the compliance tensor of 4th rank, and

the colon “:” is an operator denoting a double-scalar product. The constitutive equations limit the

scope of this model to linear, inhomogeneous, anisotropic, instantaneously and locally reacting

media. Gauss’ and Stokes’ Theorems are then applied [12], [15] to arrive at the integral forms of

the governing field equations,

∭ ρ𝑒0(𝐑)𝐯̇(𝐑, 𝑡)𝑑𝑉
𝑉

= ∯ 𝐓(𝐑, 𝑡) ∙ 𝐝𝐒
𝑆=δ𝑉

+ ∭ 𝐟(𝐑, 𝑡)𝑑𝑉
𝑉

(19)

𝐯(𝐑, 𝑡) = 𝐯(𝐑, 𝑡0) + ∫ 𝐯̇(𝐑, 𝑡′)𝑑𝑡′
𝑡

𝑡0

(20)

∭ 𝐬(𝐑): 𝐓̇(𝐑, 𝑡)𝑑𝑉
𝑉

= ∯ 𝑠𝑦𝑚{𝐧 𝐯(𝐑, 𝑡)}𝑑𝑆
𝑆=𝛿𝑉

+ ∭ 𝐡(𝐑, 𝑡)𝑑𝑉
𝑉

(21)

𝐓(𝐑, 𝑡) = 𝐓(𝐑, 𝑡0) + ∫ 𝐓̇(𝐑, 𝑡′)𝑑𝑡′
𝑡

𝑡0

(22)

where 𝐧 is the unit normal at an interface.

The integral forms are then directly converted into the numerical matrix update equations

for EFIT,

10

{𝐯̇}(𝑛𝑡−1/2) = [𝛒̃𝑒0]−1 [𝐃𝐈𝐕̃][𝐑̃𝑽̇
𝑻]−1[𝐀𝑽̇

𝑻]{𝐓}(𝑛𝑡−1/2) + [𝛒̃𝑒0]−1{𝐟}(𝑛𝑡−1/2) (23)

{𝐯}(𝑛𝑡) = {𝐯}(𝑛𝑡−1) + ∆𝑡{𝐯̇}(𝑛𝑡−1/2) (24)

{𝐓̇}(𝑛𝑡) = [𝐜][𝐑𝑻̇
𝑽]−1[𝐆𝐑𝐀𝐃][𝐀𝑻̇

𝑽]{𝐯}(𝑛𝑡) + {𝐠}(𝑛𝑡) (25)

{𝐓}(𝑛𝑡+1/2) = {𝐓}(𝑛𝑡−1/2) + ∆𝑡{𝐓̇}(𝑛𝑡) (26)

where [𝐀𝑽̇
𝑻] and [𝐀𝑻̇

𝑽] are averaging matrices and g is the interface source density of injected

deformation rate.

Now that the update equations have been developed for AFIT and EFIT, the coding and

implementation can begin. We apply the numerical technique to a number of simple test cases,

then expand the capabilities beyond well-established basic FIT implementations to accommodate

arbitrary geometries – in this case, the simulation of ultrasound in railroad track.

11

CHAPTER II: AFIT Implementation and Results

In this chapter, the programming and technical implementations will be discussed for

AFIT only, but much of the information here will form a basis for the EFIT discussion in the

next chapter. The general simulation architecture is to 1) write input files using MATLAB, 2)

perform the marching-in-time algorithm using a parallelized C++ executable program written

specifically for this project, and 3) perform postprocessing and create graphics using VisIt, an

open-source visualization tool developed by the U.S. Department of Energy [16]. Each of the

three main simulation steps can be performed sequentially on a computing cluster. The system

used for these simulation runs had a 16-core 2.10 GHz CPU and 500 GB of RAM.

Figure 3: This flowchart outlines the general architecture for this FIT implementation.

 The MATLAB script begins by defining various material, spatial, and temporal

properties. For AFIT, these include material density, sound speed, maximum input frequency,

number of time steps, physical size of the simulation space, and the sizes and locations of any

scatterers. Several other parameters are then calculated; for example, the maximum input

wavelength, spatial discretization size, and temporal discretization size are all interrelated and

Create input files in MATLAB
• Space/time parameters
• Material properties
• Scatterers

Parallelized C++ program (OpenMPI)
• Reads input files and distributes them to any number of processors
• Sets up arrays, then does the math
• PMLs to minimize space requirements
• Periodically extracts output values

Postprocessing in VisIt (visualization and graphical analysis tool)

12

dependent on the sound speed and maximum frequency. A “drive function” is defined based on

either an analytical equation (e.g. a sine wave) or an input data file. The drive function is simply

an array of pressure values for each time step which will later define a plane wave input at one

end of the simulation space. Finally, a text file is written to pass all the necessary parameters

(including the full drive function) to the C++ executable.

The executable simulation program uses Open MPI to pass information between

processors “nodes” [17]. One node is defined as the master, which is responsible for reading and

preprocessing the simulation parameters from the input file, distributing the parameters to all the

other nodes, and recording output data periodically. The rest of the nodes are defined as slaves or

workers, which each receive an evenly divided slice of the simulation space from the master

node and are responsible for performing the actual calculations for the marching-in-time

algorithm. All nodes are synced to the current time step as the simulation proceeds. The

parallelization slices are orthogonal to the propagation direction of the plane wave.

All the calculations and array bookkeeping are defined by a ~500-line header file that is

instantiated separately by each worker node. For each time step, every worker performs the same

procedure independently. First, the drive function is applied as an input plane wave on only a

single worker node. Then the pressures are updated for the entire space. Each worker node has

one layer of overlap with its neighboring node(s), so these values must be passed and shared

using MPI. Next, the velocities are updated for the entire space, with similar value sharing

between nodes. This alternating update pattern is the leapfrog scheme in practice. At periodic

intervals, the output data is extracted and sent to the master node for recording. Once all of a

worker’s values are updated for a given time step, absorbing boundary conditions are applied to

the outer faces of the overall simulation space. The boundary condition used is a Perfectly

13

Matched Layer (PML), which is a technique that applies an incrementally increasing reduction

factor to each element of the layer moving towards the outer faces of the simulation space [18].

These layers are part of the computational simulation space but are considered sacrificial and

cannot produce valid physical results (Figure 4).

Figure 4: Example of PML's implemented in 2-D space. The method avoids reflections at the inner edge
of a PML by matching the impedance of the PML to the impedance of the problem space. Adapted from
[19].

Once the simulation is complete, a series of binary files containing the output data has

been produced. To help VisIt interpret these binary files, a simple bash script is used to write a

series of “brick of values” (.bov) files, which define data type and size, byte order, and other

parameters for the corresponding data file. From there, it is relatively simple to create a 3-D plot

of the data (Figure 5), which can be manipulated in a wide variety of ways, including video

generation.

The primary test case for the AFIT implementation was a rigid sphere in a fluid, which is

a well-studied acoustics problem. The input was a standing 2.5 kHz plane wave. The pressure

output was recorded for only the even element positions in each principal direction, resulting in

an 87.5% reduction of overall data file size. The expected interference patterns due to reflections

from the sphere can be seen in Figure 6. The expected diffraction patterns behind the sphere

were also observed. The simulation used PMLs on 5 faces of the computational space (Figure 7).

In this implementation, the source face does not have a PML, so the sphere was spaced far

14

enough from the source face that reflections from it were not a concern for the simulation time

duration.

There are far more interesting problems which can be solved using this implementation

of AFIT, but for this thesis, AFIT is primarily used as a stepping stone on the way to the

motivating problem of EFIT in arbitrary geometry.

Figure 5: Half-space 3-D view of the rigid sphere AFIT simulation. Note the clearly visible attenuation at
the outer faces caused by the PML's.

15

Figure 6: AFIT results: rigid sphere. 2-D slice of a 3-D simulation of a 2.5 kHz plane wave reflecting
from a rigid sphere. Results are shown at simulation time steps 345, 620, 740, 900, and 1180, with 1 time
step = 11.43μs.

Figure 7: AFIT PML illustration. The PML's in this simulation space (boxed in red) are not valid physical
results, so they are generally omitted from final figures. Only 3 PMLs are shown here because the figure
is a 2-D slice of a 3-D simulation. Result is shown at simulation time t=13.5 ms.

16

CHAPTER III: EFIT Implementation and Results

When transitioning from AFIT to EFIT, the general simulation structure remains more or

less the same. There are two key differences that add a nontrivial complexity to the

implementation of EFIT. First, instead of pressure, all six components of the Cauchy stress

tensor must be used since solid materials can support shear stresses (Figure 8). This complicates

bookkeeping and calculations. The second difference is specific to the intended application of

this work: UT does not typically involve full-space plane waves, so a localized transducer

definition must be developed to include the drive function in a localized “drive region.”

Figure 8: The Cauchy stress tensor is composed of six unique stress vectors. Image from [20].

In order to simplify the implementation of a discretized transducer definition, several

assumptions are made. One of the largest simplifications is the limitation of transducer geometry

to circular drive regions. There are many situations in which this leads to a slight departure from

real-world physics, such as an ultrasonic beam striking the inspected material at an angle (which

would create an oblong drive region) or a rectangular transducer being used (which creates a

17

drive region that is not quite circular, but not quite round). However, for most situations, a

circular drive region can be assumed to introduce an acceptably low error into the simulation.

Another simplification is the limitation of velocity input values to the direction orthogonal to the

drive region, which can only be placed within the top plane of the simulation space. This is

accurate for transducer beams propagating in the same direction (0º transducers in rail testing),

but again, it introduces some error for angle beams, which realistically strike the test material

with a total velocity parallel to the beam path.

Angled transducer orientations are crucial in many UT applications (with 37.5° and 45°

being two of the most commonly used beam angles), so the addition of this feature was highly

desirable. Angled propagation paths in the inspected material were generated using 2-D array

beam steering [21].The drive function time delay for each spatial element is calculated from

Equation 27 using the center of the transducer as a reference point, then offset so that all

elements have a nonnegative time delay value. This delay time τ𝑖𝑗 is defined as

τ𝑖𝑗 =
𝑧𝑖

𝑐
sinθcosϕ +

𝑦𝑗

𝑐
sinθsinϕ (27)

where θ is the angle from incident normal (the 0º direction) towards positive z, ϕ is the

clockwise angle from the positive z direction, and c is the longitudinal speed of sound. Once this

delay array is set, the same drive function is used throughout the drive region with some

elements simply calling a drive function value from an earlier timestep.

Another feature included in this EFIT implementation is the ability to import arbitrary

geometry as the simulation space. UT is rarely performed on rectangular prisms, so defining

other geometries is essential to creating a useful simulation tool. This is accomplished using

stereolithography (STL) files as inputs. STL is a common filetype that represents 3-D geometry

using interconnected triangular faces (Figure 9). In the initial MATLAB setup script, the STL

18

file is processed into a logical cubic mesh defining whether material exists at any given Cartesian

coordinate within the simulation space (Figure 10). The coarseness of this mesh will determine

the order of the spatial discretization error. A finer mesh is always more accurate, but

computational requirements increase rapidly as discretization length decreases. Anywhere

material does not exist will be treated as vacuum in the simulation, so the stresses and velocities

in those elements will always be zero. This assumption is minor due to the extreme impedance

differential between air and most solids relevant to UT.

