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Abstract

Massive stars have the ability to enrich their environment with heavy elements and

in�uence star formation in galaxies. Some massive stars exist in binary systems

with short orbital periods. These are called massive close binaries. It is important

to understand the evolution of massive close binary systems to gain insight about

galaxy evolution. Massive stars above 20 solar masses experience a bi-stability jump

where there is a sudden increase in mass-loss rate in their winds. There is ongoing

research in this �eld, but the study of the bi-stability jump and its e�ects on massive

close binary star properties has not been done before. A related question is whether

binarity can produce a slow rotating, nitrogen-rich massive star such as those found

in the Large Magellanic Cloud (Hunter et al. 2008). To accomplish this, two single-

star models from Higgins & Vink (2019) and Brott et al. (2011) were used to model

a close binary system with the 1-dimensional hydrodynamic stellar evolution code

MESA. A grid of models using Higgins & Vink (2019) stellar parameters was created

by varying 5 parameters: the convective step overshoot, the tidally enhanced wind

coe�cient, the wind enhancement factor, the initial rotation, and the initial masses

of both stars. Two models were created to compare the approaches of Higgins & Vink



(2019) and Brott et al. (2011). Results show that early on in the evolution of the

rotating models, the primary star has a more nitrogen-rich photosphere and rotates

slower than the secondary star. Tidally enhanced winds are strong enough to strip

o� the surface layers of the primary. This exposed the nitrogen-rich envelope that is

enhanced due to mixing. Tidal forces and tidally enhanced winds slow the rotation

rate of the primary star. The existence of the bi-stability jump in massive close binary

stars does have an e�ect on binary properties and could prevent a Roche lobe over�ow

event. From the numerical data from the models, predictions for characteristics of a

wind-blown bubble provide possible future observational properties that are testable

with current X-ray observatories.



Table of Contents

1 Introduction 1

2 Stellar Model 6
2.1 Nuclear Reaction Network . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Equation of State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Opacities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Abundances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5.1 Convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.2 Semiconvection . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5.3 Convective Overshoot . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Mass-Luminosity Plane . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Stellar Evolution Code - MESA 26
3.1 MESA Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 MESAstar RUN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 MESA Binary Run . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Rotation 33
4.1 Solid Body Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Di�erential Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.1 Chemical and Angular Momentum Di�usion . . . . . . . . . . 39
4.3 Di�usion Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4 Critical Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Binary Model 53
5.1 Orbital Period & Separation Evolution . . . . . . . . . . . . . . . . . 54
5.2 Orbital Angular Momentum Evolution . . . . . . . . . . . . . . . . . 56

5.2.1 Tidal Torque & Synchronization . . . . . . . . . . . . . . . . . 56
5.2.2 Spin-Orbit Coupling . . . . . . . . . . . . . . . . . . . . . . . 59
5.2.3 Mass Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2.4 Wind Mass Loss . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2.5 Magnetic Breaking . . . . . . . . . . . . . . . . . . . . . . . . 62



6 Massive Star Winds 64
6.1 Line Driven Winds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2 Metal Dependent Winds . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2.1 Bi-Stability Jumps . . . . . . . . . . . . . . . . . . . . . . . . 72
6.3 Enhanced Wind Mass Loss & Binaries . . . . . . . . . . . . . . . . . 74

6.3.1 Stellar Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.3.2 Tides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3.3 Wind Mass Transfer . . . . . . . . . . . . . . . . . . . . . . . 78

6.4 Shocks & Wind Blown-Bubbles . . . . . . . . . . . . . . . . . . . . . 80

7 Computation Results 86
7.1 Rotational Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.1.1 Pre Bi-stability Jump . . . . . . . . . . . . . . . . . . . . . . . 87
7.1.2 Bi-Stability Jump . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.1.3 Tidally Enhanced Winds & Wind Mass Transfer . . . . . . . . 98
7.1.4 Surface Abundance & Rotation . . . . . . . . . . . . . . . . . 100
7.1.5 Tidal Enhancement Factor BW . . . . . . . . . . . . . . . . . 104

7.2 Wind Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.3 Convective Overshoot . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.4 Brott & Higgins Comparison . . . . . . . . . . . . . . . . . . . . . . . 111

7.4.1 Grid of Masses . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8 Count Rates from Predicted Wind-Blown Bubble Using PIMMS 137
8.1 Wind-Blown Bubbles . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.1.1 Possible Observation . . . . . . . . . . . . . . . . . . . . . . . 139

9 Summary 152
9.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

A Inlists provided by Erin Higgins & Dr. Jorick Vink 166

B Inlists provided by Zsolts Keszthelyi for Brott Model 172

C Binary Star Inlist 178

D Example Fortran Algorithms Programmed in MESA 182
D.1 Vink prescription algorithum . . . . . . . . . . . . . . . . . . . . . . . 182
D.2 Eggleton & Tout Wind Enhancement Factor . . . . . . . . . . . . . . 185

E Variable Symbols and Descriptions 187



1

Chapter 1

Introduction

Understanding the evolution of massive stars is a key to understand how they ionize

their environment (the interstellar medium or ISM here after), how star formation

occurs in the Milky Way Galaxy, and how the ISM is enriched with heavy elements.

Advances in computational astrophysics have provided progress towards connections

between the theory and observations of massive stars. Advanced stellar modeling

codes, such as MESA (Modular Experiments for Stellar Astrophysics), are able to

implement the complex physics of massive stellar winds, rotationally induced instabil-

ities, and internal mixing caused by the thermodynamic properties of a massive star.

This provides the ability to address current questions as: Why are some slow rotating

massive stars more nitrogen-rich than fast rotating stars? Should rotation enhanced

wind mass loss be included in modeling? What is the jump temperature and magni-

tude of the bi-stability jump, which magni�es mass loss by stellar winds? Answering

these questions could constrain coe�cients and parameters used to model massive

stars to match observations. These include the initial surface rotation and mass of

the star, the wind factor that alters the amount of mass lost through winds, the con-

vective overshoot coe�cient that e�ects mixing, and what mixing agents should be

included inside the star to drive the di�usion of angular momentum and elements. To

understand more about the evolution of massive stars these parameters and conditions

need to be constrained by modeling and observations.
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The majority of massive stars are in binary star systems and some are in close

binary orbits with periods (Porb) less than 10 days, with P̄orb ≈ 5 days (Duchêne &

Kraus 2013). Close binary systems add additional complexities to stellar modeling.

For instance, they will induce a di�erential gravitational force on each other that

e�ects the rotation and internal mixing of the stars. Their gravitational force on each

other will signi�cantly enhance their winds (known as tidally enhanced winds). Mass

lost due to winds from a star can be accreted onto its companion star. Addressing

these issues increases in di�culty, since the majority of massive stars exist in binaries.

Young massive stars are classi�ed as O and B1 stars, have masses above ∼ 8M�
2,

and surface temperatures above ∼ 25 kK (kK stands for 103 Kelvin). They possess

winds that have mass loss rates between 10−4− 10−6 M� yr−1 and have a large range

of rotation rates. They are the most luminous stars in the sky with logL/L� ∼ 4− 6

and therefore are the easiest to observe 3. However, they are few in number, because

they have short lifetimes in comparison to lower mass stars like the Sun and because

the initial mass function4 disfavors them. Massive stars have the ability to create

shock fronts or �wind-blown bubbles" by their winds. The mass loss from their winds

rams into the atoms in the ISM and e�ectively ionizing them. These wind-blown

bubbles can be observed with both optical and X-ray observatories.

1Spectral classi�cation is used to classify the surface temperature and luminosity of a star. The
classi�cation scheme from hottest O stars to coolest M stars goes as: OBAFGKM.

2Here M� = 1.9892× 1033 g is the mass of the Sun (Bahcall et al. 2005)
3L� = 3.8418× 1033 ergs s−1 is the luminosity of the Sun (Bahcall et al. 2005)
4The initial mass function (IMF) provides a description of the relative number of star formed

as a function of stellar mass. From observations, the IMF indicates that there are more lower mass
stars than massive ones
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There are two foci of this study. One is to understand how the bi-stability jump,

which causes a signi�cant increase in mass loss from massive stellar winds, e�ects

binary physical properties. The bi-stability jump happens for massive stars above

20M�. At temperatures between 27 kK and 25 kK a runaway recombination of FeIV

to FeIII will happen throughout the winds. This sudden of FeIV to FeIII dramatically

increases the wind mass loss rate. Mass lost from a binary system will have an e�ect

on the orbital angular momentum (Jorb) of the binary system. The change of Jorb over

time will increase due to the sudden increase in the wind mass-loss rate from the bi-

stability jump of both stars. This could mean the bi-stability could have an observable

e�ect on a massive close binary system. Second, to possibly answer the question why

do some slow rotating, nitrogen-rich massive stars exist in the Large Magellanic Cloud

(Hunter et al. 2008). In this thesis a grid of models by varying several parameters

(discussed below) were created to attempt to address these questions. In addition,

the evolution of rotation, mass loss through winds, 14N surface abundance, binary

separation, orbital period, and orbital angular momentum. The mass-luminosity

plane was used to provide insight on how the bi-stability jump and mass loss e�ects

the models.

Single-star models were created based on the works of Higgins & Vink (2019) and

Brott et al. (2011), who constrained their models to match observations. Models of

massive close binary systems were created by using the stellar evolution code MESA

(Paxton et al. 2010). Binary parameters and coe�cients were chosen based o� of the
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works of Eggleton (1983), Paxton et al. (2015), Hurley et al. (2002), Bondi & Hoyle

(1944), and Tout & Eggleton (1988). Numerical outputs from the binary models

were used to calculate characteristics of a predicted wind-blown bubble by using the

equations from Weaver et al. (1977) and Weaver et al. (1978). Using the predicted

wind-blown bubble characteristics, the online program PIMMS (Portable, Interactive

Multi-Mission Simulator), provided by NASA, was used to predict count rates for

two X-ray observatories, the Chandra X-ray Observatory and X-ray Multi-Mirror

Mission-Newton (XMM). The counts rates provided from PIMMS could provide a

connection between models presented in this study and observations.

A grid of models was created by varying four parameters: the convective step

overshoot αov, the wind factor fv, the initial rotation rate vinit, and the tidal wind

enhancement factor BW . The grid of models used a primary star mass of M? = 35M�

and secondary5 star mass of M? = 25M� with an orbital period of 4 days. This

was done using the stellar parameters provided by Higgins (private communication).

Two models were created for comparing the works of Higgins & Vink (2019) and

Brott et al. (2011) in a binary system. Brott et al. (2011) models were reproduced

using the stellar parameters provided by Keszthelyi (private communication). An

additional grid of models was created by varying the initial primary and secondary

masses using the stellar parameters for both Higgins & Vink (2019) and Brott et al.

(2011).

5The primary is always referred to the initially more massive star in the binary system and the
secondary the less massive.
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The theoretical evolution and physical parameters of stellar models are discussed

in Chapter 2. In Chapter 3 MESA, the program used in this work, is explained.

Chapter 4 introduces the theoretical background of stellar rotation. A more in depth

explanation of di�erential rotation is presented because of its ability to induce strong

chemical and angular momentum mixing. Chapter 5 includes the theoretical evolution

and physical parameters of binary models. Chapter 6 discusses the theory and ob-

servations of line driven winds of massive stars. In Chapter 7 binary modeled results

are analyzed, discussed, and model comparisons are made between the two papers

Higgins & Vink (2019) and Brott et al. (2011). Chapter 8 uses speci�c binary and

single star model results, for example orbital velocity, to make detailed predictions

for future observations. Finally, chapter 9 is the summary and conclusion of the work

and discussion of potential future work.6

6Note it is not necessary to read all of Chapters 2-4 to understand the analysis and results of
Chapters 7 and 8. The following covers the theory that is necessary to understand the results:
Sections 2.5-2.6, 4.2.1-4.3, Chapter 5, and Chapter 6.
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Chapter 2

Stellar Model

To accurately model any type of star, there are �main ingredients� that need to be

de�ned. These are conservation of momentum and energy, energy transport by com-

bination of convection, conduction, and/or radiation, and luminosity (energy per unit

time) generation. There can be a large range of elemental abundance for di�erent

stars, therefore two stars with the same mass may not experience the same evolution.

The equations of stellar structure are the foundation of a stellar model. In addi-

tion to the stellar structure equations, there are the equations used to model stellar

atmospheres. Accurately modeling a stellar atmosphere is paramount, because it is

the only part of the star an observer sees. There are four basic equations of stellar

structure. They include: the equations of hydrostatic equilibrium, mass conserva-

tion, energy conservation, and radiative transfer. If we ignore convection, they are as

follows:

dP (r)

dr
= −ρ(r)GM(r)

r2
(2.1)

dM(r)

dr
= 4πr2ρ(r) (2.2)

dT (r)

dr
=

3krρ(r)

64πr2σSTT 3(r)
L(r) (2.3)

dL(r)

dr
= 4πr2ρ(r)ε(r) (2.4)
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where M , G, r, T , P , ρ, kr, L, ε, σST are the mass of the star, the gravitational

constant, the distance from the center to any location in the star, local temperature,

pressure, mass density, thermal conductivity, luminosity, nuclear energy generation

rate and the Stefan-Boltzmann constant, respectively. In modeling it is more common

and advantageous to have the above equations written as functions of mass m rather

than r, e.g. when rotation is involved. Note that the four equations above are

ideal, meaning the equations assume no changes over time and rotation. In addition,

radiative transfer is not the only energy transport mechanism happening within a

star. Therefore, the equations used in the models are extremely complex and are

fully explained in Paxton et al. (2010) & Paxton et al. (2015). In addition to the

stellar structure equations, there are four more components to model a star: an

equation of state, a nuclear reaction network, elemental abundances and opacities (κ).