Figure 9: Calibration rail modeling. A 3-D CAD model (left) of a calibration rail used in the UT industry.
In the STL version of the same part (right), a high density of triangular faces can be seen intersecting at
the hole locations.

19

Figure 10: Calibration rail meshing. This coarse mesh is an example of the cubic grid output of the
processed STL rail.

Multiple 3-D test cases were solved for the EFIT implementation. In all cases, the output

was the magnitude of the velocity vector for each recorded element – again, only the even

element positions were used in order to reduce data file size. EFIT Case 1 was a simple

rectangular aluminum block with a small void inside it and a round 1 MHz transducer emitting a

5-period sine pulse normal to the top face (in other words, the drive region was defined as a

circle at the top of the simulation space with no time delays). In the very simple Case 1, correct

wave propagation behavior was observed, including reflections from the void and tip diffraction

about the void (Figure 11).

20

Figure 11: EFIT Case 1 – simple block with void. A 2-D slice through the center of the 3-D block allows
clear visualization of the wave’s interaction with the void. The tip diffraction around the edges of the void
are an expected physical response to this ultrasonic pulse.

EFIT Case 2 was a smaller rectangular aluminum block (50x50x100mm) with no

inclusions. The transducer was a 1.5 MHz source with a 21.4mm radius located at the “top” of

the block emitting a 1-period sine pulse (Figure 12). Case 2 includes three separate simulations

with the only difference being the angle of propagation produced by the time delay beam

steering: 0º, 37.5º, and 70º. This comparison validates the methodology used to produce angled

beams in the test material. In both angle beam simulations, a leading longitudinal wave is

expected to travel at 6,235 m/s in the desired direction, while a slower shear wave is expected to

travel at 3,139 m/s at a shallower angle. In all three simulations, surface (Rayleigh) waves are

expected to travel at 2,906 m/s along the plane in which the transducer is located [22]. Using a

rough, image-based interpolation technique, the actual propagation speed of the longitudinal

wave in the 70º simulation is 5,963 m/s. The calculated shear wave speed is 2,981 m/s and the

calculated surface wave speed is 2,793 m/s. All of these are within 4-5% of expected values,

which is acceptable given the approximate method used to measure them.

21

 0º incident angle 37.5º incident angle 70º incident angle
t=

2.
22

μs

t=
6.

67
μs

t=
10

.6
7μ

s

Figure 12: EFIT Case 2 – simple block comparison (no void). The same 1.5 MHz transducer was applied
to the same solid rectangular block three times at different angles: 0º from normal (left), 37.5º from
normal (center), and 70º from normal (right). The 2-D slice is taken at the center of the 3-D block.

Now that the basic simulation functions are validated, complex simulations in arbitrary

geometry can be performed – for EFIT Cases 3-6, that geometry is a 12-inch-long section of

steel railroad track. Processing this geometry in MATLAB with a spatial discretization of

0.212mm/element takes several hours since it can only be done by a single processor core.

Fortunately, the processed geometry file can be used for multiple test cases if the transducer

definition text file is altered manually. The executable phase of the simulation takes about 177

minutes on 8 processor nodes, or 111 minutes on 12 processor nodes. During executable

initialization, RAM usage climbs to ~120 GB, then levels out at ~85 GB for the majority of the

simulation. The output binaries, again only using data from even element positions, are 885.4

MB each – Cases 3-6 each produced 300 output files, taking up 266.5 GB of storage per

simulation.

EFIT Case 3 is a 0º, ¾-inch, 2.25 MHz 1-period sine pulse at the top center of the rail

(Figure 14). The ultrasonic wave reflects from the surface of a flat-bottom hole drilled in the

22

bottom of the rail, traveling back to the same location where the pulse was emitted. In applied

UT testing, the pulse will continue up into the wheel probe, where it will excite the transducer

and register a premature reflection in the UT software. In this simulation, the length of time for

the wave to reach the hole was used to calculate the simulated propagation speed, which matched

exactly the longitudinal speed of sound used in the original simulation setup. This is a good

indicator that the simulation matches the physics.

Figure 13: Cutting planes for 2-D slices of 3-D rail space. The cross-sectional view cuts across the rail,
while the longitudinal view slices down the length of the rail. Model shown with longitudinal slice active.

23

Figure 14: EFIT Case 3 – beam in rail, 0º, 2-D slices. The ultrasonic wave enters through the head,
travels straight down through the web, reflects from the flat-bottom hole drilled into the bottom of the
rail, and passes back up to the pulsing transducer.

24

Figure 15: EFIT Case 3 – beam in rail, 0º, 2-D slice (longitudinal). In this view, the rail is sliced in half
lengthwise at t=31.655 μs. The pulse can be seen reflecting from the flat-bottom hole. Other drilled holes
in the rail are seen outlined by the outer edges of the wave.

Figure 16: EFIT Case 3 – beam in rail, 0º, 3-D view. The head of the rail can be seen slowly filling with
scattered reflections from the main wave’s path.

25

EFIT Cases 4-6 are various angle beams which must be interpreted with an important

caveat. To understand that caveat, we must first understand mode conversion and refraction.

When an incident longitudinal wave passes between media with different sound speeds (more

generally, with different characteristic impedances) at an angle, several things happen. First, a

longitudinal wave propagates into the second medium at a refracted angle determined by the

ratio of the sound speeds. Depending on the incident angle a shear wave may also be created and

propagate in the second medium at a different angle. Since the shear wave speed is always less

than the longitudinal wave speed, this angle is always less than the longitudinal wave (Figure

17).

This incident angle at which the refracted longitudinal wave becomes greater than 90˚

and only the shear wave propagates in the medium is known as the first critical angle, and the

incident angle at which the shear wave no longer propagates is defined as the second critical

angle. For incident angles beyond this, surface waves may be created [1]. In applied UT, most

angle beams are positioned past the first critical angle so that only the shear wave propagates in

the material under test to simplify signal interpretation. Unfortunately, the time delay beam

steering method cannot create an input wave beyond the first critical angle. This means that the

results for EFIT Cases 4-6 are not truly representative of the application; in real testing, only a

shear wave would be present, and not a shear wave and a longitudinal wave. However, the

results are no less physical because of this limitation – if a shallower incident angle was used in

the UT wheel probe, it would create the waves shown in the following results.

26

Figure 17: Snell's Law for acoustics in two solids. The angles of the incident longitudinal (P) wave and
the reflected P wave are the same. The angle of the reflected shear (S) wave is determined by a ratio of
the shear and longitudinal acoustic velocities of Medium 1 (upper material). The angles of the refracted P
and S waves are determined by the ratios of acoustic velocities of Medium 1 and Medium 2. From [23].

The transducer for each of EFIT Cases 4-6 is a ¾-inch, 2.25 MHz 1-period sine pulse at

the top of the rail with an offset to align with the appropriate drilled hole. EFIT Case 4 is angled

at 56.4º, Case 5 at 37.5º, and Case 6 at 70º from normal. In each of these simulations, a

longitudinal wave can be seen reflecting from the aligned flat-bottom hole, while a shear wave

propagates slower and at a smaller angle (Figure 19-Figure 23).

Figure 18: EFIT Case 4 – beam in rail, 56.4º, 3-D view. Though the center of the longitudinal wave is
reflecting from the flat-bottom hole, the outer region of the wavefront continues propagating past the
hole.

27

Figure 19: EFIT Case 4 – beam in rail, 56.4º, 2-D slice. The longitudinal wave can be seen reflecting
directly from an angled flat-bottom hole drilled in the rail head. This transducer is used in practice to
inspect the sides of the rail head for near-vertical defects.

28

Figure 20: EFIT Case 5 – beam in rail, 37.5º, 2-D slice (longitudinal). The longitudinal wave can be seen
reflecting from a long, narrow flat-bottom hole drilled at an angle into the bottom of the rail. By
happenstance, the shear wave is propagating directly toward the center-bottom hole.

Figure 21: EFIT Case 5 – beam in rail, 37.5º, 3-D view. Though the center of the longitudinal wave is
reflecting from the flat-bottom hole, the outer region of the wavefront continues propagating past the
hole. The low-energy far outer regions of the wavefront can be seen filling the rail with small
reverberations.

29

Figure 22: EFIT Case 6 – beam in rail, 70º, 2-D slice (longitudinal). The longitudinal wave can be seen
reflecting from a long, narrow flat-bottom hole drilled at an angle into the end of the rail.

Figure 23: EFIT Case 6 – beam in rail, 70º, 3-D view. Though the center of the longitudinal wave is
reflecting from the flat-bottom hole, the outer region of the wavefront continues propagating past the
hole.

30

CHAPTER IV: Conclusions and Future Work

The primary goals of this thesis were achieved: development of a tool for simulating,

visualizing, and analyzing ultrasonic wave propagation in arbitrary geometry. However, there are

still many opportunities for improvements and further exploration. Two features were

implemented in this tool with only partial success, and thus were not included in the results

chapter: multi-node transducer definition and transducer curvature mapping. Multi-node

transducer definition passes information about transducer definition, drive function, time delays

for beam steering, etc. from the processor node which contains the transducer center point to any

other nodes that the transducer spans on the spatial domain. The drive function was able to

execute correctly, but at times late in the simulation, linear time-growth instability artifacts begin

to appear near the nodal boundaries of the transducer space. Very similar instabilities occur when

applying transducer curvature mapping, which drops each transducer element “down” from the

top of the simulation space until it reaches the top of the material geometry, thus projecting the

transducer onto the surface. Both features would be beneficial, but their exclusion can be

overcome for many test cases, including those in this thesis. Multi-node transducer definition can

be avoided by simply examining the size and location of the transducer and planning the number

of processor nodes used accordingly. It limits the speed of the simulation but does not affect the

results – and as noted in EFIT Case 3, the longest simulation run time was only 3 hours.

Transducer curvature mapping can be avoided by trimming the top of the simulation geometry

before exporting it from the modeling software, such that the top surface of the geometry ends up

being coplanar with the top face of the simulation space (which is where the transducer is

defined, by default). This approach requires a small amount of additional setup work and is a

minor approximation but does not significantly impact results for the geometry in EFIT Case 3.

31

Other features were not attempted in this implementation that could add considerable

value. For instance, a multiphysics AFIT/EFIT simulation with transducers defined within a fluid

region would be a more accurate representation of what is physically happening in a UT wheel

probe. This would allow multiple angle beams to be focused on one area of the fluid-solid

boundary, enabling simulation of the interactions of several ultrasonic beams fired at the same

time. One of the largest limitations that would be eliminated is the lack of true refraction and

mode conversion in the current implementation. Additionally, this method would be ideal for

defining transducers at arbitrary locations and angles, eliminating the need to use time delay

beam steering.

Beyond adding features, an important step would be performing experimental validation

of the simulation results. For the tool to be truly useful as a development aid, the results must be

tested against real-world experiments to build confidence in the implementation. This could be

done first for very simple setups like EFIT Case 2 to prove the basic functionality, then expanded

to more complex tests like EFIT Cases 3-6. The input parameter would be recorded at the center

of the transducer in the simulation and scaled using the drive function to match the experimental

data.