The remainder of this chapter presents a detailed discussion of the initial physical

characteristics of a single star, with the initial physical variables based on those

adopted by Higgins & Vink (2019) and Brott et al. (2011).

2.1 Nuclear Reaction Network

Various types of nuclear reactions take place in the cores of stars, where all of the

luminosity is created by the continuous fusing and decaying of elements and isotopes.

The CNO cycle, shown in Figure 2.1, and named for its catalysts 12C, 16O, and

14N , contributes the majority of hydrogen burning for stars with M? > 1.5M�(see
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Table 2.1: Luminosity output of the pp-chain and the CNO-cycle for various masses

Mass logLpp logLCNO
M� L� L�
20 1.81 4.86
25 1.94 4.88
30 2.14 5.07
35 2.01 5.23

Note Models were created using the inlists provided
by Higgins (private communication)

Table 2.1). This criterion is well met for stars in this study, with all modeled stars

having M? ≥ 20M�.

The triple underlining of 4He in Figure 2.1 is to indicate the production of 4He

in the CNO cycle. Parts of the CNO cycle have long timescales, speci�cally the weak

nuclear decays for isotopes, 13N , 15O, and 18F have half lives of 9.97 min, 122.24 sec,

and 109 min (Chu et al. 1999). This can have signi�cant impact on stellar composition

evolution. If a star experiences mixing from its core to the envelope, then processed

material, such as 14N , will be drawn out of the core and into the envelope and surface

of the star.

Figure 2.2 shows the result of rotational mixing of CNO burning products, par-

ticularly nitrogen, for high mass stars. In Figure 2.2, log(N/H) is the surface mass

fraction of 14N over hydrogen and is calculated as log N/14
H/1

. This gives a negative

number since it is less then 1. Therefore, it is convention to add 12 to the equation to

make the value positive. This mixing can lead to surface nitrogen enrichment which

is currently being studied in both single and binary observations and modeling (see,
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Figure 2.1: CNO cycle diagram showing the three possible reaction chains. The
catalyst of the cycle are circled (Figure 6.6 from LeBlanc 2010)

for instance, Song et al. 2018).

A simple nuclear reaction network (NRN) model is adequate for this study such as

provided by MESA's basic.net (Timmes 1999). Therefore the basic.net from MESA

is used. This nuclear reaction network consists of isotopes of: 1H, 3He, 4He, 12C,

14N , 16O, 20Ne, and 24Mg. Inlists provided by Keszthelyi (private communications)

do not de�ne a speci�c a NRN, therefore MESA defaults to the basic.net. MESA uses

NACRE (Nuclear Astrophysics Compilation of REaction Rates, Angulo et al. 1999)

for the rates at which nuclear reactions take place for di�erent isotopes.
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Figure 2.2: Figure 1 from Higgins & Vink (2019). The thick lines represent αov = 0.5
and dotted αov = 0.1. Blue lines are models with vrot = 200 km s−1 and red for
non-rotating models.

2.2 Equation of State

An example of a simple equation of state is the ideal gas law, PV = nRT , this law

provides reasonable results for modeling the interior of stars, however there are addi-

tional physical processes that need to be considered. For example, di�erent physics

that contribute to the pressure, e.g. radiation pressure, degeneracy pressure, and

Coulomb interactions. Radiation pressure is the result of photons interacting with

free electrons or electrons in an atom. Degeneracy pressure is due to the Pauli ex-

clusion principle which states that two fermions, such as electrons, can not share the

same eigenstate and energy state. When electrons are forced to �ll all lower energy
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levels and the density of electrons keeps increasing a degeneracy pressure is created,

contributing to the pressure in the equation of state. Coulomb interactions happen

due to the electromagnetic force between ions and electrons. The equation of state is

also dependent on the abundance of elements in the star.

See Section 4.2 of Paxton et al. (2010) for the full explanation of the equation

of state used in the modeling program MESA (discussed in Chapter 3). MESA uses

the Helmholtz free energy variables ρ and T rather then P and T . Higgins & Vink

(2019) use the equation of state (EOS) from MESA. MESA uses the OPAL tables

(Rogers 2002) and, for lower temperatures and densities the EOS tables of Saumon,

Chabrier, & Van Horn (1995), also known as the SCVH tables. Paxton et al. (2010)

used the combination of both the above tables to generate a broader range for their

EOS tables (see Figure 1 in Paxton et al. 2010). The EOS tables include the range of

values of 2.1 < log T < 8.2 and −10 < logQ < 5.69, which cover the range of T and

Q values in this work. Here logQ is determined in MESA by the following equation

from Paxton et al. (2010):

logQ = log ρ− 2 log T + 12 (2.5)

Temperature T , density ρ and the internal energy Q are in units of K, g cm−3,

and ergs, respectively. The tables are generated for a range of 0.0 < X < 1.0 and

0 < Z < 0.04 values, here X, Y , and Z, stand for the fraction of 1H, 4He and

metals (all elements and isotopes heavier than 4He), respectively. Inlists provided
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by Keszthelyi (private communications) do not provide an EOS therefore the MESA

equation of state is used. For models presented in chapter 7, at the terminal age

main sequence TAMS, the log ρ and log T are high enough that MESA will switch to

HELM EOS (Timmes & Swesty 2000).

2.3 Opacities

Opacities have a large e�ect on a star's evolution in the core and especially in the

envelope. The envelope is the space between the core and the surface of the star.

Photons generated in the core do not leave in a straight path out into space after they

are produced. They experience radiative di�usion, where a photon can be constantly

absorbed and scattered by electrons and ions. It takes 1.7× 105 years for a photon in

the Sun to escape into space (Mitalas & Sills, 1992). The mean free path l is de�ned

as the average distance traveled between emission and absorption of a photon and

can be de�ned as (Carroll & Ostlie, 2007):

l =
1

κλρ
(2.6)

Here κλ (units of cm
2 g−1 ) is the opacity for a photon of a particular wavelength

and ρ is the local density of matter. The shorter l is the longer the di�usion timescale.

The magnitude of the opacity depends on the interaction of photons with matter.

De�ning the di�erent physical mechanisms that contribute to the opacity gives insight

about the structure of a star.



13

A large opacity can have a signi�cant impact on a star, for example increasing

a star's radius. This increase in radius is caused by photons strongly interacting

with matter, implying a longer di�usion time scale and �pu�ng� up the envelope.

Opacity is dependent on the local temperature, density, and metallicity. A higher

density creates more possibility for interactions with photons. There is a temperature

dependence, because higher temperatures cause an increase in ionization states and

therefore more absorption and scattering events. At higher metallicity the frequency

of bound-bound transitions is ampli�ed due to the increase of heavier elements that

have more electrons. In addition, the free electron density is higher because metals

have lower ionization potentials then helium and hydrogen.

MESA uses the combined radiative and electron conductive opacities of Cassisi

(2007) for a range of -6 ≤ log ρ ≤ 9.75 and 3 ≤ log T ≤ 9 (See Paxton et al. 2010).

Values above or below log T or log ρ of Cassisi (2007) are not reached in this work,

therefore no other opacity tables are used.

2.4 Abundances

Abundances are the fraction of all elements that reside in the star. They play a key

role in the evolution of massive stars. As discussed previously they a�ect the EOS,

the stellar evolution equations, and opacities. In addition to a�ecting the underlying

equations they play a key role in my research. Changing the abundance can alter the

amount of mass lost due to stellar winds. Higgins & Vink (2019) and Brott et al.
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(2011) use the derived wind mass loss equations of Vink et al. (2001), where the

expressions are metal-dependent, implying an increase in metal abundance can have

a signi�cant impact on ṀW . ṀW is the amount of mass loss per unit time by the

wind expressed in units of M� yr−1. A massive star's wind can be changed by a factor

∼ 5 by altering the iron abundance in the photosphere (Vink et al. 2001). Altering

the mixing coe�cients, which a�ects angular momentum and elemental di�usion in

the interior of a star, changes the evolutionary history of a stellar and binary model.

Both mixing coe�cients and metal dependent winds a�ect a star's surface abundance

evolution, which is dependent on the initial abundances.

The abundances are set following the works of Higgins & Vink (2019) and Brott

et al. (2011) for single stars. In Brott et al. (2011) initial abundances were set to

X = 0.7274, Y = 0.2638 and Z = 0.0088, with speci�c heavy elements set to the

Asplund et al. (2004) values (see Brott et al. 2011 for a detailed description of the

abundances). However using these abundances does not reproduce the results of Brott

et al. (2011) when using MESA. Therefore Keszthelyi et al. (2017) set Z =0.014 and

for heavy elements used a combination of Asplund et al. (2004) and Lodders (2003)

tables to reproduce Brott et al. (2011) results. However when the Iglesias & Rogers

(1996) opacity tables are used then Grevesse & Sauval (1998) abundances were used

for reproducing the Brott et al. (2011) models. To follow the work of Higgins & Vink

(2019) the Grevesse & Sauval (1998) tables are used.



15

2.5 Mixing

Mixing plays a vital role in a star as it determines how matter and energy are trans-

ported. Of all the requirements to model a star, mixing length theory and the types of

mixing, e.g. convection, convection overshoot, semiconvection, and rotational mixing

have been the hardest to properly model and compare to observations. A goal of

stellar modeling is to restrict the mixing coe�cient values through observations and

therefore no longer vary them in models.

The core may receive extra fuel (Hydrogen) by mixing, thereby extending a star's

lifetime. Mixing plays a vital role in angular momentum transport in a stellar inte-

rior, and e�ects what type of matter reaches the photosphere and therefore what we

observe. Mixing is not the same for all stars because it is dependent on the thermody-

namic and rotational properties of the star. For instance, a low mass star (M? < M�)

has a deep convection zone "digging" far down in its stellar interior. While massive

stars can have two convection zones in the core and envelope (see �gure 2.3).

The following subsections list and explain the types of mixing addressed in this

study. The mixing equations de�ne the location in the model interior, where the

boundaries lie, and the conditions for the formation of the type of mixing. A physical

parameter varied for each star in the binary models is the mixing coe�cient αov

(explained in Section 2.5.3).

The mixing length theory (MLT) adopted by Brott et al. (2011) is based on Böhm-

Vitense (1958). Higgins & Vink (2019) use that of Henyey et al. (1965). Each MLT
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has the same adjustable parameter, αconv, and is de�ned as (Carroll & Ostlie 2007):

αconv = lml/HP (2.7)

Here lml is the mixing length in the star, e.g. how far a parcel of matter will travel

before it dissipates into its surroundings. HP = P/ρg, the pressure scale height, is

the distance over which P will change by a factor of e. For the Sun, HP ≈ R�/10

(Carroll & Ostlie 2007) where R� = 6.9598× 1010 cm (Bahcall et al. 2005). Higgins

& Vink (2019) and Brott et al. (2011) both set αconv = 1.5 in their models.

2.5.1 Convection

Both Higgins & Vink (2019) and Brott et al. (2011) use the Ledoux (1947) criterion

to de�ne the convective core boundaries:

∇rad < ∇ad +
φ

δ
∇µ (2.8)

Where ∇rad =

(
∂ lnT

∂ lnP

)
rad

, ∇ad =

(
∂ lnT

∂ lnP

)
ad

, ∇µ =

(
∂ lnµ

∂ lnP

)
rad

(2.9)

φ and δ are from the equation of state and are de�ned as:

δ = −
(
∂ ln ρ

∂ lnT

)
P

and φ =

(
∂ ln ρ

∂ lnµ

)
P,T

(2.10)

Where µ is the mean molecular weight. In chemically homogeneous environments
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where ∇µ = 0 the Ledoux criterion is equal to the Schwarzschild (1906) criterion

∇rad < ∇ad. Convection takes place when the magnitude of energy-transport by

radiation becomes less than for transport by an adiabatic process and/or µ gradients

(causing a buoyant force on the parcel of matter). In an actual star convection and

radiation energy-transport happen at the same time. In Figure 2.3 convection only

happens in the core and near the surface for the stellar model both early on and

at the TAMS. Convection, as shown in Figure 2.3, is the strongest mixing agent in

the stellar model. Also the Figure provides a good example showing that radiation

energy-transport is dominant in the envelopes of massive stars.

2.5.2 Semiconvection

Semiconvection is a special case of convection and exists in the regions where mixing is

unstable for the Schwarzchild criterion, but stable for the Ledoux criterion (Equation

2.8). When the condition in Equation 2.8 is satis�ed semiconvection takes place with

a di�usion coe�cient from Langer (1983):

Dsc = αsc

(
K

6CPρ

)
∇T −∇ad

∇ad + φ
δ
∇µ −∇T

(2.11)

where K is the radiative conductivity:

K =
4acT 3

3κρ
(2.12)
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Figure 2.3: Plot of Mixing Coe�cients vs radius for a 40M� star with vinit = 200 km
s−1 using Higgins & Vink (2019) inlists. A & C are the star at ∼105 years and B &
D are at TAMS. A & B are with rotational mixing coe�cients turned o� and C & D
turned on. The convective overshoot black box is enlarged to emphasize its location
in the star.

and Cp is the speci�c heat at constant pressure. Finally αsc is the semiconvection

e�ciency coe�cient and is set to one for this work. See Table 2.3 for the parameter

values of both Higgins & Vink (2019) and Brott et al. (2011).

By comparing panels a) and c) to b) and d) in Figure 2.3 it appears that semi-
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convection happens later in a star's life, with rotational mixing either on or o�.

Semiconvection in the models shown is not the strongest contributor to mixing when

compared to convection or convective overshoot near the boundary of the core.

The radius of the core can be determined in the panels by the location of the

discontinuity of convection and convective overshoot in panels c), b) , and d), or the

drop after convective overshoot in panel a). For graphs a) and c) the core boundary

is ≈ 3R� and for b) and d) ≈ 4.5R�. The radii change between panels a) and b)

because both the radii of the core and the star evolve throughout a star's life.