Though the simulation tool has limited applicability to R&D as it stands, there are many

ways it can be used. The visualizations created in VisIt give great clarity to a process that is

invisible to human senses – it may add significant value to educational materials on UT and the

science of acoustics. In fact, the video results are so intuitive that it is possible to use them as

communication tools to explain ultrasonic phenomena to non-technical parties who do not have

formal education in the field. Most importantly, though, the code can be used as a basis for future

research and exploration in the field of numerical simulation of acoustics.

32

APPENDIX

33

MATLAB Code: Input File Generation

% EFIT_cart_3D_inputfiles.m

% Generates configuration files for EFIT simulations

%% Material Parameters

% Steel, 1020

% den = 7710; % kg/m^3

% cL = 5890; % m/s

% cT = 3240; % m/s

% mu = den*cT^2; % Pa

% lambda = den*cL^2-2*mu; % Pa

% Aluminum

den = 2698; % kg/m^3

cL = 6235; % m/s 6374

cT = 3139; % m/s 2906

mu = den*cT^2; % Pa

lambda = den*cL^2-2*mu; % Pa

% Brass

% den = 8400; % kg/m^3

% cL = 4400; % m/s

% cT = 2200; % m/s

% mu = den*cT^2; % Pa

% lambda = den*cL^2-2*mu; % Pa

cmax = cL;

cmin = cT;

clear cL cT

%% Simulation Parameters

fmax = 1.5*10^6; % max frequency (Hz)

wavelength=cmin/fmax;

ds=.7*wavelength/6.1 % step size (m) -> here we assign number of

points per wavelength (>6)

% Size of simulation space (in mm):

z_mm = 100; % 304 for rail

y_mm = 50; % 152 for rail

x_mm = 50; % 152 for rail

% Convert size from m to steps: -> must be even!

maxz = ceil(z_mm/(1000*ds))

maxy = ceil(y_mm/(1000*ds))

maxx = ceil(x_mm/(1000*ds))

maxt = 501; % max simulation time in steps (+1)

outputevery = 5; % output 3D volume how often

dt = 1/(cmax*sqrt(3/(ds^2))) % time step (s)

34

%% Choose a flaw type (everything should be in number of steps)

% Arbitrary fullspace scatterer:

% nS=1; % numref // numbers scatterers

% rftype=[5]; % typ // Reflector type: 5 - arbitrary

(fullspace)

% nsx1 =[0]; % p1 // not used

% nsx2 =[0]; % p2 // not used

% nsx3s =[0]; % start3 // not used

% nsx3e =[0]; % end3 // not used

% rrad =[maxz*maxy*maxx]; % rad // not used

% rden =[-1]; % dd // not used

% rmu =[-1]; % mu // not used

% rlambda= [-1]; % lambda // not used

% % inputs: filename, ds, adjustment of origin (xyz in m), space size

(xyz in m)

% [arbscatt, ~] = import_stl_scatterer('Test Block Curved Top x-50 y-

50 z-100.STL', ds, [0 0 0], [x_mm/1000 y_mm/1000 z_mm/1000]);

% if(size(arbscatt) ~= [maxy maxx maxz])

% disp('Error in Arbitrary scatterer definition. Terminating

script.')

% return

% end

% Rectangular:

nS = 0; % numref // number of scatterers

rftype = [3]; % typ // Reflector type: 3 - Right

Rectangular Prism

nsx1 = [round(25/(1000*ds))]-1; % p1 // z-start (z-end will be

to side of space)

nsx2 = [round(75/(1000*ds))]-1; % p2 // z-end

nsx3s = [round(10/(1000*ds))]-1; % start3 // y-start

nsx3e = [round(60/(1000*ds))]-1; % end3 // y-end

rrad = [round(20/(1000*ds))]-1; % rad // x-start

rden = [round(24/(1000*ds))]-1; % maxx-1; % dd // x-end

rmu = [0]; % mu // null

rlambda= [0]; % lambda // null

if((nsx1>nsx2) || (nsx3s>nsx3e) || (rrad>rden))

 disp('Error in Rectangular scatterer definition. Terminating

script.')

 return

end

%% Transducer info (everything in number of steps)

ntrans = 1;

transducer_z = [round(50/(1000*ds))]; % transducer z position

transducer_y = [round(25/(1000*ds))]; % transducer y position

transducer_x = [maxx-1]; % transducer x position; (maxx - 1) is

positioned on top

transducer_rad = [round(10.7/(1000*ds))]; % transducer radius

35

transducer_theta = deg2rad(70); % Angle of desired beam path from

normal, rad

transducer_phi = deg2rad(0); % Angle of desired beam path from +z

direction, rad

dffreq = fmax; % Pulse Frequency (Hz)

cycles = 1; % Pulse cycles

dfpulselen = cycles*(1/dffreq); % number of cycles times single pulse

length (seconds)

df(1:maxt) = 0;

dfl = ceil(dfpulselen/dt);

amplitude = 10^6;

% df(1:dfl) = amplitude*sin((0:(dfl-1))*dt*dffreq*2*pi); % sine wave

duty = 50;

df(2:(dfl+1)) = (0.5*amplitude)+0.5*amplitude*square((0:(dfl-

1))*dt*dffreq*2*pi,duty); % square wave, needs to start at 0

drivelen = length(df);

%% Write files

%===

=====================

% Write Inputfiles for simulation - % DO NOT CHANGE THE ORDER OF THIS

PART

%===

=====================

[fname,pname] = uiputfile('in.file', 'Save Configuration');

fp=fopen('in.file','w');

fprintf(fp, ' %8.0f ' , maxz); % simparams[0] - num1 (will be +2)

fprintf(fp, ' %8.0f ' , maxy); % simparams[1] - num2

fprintf(fp, ' %8.0f ' , maxx); % simparams[2] - num3

fprintf(fp, ' %2.20f ', ds); % simparams[3] - ds

fprintf(fp, ' %2.20f ', dt); % simparams[4] - dt

fprintf(fp, ' %15.6f ', den); % simparams[5] - den

fprintf(fp, ' %15.6f ', lambda); % simparams[6] - lm

fprintf(fp, ' %15.6f ' , mu); % simparams[7] - mu

fprintf(fp, ' %8.0f ' , maxt); % maxt

fprintf(fp, ' %8.0f ' , outputevery); % outputevery

fprintf(fp, ' %8.0f ' , nS); % numref

for i = 1:nS %

addReflector

 fprintf(fp, ' %8.0f ' , rftype(i)); % rpars[0] typ

 fprintf(fp, ' %8.0f ' , nsx1(i)); % rpars[1] p1

 fprintf(fp, ' %8.0f ' , nsx2(i)); % rpars[2] p2

 fprintf(fp, ' %8.0f ' , nsx3s(i)); % rpars[3] start3

 fprintf(fp, ' %8.0f ' , nsx3e(i)); % rpars[4] end3

 fprintf(fp, ' %8.0f ' , rrad(i)); % rpars[5] rad

36

 fprintf(fp, ' %15.6f ' , rden(i)); % rpars[6] dd

 fprintf(fp, ' %15.6f ' , rmu(i)); % rpars[7] mu

 fprintf(fp, ' %15.6f ' , rlambda(i)); % rpars[8] lambda

end

%fprintf(fp, ' %s ', [pname]); % working directory

fclose(fp);

[fname,pname] = uiputfile('trans.file', 'Save Configuration');

fp=fopen('trans.file','w');

fprintf(fp, ' %8.0f ' , ntrans); % numtrans

for i=1:ntrans

 fprintf(fp, ' %8.0f ' , transducer_z(i)); % tparams[0] //

tposz; // transducer z location

 fprintf(fp, ' %8.0f ' , transducer_y(i)); % tparams[1] //

tposy; // transducer y location

 fprintf(fp, ' %8.0f ', transducer_x); % tparams[2]

// tposx; // transducer x location --> because always on top

 fprintf(fp, ' %8.0f ', transducer_rad(i)); % tparams[3] //

trad; // transducer radius

 fprintf(fp, ' %8.0f ', drivelen); % tparams[4] //

drivelen; // length of drive function

 fprintf(fp, ' %15.6f ' , transducer_theta); % tparams[6] -

transducer_theta

 fprintf(fp, ' %15.6f ' , transducer_phi); % tparams[7] -

transducer_phi

 fprintf(fp, ' %15.6f ', df(1:maxt)); % drive[i] where i

= tparams[4] MUST BE ALTERED TO INCLUDE MULTIPLE Drive functions

end

fclose(fp);

% [fname,pname] = uiputfile('arbscatt.file', 'Save Configuration');

% fp=fopen('arbscatt.file','w');

% for iz=1:maxz

% for iy=1:maxy

% for ix=1:maxx

% fprintf(fp, ' %d', arbscatt(iy,ix,iz));

% end

% end

% end

%

% fclose(fp);

37

MATLAB Code: Arbitrary Geometry Importing and Processing

% import_stl_scatterer.m

% Imports STL file and creates array of scattering boundary for use in

FIT sims

% stlread based on 'cad2matdemo'

%

% Dependencies: INPOLYHEDRON, drawMesh (part of the geom3d package)

function [arbscatt, isinside] = import_stl_scatterer(filename, ds,

objorigin, spacesize)

[faces, vertices, ~] = stlread(filename); % import STL file - origin

must be correct and scale in mm

transverts = vertices; % vertices translated to new origin (and y-

corrected)

for idx = 1:3

 transverts(:,idx) = transverts(:,idx) + objorigin(idx)*1000; % move

object origin (given in m)

 if max(transverts(:,idx)) > spacesize(idx)*1000 ||

min(transverts(:,idx)) < (0-ds/2) % ensure all values are within the

simspace

 disp('Scatterer placement not possible - outside of space');

 return;

 end

end

ssverts = vertices; % convert from mm scale to simspace scale (using

ds)

for idx = 1:3

 ssverts(:,idx) = transverts(:,idx)/(ds*1000);

end

% Find points inside this object - to save memory, focus only on space

where scatterer is located

scatstart = floor(min(abs(ssverts)));

scatend = ceil(max(ssverts));

scatspace = scatend-scatstart+1; % for easier indexing and sizing

isinside = inpolyhedron(faces, ssverts, scatstart(1):1:scatend(1),

scatstart(2):1:scatend(2), scatstart(3):1:scatend(3));

% % View results:

% [xgrid,ygrid,zgrid] = meshgrid(scatstart(1):1:scatend(1),

scatstart(2):1:scatend(2), scatstart(3):1:scatend(3));

% figure; hold on;

% plot3(ygrid(isinside), xgrid(isinside),

zgrid(isinside),'bo','MarkerFaceColor','b');

% % plot3(ygrid(~isinside), xgrid(~isinside), zgrid(~isinside),'ro'),

axis image; hold off;

% xlabel('Y'); ylabel('X'); zlabel('Z');

38

% clear xgrid ygrid zgrid;

% Now create logical array for entire space as input to simulation

fullspace = [ceil(spacesize(2)/ds), ceil(spacesize(1)/ds),

ceil(spacesize(3)/ds)]; % size of full space (steps)

arbscatt = false(fullspace); % this could get big quickly - use

logical to reduce size

% Cuts off last face in each dimension (vertices --> nodes)

if (size(isinside,2)==(scatend(1)-scatstart(1)+1) &&

(size(isinside,2)-1)==fullspace(2)) % nothing got switched around,

sizes are correct

arbscatt(scatstart(2)+1:scatend(2),scatstart(1)+1:scatend(1),scatstart

(3)+1:scatend(3)) = isinside(1:scatspace(2)-1,1:scatspace(1)-

1,1:scatspace(3)-1);

else

 disp('Something wrong with logical array');

end

% % View results for whole space - MAY BE BIG!!