2.5.3 Convective Overshoot

One of the main foci of this research is convective overshoot, particularly of the

core. Convective overshoot has a signi�cant impact on a star's evolution as shown

in Figures 2.4 and 2.5. Convective overshoot takes place at the boundaries of the

convection zones, where instead of the parcel of matter stopping it is allowed to

di�use past the boundary. Overshoot can be modeled as a step or an exponential

decay as a function of HP . This can be done in two di�erent ways or a combination

of both. One way is using exponential di�usion overshoot (Herwig 2000):

Dov = D0 exp

(
−2z

Hv

)
(2.13)

Hv is the velocity scale height and is de�ned as Hv = fovHP and fov is the exponential

overshoot coe�cient. See Appendix A and B for the values, locations, and evolution-
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ary stages a�ected by this coe�cient for the Higgins & Vink (2019) and Brott et al.

(2011) models. D0 is another adjustable parameter and is set to 1 in Higgins & Vink

(2019). MESA has fov coe�cient setting, but it requires an initial (fov)0. This is

explained in Paxton et al. (2010), Paxton et al. (2013), and Paxton et al. (2015). The

change from convective mixing to convective overshoot happens at a distance of f0HP

near the convective boundary where ∇ad ≡ ∇rad. The problem is at the edge of the

convection zone the mixing coe�cients goes to zero. Introducing a new overshoot co-

e�cient, (fov)0, allows setting the convective overshoot boundary into the convection

zone, therefore making the mixing coe�cients nonzero. Setting the value of (fov)0

creates an o�set, implying fov has to be adjusted to the correct physical value. For

example, if (fov)0 = 0.05 and if it is physically required that fov = 0.5 for a model,

fov has to be set to 0.45 due to the o�set. In Higgins & Vink (2019) (fov)0 is set to

0.005. In Brott et al. (2011) it is set to 0.001 (Keszthelyi private communication).

Another prescription for convective overshoot is step overshoot. Here overshoot

is a de�ned as step function to go past the convective boundary:

lov = αovHP (2.14)

Varying the αov coe�cient between 0.1-0.5 has a large e�ect in modeling a star.

Both Higgins & Vink (2019) and Brott et al. (2011) use a combination of step and

exponential di�usion overshoot. Brott et al. (2011) used a step overshoot αov = 0.335.

The overshoot coe�cient can be set to individually mix during the MS (hydrogen
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burning), helium burning, and after helium burning (metals). In addition, it can mix

burning shells during later evolutionary stages. In all stars, past hydrogen burning,

there exists burning shells outside the core. For example, during helium burning,

the core will be surrounded by a hydrogen burning shell. To give a few examples, if

convective overshoot happens only for hydrogen burning shells, then the overshoot

coe�cient is set for mixing of hydrogen during the onset of a hydrogen burning shell.

If metals and helium have convective overshoot in the core and hydrogen does not,

then the coe�cient is speci�cally set to mix in the core during helium and heavier

elemental burning stages.

Both Higgins & Vink (2019) and Brott et al. (2011) have convective overshoot set

for hydrogen in the core, above, and below a hydrogen burning shell (see Appendix

A & B). Therefore the star experiences most of the mixing due to step overshooting

during the MS where hydrogen is the dominate element in the core. Referring to

Figure 2.3 again, in panels b) & d) there is a small amount of convective overshoot

taking place near the boundary of the core. This validates the claim that overshoot

only takes place in the core during hydrogen burning.

The focus of Higgins & Vink (2019) was modeling the observations of the detached

binary star system HD 166734 by adjusting di�erent values of αov, fv and vrot (vrot

and fv will be discussed later). HD 166734 consists of a primary and secondary

star with dynamical masses of 39.5M� and 33.5M�. Higgins & Vink (2019) use a

combination of massive stellar winds, rotational mixing, and extreme values of αov
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= 0.1 to αov = 0.5 to reproduce the 14N surface abundances, masses, luminosities,

and temperatures of both the primary and secondary stars in HD 166734. They

conclude that the values of αov = 0.3 ± 0.1 and αov = 0.5 ± 0.1 reproduced the

physical characteristics of the primary and secondary, respectively. They increased

their sample size for model comparison based on the work of Markova et al. (2018),

which includes a list of roughly 30 O type stars.

Table 2.2: Stellar Evolution Model Settings for this Thesis

Models EOS NRN Opacity MLT Core Boundary
MESA module eos net kap mlt mlt

Brott MESA basic.net OPAL Böhm-Vitense Leduox
Higgns MESA basic.net gs98 Henyey Leduox

Brott and Higgins labels represent the parameters of the work of Higgins & Vink
(2019) and Brott et al. (2011).

Table 2.3: Numerical Stellar Parameters

Models X Y Z αov fov αsc αconv
Brott 0.7274 0.2638 0.0088 0.335 - 1 1.5

Keszthelyi 0.7274 0.2638 (0.02-0.014) 0.335 0.001 1 1.5
Higgins 0.7000 0.2800 0.0200 (0.1− 0.5) 0.005 1 1.5

Brott and Higgins de�nitions are described in Table 2.2. Kesztheyli (label
representing Keszthelyi et al. 2017) relaxes the X, and Y from the initial MESA
values to the values used by Brott et al. (2011). Z is relaxed from 0.02 to 0.014 as
shown in Appendix B.
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2.6 Mass-Luminosity Plane

I conclude this chapter by discussing a useful tool that will be used throughout this

work. Figure 2.4 shows a vector relationship of αov, ṀW and vinit plotted on an in-

verted mass axis vs. luminosity (normally given in logL) (analog of the Hertzsprung-

Russell Diagram). vinit is the initial rotation velocity of the star given in units of km

s−1. The plot is a theoretical graph of the Mass-Luminosity plane from Higgins &

Vink (2019). The theoretical vector, representing a stellar evolutionary track, can be

altered by modifying αov, ṀW , and vinit as shown in Figure 2.5. In the binary models

presented in Chapter 7, ṀW has the greatest in�uence in changing the theoretical

vector.

A mass-luminosity relationship exists for both binaries and single stars. This is an

extremely useful observational tool (For binaries See Figure 7.7 from Carroll & Ostlie

2007). One form of the relationship for single stars can be written in the following

way (Higgins & Vink 2019):

L = µ4Mβ (2.15)

Here β is a parameter that varies as a function of mass. Stellar evolution can be

altered by changing µ by altering the abundances. A star with a higher µ will exhibit

a larger luminosity according to Equation 2.15.
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Figure 2.4: The theoretical Mass-Luminosity plane where a star's evolution is de-
scribed as a vector quantity that depends on vinit, αov, and Ṁ . The highlighted area
is the "forbidden zone" meaning that a stellar model can not evolve into this region

 

Figure 2.5: A plot of a 40M� model on the Mass-Luminosity plane from Higgins &
Vink (2019). The left graph is for αov = 0.1, 0.3, and 0.5 corresponding to red, green,
and red, respectively. The blue dots give the location TAMS. The right graph from
Higgins & Vink (2019) for velocities from 100 − 500 km s−1. The point at TAMS is
extended by an increasing vinit.
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Chapter 3

Stellar Evolution Code - MESA

MESA is one-dimensional stellar evolution code written in FORTRAN 90/95. It has

the ability to start a ZAMS model with masses in the range of 0.08M� < M? < 100M�

and can be applied to model binary systems, white dwarfs, and massive stars until core

collapse. It is easy for a user to call di�erent independent types of FORTRANmodules

in one model e.g. the EOS, opacities, nuclear reaction networks, and convection allow

changes in structure as well as more e�cient use of computation resources. The open

source MESA community is constantly testing, adding, and updating algorithms.

There have been �ve papers published, each adding new modules and updated physics

created by users and creators of MESA. For example, Paxton et al. (2010) included

the ability to model mass loss and single star evolution, while Paxton et al. (2015)

added a new binary module and improved all previous physics.

The default FORTRAN modules are called by the MESAstar library to generate

a basic star, but the user can alter the defaults and call extra MESA FORTRAN

modules in the inlists. Binary and star inlists are where the user can de�ne di�er-

ent FORTRAN modules used to model their systems. For example, in the inlist of

Higgins & Vink (2019) the syntax of MLT_option = 'Henyey' calls the MLT FOR-

TRAN module in MESA for the algorithm written for the mixing length theory of

Henyey et al. (1965). The FORTRAN module mlt called in the inlist consists of

multiple model routines for di�erent mixing length theories, e.g. 'Cox' (Cox & Giuli
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1968 chapter 14), 'ML1' (Böhm-Vitense 1958), 'ML2', 'Mihalas' (Mihalas & Kunasz

1978), and 'Henyey' (Henyey et al. 1965), and none, with a mixing length parameter

αconv that the user can call and adjust within their inlists.

The modularity of MESA implies calling individual FORTRAN modules e.g., eos

and mlt module, to MESAstar separately to generate a model. This allows for parallel

processing, thus shorter run-times, and allows to easily change schemes within a

module. For example, a user can easily change the MESAstar module from calling

the Vink wind algorithm (Vink et al. 2001), via hot_wind_scheme = 'Vink', in their

inlists to have MESAstar call the hot_wind_scheme = 'Kudritzki' (Kudritzki et al.

1989). Another example, if a user changes the inlists for the mlt module initiating

the 'Henyey' MLT de�ned above and instead they have mlt module initiate the 'Cox'

MLT (syntax MLT_option = 'Cox' algorithm).

MESA has many FORTRAN modules and routine options used in other code,

e.g. the STERN code (Heger et al. 2000; Yoon & Langer 2005; Petrovic et al. 2005),

GENEVA (Eggenberger et al. 2008), and KEPLER (Weaver et al. 1978). In addition,

the creators tests the modules, e.g. mlt, net, and kap modules in other codes for valid-

ity. Therefore using these tested modules is extremely helpful for creating inlists for

model to model comparisons. See Paxton et al. (2010), Paxton et al. (2013), Paxton

et al. (2015), Paxton et al. (2018) for examples of stellar model output comparisons.

In this thesis, two papers are compared: Higgins & Vink (2019) uses MESA and Brott

et al. (2011) uses the STERN code. Figure 3.1 shows a comparison of the evolution
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Figure 3.1: Evolutionary tracks for mass from 20-60M� at increments of 5M�. Com-
parison between MESA inlists provided by Keszthelyi (private communication) (right)
and Higgins (private communication) left panel. Blue lines are the evolutionary tracks
from Higgins & Vink (2019) (left) and red lines are Brott et al. (2011)(right) models
and black are the ones using provided inlists using MESA version 11554.

tracks between an older version of MESA and a newer one (Higgins & Vink 2019)

and the inlists provided by Keszthelyi (private communication) to model Brott et al.

(2011). The stellar parameters used to compare Higgins & Vink (2019) and the newer

MESA version was for an initial rotation rate of 200 km s−1 and αov = 0.1. There is

good agreement for both papers using MESAstar for the mass range 20-45M�. Later

in the stellar evolution there is a pronounced di�erence for high mass models. Note

that the 25M� terminated slightly after helium core burning for Higgins model unlike

the rest of the models in Figure 3.1. It is still reasonable to use the 25M� model for

the binary star model because all binary star models terminate roughly before helium

core burning.
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Another bene�t of using MESA is the ease of expanding upon the original code

using MESA's run_star_extras.f90 and implementing a user de�ned algorithm

to run within the inlists for the user's stellar model. MESA has extra FORTRAN

routines so models can be easily extended to add new stellar modeling theory. For

example, use_other_wind.f90 is written to extend or change the wind scheme used

by MESAstar. MESA is thread safe which allows modules to do parallel computations

and reduce computation time for eos and net models for example. (See Table 9 in

Paxton et al. 2010 for computation times for di�erent amounts of threads.) MESAstar

has real-time plots (PGSTAR), which allows the user to see the evolution of their

system through various programmed plots, e.g. HR-diagram and mass loss plots.

The user can also create their own real-time generated plots in their inlists. Finally, a

very useful tool is the ability to either save a model for the future use or save a photo.

Photos are �snap shots� of the model and are generated periodically through out the

model evolution. A user can stop a run, adjust or change an argument in their inlists,

and restart from the photo. The argument for using MESA for this thesis is its ease

of comparison with other codes, ease of modifying, useful tools, and modularity.

The inlists used in this work were provided by Higgins (private communication)

for modeling Higgins & Vink (2019) (in Appendix A), Keszthelyi (private commu-

nication) for modeling Brott et al. (2011) (in Appendix B), and the binary inlists I

created to model massive close binary stars (in Appendix C). Appendices A-C pro-

vide the syntax for all options de�ned in the inlist shown in Tables 2.2 and 2.3. The
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MESA version used in this thesis is 11554.

3.1 MESA Design

MESAstar, a FORTRAN library where models are generated, creates hundreds to

thousands of models over an evolution run in real time through arrays and pointers

in FORTRAN. The evolution of a star happens over a timestep δt ranging from

seconds to ∼ 105 yrs between each model for a star. MESA has two base pointers

written for all FORTRAN modules. They are the �s� pointer which points to the

information in the MESAstar FORTRAN library and the �b� pointer that is meant

for the binary FORTRAN library. For example, in Appendix D.2, the binary pointer

has an index that is called for either the calculated information of the primary star

i = 1 or the secondary star i = 2.

A position in a star can be represented by a mass coordinate or at a speci�c radius

in terms of cells de�ned as k in MESA, where k = 1 is the surface of the modeled star

and k increases towards the center. Over the evolution of the model, the cells will split

or merge depending upon the physics and tolerances set by MESA or the user. The

user can vary the spatial resolution of the program by varying parameters such as the

varcontrol_target option. This allows the program to have a larger mesh (number

of cells) for problems, e.g. extremely small δt during core collapse, however this

introduces more computational error. Another example is use_gold_tolerances

option which creates a stronger restriction on energy conservation error during a run.
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When a convergent solution is not met for a model in a run then MESAstar goes

through a retry and a backup which executes with a smaller δt to get a solution.