% [xgrid,ygrid,zgrid] =

meshgrid(1:1:fullspace(2),1:1:fullspace(1),1:1:fullspace(3));

% figure; hold on;

% plot3(ygrid(arbscatt), xgrid(arbscatt),

zgrid(arbscatt),'bo','MarkerFaceColor','b');

% plot3(ygrid(~arbscatt), xgrid(~arbscatt), zgrid(~arbscatt),'ro');

hold off;

% xlabel('Y'); ylabel('X'); zlabel('Z');

function [fout, vout, cout] = stlread(filename)

% Reads ASCII stl file and returns a vertex list and face list for

Matlab patch command

fid=fopen(filename, 'r'); %Open the file, assumes STL ASCII format.

if fid == -1

 error('File could not be opened, check name or path.')

end

% STL files of form:

%

%solid BLOCK

% color 1.000 1.000 1.000

% facet

% normal 0.000000e+00 0.000000e+00 -1.000000e+00

% normal 0.000000e+00 0.000000e+00 -1.000000e+00

% normal 0.000000e+00 0.000000e+00 -1.000000e+00

% outer loop

% vertex 5.000000e-01 -5.000000e-01 -5.000000e-01

% vertex -5.000000e-01 -5.000000e-01 -5.000000e-01

% vertex -5.000000e-01 5.000000e-01 -5.000000e-01

% endloop

39

% endfacet

%

% The first line is object name, then comes multiple facet and vertex

lines.

% A color specifier is next, followed by those faces of that color,

until

% next color line.

%

CAD_object_name = sscanf(fgetl(fid), '%*s %s'); %CAD object name, if

needed.

% %Some STLs have it,

some don't.

vnum=0; %Vertex number counter.

report_num=0; %Report the status as we go.

VColor = 0;

%

while feof(fid) == 0 % test for end of file, if not

then do stuff

 tline = fgetl(fid); % reads a line of data from

file.

 fword = sscanf(tline, '%s '); % make the line a character

string

% Check for color

 if strncmpi(fword, 'c',1) == 1 % Checking if a "C"olor line,

as "C" is 1st char.

 VColor = sscanf(tline, '%*s %f %f %f'); % & if a C, get the RGB

color data of the face.

 end % Keep this color, until the

next color is used.

 if strncmpi(fword, 'v',1) == 1 % Checking if a "V"ertex line,

as "V" is 1st char.

 vnum = vnum + 1; % If a V we count the # of V's

 report_num = report_num + 1; % Report a counter, so long

files show status

 if report_num > 249

 fprintf('Reading vertex num: %d.\n',vnum);

 report_num = 0;

 end

 v(:,vnum) = sscanf(tline, '%*s %f %f %f'); % & if a V, get the

XYZ data of it.

 c(:,vnum) = VColor; % A color for each vertex,

which will color the faces.

 end % we "*s" skip the name

"color" and get the data.

end

% Build face list; The vertices are in order, so just number them.

%

fnum = vnum/3; %Number of faces, vnum is number of vertices. STL

is triangles.

flist = 1:vnum; %Face list of vertices, all in order.

F = reshape(flist, 3,fnum); %Make a "3 by fnum" matrix of face list

data.

40

%

% Return the faces and vertexs.

%

fout = F'; %Orients the array for direct use in patch.

vout = v'; % "

cout = c';

%

fclose(fid);

41

C++ Code: ‘efit.cpp’

/* efit.cpp

*

* Sean M. Raley (UNH)

* based on code by Eric A. Dieckman (WM)

* Last edited: 27 March 2019 SMR

*/

//#include "pch.h" // for Microsoft VS only

#include <mpi.h>

#include <iostream>

#include <fstream>

#include <string>

#include <sstream>

#include <time.h>

#include <math.h>

#include "space.h"

using namespace std;

void master();

void slave();

int* DistributeSimulationParameters();

void DistributeTransducers(int *xposs);

void dump3Dbin(int t);

int mpirank, numworkers;

int maxt, outputevery, maxz, numtransducers;

int* EvenVolDims = new int[3];

int main(int argc, char *argv[]) // initialize MPI

{

 MPI_Init(NULL, NULL);

 MPI_Comm_rank(MPI_COMM_WORLD, &mpirank);

 MPI_Comm_size(MPI_COMM_WORLD, &numworkers); /* get number of

nodes */

 numworkers--;

 if (mpirank == 0)

 master();

 else

 slave();

 MPI_Finalize();

 return 0;

}

42

//

==

====

// Master node! -- Distributes simulation space and receives data for

output

//

==

====

void master() {

 time_t start, end;

 time(&start);

 int *zstartpos = new int[numworkers];

 cout << "Master node is online! \n";

 zstartpos = DistributeSimulationParameters(); // Initialize each

node

 DistributeTransducers(zstartpos);

 // writes text file for binary->bov bash command

 string fname = "bin2bovCmd.ascii";

 ofstream outFile(fname.c_str(), ios::out);

 outFile<<"bash makebovs ";

 outFile<<maxt<<" ";

 outFile<<outputevery<<" ";

 for(int e=2;e>=0;e--)

 outFile<<EvenVolDims[e]<<" ";

 outFile.close();

 for (int t = 0; t < maxt; t++) {

 if (t%outputevery == 0 && outputevery != 1) {

 //dump3Dascii(t);

 //cout << "Saved pressure data as ASCII at time: " <<

t << "\n";

 dump3Dbin(t);

 cout << "Saved pressure data as binary at time: " << t

<< "\n";

 //dump3Dvtk(t);

 //cout << "Saved pressure data as vtk at time: " << t

<< "\n";

 }

 }

 time(&end);

 printf("Total Run Time: %.2lf seconds\n", difftime(end, start));

 return;

}

//

==

==

43

// Slave node! -- Does the grunt work

//

==

==

void slave() {

 // --- Receive sim parameters from master and initialize ---

 MPI_Status status;

 MPI_Status status1;

 MPI_Status status2;

 MPI_Status status3;

 MPI_Status status4;

 MPI_Status status5;

 MPI_Status status6;

 MPI_Request request1;

 MPI_Request request2;

 MPI_Request request3;

 MPI_Request request4;

 MPI_Request request5;

 MPI_Request request6;

// int tosend0 = 0; // to use when sending a 0 in MPI is desired

 double simparams[11];

 MPI_Recv(&simparams, 11, MPI_DOUBLE, 0, 201, MPI_COMM_WORLD,

&status);

 space simspace(simparams);

 maxt = static_cast<int>(simparams[9]); // total number of

time steps

 outputevery = static_cast<int>(simparams[10]); // output every

this many time steps

 double cL = sqrt((simparams[6]+2*simparams[7])/simparams[5]); //

default speed of sound, calculated

 if (mpirank == 1){ // node is on left

 simspace.type = 1;

 cout<<"slave is type "<<simspace.type<<endl;

 }

 else if (mpirank == numworkers){ // node is on right

 simspace.type = 3;

 cout<<"slave is type "<<simspace.type<<endl;

 }

 else{

 simspace.type = 2; // node is in middle

 cout<<"slave is type "<<simspace.type<<endl;

 }

 // -- Receive reflector parameters ---

 int nr;

 double *rpars = new double[9];

 MPI_Recv(&nr, 1, MPI_INT, 0, 203, MPI_COMM_WORLD, &status);

44

 for (int i = 0; i < nr; i++) {

 MPI_Recv(&rpars[0], 9, MPI_DOUBLE, 0, 204, MPI_COMM_WORLD,

&status);

 simspace.addReflector(rpars[0], rpars[1], rpars[2],

static_cast<int>(rpars[3]), static_cast<int>(rpars[4]), rpars[5],

rpars[6], rpars[7],rpars[8]);

 }

 delete[] rpars;

 cout << "num_z in slave(mpirank="<<mpirank<<") is: " <<

simspace.num_z << endl;

 // --- Receive transducer parameters ---

 double tparams[8];

 bool done = false;

 while (done == false){

 MPI_Recv(&tparams, 8, MPI_DOUBLE, 0, 211, MPI_COMM_WORLD,

&status);

 int drvlen=static_cast<int>(tparams[4]);

 int min_tau_local, min_tau_global;

 if (tparams[0] == -1) done = true;

 else{

 transducer

t(tparams[0],tparams[1],tparams[2],tparams[3],static_cast<int>(tparams

[5]),maxt,tparams[6],tparams[7],simspace.num_y,simspace.num_z,simspace

.zbeg,simspace.dtods);

 if (drvlen > 0){

 double *drive = new double[drvlen];

 MPI_Recv(&drive[0], drvlen, MPI_DOUBLE, 0, 212,

MPI_COMM_WORLD, &status);

 min_tau_local = t.setDelays(cL);

 MPI_Send(&min_tau_local, 1, MPI_INT, 0, 213,

MPI_COMM_WORLD);

 MPI_Recv(&min_tau_global, 1, MPI_INT, 0, 214,

MPI_COMM_WORLD, MPI_STATUS_IGNORE);

 t.setDriveFunction(drvlen,drive,min_tau_global);

 }

 simspace.addTransducer(t);

 }

 }

 // --- Run simulation ---

 for (int t = 0; t < maxt; t++) {

 if (mpirank == 1 && t%10==0)

 cout << " timestep: " << t << " " <<

simspace.num_z << ", " << simspace.num_y << ", " << simspace.num_x <<

endl;

 simspace.drivetime = t;

 simspace.UpdateTransducers(t);

45

 if (t%outputevery == 0) { // sends output to master node

 int len = simspace.GetEvenVolLen(); // get even num_z

length for each node

 double* x = simspace.GetEvenVol(len);

 MPI_Send(&len, 1, MPI_INT, 0, 1101, MPI_COMM_WORLD);

 MPI_Send(&x[0], len, MPI_DOUBLE, 0, 1102,

MPI_COMM_WORLD);

 delete[] x;

 }

 // --- Update V's ---

 simspace.UpdateVs(1,1); // Update left

boundary

 simspace.UpdateVs(simspace.num_z-2,simspace.num_z-2);

 // Update right boundary

 if (mpirank>1){ // send

left

 MPI_Isend(&simspace.vy[simspace.Lyx], simspace.Lyx,

MPI_DOUBLE, (mpirank-1), 301, MPI_COMM_WORLD, &request1);

 MPI_Isend(&simspace.vx[simspace.Lyx], simspace.Lyx,

MPI_DOUBLE, (mpirank-1), 302, MPI_COMM_WORLD, &request2);

 }

 if (mpirank<numworkers){ // send right

 MPI_Isend(&simspace.vz[(simspace.num_z-2)*simspace.Lyx],

simspace.Lyx, MPI_DOUBLE, (mpirank+1), 303, MPI_COMM_WORLD,

&request3);

 }

 simspace.UpdateVs(2,simspace.num_z-3); // update inner nodes

 if (mpirank<numworkers){ // receive from

right

 MPI_Recv(&simspace.vy[(simspace.num_z-

1)*simspace.Lyx], simspace.Lyx, MPI_DOUBLE, (mpirank+1), 301,

MPI_COMM_WORLD, &status1);