Each individual cell represents all the physics and physical quantities of the star.

As an example, cell k = 1 represents the surface physics and quantities of: the radius,

rotation, luminosity, mass, hydrogen abundance, moment of inertia, density, and so

forth. The syntax for a few of the examples above are m(k), i(k), r(k), L(k), and

rho(k) (See Figure 9 of Paxton et al. (2010)). When the tolerance is reached for

the physical quantities of a cell, the cell will split. Therefore the number of cells in

a modeled star evolves over time. This is called remeshing. More complex physics

for each cell is calculated upon basic physical variables, e.g., rotational instabilities

(Chapter 4) and convection is calculated from the mass, pressure, and temperature

of the cells.

3.2 MESAstar RUN

MESA does mesh re�nement, analytic Jacobians, and coupled solution of the struc-

ture and composition equations. MESAstar �rst reads the inlists and run_star_extras.f90

and initializes the physics modules to create a nuclear reaction network and access

the EOS and opacity data. The speci�ed starting model is then loaded into memory,

and the evolution loop is entered. The procedure for one timestep has four basic

elements. First, the code prepares to take a new timestep by remeshing the model if

necessary. Second, the code adjusts the model to re�ect mass loss by winds or mass
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gain from accretion, adjusts abundances for element di�usion, determines the convec-

tive di�usion coe�cients, and solves for the new structure and composition using the

Newton-Raphson solver. Third, the next timestep is estimated. Fourth, output �les

are generated.

3.3 MESA Binary Run

MESA binary performs each evolution step by independently solving the structure of

each component and the orbital parameters, using the same timestep δt for each. This

approach di�ers fromMESAstar, which simultaneously solves for the structure of both

stars and the orbit in a single Newton-Raphson solver. The choice to solve for each star

separately gives a signi�cant amount of �exibility and simplicity. Additional timestep

limits are imposed in MESA binary that consider relative changes between the radius

and Roche lobe radius of both components, the total orbital angular momentum.
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Chapter 4

Rotation

A star's initial rotation stems from the conservation of angular momentum of the in-

falling matter during the pre-main sequence (PMS) stage. After PMS the evolution

of surface rotation can change in many di�erent ways depending on the evolutionary

state of the star and the physical mechanisms taking place. For example, if no angular

momentum is lost from the star, then during the main sequence it will generally rotate

slower over a long period of time as the radius of the star becomes slightly larger.

At the next stage a massive star will evolve and become a red supergiant, where the

radius is larger. Therefore the rotation speed will slow down to conserve angular

momentum.

Rotation has a large impact on the evolution of massive stars, due to the inclu-

sion of a centrifugal term in the stellar structure and rotational mixing equations

(Heger et al. 2000; Meynet & Maeder 2000). There are two types of modeled rotation

within a star: di�erential and solid body. When di�erential rotation takes place in

a star various types of �uid instabilities occur, which e�ect angular momentum and

elemental transport within a star during its evolution.

The initial rotation rate of both stars are variables in this work. The user can

de�ne the strength of chemical and angular momentum di�usion due to rotation by

setting their coe�cient values in the inlists. These values have a large impact on

the evolution of a star and can lengthen its lifetime and increase surface abundances
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dramatically. Rotation modeled in 3-dimensions provides better precision, however

the models for a 1-dimension (1D) approximation gives good results when comparing

to observations.

As explained in Chapter 2, the stellar evolution equations have to be re-derived

to include the centrifugal term and the departure from spherical symmetry caused

by rotation (see Paxton et al. 2013 for the new derived formula in MESA). Angular

momentum and elemental di�usion coe�cients, for di�erent types of circulation and

instabilities caused by rotation, need to be set to accurately model the interior of a

star. See Table 4.1 for the velocity and di�usion coe�cient variables and the types

of circulation used in this work.

Below I give a brief introduction to the origin and evolution of a star's rotation

followed by the observational evidence of rotation of the Sun. Two sections explain the

theory and background of solid body and di�erential rotation and how it is treated in

MESA. The majority of this section focuses on the theory behind the di�erent types

of circulations and instabilities that develop because of di�erential rotation.

Stars have a maximum rotational velocity limit, de�ned as the critical velocity

(vcrit). When ~ggrav + ~gcent + ~grad = 0 the star has reached its critical rotation rate,

where ~ggrav, ~gcent, ~grad are the gravitational, centripetal and radiative acceleration,

respectively. At this point the star starts losing matter. Critical velocity will be

discussed in the last section of this chapter. In a binary system rotation can be

a�ected by strong tidal interaction between the primary and the secondary (Hurley
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et al. 2002). This will be discuss further in Chapter 7.

MESA models start out with solid body rotation and then the rotation pro�le

changes according to the di�erent circulations and mixing agents e.g., convection,

implemented (See Figure 4.4). The instabilities are strong enough to change the

rotation pro�le from di�erential rotation to solid body or even a combination of both

types. A good example is the Sun's rotation pro�le. It has both solid body rotation

in its interior and di�erential rotation at and below its surface. The location of

change from di�erential to solid body rotation in the interior of the Sun is called

the tachocline. Its existence can be inferred from heliosiemology observations by the

suppression of certain oscillatory modes in the Sun (Spiegel & Zahn 1992). Many

ongoing investigation are being made as to why the tachocline exists. One possibility

is a type of dynamo is created, for instance the Spruit-Taylor dynamo (discussed

later). This can connect the core and envelope's rotation through magnetic �elds and

thus enforcing solid body rotation.

4.1 Solid Body Rotation

The equation of motion for a parcel of mass in a rotating �uid is based upon the

Navier-Stokes equation. The theory of uniform rotation is derived from the Roche

model and is shown in Maeder & Meynet (2012). The Roche approximation assumes

the gravitation potential and rotation to be of a centrally condensed core with a mass-

less photosphere (Lebovitz 1967). The e�ective gravity, ~geff , is dependent on both



35

the gravitational force and centrifugal force at a speci�c radius in a star. Equation

2.1 now includes the centrifugal term in the rotating star and the equation becomes

(Maeder & Meynet 2012):

1

ρ
~∇P = −~∇Φ +

1

2
Ω2~∇ (r sinφ)2 (4.1)

Φ = −GMr

r
is gravitational potential. φ and r are the polar angle and radius, respec-

tively. Following the derivation in Maeder & Meynet (2012), if the angular speed (Ω)

is a constant then the centrifugal acceleration can be derived from a potential Vc.

−~∇Vc = Ω2r sinφ (4.2)

Therefore the sum of the potentials can be expressed in the following way (Maeder

& Stahler 2009):

Ψ = Vc + Φ (4.3)

Thus all thermodynamic variables, e.g. ρ, P, T , are constant on all equipotential

surfaces at a given radius. This implies the star is barotropic (Maeder & Meynet

2000) so the pressure is constant on the equipotential surfaces. Equation 4.1 can now

be written as:

1

ρ
~∇P = ~∇Ψ (4.4)

Ω is de�ned in MESA as Ω(k) = j(k)
i(k)

, where j(k) and i(k) are the angular mo-
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mentum and momentum of inertia at cell k; this is altered at each timestep through

the mass and radius cell adjustment. See Appendix B.6 of Paxton et al. (2013) for

the full computational explanation of the change of Ω. Throughout the chapter the

theory is based on Ω in units of s−1, however, as shown in Table 4.1 and Appendices

A and B, this thesis uses vrot in units of km s−1 as the variable.

4.2 Di�erential Rotation

The shellular rotation law, which is the most widely used di�erential rotation law, was

extensively studied by Zahn (1992). He assumed strong horizontal (θ̂) and a weak

vertical (r̂) turbulence in a star which enforces a constant Ω on isobaric surfaces.

Therefore Equation 4.1 can not be applied when shellular rotation takes place. In

spherical coordinates Ω(r, φ) now becomes (Zahn 1992):

Ω(r, θ) = Ω̄(r) + Ω̂(r, θ) (4.5)

Here Ω̄ is the mean rotation velocity over a spherical surface and Ω̂(r, θ) represents

Ω at a speci�c latitudinal zone. For example, zonal air �ow in the Earth's atmosphere

�ows parallel between two di�erent latitudes. However in the case of Ω̂(r, θ) rotation

may not be parallel to two di�erent latitudes in the star (See section 2 from Zahn

1992 for the full explanation). The assumption for weak vertical turbulence is jus-

ti�ed because of density strati�cation in a star, thus circulation in this direction is

diminished.
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According to Maeder & Meynet (2012) the star becomes baroclinic and the grav-

itational potential and Ω are constant on isobaric surfaces. However they are not

constant on equipotential surfaces. Therefore the star can no longer be assumed to

be spherically symmetric. This implies that instead of constant geff , T, P, and ρ on an

isobaric surfaces, one has to take an average of these quantities over an isobaric sur-

face to get the complete stellar structure equations (Equations 2.1-2.4). For example,

the new hydrostatic equilibrium equation becomes (Maeder & Stahler 2009):

dP (r)

dMP

= −GMP

4πr4
P

fP (4.6)

fp =
4πr4

P

GMPSP

1

< g−1
eff >

(4.7)

MP , rP , and SP are mass, radius, and spherical surface area on an isobar. MP is used

in the derivative since the radius is no longer constant on an isobaric surface. When

fP equals 1, equation 4.6 becomes equation 2.1.

MESA adopts the shellular approximation of Meynet & Maeder (1997). Paxton

et al. (2010) uses the 1-dimensional approximation as an argument to treat the isobars

as equipotentials. They give a brief explanation and derivation of the new stellar

structure equations based on the new inertial term discussed above and the averages

taken over the isobars. However, they still treat the isobars as equipotentials even

though they deviate from spherical symmetry and the star is baroclinic (Maeder &

Meynet 2012).
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The strength of di�erential rotation can be expressed by the magnitude of the

gradient of Ω (|~∇Ω|), which is known as the shear. When modeling a stellar interior

in one dimension, this is simply dΩ
dr
. If the magnitude of the shear is 0 throughout

the star, than the star has uniform rotation.

4.2.1 Chemical and Angular Momentum Di�usion

As noted above, certain conditions caused by rotation and a star's physical charac-

teristics can lead to instabilities that can trigger di�erent types of circulations. These

circulations have a large impact on the angular momentum and chemical transport

within the star. MESA treats the transport of chemical and angular momentum as

fully di�usive. See Zahn (1992) for the full advection-di�usion equation.

Below, I describe each circulation used in the binary model, what instability condi-

tion needs to be satis�ed for them to occur, and use pro�les to show their location and

mixing strength. I will also discuss the coe�cients de�ned in this work for chemical

and angular momentum di�usion. Listed below are the circulations and instabilities

used in Higgins & Vink (2019) and Brott et al. (2011). The instabilities depend on

both vertical and horizontal turbulence, thus implying that in the cases discussed

below density strati�cation is weak enough to have rotation in the vertical direction.

Eddington-Sweet (ES) Circulation- First derived by Von Zeipel (1924) for

rigid rotation and updated by Baker (1959) for more general rotation. The more

modern version of the theory can be found in Maeder (1998) and explained in Heger
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Figure 4.1: A rotating 20M� model with solar metallicity and vinit = 300 km s−1.
The outer sphere is the star surface. The inner sphere is the outer boundary of the
convective core. Figure is from Meynet & Maeder (2002).

et al. (2000). It is also known as meridional circulation, and is created by the break-

down of thermal stability due to di�erential rotation in a star. Isobaric and isothermal

surfaces do not coincide, which leads to motion in the radial direction. In the di�eren-

tial rotation section I explained that radial turbulence (perpendicular to the isobars)

is neglected since it is suppressed by high density gradients. In cases where these

gradients hit a speci�c criterion (see Heger et al. 2000) they will drive the circulation

generally in the radial direction. I say "generally" because the equations of motion

are extremely complex (see Maeder 1998 and Heger et al. 2000 for the details). Figure

4.1 from Meynet & Maeder (2002) shows the ES circulation inside a star. The central

sphere in the �gure would be the core of the star. Note the circulation, represented

by the elliptical toroids in Figure 4.1, is on the surface of the toroid rotating in the
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radial direction, not along the axis of the toroids. If large mean molecular weight

gradients, ∇µ, do not exist to suppress the circulation, then it will have a largest im-

pact on the transport of angular momentum and elements within the star (see Figure

4.5). In addition, the ES circulation has the largest impact on Ω di�usion, S (spin

angular momentum), and elemental di�usion in comparison to the other circulations

mentioned below.

Dynamical Shear Insability (DSI) - This instability exists when the energy

that can be gained from the shear �ows due to di�erential rotation is comparable to

the required work for a mass cell to move against the gravitational potential (adiabatic

turn over) and occurs on isobars at the dynamical timescale (Zahn 1992).

For example, assuming constant mean molecular weight µ, a cell of matter of

higher ρ, T , and P is perturbed into a surrounding place of lower T , ρ, and P

than its previous surroundings (in radial direction). During this processes the cell

is unable to stay buoyant in the new medium and therefore is dynamically unstable

and begins to fall. The cell begins to fall due to gravity and its di�erence in density

with the surroundings. The time required for this convective processes to take place

is the dynamical timescale, tdyn. This is the amount of time for a star to respond

to deviations from hydrostatic equilibrium. For example the model used to produce

panels c) and d) in Figure 4.5 tdyn ≈ 4× 104 seconds. This time scale is in�nitesimal

in comparison to the lifetime of any star. The criterion for the Dynamical shear

instability is written as (Maeder & Meynet 2012):
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Ri ≡
g

ρ

dρ
dz

(dv
dz

)2
< Ricrit (4.8)

Another way to express this is as follows:

ρ(δv)2 > g δρ δz (4.9)

Where δv, δρ and δz are small changes in velocity, density, and height. The left

hand side of Equation 4.9 is the di�erential shear energy and the right side is the

di�erential gravitational potential for a moving mass element. Ricrit is the Critical

Richardson number and is equal to 1/4. When this number is reached the instability

develops and the circulation begins. This instability enforces di�erential rotation,

and since no work is required to mix elements on an isobar, this instability is e�ective

at mixing angular momentum and elements. However, as shown in Figure 4.5, the

strict conditions for the instability prevents it to exist in any location in the star at

t ∼ 105 yrs or the TAMS.