 MPI_Recv(&simspace.vx[(simspace.num_z-

1)*simspace.Lyx], simspace.Lyx, MPI_DOUBLE, (mpirank+1), 302,

MPI_COMM_WORLD, &status2);

 }

 if (mpirank>1){ // receive

from left

 MPI_Recv(&simspace.vz[0], simspace.Lyx, MPI_DOUBLE,

(mpirank-1), 303, MPI_COMM_WORLD, &status3);

 }

46

 if (mpirank>1){ // Wait

for sends to complete

 MPI_Wait(&request1,&status1);

 MPI_Wait(&request2,&status2);

 }

 if (mpirank<numworkers){

 MPI_Wait(&request3, &status3);

 }

 // --- Update T's ---

 simspace.UpdateTs(1,1); // Update left

boundary

 simspace.UpdateTs(simspace.num_z-2,simspace.num_z-2); //

Update right boundary

 if (mpirank>1){ // send Trz,

Tzp left

 MPI_Isend(&simspace.T11[simspace.Lyx], simspace.Lyx,

MPI_DOUBLE, (mpirank-1), 311, MPI_COMM_WORLD, &request4);

 }

 if (mpirank<numworkers){ // send Tzz,

Trp right

 MPI_Isend(&simspace.T12[(simspace.num_z-2)*simspace.Lyx],

simspace.Lyx, MPI_DOUBLE, (mpirank+1), 313, MPI_COMM_WORLD,

&request5);

 MPI_Isend(&simspace.T13[(simspace.num_z-2)*simspace.Lyx],

simspace.Lyx, MPI_DOUBLE, (mpirank+1), 314, MPI_COMM_WORLD,

&request6);

 }

 simspace.UpdateTs(2,simspace.num_z-3); // update

inner nodes

 if (mpirank<numworkers){ // reveive

Trz, Tzp from right

 MPI_Recv(&simspace.T11[(simspace.num_z-1)*simspace.Lyx],

simspace.Lyx, MPI_DOUBLE, (mpirank+1), 311, MPI_COMM_WORLD, &status4);

 }

 if (mpirank>1){ // receive

Tzz, Trp from left

 MPI_Recv(&simspace.T12[0], simspace.Lyx, MPI_DOUBLE,

(mpirank-1), 313, MPI_COMM_WORLD, &status5);

 MPI_Recv(&simspace.T13[0], simspace.Lyx, MPI_DOUBLE,

(mpirank-1), 314, MPI_COMM_WORLD, &status6);

 }

 if (mpirank>1){ // Wait for sends to

complete

47

 MPI_Wait(&request4, &status4);

 }

 if (mpirank<numworkers){

 MPI_Wait(&request5, &status5);

 MPI_Wait(&request6, &status6);

 }

 }

 return;

}

//

==

==

// Reads in parameter file (in.file), distributes to all workers,

// and divides up the simulation space

//

==

==

int* DistributeSimulationParameters() {

 char inputFilename[] = "in.file";

 ifstream inFile;

 inFile.open("in.file", ios::in);

 if (!inFile) {

 cerr << "Can't open input file " << inputFilename << endl;

 exit(1);

 }

 double *simparams = new double[11];

 inFile >> simparams[0]; //maxz

 inFile >> simparams[1]; //maxy

 inFile >> simparams[2]; //maxx

 inFile >> simparams[3]; //ds

 inFile >> simparams[4]; //dt

 inFile >> simparams[5]; //default den

 inFile >> simparams[6]; //lm - default Lame constant - lambda

 inFile >> simparams[7]; //mu - default Lame constant - mu

 inFile >> simparams[9]; //maxt

 inFile >> simparams[10]; //outevery

 maxt = static_cast<int>(simparams[9]);

 outputevery = static_cast<int>(simparams[10]);

 maxz = static_cast<int>(simparams[0]);

 // Send initial data to each node

 int div, divaccum = 0;

 int* xpos = new int[numworkers];

 EvenVolDims[0]=0;

 EvenVolDims[1]=static_cast<int>(simparams[1]/2);

 EvenVolDims[2]=static_cast<int>(simparams[2]/2);

48

 for (int n = 1; n <= numworkers; n++) {

 div = (maxz/numworkers);

 if ((n-1) <= (maxz%numworkers))

 div++; // divide space along z direction

 simparams[0] = static_cast<double>(div);

 cout << "Divided space (div) is " << div << "\n";

 simparams[8] = static_cast<double>(divaccum); // tells the

worker where its starting z location is

 cout << "Worker's starting locations (divaccum) is " <<

divaccum << "\n";

 MPI_Send(&simparams[0], 11, MPI_DOUBLE, n, 201,

MPI_COMM_WORLD);

 xpos[n-1] = static_cast<int>(simparams[8]);

 divaccum = divaccum + div;

 if(div%2==0)

 EvenVolDims[0]+=(div/2); // len if num_z is even

 else

 EvenVolDims[0]+=((div-1)/2); // len if num_z is even

 }

 cout << "Total simulation timesteps (maxt) = " << maxt << endl;

 delete[] simparams;

 // --- Read in reflectors and distribute to all workers ---

 int numref;

 inFile >> numref;

 double *rpars = new double[9];

 cout << " Number of reflectors: " << numref << endl;

 for (int n = 1; n <= numworkers; n++) {

 MPI_Send(&numref, 1, MPI_INT, n, 203, MPI_COMM_WORLD);

 }

 for (int i = 0; i < numref; i++) {

 inFile >> rpars[0]; // reflector type

 inFile >> rpars[1]; // reflector position in x1

 inFile >> rpars[2]; // reflector position in x2

 inFile >> rpars[3]; // reflector position in x3 - (start

for cylinder)

 inFile >> rpars[4]; // reflector position in x3 - (end for

cylinder)

 inFile >> rpars[5]; // refector radius

 inFile >> rpars[6]; // refector density

 inFile >> rpars[7]; // refector mu

 inFile >> rpars[8]; // refector lambda

 for (int n = 1; n <= numworkers; n++) {

 MPI_Send(&rpars[0], 9, MPI_DOUBLE, n, 204,

MPI_COMM_WORLD);

 }

49

 }

 delete[] rpars;

 inFile.close();

 return xpos;

}

//

==

=============

// Reads in transducer file (trans.file) and distributes to the

correct workers

//

==

=============

void DistributeTransducers(int *zposs){

 double tparams[8];

 int numtrans, worker;

 int min_tau=0;

 int min_tau_recv=0;

 char inputFilename[] = "trans.file";

 ifstream inFile;

 inFile.open("trans.file", ios::in);

 if (!inFile){

 cerr << "Can't open input file " << inputFilename << endl;

 exit(1);

 }

 inFile >> numtrans;

 cout << " number of transducers: " << numtrans << endl;

 numtransducers = numtrans;

 for (int tr = 0; tr<numtrans; tr++){

 inFile >> tparams[0]; // transducer z location

 inFile >> tparams[1]; // transducer y location

 inFile >> tparams[2]; // transducer x location

 inFile >> tparams[3]; // transducer radius

 inFile >> tparams[4]; // len of drive function

 int drvlen = static_cast<int>(tparams[4]);

 tparams[5] = static_cast<double>(tr);

 inFile >> tparams[6]; // transducer theta

 inFile >> tparams[7]; // transducer phi

 double *drive{nullptr};

 if (tparams[4]>0){

 drive = new double[drvlen];

 for (int i = 0; i<drvlen; i++){

50

 inFile >> drive[i];

 }

 }

 // --- Figure out which workers get the transducer ---

 worker = 0;

 for (int tosend = 1; tosend<numworkers; tosend++)

 if (tparams[0] >= zposs[tosend-1] && tparams[0] <

zposs[tosend]) worker = tosend;

 if (tparams[0] >= zposs[numworkers-1] && tparams[0] <

maxz) worker = numworkers;

 else if (worker == 0) cout << "error: transducer postion

not found: zpos - " << tparams[0] << ", " << zposs[numworkers-1] <<

", " << maxz << endl;

 // --- Send transducer info to worker ---

 if (worker > 1){

 if ((tparams[0] - tparams[3]) <= zposs[worker-1]){

 MPI_Send(&tparams[0], 8, MPI_DOUBLE, worker-1,

211, MPI_COMM_WORLD);

 if (tparams[4]>0){

 MPI_Send(&drive[0], tparams[4], MPI_DOUBLE,

worker-1, 212, MPI_COMM_WORLD);

 MPI_Recv(&min_tau_recv, 1, MPI_INT, worker-

1, 213, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

 if(min_tau_recv<min_tau) min_tau =

min_tau_recv;

 MPI_Send(&min_tau, 1, MPI_INT, worker-1,

214, MPI_COMM_WORLD);

 }

 }

 if ((tparams[0] - tparams[3]) <= zposs[worker-2]){

 MPI_Send(&tparams[0], 8, MPI_DOUBLE, worker-2,

211, MPI_COMM_WORLD);

 if (tparams[4]>0){

 MPI_Send(&drive[0], tparams[4], MPI_DOUBLE,

worker-2, 212, MPI_COMM_WORLD);

 MPI_Recv(&min_tau_recv, 1, MPI_INT, worker-

2, 213, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

 if(min_tau_recv<min_tau) min_tau =

min_tau_recv;

 MPI_Send(&min_tau, 1, MPI_INT, worker-2,

214, MPI_COMM_WORLD);

 }

 }

 }

 MPI_Send(&tparams[0], 8, MPI_DOUBLE, worker, 211,

MPI_COMM_WORLD);

 if (tparams[4]>0){

 MPI_Send(&drive[0], tparams[4], MPI_DOUBLE, worker,

212, MPI_COMM_WORLD);

51

 MPI_Recv(&min_tau_recv, 1, MPI_INT, worker, 213,

MPI_COMM_WORLD, MPI_STATUS_IGNORE);

 if(min_tau_recv<min_tau) min_tau = min_tau_recv;

 MPI_Send(&min_tau, 1, MPI_INT, worker, 214,

MPI_COMM_WORLD);

 }

 if (worker < numworkers){

 if ((tparams[0] + tparams[3]) >= zposs[worker]){

 MPI_Send(&tparams[0], 8, MPI_DOUBLE, worker+1,

211, MPI_COMM_WORLD);

 if (tparams[4]>0){

 MPI_Send(&drive[0], tparams[4], MPI_DOUBLE,

worker+1, 212, MPI_COMM_WORLD);

 MPI_Recv(&min_tau_recv, 1, MPI_INT,

worker+1, 213, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

 if(min_tau_recv<min_tau) min_tau =

min_tau_recv;

 MPI_Send(&min_tau, 1, MPI_INT, worker+1,

214, MPI_COMM_WORLD);

 }

 }

 if ((tparams[0] + tparams[3]) >= zposs[worker+1]){

 MPI_Send(&tparams[0], 8, MPI_DOUBLE, worker+2,

211, MPI_COMM_WORLD);

 if (tparams[4]>0){

 MPI_Send(&drive[0], tparams[4], MPI_DOUBLE,

worker+2, 212, MPI_COMM_WORLD);

 MPI_Recv(&min_tau_recv, 1, MPI_INT,

worker+2, 213, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

 if(min_tau_recv<min_tau) min_tau =

min_tau_recv;

 MPI_Send(&min_tau, 1, MPI_INT, worker+2,

214, MPI_COMM_WORLD);

 }

 }

 }

 delete[] drive;

 }

 // --- Let all workers know we are done distributing transducers

 tparams[0] = -1;tparams[1] = -1;tparams[2] = -1;tparams[3] = -

1;tparams[4] = -1;tparams[5] = -1;

 for (int n = 1; n <= numworkers; n++){

 MPI_Send(&tparams[0], 8, MPI_DOUBLE, n, 211,

MPI_COMM_WORLD);

 }

 inFile.close();

 return;

}

52

//

==

==

// Dump data to file!

//

==

==

void dump3Dbin(int t) // pressure data as binary

{

 MPI_Status status;

 double *data3d{nullptr};

 int len;

 stringstream strm;

 strm << t;

 string fname = "data3d_at_t_" + strm.str() + ".bin";

 ofstream outFile(fname.c_str(), ios::binary);

 for (int n = 1; n <= numworkers; n++) {

 MPI_Recv(&len, 1, MPI_INT, n, 1101, MPI_COMM_WORLD,

&status);

 data3d = new double[len];

 MPI_Recv(&data3d[0], len, MPI_DOUBLE, n, 1102,

MPI_COMM_WORLD, &status);

 for (int i = 0; i < len; i++) {

 outFile.write((char *)(&data3d[i]),

sizeof(data3d[i]));

 }

 delete[] data3d;

 }

 outFile.close();

 return;

}

53

C++ Code: ‘space.h’

/* space.h

 * Sets up the transducers and reflectors for the Cartesian EFIT

simulation

 * Redesigned integration of 'setup_cart_space.h' and 'array3D.h'

(Dieckman)

 *

 * Created on: March 27, 2019

 * Author: Sean M. Raley (UNH)

 */

#ifndef SPACE_H_

#define SPACE_H_

#include <iostream>

#include <fstream>

#include <stdlib.h>

#include <algorithm>

#include "transducer.h"

using namespace std;

class space{

public:

 space(double *params);

 ~space();

 int num_z, num_y, num_x; // number of grid points in each

direction

 int num_zB, num_yB, num_xB; // number of Boundary grid points in

each direction

 int abc; // number of abc points on each end

 double ds; // spatial step size (meters)

 double dt; // time step size (seconds)

 double den; // default density (kg/m^3)

 double lm; // default Lame constant - lambda

 double mu; // default Lame constant - mu

 int zbeg; // z start position (where divvacuum ends)

 int type; // type -> 1 = left, 2 = middle, 3 = right (for MPI)

 double *vz; // velocities in z-dir

 double *vy; // velocities in y-dir

 double *vx; // velocities in x-dir

 double *T11;// zz normal stress

 double *T22;// yy normal stress

54

 double *T33;// xx normal stress

 double *T12;// zy normal stress

 double *T23;// yx normal stress

 double *T13;// zy normal stress

 double *d; // density

 double *lmd;// Lame parameter - lambda

 double *muu;// Lame parameter - mu

 int *B; // Boundary array

 int drivetime;

 transducer *trans{nullptr};

 int numtrans;

 int Lyx; // array length of entire x-y plane

 int Lzyx; // array length of entire x-y-z volume

 int LyxB; // array length of entire x-y plane (Boundary array)

 int LzyxB; // array length of entire x-y-z volume (Boundary

array)

 double dtods; // time step over spatial step

private:

 double lmdtods;

 double l2mdtods;

 double mdtods;

 int iz, iy, ix; // counters for spatial loops

 int pp1,pm1;

 double PIo2;

 //==

 // low-level initialization function

 template <class SomeType>

 SomeType *init(SomeType def){

 SomeType *temparray = new SomeType[Lzyx];

 clear(temparray,def);

 return temparray;

 }

 // special version for B array

 int *initB(int def){

 int *temparray = new int[LzyxB];

 clearB(temparray, def);

 return temparray;

 }

public:

55

 //

==

=============

 // Update velocities and stresses

 //

==

=============

 void UpdateVs(int zs, int zend){

 int tau_time;

 int tau_count = 0;

 for (iz = zs; iz <= zend; iz++){

 setindx(iz,0,0);

 for (iy = 0; iy < num_y; iy++){

 setindxB(iz+1,iy+1,1);

 for (ix = 0; ix < num_x; ix++){

 // --- vy ---

 if (vB(B)==0){

 sv(vy, v(vy) +

2*dtods/(v(d)+vyp(d))*((v(T12)-vzm(T12))+(vyp(T22)-v(T22))+(v(T23)-

vxm(T23))));

 }

 else if (vB(B)==2 || vzmB(B)==2 ||

vxmB(B)==2) {} // because vy requires elements in direction vxm() and

vzm()

 else if (vypB(B)==2){

 sv(vy, v(vy) + 2*dtods/(v(d)+v(d))*(-

2*(v(T22))));

 }

 else if (vymB(B)==2){

 sv(vy, v(vy) +

2*dtods/(v(d)+v(d))*(2*(vyp(T22))));

 }

 else{

 sv(vy, v(vy) +

2*dtods/(v(d)+vyp(d))*((v(T12)-vzm(T12))+(vyp(T22)-v(T22))+(v(T23)-

vxm(T23))));

 }

 // --- vz ---

 if (vB(B)==0){

 sv(vz, v(vz) +

2*dtods/(v(d)+vzp(d))*((vzp(T11)-v(T11))+(v(T12)-vym(T12))+(v(T13)-

vxm(T13)))); // middle

 }

 else if (vB(B)==2 || vymB(B)==2 ||

vxmB(B)==2) {} //b/c vz needs elements in the vym() and vxm()

directions

 else if (vzpB(B)==2){

56

 sv(vz, v(vz) + 2*dtods/(v(d)+v(d))*(-

2*(v(T11)))); //right end (only called if at last node)

 }

 else if (vzmB(B)==2){

 sv(vz, v(vz) +

2*dtods/(v(d)+v(d))*(2*(vzp(T11)))); //left end (only called if at

first node)

 }

 else{

 sv(vz, v(vz) +

2*dtods/(v(d)+vzp(d))*((vzp(T11)-v(T11))+(v(T12)-vym(T12))+(v(T13)-

vxm(T13))));

 }

 // --- vx ---

 if (vB(B)==0){

 sv(vx, v(vx) +

2*dtods/(v(d)+vxp(d))*((v(T13)-vzm(T13))+(v(T23)-vym(T23))+(vxp(T33)-

v(T33))));

 }

 else if (vB(B)==2 || vymB(B)==2 ||

vzmB(B)==2) {}

 else if (vB(B)>=9000){

 sv(vx, v(vx) + 2*dtods/(v(d)+v(d))*(-

2*(v(T33)))+ 2*dtods/(den+den)*(-trans[vB(B)-

9000].drivef(drivetime)));

 }

 else if (vB(B)>=1000){

 giveindx();

 tau_count =

currentloc[0]*num_y+currentloc[1];

 if(trans[vB(B)-

1000].tau[tau_count]<drivetime){

 tau_time = drivetime -

trans[vB(B)-1000].tau[tau_count];

 }

 else{

 tau_time=0;

 }

 sv(vx, v(vx) + 2*dtods/(v(d)+v(d))*(-

2*(v(T33)))+ 2*dtods/(den+den)*(trans[vB(B)-1000].drivef(tau_time)));

 }

 else if (vxpB(B)==2){

 sv(vx, v(vx) + 2*dtods/(v(d)+v(d))*(-

2*(v(T33)))); //top

 }

 else if (vxmB(B)==2){

 sv(vx, v(vx) +

2*dtods/(v(d)+v(d))*(2*(vxp(T33)))); //bottom

 }

 else{

57

 sv(vx, v(vx) +

2*dtods/(v(d)+vxp(d))*((v(T13)-vzm(T13))+(v(T23)-vym(T23))+(vxp(T33)-

v(T33))));

 }

 incindx();

 incindxB();

 }

 }

 }

 }

 void UpdateTs(int zs, int zend){

 for (iz = zs; iz <= zend; iz++){

 setindx(iz,0,0);

 for (iy = 0; iy < num_y; iy++){

 setindxB(iz+1,iy+1,1);

 for (ix = 0; ix < num_x; ix++){

 // --- Tii ---

 if (vB(B)==2 || vymB(B)==2 || vxmB(B)==2 ||

vzmB(B)==2) {} // 1 is iz, 2 is iy, 3 is ix

 else{

 sv(T11,

v(T11)+dtods*(v(lmd)+(2*v(muu)))*(v(vz)-

vzm(vz))+dtods*(v(lmd))*((v(vy)-vym(vy))+(v(vx)-vxm(vx))));

 sv(T22,

v(T22)+dtods*(v(lmd)+(2*v(muu)))*(v(vy)-

vym(vy))+dtods*(v(lmd))*((v(vz)-vzm(vz))+(v(vx)-vxm(vx))));

 sv(T33,

v(T33)+dtods*(v(lmd)+(2*v(muu)))*(v(vx)-

vxm(vx))+dtods*(v(lmd))*((v(vz)-vzm(vz))+(v(vy)-vym(vy))));

 }

 // --- T13 ---

 if (vB(B)==2 || vzpB(B)==2 || vzmB(B)==2 ||

vxpB(B)==2 || vxmB(B)==2 || vymB(B)==2 || vzxpB(B)==2) {}

 else{

 sv(T13,

v(T13)+dtods*(4/(((1/v(muu))+(1/vzp(muu))+(1/vxp(muu))+(1/vzxp(muu))))

)*((vxp(vz)-v(vz))+(vzp(vx)-v(vx))));

 }

 // --- T23 ---

 if (vB(B)==2 || vypB(B)==2 || vymB(B)==2 ||

vxpB(B)==2 || vxmB(B)==2 || vzmB(B)==2 || vyxpB(B)==2) {}

 else{

 sv(T23,

v(T23)+dtods*(4/((1/(v(muu))+(1/vyp(muu))+(1/vxp(muu))+(1/vyxp(muu))))

)*((vxp(vy)-v(vy))+(vyp(vx)-v(vx))));

 }

58

 // --- T12 ---

 if (vB(B)==2 || vypB(B)==2 || vymB(B)==2 ||

vzpB(B)==2 || vzmB(B)==2 || vxmB(B)==2 || vzypB(B)==2) {}

 else{

 sv(T12,

v(T12)+dtods*((4/((1/v(muu))+(1/vzp(muu))+(1/vyp(muu))+(1/vzyp(muu))))

)*((vyp(vz)-v(vz))+(vzp(vy)-v(vy))));

 }

 incindx();

 incindxB();

 }

 }

 }

 }

 //

==

=============

 // Add/update transducers

 //

==

=============

 void UpdateTransducers(int t){

 int tr;

 for (int i1 = 1; i1<num_z-1; i1++){

 for (int i2 = 0; i2<num_y-1; i2++){

 if (valB(B,i1+1,i2+1,num_x) >= 1000){

 tr = valB(B,i1+1,i2+1,num_x)-1000;

//transducer ID

 trans[tr].record[t] = trans[tr].record[t]

+ val(vx,i1,i2,num_x-1); //record holds recorded info

 }

 }

 }

 }

 void addTransducer(transducer t){

 numtrans = numtrans+1;

 transducer *temp = new transducer[numtrans]; // of class

transducer, length numtrans

 for (int i = 0; i<numtrans-1; i++){ // loops from 0 to actual

number of transducers

 temp[i] = trans[i];

 }

 temp[numtrans-1] = t;

 trans = temp;

 int nelems = 0;

 for (int i1 = 1; i1<num_z-1; i1++){

59

 for (int i2 = 0; i2<num_y; i2++){

 if (((i1+zbeg-trans[numtrans-1].posi1)*(i1+zbeg-

trans[numtrans-1].posi1)+(i2-trans[numtrans-1].posi2)*(i2-

trans[numtrans-1].posi2)) <= (trans[numtrans-1].radius*trans[numtrans-

1].radius)){

 setB(B,i1+1,i2+1,t.posi3+1,1000+numtrans-1);

//executes if (z-zo)^2+(y-yo)^2<=rad^2, ie, if within a circle of

transducer radius then set B >1000

 nelems++;

 }

 }

 }

 if(nelems != trans[numtrans-1].tau_values){

 cout<<"WARNING! For worker starting at

z="<<zbeg<<"Number of transducer elements defined by addTransducer()

does NOT equal number of transducer elements in delay array tau.