Secular Shear Instability (SSI)- The condition for this instability is just the

relaxed condition for the the dynamical shear instability. Thermal adjustments are

allowed to take place in radial perturbations (Heger et al. 2000).

In this condition, the perturbed higher ρ cell, discussed above, is dynamically

stable and can stay "a�oat" in the medium. However over time the cell's temperature

decreases as its thermal energy is transferred into the medium. Therefore its buoyancy

diminishes which causes it to fall. The secular shear instability happens on the
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thermal timescale also known as the Kelvin-Helmholtz time scale tkh. This is the

time for photons to di�use from the core out to space (see section 2.2). Using the

data from the model to produce panels c) and d) the tkh is ≈ 2× 104 years. Having a

less strict criterion then the DSI, the SSI does exist in the model as shown in Figure

4.5.

Goldreich-Schubert-Fricke - The Goldreigh-Schubert-Fricke (GSF) instability

(Goldreich & Schubert 1967 and Fricke 1968) arises if the temperature gradient ∇T

can't compensate for the centrifugal force caused by rotation. This instability takes

place in the inviscid limit. This circulation enforces uniform rotation in chemically

homogeneous stars.

All previous instabilities are suppressed by high density gradients or rather high

mean molecular weight gradients ∇µ. The cell example for both the dynamical shear

and secular shear can be applied to GSF instability and ES-circulation in the radial

direction. The high ρ cell is prevented from falling into a more dense environment,

thus enforcing stability.

Spruit-Taylor dynamo (ST) - The Spruit-Taylor dynamo (Spruit 1999, Spruit

2002, Taylor 1973) is an instability where a toroidal �eld Bφ grows and changes to

Br. The characteristic growth rate of the instability is:

σg =
ω2
A

Ω
(4.10)

Here ωA is the Alfén frequency (Alfvén 1942) de�ned as:
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ωA =
B

(4πρ)1/2 r
(4.11)

B is the magnetic �eld of the star and Equation 4.11 is cgs explicit. The toroidal

�elds form concentric rings perpendicular to the rotation axis. The magnetic pressure

provided by the rings coupled with the fact that the �elds are unstable forces motions

of elements and angular momentum side to side (see Figure 1 from Spruit 2002). If

a magnetic �eld is present then there is a severe reduction in di�erential rotation

because the ST-dynamo is strongly dependent on di�erential rotation |∇Ω|
Ω

. Therefore

it enforces an almost constant Ω. This dynamo theory gives a possible explanation

for the appearance of Sun Spots and for the solid body rotation pro�le in the Solar

interior.

The evolution of surface 14N is dependent upon these instabilities and the other

mixing processes (discussed in section 2.4) for massive stars. There is a slight di�er-

ence shown between panels B) and D) in Figure 4.3 for 14N . However, even when all

instabilities are present, there is little di�erence between 1H and 4He mass fraction

when comparing panels B) and D) in Figure 4.2.

4.3 Di�usion Equations

Below is the discussion of the di�usion equations from Heger et al. (2000) and how an-

gular momentum and chemical di�usion take place as shown in Paxton et al. (2010).

The equations include the di�usion coe�cients for the above circulations and insta-
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Figure 4.2: 1H and 4He mass fraction vs radius for 40M� star with vin = 200 km
s−1. Panels A and B are all mixing coe�cients turned o� and C and D all are turned
on. The age of the star in with A and C is ≈ 105 years, where as B and D are at the
TAMS.

bilities discussed in Section 6.4.2, above. The purpose of expressing the equations is

to show how convection, semiconvection, and convective overshoot coe�cients come

into play when there is di�erential rotation in a star. The di�usion equation is given

by Heger et al. (2000) as follows:(
∂χn
∂t

)
m

=

(
∂

∂m

)
t

[
(4πr2ρ)2D

(
∂χn
∂m

)
t

]
+

(
dχn
dt

)
nuc

(4.12)
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Figure 4.3: The same model as �gure 4.2, but a plot of 12C, 14N , and 16O mass
fraction vs radius. These are catalysts for the CNO cycle and mixing can pull these
elements to the envelope and surface of the star.

χn is the mass fraction of species n. D is the di�usion coe�cient de�ned by:

D = Dconv +Dsem +Dover + fc(DDSI +DSHI +DSSI +DES +DGSF ) (4.13)

fc is the angular momentum di�usion factor and is an adjustable parameter. In

Higgins & Vink (2019) fc = 1/30 and Brott et al. (2011) fc = 0.0228. The equation

used in MESA (see Appendix of Paxton et al. 2013) for the di�usion of angular
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Figure 4.4: log Jrot & Ω vs radius for a 40M� star with vin = 200 km s−1. A & C are
the star at ∼105 years and B & D are at TAMS. A & B are with rotational mixing
coe�cients turned o� and C & D turned on.

momentum is:

(
∂ω

∂t

)
m

=
1

I

(
∂

∂m

)
t

[
(4πr2ρ)2Iν

(
∂ω

∂m

)
t

]
− 2ω

r

(
∂r

∂t

)
m

(
1

2

d ln I

d ln r

)
(4.14)

Where I represents the moment of inertia at a mass coordinate. ν is the turbulent

viscosity de�ned as:
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Figure 4.5: Plot of Log of the di�usion coe�cients vs stellar radius for a 40M� with
vinit = 200 km s−1 at ∼105 years left and at TAMS right.
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Figure 4.6: Combined di�usion coe�cients versus radius for Ω and J di�usion for the
model discussed in Figure 4.5

ν = νconv + νsem + νover + νDSI + νSHI + νSSI + νES + νGSF (4.15)

The �nal two parameters are: fν , the angular momentum transfer factor and fµ,

the ∇µ factor. fν is set to one for both Higgins & Vink (2019) and Brott et al. (2011).

fµ is a factor designed to adjust the sensitivity that rotation has on µ gradients.
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This implies that angular momentum di�usion transfers all the angular momentum

caused by the instabilities and circulations. Instead of the original de�nition of ∇µ,

its magnitude can now can be adjusted by fµ given by fµ∇µ (Heger et al. 2000).

This parameter is set to 0.1 in both Higgins & Vink (2019) and Brott et al. (2011).

The parameter values have been restricted by observations of surface abundances of

nitrogen and helium for galactic O-type stars (Yoon et al. 2006). Figures 4.4 and

4.6 shows how the di�usion evolution of Ω and rotational angular momentum Jrot

are e�ected when the circulations, instabilities, and rotation adjusting coe�cients (fµ

and fν), are implemented.

4.4 Critical Velocity

A star is not solid, but gaseous. Therefore if spun up fast enough it can become

oblate and even lose matter. As discussed above, ~geff , excluding stellar luminosity

e�ects, is dependent upon the centrifugal and gravitational forces on the star. When

the rotation is high enough these two will become equal and therefore ~geff = 0. The

rotational speed at this condition is called the critical velocity de�ned in terms of

rotational velocity Ω. The condition for Ωcrit as de�ned in Maeder & Stahler (2009):

Ω2
crit =

GM

r3
(4.16)
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MESA includes radiation pressure in equation 4.16 and therefore another term is

included in geff . The new term includes the luminosity and Eddington luminosity

(LEdd) at which the outward force caused by radiation pressure is equivalent to the

gravitational force going inward. The new equation is (Paxton et al. 2013):

Ω2
crit = Γfactor

GM

r3
(4.17)

Where Γfactor = (1− L

LEdd
) and LEdd =

4πcGM

κ
(4.18)

As explained at the beginning of this section, rotation e�ects the spherical symmetry,

and near Ωcrit this is at its maximum. The theoretical maximum equatorial radius a

star could obtain is 1.5 times the polar radius (Newton 1642-1727). A plot of Ω vs.

equatorial radius from Georgy et al. (2011) is shown in Figure 4.7. Higher Ω creates

a larger deviation from rp on the equator. At rotation velocities around this value the

star will experience excess limb darkening, where Teff at the equator will be less than

at the poles. Limb darkening happens for non-rotating, solid body and di�erential

rotating stars.

Maeder & Meynet (2012) describe a limitation on the 1D shellular approximations

when stars are rotating near their critical velocity, because as shown in Figure 4.7,

isobars deviate from spherical symmetry. Paxton et al. (2013) explain for stars near

this rotational velocity the reliability of the models are uncertain. The stars in this

study do not rotate near their critical velocity. Therefore it is still reasonable to use
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Figure 4.7: A plot of di�erent initial rotating modeled stars. The y-axis shows the
polar radius, equal to 1 and the x-axis shows the equatorial.

the 1D shellular approximation.

Table 4.1 summarizes the di�erent coe�cient values discussed above and the vari-

ables used in this work. Note in Table 4.1: �1� in the table implies MESA will

calculate the di�usion coe�cient for elements and/or angular momentum and �0� im-

plies do not calculate the coe�cient. Appendices A and B show the inlist syntax for

the instabilities and circulations, where the acronym am is for angular momentum

di�usion and D is for elemental di�usion.

Table 4.1: Rotation Parameters

Models DSI SSI ES GSF ST vsurf (km s−1) fµ fc
Brott 1 1 1 1 1 0.4vcrit 0.1 0.0228

Higgens & Vink 1 1 1 1 0 (0-500) 0.1 0.03̄

Brott uses the ST-Dynamo only for mixing of angular momentum and not for
elemental mixing
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Chapter 5

Binary Model

The majority of high mass stars (M ≥ 16M�) observed in the night sky, are either

in binary or multiple star systems (Duchêne & Kraus 2013). Binary star systems

exhibit fascinating physical phenomenon not shown in single star systems. They

can go through multiple di�erent types of evolutionary phases and di�erent paths of

evolution depending on the star's separation distance and masses. In this work the

stars are close enough that they experience extreme tidal torques that increase the

binary separation (a), slow down the initial stellar rotation velocity, and increase mass

loss through winds. Mass loss from the system also creates orbital angular momentum

loss (J̇orb) and increases the separation. Tidal torque is one of the physical phenomena

a close binary star system can experience. Depending on the separation distance of

the binary system, the system will experience RLOF, where the more massive star

evolves and begins donating matter to the less massive star. This processes has the

most profound impact on a binary systems e.g., large changes in separation distance,

masses, rotation velocity, and orbital angular momentum, in a short amount of time.

The rate at which Jorb changes is in�uence by: gravitational radiation, magnetic

breaking of both stars, spin orbit coupling, wind mass transfer, and ine�cient mass

transfer. In the following sections equations are de�ned and then simpli�ed by the

assumption that eccentricity e of all models are zero, implying a circular orbit. The

assumption of e = 0 is valid due to strong tidal forces enforcing circularization of the
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orbit (discussed in section 5.2.1).

5.1 Orbital Period & Separation Evolution

To initiate a model binary system in MESA the user must either de�ne the orbital

separation or the orbital period and also the initial masses of the stars. The majority

of the basic physics of binary systems can be modeled by orbital mechanics and

described accurately by the generalized form of Kepler's three laws of motion. To

model the evolution of orbital period Porb and a the general form of Kepler's third

law of motion is used.

P 2
orb =

4π2

G(M1 +M2)
a3 (5.1)

M1 andM2 are the primary star and secondary star masses, respectively. Varying

the total mass of the system while keeping the period constant implies the orbital

separation will change. The longer the period, with mass held constant, the wider

the separation of the system. In Equation 5.1 all physical quantities are varying in a

binary model, M1 and M2 are changing due to the winds explained in chapter 6, and

a and Porb are changing due to mass loss, tidal torques, and other orbital dissipation

physics discussed below.

The relationship between ωorb and Porb can be written in the following way:

ω2
orb =

4π2

P 2
orb

(5.2)
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Dividing both sides by π2 in Equation 5.1 and using Equation 5.2, ω2
orb can be ex-

pressed as:

ω2
orb =

G(M1 +M2)

a3
(5.3)

The square of Jorb is dependent ω
2
orb, the masses of the two stars, and a:

J2
orb = M1M2a

4ω2
orb (5.4)

Substituting Equation 5.3 into Equation 5.4 and taking the square root yields the

expression used by MESA (Paxton et al. 2015):

Jorb = M1M2

√
Ga

M1 +M2

(5.5)

To compute the evolution of the binary system, the evolution of the separation

distance, and then the orbital period evolution, Paxton et al. (2015) model the evolu-

tion of J̇orb, through the varying quantities such as Ṁ1 (Mass loss or gain of the star

), Ṁ2 (mass gain or loss of the secondary), S1 , and S2 (spin angular momentum of

the primary and secondary stars). The varying quantities are a�ected by high wind

mass loss, tidal torques, and spin-orbit coupling.

The following expression is used by MESA to model Ṁ1 and Ṁ2 in the binary

model Paxton et al. (2015):

Ṁ1 = Ṁ1,W + ṀRLOF , Ṁ2 = Ṁ2,W − fmtṀRLOF (5.6)
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Here Ṁ1,W and Ṁ2,W are mass loss due to the primary star and secondary star

winds, ṀRLOF is mass loss due to RLOF and fmt is a mass transfer e�ciency pa-

rameter. Roche lobe over�ow is not studied in this thesis so Equation 5.6 becomes:

Ṁ1 = Ṁ1,W and Ṁ2 = Ṁ2,W (5.7)

Therefore changes in mass and binary mechanics due to mass loss are only because

of massive stellar winds.