Transducer errors likely."<<endl;

 }

 temp[numtrans-1].numelems = nelems;

 }

 //

==

=============

 // Add/update relectors - different types defined below

 //

==

=============

 void addReflector(double typ, double p1, double p2, int start3,

int end3, double rad, double dd, double mu, double lambda){

 // --- 3D RECTANGULAR VOID ---

 else if (typ == 3){

 for (int i1 = 0; i1 < num_z; i1++){

 for (int i2 = 0; i2 < num_y; i2++){

 for (int i3 = 0; i3 < num_x; i3++){

 if ((i1+zbeg-1 >= p1) && (i1+zbeg-1 <= p2)

&& (i2 >= start3) && (i2 <= end3) && (i3 >= rad) && (i3 <= dd)){

 setB(B,i1+1,i2+1,i3+1,2); // Stress-

free void

 }

 }

 }

 }

 }

 // --- arb 3d scatterer from STL file ---

 else if (typ == 5)

 {

60

 char inputFilename[] = "arbscatt.file";

 ifstream inFile;

 inFile.open("arbscatt.file", ios::in); //arbscatt file

follows (x,y,z) orientation

 if (!inFile){

 cerr << "Can't open input file " << inputFilename

<< endl;

 exit(1);

 }

 int tss = rad; // total size of space

 int *scatterspace = new int[tss];

 for (int i = 0; i<tss; i++){

 inFile >> scatterspace[i]; // read in entire space

including scatterer

 }

 int tempB;

 for (iz = 0; iz < num_z; iz++){

 for (iy = 0; iy < num_y; iy++){

 for (ix = 0; ix< num_x; ix++){

 tempB = valB(B,iz+1,iy+1,ix+1);

 if ((scatterspace[(iz+zbeg)*num_y*num_x +

iy*num_x + ix] != 1) && (tempB != 1) && (tempB != 2)){

 if ((lambda == -1) && (mu == -1) &&

(dd == -1)){

 setB(B,iz+1,iy+1,ix+1,2);

 }

 else{

 set(lmd,iz,iy,ix,lambda);

 set(muu,iz,iy,ix,mu);

 set(d,iz,iy,ix,dd);

 }

 }

 //i++;

 }

 }

 }

 inFile.close();

 delete[] scatterspace;

 }

 }

 int round(double a){

 return int(a+0.5);

 }

 //==

 // Array Manipulation

61

private:

 int ci; // current index

 int ciB; // current Boundary index (used for Boundary array only)

 int currentloc[3]; // for storing current zyx location

public:

 // Returns value at i_z, i_y, i_x

 template <class SomeType>

 SomeType val(SomeType *a, int i_z, int i_y, int i_x){

 return a[(i_z*Lyx)+(i_y*num_x)+i_x];

 }

 // Sets value at i_z, i_y, i_x

 template <class SomeType>

 void set(SomeType *a, int i_z, int i_y, int i_x, SomeType val){

 a[(i_z*Lyx)+(i_y*num_x)+i_x] = val;

 }

 // Returns Boundary Array value at i_z, i_y, i_x

 template <class SomeType>

 SomeType valB(SomeType *a, int i_z, int i_y, int i_x){

 return a[(i_z*LyxB)+(i_y*num_xB)+i_x];

 }

 // Sets Boundary Array value at i_z, i_y, i_x

 template <class SomeType>

 void setB(SomeType *a, int i_z, int i_y, int i_x, SomeType val){

 a[(i_z*LyxB)+(i_y*num_xB)+i_x] = val;

 }

 //==

 // Quick Access Methods

 // sets index ci

 void setindx(int iz, int iy, int ix){

 ci = (iz*Lyx)+(iy*num_x)+ix;

 }

 // increments index counter by 1

 void incindx(){

 ci = ci+1;

 }

 void sv(double *a, double x){a[ci]=x; } //

sets value at ci

 template <class SomeType>

 SomeType v(SomeType *a) {return a[ci]; }

 // equiv of a[iz][iy][ix]

 template <class SomeType>

 SomeType vzp(SomeType *a) {return a[ci+Lyx]; } //

equiv of a[iz+1][iy][ix]

 template <class SomeType>

 SomeType vzm(SomeType *a) {return a[ci-Lyx]; } //

equiv of a[iz-1][iy][ix]

62

 template <class SomeType>

 SomeType vyp(SomeType *a) {return a[ci+num_x]; } // equiv

of a[iz][iy+1][ix]

 template <class SomeType>

 SomeType vyp2(SomeType *a) {return a[ci+2*num_x]; } //

equiv of a[iz][iy+2][ix]

 template <class SomeType>

 SomeType vym(SomeType *a) {return a[ci-num_x]; } // equiv

of a[iz][iy-1][ix]

 template <class SomeType>

 SomeType vxp(SomeType *a) {return a[ci+1]; } //

equiv of a[iz][iy][ix+1]

 template <class SomeType>

 SomeType vxm(SomeType *a) {return a[ci-1]; } // equiv

of a[iz][iy][ix-1]

 template <class SomeType>

 SomeType vzxp(SomeType *a) {return a[ci+1+Lyx]; } // equiv

of a[iz+1][iy][ix+1]

 template <class SomeType>

 SomeType vyxp(SomeType *a) {return a[ci+1+num_x]; } //

equiv of a[iz][iy+1][ix+1]

 template <class SomeType>

 SomeType vzyp(SomeType *a) {return a[ci+Lyx+num_x];} // equiv

of a[iz+1][iy+1][ix]

 // sets array for z,y,x at current index ci

 void giveindx(){

 currentloc[0] = ((ci / num_x) / num_y) % num_z; // z

position

 currentloc[1] = (ci / num_x) % num_y; // y position

 currentloc[2] = ci % num_x; // x position

 }

 //==

 // Quick Access Methods (Boundary array)

 // sets index ciB

 void setindxB(int iz, int iy, int ix){

 ciB= (iz*LyxB)+(iy*num_xB)+ix;

 }

 // increments Boundary index counter by 1

 void incindxB(){

 ciB = ciB+1;

 }

 void svB(double *a, double x){a[ciB]=x; }

 // sets value at ciB

 template <class SomeType>

 SomeType vB(SomeType *a) {return a[ciB]; } //

equiv of a[iz][iy][ix]

 template <class SomeType>

63

 SomeType vzpB(SomeType *a) {return a[ciB+LyxB]; } //

equiv of a[iz+1][iy][ix]

 template <class SomeType>

 SomeType vzmB(SomeType *a) {return a[ciB-LyxB]; } //

equiv of a[iz-1][iy][ix]

 template <class SomeType>

 SomeType vypB(SomeType *a) {return a[ciB+num_xB]; } //

equiv of a[iz][iy+1][ix]

 template <class SomeType>

 SomeType vyp2B(SomeType *a) {return a[ciB+2*num_xB]; } //

equiv of a[iz][iy+2][ix]

 template <class SomeType>

 SomeType vymB(SomeType *a) {return a[ciB-num_xB]; } //

equiv of a[iz][iy-1][ix]

 template <class SomeType>

 SomeType vxpB(SomeType *a) {return a[ciB+1]; } //

equiv of a[iz][iy][ix+1]

 template <class SomeType>

 SomeType vxmB(SomeType *a) {return a[ciB-1]; } //

equiv of a[iz][iy][ix-1]

 template <class SomeType>

 SomeType vzxpB(SomeType *a) {return a[ciB+1+LyxB]; } //

equiv of a[iz+1][iy][ix+1]

 template <class SomeType>

 SomeType vyxpB(SomeType *a) {return a[ciB+1+num_xB]; } //

equiv of a[iz][iy+1][ix+1]

 template <class SomeType>

 SomeType vzypB(SomeType *a) {return a[ciB+LyxB+num_xB];} //

equiv of a[iz+1][iy+1][ix]

 //==

 // sets all values = def

 template <class SomeType>

 void clear(SomeType *a,SomeType def){

 for(int i=0; i<Lzyx; i++){

 a[i]=def;

 }

 }

 // special version for Boundary array

 void clearB(int *a, int def){

 for(int i=0; i<LzyxB; i++){

 a[i]=def;

 }

 }

 // sets all outer boundary surfaces for Boundary array

 void setBoundaries(){

 for (int i1 = 0; i1< num_zB; i1++){

 for (int i3 = 0; i3< num_xB; i3++){

 setB(B,i1,0,i3,2); //set x2 boundary

 setB(B,i1,1,i3,1);

64

 setB(B,i1,num_yB-1,i3,2);

 setB(B,i1,num_yB-2,i3,2);

 setB(B,i1,num_yB-3,i3,1);

 }

 }

 for (int i1 = 0; i1< num_zB; i1++){

 for (int i2 = 0; i2< num_yB; i2++){

 setB(B,i1,i2,0,2);

 setB(B,i1,i2,1,1);

 setB(B,i1,i2,num_xB-1,2);//set x3 boundary

 setB(B,i1,i2,num_xB-2,2);

 if ((i2>0) && (i2<num_zB-2)){

 setB(B,i1,i2,num_xB-3,1);

 }

 }

 }

 for (int i2 = 0; i2< num_yB; i2++){

 for (int i3 = 0; i3< num_xB; i3++){

 if (type == 1){

 setB(B,0,i2,i3,2); // if at actual end of space

in z set boundary

 if ((i2 > 0) && (i2<(num_yB-2)) && (i3 > 0) &&

(i3<(num_xB-2))){

 setB(B,1,i2,i3,1);

 }

 }

 if (type == 3){

 setB(B,num_zB-1,i2,i3,2);

 setB(B,num_zB-2,i2,i3,2);

 if ((i2 > 0) && (i2<(num_yB-2)) && (i3 >0) &&

(i3<(num_xB-2))){

 setB(B,num_zB-3,i2,i3,1);

 }

 }

 }

 }

 }

 //==

 // returns 2D slice through 3D array at fixed index y

 double* slice_fixy(double *a, int y_slice){

 double *slice = new double[(num_z-2)*num_x];

 int count = 0;

 for(iz=1; iz<num_z-1; iz++) // does not return ends

 for(ix=0; ix<num_x; ix++){

 slice[count] = val(a,iz,iy,ix);

 count++;

 }

65

 return slice;

 }

 //==

 // returns 3D volume returning only the even indexes

 double* GetEvenVol(double *a, int len){

 double *EvenArray = new double[len];

 int count = 0;

 for(iz=1+(num_z%2); iz<num_z-1; iz+=2) // does not return

ends

 for(iy=0; iy<num_y-1; iy+=2)

 for(ix=0; ix<num_x-1; ix+=2){

 EvenArray[count] = val(a, iz, iy, ix);

 count++;

 }

 return EvenArray;

 }

 // overload to retrieve magnitude of full velocity vector

 double* GetEvenVol(int len){

 double *EvenArray = new double[len];

 int count = 0;

 double xtemp, ytemp, ztemp;

 for(iz=1+(num_z%2); iz<num_z-1; iz+=2) // does not return

ends

 for(iy=0; iy<num_y-1; iy+=2)

 for(ix=0; ix<num_x-1; ix+=2){

 xtemp = val(vx, iz, iy, ix);

 ytemp = val(vy, iz, iy, ix);

 ztemp = val(vz, iz, iy, ix);

 EvenArray[count] =

sqrt(xtemp*xtemp+ytemp*ytemp+ztemp*ztemp);

 count++;

 }

 return EvenArray;

 }

 int GetEvenVolLen(){

 int len;

 if(num_z%2==0)

 len = (num_z-1)/2*(num_y/2)*(num_x/2); // len if num_z

is even

 else

 len = (num_z-2)/2*(num_y/2)*(num_x/2); // len if num_z

is odd

 return len;

 }

};

space::space(double *params){

 num_z = params[0]+2; // number of nodes in z-direction

 num_y = params[1]; // number of nodes in y-direction

66

 num_x = params[2]; // number of nodes in x-direction

 ds = params[3]; // spatial step size (m)

 dt = params[4]; // time step size (s)

 den = params[5]; // density

 lm = params[6]; // Lame constant - lambda

 mu = params[7]; // Lame constant - mu

 zbeg = params[8]; // simspace z-starting position for

each node

 Lyx = num_y*num_x;

 Lzyx = num_z*num_y*num_x;

 vz = init(0.0);

 vy = init(0.0);

 vx = init(0.0);

 T11 = init(0.0);

 T22 = init(0.0);

 T33 = init(0.0);

 T12 = init(0.0);

 T23 = init(0.0);

 T13 = init(0.0);

 d = init(den);

 lmd = init(lm);

 muu = init(mu);

 num_zB = num_z+2; // number of Boundary nodes in z-direction

 num_yB = num_y+2; // number of Boundary nodes in y-direction

 num_xB = num_x+2; // number of Boundary nodes in x-direction

 LyxB = num_yB*num_xB;

 LzyxB = num_zB*num_yB*num_xB;

 B = initB(0);

 setBoundaries();

 dtods = dt/ds;

 lmdtods = (lm*dt)/ds;

 l2mdtods = ((lm+2*mu)*dt)/ds;

 mdtods = (mu*dt)/ds;

 PIo2 = 3.14159265358979/2;

 numtrans=0;

 drivetime = 0;

 abc = 80;

}

space::~space() {

 delete[] vz; // velocities in z-dir

 delete[] vy; // velocities in y-dir

 delete[] vx; // velocities in x-dir

67

 delete[] T11;

 delete[] T22;

 delete[] T33;

 delete[] T12;

 delete[] T23;

 delete[] T13;

 delete[] d; // density

 delete[] muu;

 delete[] lmd;

 delete[] B; // Boundary array

}

#endif /* SPACE_H_ */

68

C++ Code: ‘transducer.h’

 /* 'transducer.h'
Custom transducer class for the Cartesian EFIT simulation

Cleaned up and heavily modified version of 'transducer.h' (Bertoncini,

Campbell-Leckey, Miller, etc)

Eric A. Dieckman (WM)

Last edited: 10 Apr 2019 SMR

*/

using namespace std;

class transducer{

public:

 double *drive{nullptr}; // array that holds drive function

 int dflen=0; // length of drivefunc

 double posi1=0; // transducer center (z-direction)

 double posi2=0; // transducer center (y-direction)

 double posi3=0; // transducer center (x-direction)

 double radius=0; // transducer radius - meters

 bool driven=false; // driven: true=active (pitch or

pitch/catch), false=passive (catch)

 int transID=0;

 int numelems=0; // number of elements in simulation

space

 double *record{nullptr};// array that holds recorded value

 double theta=0; // beam angle from normal / x-direction -

radians

 double phi=0; // beam angle from (+)z-direction -

radians

 int num_y = 0; // y elements in this worker

 int num_z = 0; // z elements in this worker

 int *tau{nullptr}; // yz array of element time delays for

drive function

 int zbeg = 0; // starting location for this worker

in z-direction

 int tau_values=0; // number of elements which have

values in the tau array (equal to number of transducer elements on

this node)

 double dtods=0;

 transducer() { // blank constructor

 }

 transducer(double x1, double x2, double x3, double rad, int tID,

int maxt, double angle1, double angle2, int dim_y, int dim_z, int

z_start, double timebyspace){

 posi1 = x1;

 posi2 = x2;

69

 posi3 = x3;

 radius = rad;

 transID = tID;

 driven = false;

 record = new double[maxt];

 for (int i = 0; i< maxt; i++) record[i] = 0;

 theta = angle1;

 phi = angle2;

 num_y = dim_y;

 num_z = dim_z;

 zbeg = z_start;

 dtods=timebyspace;

 tau = new int[num_z*num_y];

 }

 ~transducer() { // blank deconstructor

 }

//

==

=============

// Initialize (define array and dimensions - call before using!)

//

==

=============

 void setDriveFunction(int len, double df[], int

min_tau_absolute){

 for(int tau_count=0; tau_count<num_z*num_y; tau_count++){

 tau[tau_count]=tau[tau_count]-min_tau_absolute;

 }

 drive = new double[len];

 drive = df;

 dflen = len;

 driven = true;

 return;

 }

 double drivef(int t){

 if (t<dflen){

 return drive[t];

 }

 else{

 return 0;

 }

 }

 double setDelays(int speed){

 int cL = speed; // default speed of sound, calculated

in slave()

 int min_tau_local=0; // minimum value of tau in this node

 int temp_tau;

70

 for(int k=0; k<num_z; k++){

 for(int j=0; j<num_y; j++){

 if(((k+zbeg-posi1)*(k+zbeg-posi1)+(j-posi2)*(j-

posi2)) <= (radius*radius)){

 temp_tau=static_cast<int>(floor(((k+zbeg-

posi1)*cos(phi) + (j-posi2)*sin(phi)) * sin(theta)/cL/dtods));

 tau[k*num_y+j]=temp_tau;

 if(temp_tau<min_tau_local){

 min_tau_local=temp_tau;

 }

 tau_values++;

 }

 else{

 tau[k*num_y+j]=0; // if not within the

circle of the transducer

 }

 }

 }

 return min_tau_local;

 }

};

71

SELECTED REFERENCES

[1] C. J. Hellier, Handbook of Nondestructive Evaluation, 2nd ed. McGraw-Hill Professional

Publishing, 2012.

[2] S. r. o. STARMANS electronics, “Railway Rail Testing,” 2019. [Online]. Available:

http://www.starmans.net/applications/railway-rail-testing/. [Accessed: 31-May-2019].

[3] Nordco Rail Flaw Defects Identification Handbook. Nordco Rail Services.

[4] P. M. Morse, K. U. Ingard, and F. B. Stumpf, “Theoretical Acoustics,” Am. J. Phys., vol.

38, no. 5, pp. 666–667, 1970.

[5] C. J. Partridge, “Sound Wave Scattering from a Rigid Sphere,” Maribyrnong, Vic., 1993.

[6] P. A. Martin, “Acoustic scattering by a sphere in the time domain,” Wave Motion, vol. 67,

pp. 68–80, 2016.

[7] P. Fellinger, R. Marklein, K. J. Langenberg, and S. Klaholz, “Numerical modeling of

elastic wave propagation and scattering with EFIT - elastodynamic finite integration

technique,” Wave Motion, vol. 21, no. 1, pp. 47–66, 1995.

[8] P. Thoma and T. Weiland, “A subgridding method in combination with the finite

integration technique,” 1995 25th Eur. Microw. Conf., vol. 2, no. 1, pp. 770–774, 1995.

[9] K. S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s

Equations in Isotropic Media,” IEEE Transactions on Antennas and Propagation. 1966.

[10] W. Yu, Advanced FDTD Methods: Parallelization, Acceleration, and Engineering

Applications. Artech House, 2011.

[11] T. Weiland, M. Timm, and I. Munteanu, “A practical guide to 3-D simulation,” IEEE

Microw. Mag., vol. 9, no. 6, pp. 62–75, Nov. 2008.

[12] R. Marklein, “The Finite Integration Technique as a General Tool to Compute Acoustic,

72

Electromagnetic, Elastodynamic, and Coupled Wave Fields,” Rev. Radio Sci. 1999-2002

URSI, pp. 201–244, 2002.

[13] J.-F. Lee, R. Lee, and A. Cangellaris, “Time-Domain Finite-Element Methods,” IEEE

Trans. Antennas Propag., vol. 45, no. 3, pp. 430–442, 1997.

[14] L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of acoustics

4th edition. 2000.

[15] K. E. Rudd, “Parallel three-dimensional acoustic and elastic wave simulation methods

with applications in nondestructive evaluation,” 2003.

[16] H. Childs et al., “VisIt: An End-User Tool For Visualizing and Analyzing Very Large

Data,” in High Performance Visualization--Enabling Extreme-Scale Scientific Insight,

2012, pp. 357–372.

[17] E. Gabriel et al., “Open MPI: Goals, concept, and design of a next generation MPI

implementation,” Recent Adv. Parallel Virtual Mach. Messag. Passing Interface, pp. 97–

104, 2004.

[18] J.-P. Berenger, “A Perfectly Matched Layer for the Absorption of Electromagnetic

Waves,” J. Comput. Phys., vol. 114, no. 2, pp. 185–200, 1994.

[19] University of Texas at El Paso, “Finite-Difference Time-Domain Poster.” [Online].

Available: http://emlab.utep.edu/academics.htm. [Accessed: 01-Jun-2019].

[20] Sanpaz, “Components of the Cauchy stress tensor in Cartesian coordinates,” Wikipedia,

2009. [Online]. Available:

https://commons.wikimedia.org/wiki/File:Components_stress_tensor_cartesian.svg.

[Accessed: 01-Jun-2019].

[21] S. Garrett, Understanding Acoustics: An Experimentalist’s View of Acoustics and

73

Vibration (Graduate Texts in Physics), 1st ed. Springer, 2017.

[22] A. Briggs and O. Kolosov, Acoustic Microscopy: Second Edition. 2010.

[23] F. Jones, “Ray Paths in Layered Media: Reflections and refractions at a plane interface,”

UBC Earth and Ocean Sciences, 2018. [Online]. Available:

https://www.eoas.ubc.ca/courses/eosc350/content/methods/meth_6/raypaths.html.

	Application of Elastodynamic Finite Integration Technique (EFIT) to Three-Dimensional Wave Propagation and Scattering in Arbitrary Geometries
	Recommended Citation

	Sean Raley thesis - EFIT in Arbitrary Geometries August 2019
	Sean Raley thesis - EFIT in Arbitrary Geometries August 2019