5.2 Orbital Angular Momentum Evolution

The orbital angular momentum of a binary system can change drastically if the stars

separation distance is small. For massive compact binary models J̇orb is e�ected

by tidal torques, magnetic breaking of the gainer star, and ine�cient mass transfer

(matter loss from the system). The sections below present the theory and algorithms

used in MESA to model J̇orb.

5.2.1 Tidal Torque & Synchronization

A tidal torque is created when two spherical celestial bodies create a strong di�erential

gravitational force on each other. A wonderful example is the Moon and Earth's

di�erential force on one another, which causes both the Moon and Earth to deviate

from spherical symmetry. The Earth deviates ≈ 10 cm from spherical symmetry, and

the Moon's deviation is ≈ 20 m (Carroll & Ostlie, 2007). The oceans exhibit the
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greatest e�ect of the di�erential pull and create a bulge along the axis of the Earth

and the Moon. However, bulges of the oceans do not follow a straight line to the

Moon. This is because the Earth's rotation rate is faster than the Moon's orbital

rate, so there is an angle between the tidal bulge and the Moon Earth-line. This

slows down the rotation of the Earth due to friction caused by moving bulge along

the surface of the Earth. Thus, angular momentum is transferred to the lunar orbit

and the Earth-Moon separation distance grows.

In binary star systems, if the two stars are not tidally synchronized, they will

experience a tidal torque. When the rotation rate of both stars is equal to the orbital

velocity the system is said to be tidally locked. When the system is tidally locked no

di�erential gravitation force will exist and therefore no tidal torque.

The full derivations and explanations of tidal e�ects in binary models are lengthy

and mathematically intensive. To avoid this, the equations used in the model will

be stated, and the papers where they are derived cited. This thesis focuses on the

dynamical tides through radiative dissipation (Zahn 1975). Tidal torque requires

a dissipation mechanism, such as the friction of the oceans on the surface of the

Earth; for a star it is dependent upon viscous dissipation driven by either convection

or radiation. Massive stars release a tremendous amount of radiation during the

hydrogen burning phase and therefore dissipation by radiation is appropriate. Paxton

et al. (2015) uses the expression from Hut (1981):

Ω̇j =

[
3q

rg

2 ka
Ttyp

(
Rj

a

)6
]

(5.8)
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j = 1 for the primary star. ka is the apsidal motion constant of the primary star

(Lecar et al. 1976), q = M2

M1
is the mass ratio of the two stars, and rg is the radius of

gyration (a unitless quantity) de�ned as:

I = M(rgR)2 (5.9)

Apsidal motion is an oscillation of an elliptical orbit. For example the Moon, when

orbiting the Earth, does not have the same orbital trace as the previous orbit. If

apsidal motion exists, and if trace one is de�ned as orbit 1, and the next trace, orbit

2, then these two traces will not be the same. Ttyp is the time scale in which signi�-

cant changes occur in the orbital period. It is also known as the viscous dissipation

timescale (Hut 1981) de�ned as:

Ttyp =
R3

GMτ
(5.10)

τ is the time lag of the tides. Equations 5.8-5.10 are all calculated in terms of the

primary star and do not include di�erential rotation. Paxton et al. (2015) modi�ed

Equation 5.8 to involve the secondary star and di�erential rotation by the following

expression:

Ω̇k,j =
Ωorb − Ωk,j

τsync,j
,

1

τsync,j
=

3

(qjrg,j)2

(
ka
Ttyp

)
c,j

(
Rj

a

)6

(5.11)

Here the index j = 1, 2 for the primary star and secondary star. The index k

represents a speci�c cell of the interior of the star, as discussed in Chapter 3. τsync,j
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is the synchronization timescale which is the time it takes the stars' rotation to

synchronize to their orbit. This is related to the circularization timescale, which is

the time for the orbital eccentricity to e�ectively become 0.

The eccentricity of the system can be assumed to be 0 because the circularization

timescale is short compared to the age of the stars. For example, using equation (43-

45) in Hurley et al. (2002) and values from the models where R ≈ 8R�, M = 35M�,

a ≈ 41.5R�, q = 0.714, and assuming that MR2

I
= 14.3, which is the value for the

Sun, then τcirc,1 ≈ 3.2 × 105 yrs. The secondary star's circularization timescale is

approximately equal to the primary star. This is short compared to the models' full

evolutionary timescale of ∼ 7 Myrs.

The �nal term to discuss is
(

ka
Ttyp

)
c,j

which is the convective viscous damping term

from Hurley et al. (2002). Appendix C shows the various options that can be set for

modeling the tidal interactions between both stars. This work adopts the value from

Hut (1981), but instead of the convective dampening term ( ka
Ttyp

) de�ned in Equation

5.11 the term is: (
ka
Ttyp

)
r

= 1.9782× 104MR2

a5
(1 + q2)5/6E2 yr−1 (5.12)

Where E2 = 1.592 × 10−9M2.84 is the second-order tidal coe�cient from Zahn

(1977) . Equations 5.11 and 5.12 have a strong dependence on the separation. Plug-

ging Equation 5.12 into 5.11 gives relationship of 1
a11

. Therefore a decrease in orbital

separation by a factor of 2 increases Ω̇i,j by a factor 2048. Also, the greater the
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di�erence between Ωorb from Ωi,j the larger is Ω̇k,j. If Ωrot � Ωorb at the beginning

then tidal e�ects will be strongest then. In addition, tidal torques can have drastic

e�ects on the modeled stellar interior because of the inclusion of di�erential rotation.

This enhances the mixing of heavy elements to the surface.

5.2.2 Spin-Orbit Coupling

Spin-Orbit coupling follows from the conservation of angular momentum. For a sys-

tem not subjected to mass loss or RLOF the equation is (Paxton et al. 2015):

δJorb = −δS1 − δS2 (5.13)

However if mass loss is present the equation used by MESA, modi�ed due to the

absence of RLOF, for Spin-Orbit coupling is (Paxton et al. 2015):

J̇ls = − 1

δt
(δS1 − S1,lost + δS2 − S2,lost) (5.14)

Where the δt is the timestep and δS1 and δS2 are the changes in spin in the timestep.

Both spins of the stars are a�ected by the angular momentum loss or gained due to

wind mass lost and tidal forces discussed in the previous section.

5.2.3 Mass Loss

Mass loss in a binary system can either be conservative, meaning when mass is being

transferred between the two stars none is lost from the system, or nonconservative,
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where some matter leaves the system entirely. Since both stars experience wind mass

loss, the system is nonconservative. This has drastic a�ects on the evolution of the

orbital parameters e.g., Jorb, S, a, and Porb. Paxton et al. (2015) follow the work

of Soberman et al. (1997) modeling the e�ects of mass loss in a binary model. The

expression is in terms of the change in orbital angular momentum due to mass loss

and is de�ned as:

J̇ml =
[
(Ṁ1,W + αmtṀRLOF )M2

1 + (Ṁ2,W + βmtṀROLF )M2
2

]
a2

(M1 +M2) 2π
Porb

+ γmtδmtṀRLOF

√
G(M1 +M2)a (5.15)

Here αmt, γmt, δmt, and ṀRLOF are the e�ciency of mass transfer coe�cients in

the vicinity of the donor, accretor, circumpolar toroid, and the mass loss due to

RLOF, respectively (Paxton et al. 2015). As discussed, mass transfer by Roche Lobe

Over�ow is not studied, therefore Equation 5.15 can be rewritten as:

J̇ml =
[
Ṁ1,WM

2
1 + Ṁ2,WM

2
2

] a2

(M1 +M2)

2π

Porb
(5.16)

Note, discussed in the next Chapter, wind mass transfer is permitted in the models,

but is not considered in the above equation.

5.2.4 Wind Mass Loss

The �nal contribute to J̇orb considered in this study is angular momentum loss due

to winds. Because winds remove the surface material of both stars they therefore
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remove angular momentum as well. However when mass transfer is included, and if

the net mass loss or gain does not remove the surface, then angular momentum loss

is incorrectly modeled in the system. The wind mass loss option de�ned in MESA

compensates for this allowing angular momentum to be lost from the star due to

winds even if mass is being transferred onto its surface.

This option is required because wind mass transfer happens when both stars

experience bi-stability jumps (Chapter 6), because one star is losing more matter

then the other (thoroughly discussed in section 6.3.2 and Chapter 7).

Sections 5.2.1-5.2.4 complete the binary modeled mechanics used in this work,

contributing to J̇orb through: Ṁ1, Ṁ2, Ω̇orb, and Ω̇j. In addition to understanding

J̇orb, the previous sections also provide information about the binary system evolution

e.g., the evolution of a, Porb, q, and Msys (system mass). Finally J̇orb can be summed

in the following way:
J̇orb = J̇ls + J̇ml + J̇mw (5.17)

5.2.5 Magnetic Breaking

Equation 5.17 represents all contributors to the change in the orbital angular mo-

mentum in this work. Magnetic breaking (J̇mb) and gravitational wave radiation J̇gw,

are neglected. The gravitational wave radiation is insigni�cant in magnitude when

comparing to the other contributors to J̇orb. Magnetic breaking can have a signi�cant

impact on the binary model and the reason it is not included needs to be addressed.

When there exists both a strong magnetic �eld and stellar wind a processes known
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as magnetic breaking will occur. The ionized gases from the wind will follow along

open �elds out to the Alvén radius. This radius is de�ned when v∞ = vA where vA is

the Alvén velocity:
vA =

BA√
4πρW

(5.18)

BA and ρW are the magnetic �eld on the Alvén surface and the density of the wind.

The wind material follows the magnetic �eld lines at a constant velocity, instead of

slowing down with distance, and carries with it angular momentum from the material

of the surface of the star. This is extremely e�cient at slowing down the spin of the

modeled star.

MESA is unable to model both spin orbit coupling and magnetic breaking. Paxton

et al. (2015) follow the work of Rappaport et al. (1983) who assume the two stars to

be initially tidally locked, which is not assumed in this work. However, an order of

magnitude argument can be made to not include magnetic breaking in the models.

The equation used by Paxton et al. (2015) is:

J̇mb = −6.82× 1034

(
M1

M�

)(
R1

R�

)γmb ( 1d

Porb

)
dyn cm (5.19)

For the start of one of the models the primary star has R ≈ 8R�, M1 = 35M�,

and Porb = 4 days and therefore J̇mb ≈ −2 × 1037 dyn cm. Now for the same

system J̇ml ≈ −1041 dyn cm which is approximately four orders of magnitude larger.

Magnetic breaking would only contribute ≈ 0.02% to the overall change in J̇orb, thus

it is reasonable to argue magnetic breaking can be ignored for this work .
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Chapter 6

Massive Star Winds

Massive stars are thought to be the cosmic engines that drive star formation in a

galaxy by dumping large amounts of matter and energy into the ISM. This leads to

the ionization of the ISM which can be observed as shock fronts and "wind-blown

bubbles". Massive stars also enrich the ISM with metals from their processed nuclear

material. This is important for theories of the evolution of the early universe and

galaxy formation. There are two cases for high mass loss from massive single stars.

One, mass is lost due to their winds. Two, at the end of their lives, massive stars

explode as supernovae ejecting a tremendous amount of matter at an extremely high

velocity.

A star will have winds if ~grad+~gpressure > ~ggrav near the photosphere. That is, the

acceleration of matter outward due to radiation and gas pressure is greater than the

acceleration due to gravity inward. Matter will be continually accelerated outwards

beyond the photosphere until the radiative acceleration becomes minimal and then it

will move at a constant velocity (v∞) out to �in�nity� (Milne 1926).

The amount of radiation generated in a star's core, the physics of the photosphere,

and the opacity play a large role in the value for v∞ and the mass loss ṀW . In

the following sections I will explain the equations of massive star winds and their

importance to this study. The majority of the next section's theory is based on Puls

et al. (2008) and Vink (2015).
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MESA models stars, and not the physics and dynamics of the ISM. Approxima-

tions and assumptions, discussed in the last section, must be made to model shocks

and wind-blown bubbles and to compare to observations.

6.1 Line Driven Winds

Wind theory was �rst discussed by Milne (1926), who argued that photons carried

momentum and transferred this to metal ions in the photosphere of massive stars,

thus creating winds. However, according to Lucy & Solomon (1970) and Castor et al.

(1975) (CAK) if the moving metal ions in the photosphere were to transfer momentum

to the more abundant helium and hydrogen atoms this would signi�cantly increase

ṀW (Puls et al. 2008). The equation of momentum transfer between photons, ions,

and free electrons can be de�ned as:

∆p = h/c(vin cos θin − vout cos θout) (6.1)

Here h is Planck's constant and c is the speed of light. vin and vout are the velocity of

the ions or free electrons before and after the momentum transfer due to the photon

at angles of θin and θout. The change in the angle from absorption to re-emission

of photons on an metal ion and the Doppler e�ect is the framework of momentum

transfer by line1 driving. Integrating over all line scatterings or rather all re-emission

losses and gains provides an acceleration in radial direction de�ned as glinerad .

1Stellar absorption or emission lines are created by discrete transitions of electrons in atoms
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Under speci�c criteria (see Puls et al. 2008) the theory of line driven winds can

be modeled by the 1D �uid approximation. This approximation assumes the wind is

homogeneous, stationary, of uniform density, and spherically symmetric. The density

is assumed to be high enough that there is su�cient transfer of momentum due to

Coulomb interactions between metal ions and helium and hydrogen atoms. There

is an increase in momentum of heavier elements, due to the absorption of photons,

that exists when the spectral energy distribution peaks in the UV. Therefore heavy

elements are able to distribute a large amount of momentum to the more abundant

helium and hydrogen atoms in the photosphere. The continuity and momentum

balance equations are needed to model winds for the 1D �uid approximation. The

continuity equation is de�ned as:

Ṁ = 4πr2ρ(r)v(r) (6.2)

The above equation states that the amount of matter entering an area has to be equal

the amount of matter leaving that area. Next is the momentum balance equation for

a static case:
v
dv

dr
= −GM

r2
− 1

ρ

dP

dr
+ grad (6.3)

Where grad = glinerad + gcontrad is the radiative acceleration due to line driving and the

continuum2. The equation of state can be expressed as P = v2
sρW , where vs is the

2A free electron has no speci�c energy required to make bound-free, free-free, and free-bound
transitions and therefore photons of any wavelength can create these transition. Therefore a contin-
uum of radiation will be created.
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isothermal speed of sound. A simple de�nition of the speed of sound for an ideal gas

is:

vs =

√
γP

ρ
(6.4)

For an ideal monotonic gas γ = 5
3
. Using Equations 6.4 and 6.2 and substituting

them into Equation 6.3 (see Puls et al. 2008) this becomes:

(1− v2
s

v2
)v
dv

dr
= −2v2

s

r
− dv2

s

dr
− GM

r2
+ grad (6.5)

Using Equation 6.5 to derive Ṁ and v∞ proves to be challenging. The di�culty lies

in accurately modeling grad (Vink 2015 and Puls et al. 2008).

The �rst step, in order to �nd a solution to grad, is determining the Thomson

acceleration for free electrons using the Thomson opacity (Puls et al. 2008). The

Thomson opacity is σe = neσT
ρ

, which is given units of cm2/g. Here σT = 6.652 ×

10−25cm2 is the Thomson free electron cross section. The Thomson acceleration from

Puls et al. (2008) is de�ned as:

gTHrad =
1

cρ

σeL

4πr2
= ggravΓ (6.6)

Here Γ is the Eddington's parameter (see Equation 4.18). However, free electron

scattering is not the strongest contributor to grad. Line scattering by photons is.

This is because the cross section of a free electron is much smaller than the cross

section of an atom for a photon that is at the energy for an allowed transition for
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a bound electron in that atom. Even though this only works for a very narrow

band of photon frequencies per transition, it can still be magni�ed signi�cantly when

integrated over all frequencies and for di�erent metal ions in the photosphere. In

addition, the strength of the line driving is ampli�ed due to the Doppler shifts at

varying stellar wind radii. This is due to photons impacting on moving atoms which

broadens the allowed frequencies for the bound-bound transitions to take place. To

give an example of the magnitude di�erence, writing the ratio of the force of line

driving by bound electrons over free electrons (known as the "Q-value") from Gayley

(1995):

Qvalue =
Fbound
Ffree

∝ νi
fi

(6.7)

fi and νi are the transition frequency and line frequency, respectively. For hot star

winds (peaking in the UV) fi ∼ 107 s−1 and νi ∼ 1015 s−1 giving Qvalue ∼ 107.

Therefore the force provided by a bound electron is 107 larger than a free electron.

The line acceleration equation stems from the Sobolev (1960) approximation;

which assumes that the local physical quantities and velocity gradient (dv/dr) do

not vary over a length of ∆r ≈ vth
(dv/dr)

known as the Sobolev length (see Puls et al.

2008 for a more in depth explanation). vth for an ideal gas is:

vth =

√
kbT

m
(6.8)
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where kb is the Boltzmann constant and m is the mass of the particle. Therefore the

line acceleration for a single line of frequency ν and with line optical depth τν can be

expressed as:

glinerad,i =
Lνν

4πr2c2

(
dv

dr

)
1

ρ
(1− e−τν ) (6.9)

Here Lν is the luminosity of a speci�c line frequency. τ = κ̄
(dv/dr)

where κ̄ and λ are

the frequency integrated line-opacity and wavelength of transition, respectively. τν ,

is the optical depth, for which Carroll & Ostlie (2007) give a nice explanation: "The

optical depth may be thought of as the number of mean free paths from the original

position to the surface, as measured along the ray's path." See Equation 2.6 for the

de�nition of mean free path l. When τν � 1 the gas is optically thick, which means

it takes longer for a photon to escape from the star. Where as a gas is optically thin

when τν � 1. For Equation 6.9 when the lines are optically thin then the glinerad,i has

the same 1/r2 dependence as Equation 6.6. However when the lines are optically

thick then glinerad,i depends on dv/dr see (Puls et al. 2008).

To determine the total acceleration of all the lines following CAK, who used a

line-strength distribution function to sum over all lines, the total glinerad expressed as

the ratio of total line acceleration over the Thomson acceleration is:

glinerad

gTHrad
= M(t) = kf

(
σevth
dv/dr

)−αT
(6.10)
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The above equation is a power law distribution for modeling the line acceleration. See

a more detailed explanation in Castor et al. (1975) or Puls et al. (2000). kf andM(t)

are force multipliers. kf is de�ned as the measure of the number of lines stronger than

Thomson scattering. αT can be seen as the ratio of the line acceleration of optically

thick lines over the sum of all lines (Puls et al. 2008). Using Equations 6.5 and 6.10

to derive the velocity of the wind as a function of r, v∞, and ṀW and expressing

them for the CAK method gives:

v(r) = v∞

(
1− R

r

)0.5

(6.11)

v∞ =

(
α

1− αT
2MG(1− Γ)

R?

)0.5

=

(
αT

1− αT

)0.5

vesc (6.12)

ṀW = (kL)1/α
′

(M(1− Γ))1−1/α
′

(6.13)

Here α
′

= αT − δi. The δi parameter can be thought as describing the ionizion

in the wind. αT , kf , and δia all have to be determined observationally. According to

Puls et al. (2008) for O-stars, the parameter δi = 0.1 and if αT ≈ 2/3 therefore gives

α
′ ≈ 0.6. However the power law solution does not always model the lines well due

to various dependencies, e.g. αT as a function of metallicity αT (Z) (see for instance

Vink et al. 1999 and Vink et al. 2001 for a metallicity dependent wind).

Note that MESA solves for v∞ in a di�erent way. It assumes ṀW is already de�ned

by an algorithm set by the user (discussed in the next section). Then it calculates

v∞ in the following way:
v∞ =

κsṀW

4πR?τ∞
(6.14)
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Where τ∞ and κs is the optical depth and opacity just below the surface of the star.

6.2 Metal Dependent Winds

Following the previous derivation from section 6.1 (see Vink et al. 2001 for full deriva-

tion) the theory for line driven winds for Ṁ and v∞ can be written in terms of the

metallicity Z of the star. A general expression of Equation 6.10 which accounts for

ionization e�ects of the wind becomes:

M(t) = kf

(
σevth
dv/dr

)−αT (ne11

W

)δi
(6.15)

Here ne11 is the electron density given in units of 1011 cm−3. W is the dilution factor

and δi is discussed in Section 6.1. W is meant to account for departures from local

thermal equilibrium (LTE) due to the dilution of the continuum radiation (Castor

et al. 1975). For example, when the lines of hydrogen are optically thin, then the

hydrogen line radiation escapes which creates a departure from LTE. Puls et al. (2000)

and Abbott (1982) showed that the force multiplier parameter kf can be written as

a function of metallicity, Vink et al. (2001) de�ned it as:

kf (Z) ∝ Z1−α (6.16)

From Equation 6.13 it can be shown that Ṁ ∝ (kf )
1/α

′
. Therefore the relationship

between Ṁ and Z can be expressed in the following way (Vink et al. 2001):
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ṀW ∝ Zm (6.17)

Where m = 1−αT
αT−δi

. For the values discussed above m ≈ 0.8 for O-stars. However

according to Vink et al. (2001) the force multiplier αT is also dependent on Z therefore

v∞ is dependent on metallicity. They state that v∞ ∝ Zq where q is an adjustable

parameter. However according Vink et al. (2001) there are speci�c conditions where

Equations 6.16 and 6.17 might not always hold true. The limits include at high

and low Z values. For high Z a continual increase in Fe abundance may no longer

provide a signi�cant increase in ṀW and v∞. For lower Z values Fe may no longer

dominate, but C, N, and O lines, though weaker then the driving force of Fe lines, may

start to be the main contributors to ṀW and v∞. The Vink et al. (1999) and Vink

et al. (2001) derivation of ṀW follows the work of CAK, but they use an improved

Sobolev approximation code to follow the theory. See Vink et al. (1999) for a detailed

description of their approach.

6.2.1 Bi-Stability Jumps

Pauldrach & Puls (1990) discovered that at a temperature around 19.3 kK when

modeling P-Cygni, a luminous blue variable, there were jumps in both v∞ and ṀW .

Later Lamers et al. (1995) showed that at around 21 kK there are signi�cant changes;

either ṀW decreased but terminal velocity increased, or ṀW was lower but v∞ was

higher.
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Figure 6.1: Single star models of the Bi-stability jump for Higgins & Vink (2019) left
and Brott et al. (2011) right. The di�erence between the jumps depends upon the
di�erent abundances, wind scheme, and initial parameters used. For example, a stark
contrast can be seen for the 30M� model.

The physical reasons for these �bi-stability jumps� are described in Vink et al.

(1999). From their models Vink et al. (1999) determined that C, N, and O are

important line drivers in the supersonic part of the wind that contribute to the line

acceleration in massive stars. They are also important for lower Z winds. For the

subsonic part of the wind Fe lines are the most important line drivers. In addition

they note speci�cally that ṀW is dependent on the subsonic part of the wind and v∞ is

dependent on the supersonic. Therefore ṀW is dependent heavily on line acceleration

of Fe.

The bi-stability jump is dependent on Fe lines because at around 21 kK FeIV

(tripley ionized Fe) recombines to FeIII (doubly ionized Fe). FeIV lines contribute

to ṀW in the extreme ultraviolet (EUV) when the stars Teff is high, such as at
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the beginning of the 40M� model in Figure 6.1. Even though it has few scattering

lines, the majority of Fe is ionized to FeIV. As the star's Teff evolves closer to 21 kK

(TJump) then the peak of SED is in the UV so FeIV recombines to FeIII making a

higher ρ, but lower v∞. Also, the optical depth of the wind increases and since FeIII

has more scattering lines ṀW increases. Even though the wind is slower, the jump

exists because there is a runaway recombination e�ect when FeIV recombines to FeIII

throughout the wind.

The Vink wind scheme, that includes this jump, is used in this study (Vink et al.

2001). Vink et al. (2001) determined the size of the jump using the ratio of v∞/vesc

that was determined by Lamers et al. (1995) for Galactic early-type supergiants to

be v∞/vesc = 2.3 and for late-type stars v∞/vesc = 1.3. These values are used in Vink

et al. (2001) and in the routine in MESA shown in Appendix D.1. Along with the

Vink wind scheme Brott et al. (2011) used the "Dutch" wind scheme, which is based

on multiple papers (Glebbeek et al. 2009 and reference therin).

6.3 Enhanced Wind Mass Loss & Binaries

The wind factor, stellar rotation, and tides e�ect the stellar wind mass loss rate.

The wind factor simply increases or decreases the rate of mass loss by taking an ṀW

scheme and then multiplying it by a constant. This can be written in the following

way for the Vink et al. (2001) wind scheme programmed in MESA:
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ṀWf = fvṀW (6.18)

where ṀWf is the �nal calculated wind mass-loss rate ṀW is from the Vink et al.

(2001) wind scheme and fv is known as the Vink factor.

6.3.1 Stellar Rotation
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Figure 6.2: Same as Figure 2.5 however enhanced winds due to rotation is used. The
blue dots represent TAMS.

Stars that are fast rotators can experience enhanced wind mass loss at the equator.

Friend & Abbott (1986) and Bjorkman & Cassinelli (1993) re-derived CAK's theory
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for winds to include rotation for a 1D hydrodynamic case. Rotation changes the

winds according to Puls et al. (2008) by an increase in mass loss due to deviations

from spherical symmetry around the equator. Essentially Equation 6.5 has an added

centrifugal term on the right hand side (gcent). This added term is directed outwards

at the equator and therefore increases wind mass loss (see Figure 6.2). Therefore the

wind mass loss will be largest when the star is near its Ωcrit. To include rotation

into the wind mass loss, MESA follows the approach of Friend & Abbott (1986) &

Bjorkman & Cassinelli (1993) where the wind enhanced mass-loss rate due to rotation

prescription is:

ṀW (Ω) = ṀW (0)

(
1

1− Ω/Ωcrit

)ξ
(6.19)

where ṀW (0) is the wind mass loss with out rotation and ξ is a �tting parameter

used by Bjorkman & Cassinelli (1993) to constrain to Friend & Abbott (1986) results.

From Bjorkman & Cassinelli (1993) the MESA default value is ξ = 0.43 and Ωcrit

is de�ned in Equation 4.16. From Equations 6.19 and 4.18 one can see that as a

star's luminosity reaches the Eddington Luminosity then Ωcrit → 0 and therefore

Ṁ(Ω) → ∞. Also, when Ω = Ωcrit the same divergance will happen. In MESA this

problem is resolved by a min function (see Equation (27) in Paxton et al. 2013).

There are di�erent prescriptions for mass loss increased by rotation (see for in-

stance Ekström et al. 2012). In addition gravitational darkening can also be included

(Maeder & Meynet 2000). The two di�erent works I am following use Equation 6.19.

However Higgins & Vink (2019) do not include Equation 4.16 for matching their re-
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sults to observations, but use it for a comparison study. In MESA this mass loss

enhanced by rotation is turned on by setting omega_pow = 0.43. When reproduc-

ing the results of Higgins & Vink (2019) enhance mass loss due to rotation was not

included. However, for Brott et al. (2011) and the various velocity models this is set

to the 0.43 value.

Models Windhot Windcold fv ξ
Brott Vink Dutch 1 0.43

Higgens & Vink Vink - (0.1-3) (0/0.43)

6.3.2 Tides

There are two cases in a binary models that can be studied: enhanced winds due to

tidal forces and wind mass transfer. Introduced below are the equations that model

these two mechanisms and examples are provided for each.

Equation 6.5 shows the forces involved to create mass loss through winds. In a

binary model when the separation distance is small e.g. for the model presented in

the previous Chapter a ≈ 41.5R� (determined by Porb = 4 days and M1 = 35M�,

M2 = 25M�) the stars experience a strong external gravitational force caused by the

gravitation attraction of both stars. This adds an additional term to Equation 6.5

that increases wind mass loss rate for both stars and is called tidally enhanced winds.

The algorithm used to model enhanced mass loss due to winds is based on Tout &

Eggleton (1988):

Ṁtew = ṀW

(
1 +BW min

[(
R

RL

)6

, (0.5)6

])
(6.20)
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Where Ṁtew is the mass-loss rate due to tidal enhanced winds, BW a tidal en-

hancement coe�cient which can be constrain by observations. In MESA the default

is BW = 1 × 104, which is the same as in Tout & Eggleton (1988). ṀW in Eggleton

(1983) is Reimers (1975) wind mass loss rate, but here follows from the Vink et al.

(2001) and Glebbeek et al. (2009) prescriptions. RL is the Roche Lobe radius given

in units of solar radii and is de�ned in Eggleton (1983) as:

RRL,j =
0.49q

2/3
j

0.6q
2/3
j + ln(1 + q

1/3
j )

a (6.21)

qj is the mass ratio (for example q1 = M2/M1). For the binary discussed in the

magnetic breaking section (R1 ≈ 8R�, M1 = 35M�, M2 = 25M� and a ≈ 41.5R�),

q1 ≈ 0.714 implying RRL,1 ≈ 14.5R� and �nally Ṁtew ≈ 157 × Ṁ1,w. Therefore at

the beginning of this model the wind mass loss from the primary star is enhanced by

two orders of magnitude. This enhancement factor, shown in Appendix C, is applied

to both stars.

6.3.3 Wind Mass Transfer

Mass transfer can happen due to the winds of both stars. The wind material, which

is lost from both stars and is still in the vicinity of the binary system, can be accreted

by either the primary or secondary by passing through the lost mass of the other star.

In addition to accreting matter onto either star, wind material can a�ect the orbital

velocity as a source of drag (Bondi & Hoyle 1944). Wind mass transfer is especially
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important for massive stellar winds in binary models. The wind mass acceretion used

is based on the theory of Bondi & Hoyle (1944) but MESA applies the equations from

Hurley et al. (2002):

Ṁ2A =
−1√
1− e2

(
GM2

v2
W

)2
αW
2a2

1

(1 + v2
r)

3/2
Ṁ1,W (6.22)

vw is the velocity of the wind, which is not the same wind velocity calculated by Vink

et al. (2001) or Glebbeek et al. (2009). It is based on a modi�ed escape velocity from

Hurley et al. (2002):
v2
W = 2βW

GM

Rj

(6.23)

Where βW is based on the spectral type of either the primary or secondary. In MESA

βW is set to 1/8 for both the primary and secondary. v2
r is the ratio of the square of

orbital velocity to the square wind velocity de�ned as:

v2
r =

v2
orb

v2
W

(6.24)

Where vorb is the binary orbital velocity de�ned as:

v2
orb =

GMsys

a
(6.25)

Since the orbital eccentricity is set to zero Equation 6.22 becomes:

ṀjA = −

(
GMj

v2
W,3−j

)2
αW
2a2

1

(1 + v2
3−j)

3/2
Ṁ3−j,W (6.26)
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The parameter αW is set to 3/2 following the work of Hurley et al. (2002). Bondi &

Hoyle (1944) accretion assumes a spherically symmetric steady-state accretion rate.

A condition was created by Hurley et al. (2002) for the case of high eccentricity e

such that the secondary, for example, can accrete more than the primary is losing

through its winds. Other examples of deviations from the Bondi & Hoyle (1944)

theory can be non-uniform density clouds (clumpy winds) and oblate stars due to

rotation. Therefore Hurley et al. (2002) created the following condition to account

for these inconsistencies:
|Ṁ2A| ≤ 0.8|Ṁ1,W | (6.27)

MESA uses 0.5 instead of the 0.8 and generalizes the condition for both stars, thus

rewriting Equation 6.27:
|ṀjA| ≤ 0.5|Ṁ3−j,W | (6.28)

Equation 6.26 and 6.28 are used to model the wind mass transfer in the binary

models. Wind mass transfer is important for high mass systems, but the previously

mentioned equations work well for two stars with di�erent mass loss rates, such as

log Ṁ1 ≈ 10−5 and log Ṁ2 ≈ 10−7. However this only happens when the modeled

stellar winds experience the bi-stability jump discussed in chapter 7.

6.4 Shocks & Wind Blown-Bubbles

The mass loss rate of O and B stars are so great it can have a signi�cant impact on

the surrounding ISM. Shocks and wind blown-bubbles can be caused by supernove,
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single O stars, or multiple O stars. Two great observational examples are the Rosetta

nebula, shown in Figure 6.4 (multiple stars contributing) and ζ Ophiuchie (an O9

star) shown in Figure 6.5 . These bubbles and shocks are important because they can

lead to star formation and re-ionization of the ISM. The radius and expansion rate of

the shell are dependent upon the physical properties of the the star's winds and local

ISM. When the winds interact with the ISM this can causes a dense shell to form.

Wind blown bubbles provide a useful comparison between models and observations.

Most models today use hydrodynamic evolution codes accounting for a multitude

of variables e.g., non-uniformity in the density of the ISM and magnetic �elds, 2-

dimensions to model observed shocks and bubbles. Unfortunately the information

provided by MESA does not cover the ISM, therefore assumptions and approximations

(more than rotation and winds) have to be used to predict the observational properties

of a bubble. The majority of the theory is based upon the works of Castor et al. (1975),

Weaver et al. (1977) & Weaver et al. (1978). These papers do well in explaining the

basic characteristics of HII regions and, to �rst order, the emission line spectrum

provided by massive stellar winds (Hensler 2008).

Weaver et al. (1977) follows the 1D-�uid approximation of a wind discussed in

section 6.1. However, they assume that ṀW and v∞ are constant throughout the

stellar lifetime. Another assumption is the ambient ISM is of uniform atomic density

n0. Finally the star is assumed to be stationary within the ISM. After the ZAMS,

over time, a bubble will form with characteristics shown in Figure 6.3. The following
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Figure 6.3: Figure 1 from Weaver et al. (1977). Starting from the star going outward,
R1 is the stellar wind and is region (a). Region (b) from R1 to RC is shocked stellar
wind, consisting of a hot almost isobaric gas (Castor et al. 1975). Region (c), Rc to
R2 is swept interstellar gas shell and �nal region (d) ambient interstellar medium.

equations will be used to calculate the possible characteristics of the bubbles created

by the binary models (Castor et al. 1975, Weaver et al. 1977). The �rst equation

is the mechanical luminosity, which is described as the luminosity generated by the

stellar wind interacting with the ISM:

LW =
1

2
Ṁv2

∞ (6.29)

The total radius of the bubble can be calculated from the density n0 of the ISM,

mechanical luminosity, and the age of the star. This is expressed in the following
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Figure 6.4: Rosetta nebula (NGC 2237). The entire nebula is roughly 130 lyrs (light
Years) across and 5500 lyrs away with a Mass ∼ 10, 000M�. Image was taken with the
Schmidt telescope at the California Institute of Technology's Palomar Observatory
on March 29, 1998 & January 18, 1997. Blue (DSS-II): IIaJ emulsion + GG395
Red (DSS-II): IIIaF emulsion + RG610 Image credit: NASA the DSS-II and GSC-II
Consortia)
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Figure 6.5: False color image of a bow shock from ζ Ophiuchie observed with the
Spitzer telescope on 12/18/2012. Observations were in the infrared with false coloring:
blue for 3.6 and 4.5 µm, 8.0 µm for green, and red 24 µm. The star is ∼ 20M� and
is ∼ 458 lyrs away. Image credit: NASA/JPL-Caltech

way:
R2(t) = 27n

−1/5
0 L

1/5
36 t

3/5
6 pc (6.30)

Where L36 = LW/(1036ergs s−1) and t6 = t/(106 yrs). The unit pc stands for

parsec which is ∼ 3.26 lys. The �nal equation is the expansion rate of the bubble

into the ISM.

v2(t) = 16n
−1/5
0 L

1/5
36 t

−2/5
6 km s−1 (6.31)

Weaver et al. (1977) used Equations 6.29-6.31 to study ζ Pup, a Galactic O4 star

with a mass ≈ 53.1M�, to predict the Gum nebula's v2 and R2 (Bouret et al. 2012).

According to observations, ζ Pup had an Ṁ ≈ 7 × 10−6M� yr−1 and v∞ ≈ 2700

km s−1. The ISM density near ζ Pup is ≈ 0.25 cm−3, which gave R2 = 126 pc and
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v2 = 25 km s−1. This agrees with the observed characteristics of the nebula.

To make a prediction of observables, I use PIMMS - Portable, Interactive Multi-

Mission Simulator, provided by NASA. PIMMS will be discussed more in Chapter

8, however to use PIMMS �ve observational properties of the bubble are required as

inputs. The temperature and luminosity from region (b) must be known. In addition,

the �ux, calculated from the luminosity and the distance to the system, the column

density as seen from the observer are needed for inputs. The column density is the

surface density of hydrogen between the source and the observer. The value for this

is discussed in Chapter 8. The �ux is determined in the following way:

F =
Lb

4πr2
(6.32)

Where Lb is the luminosity in region (b) from Weaver et al. (1977):

Lb = 3.8× 1033n
18/35
0 (Ṁ6v2000)37/35t

16/35
6 ergs s−1 (6.33)

Where Ṁ6 = ṀW/(10−6M� yr−1) and v2000 = v∞/(2000 km s−1). The peak temper-

ature of region (b) is required to calculate the spectral energy distribution to be used

by PIMMS. This is done in the following way:

Epeak = kbTbs (6.34)

Where kb is the Boltzmann constant, kb = 8.617×10−5 eV K−1. Tb is shown in Weaver
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et al. (1977) as:

Tb = 1.6× 106n
2/35
0 (Ṁ6v2000)8/35t

−6/35
6 K (6.35)

In the models shown in chapter 7 this gives a peak value in the soft X-rays ∼ 0.2

keV. Finally, the number density of region (b) is required to determine the ease of

observing the bubble. The higher the number density the easier it will be to observe.

The number density in region (b) is as follows:

nb = 0.01n
19/35
0 (Ṁ6v2000)6/35t

−22/35
6 cm−3 (6.36)

Using Equations 6.30-6.36, PIMMS, and an assumed distance, I will be able to predict

a possible count-rate of a modeled bubble. The count-rate will be determined for two

X-ray telescopes Chandra and X-ray Multi-Mirror Mission-Newton (XMM). This will

be the connection between my models and future observations.
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Chapter 7

Computation Results

All binary models used Higgins (private communication) inlists unless otherwise spec-

i�ed (for instance the Brott et al. 2011 inlists). For sections 7.1-7.3 the primary star

mass was set to M1 = 35M� and the secondary mass was set to M2 = 25M�, which

gives a mass ratio q1 ≈ 0.714. A q1 value of ∼ 0.7 is used as a constraint for setting the

initial masses of the primary star star and secondary. This mass ratio is used through-

out the literature. The period of ∼ 1.5 to ∼ 5 days is commonly used to model close

binary systems, therefore the initial period is set to 4 days. This gives a separation

distance a ≈ 41.5R�. The eccentricity is set to 0 and is constant throughout the evo-

lution. For simplicity, both the primary star and secondary's initial surface rotation

are equivalent. The tidal enhancement factor was set to the default of BW = 104. In

all sections models were run until either no acceptable solution was found (small time

steps), or terminated when v
vcrit

= 1. This happens near the onset of RLOF when

the primary star's envelope expands past the L1 point near core hydrogen exhaustion

(TAMS)1 As noted earlier, evolutionary data past RLOF are not plotted or discussed.

Tables 7.1 and 7.2 give the initial conditions and labelling system for the following

sections. The primary star is referred to as the primary and the secondary star is

referred to as the secondary.

1Hydrogen exhaustion is de�ned when there is∼ 1% hydrogen in its core. This value for hydrogen
exhaustion is used throughout the literature.
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Table 7.1: Initial conditions for each model set up per section.

Section MPrimary Msecondary < q > a Inlists Used
- M� M� - R� -

7.1-7.3 35 25 0.714 41.5 (Higgins & Vink 2019 )

7.4 35 25 0.714 41.5 (Higgins & Vink 2019)
(Brott et al. 2011)

7.5 25-60 20-40 0.68± 0.07 37.7-49.2 (Higgins & Vink 2019 )
(Brott et al. 2011)

Table 7.2: Model parameter values discussed in the following sections with corre-
sponding labels.

Model Label αov fvink vrot Wtides Wtrans

(km s−1)

v1 0.1 1.0 100 ON ON
v2 0.1 1.0 200 ON ON
v3 0.1 1.0 300 ON ON
v4 0.1 1.0 400 ON ON
v5 0.1 1.0 500 ON ON
v1o� 0.1 1.0 100 OFF OFF
v2o� 0.1 1.0 200 OFF OFF
v3o� 0.1 1.0 300 OFF OFF
v4o� 0.1 1.0 400 OFF OFF
v5o� 0.1 1.0 500 OFF OFF
v1t 0.1 1.0 100 ON OFF
v3t 0.1 1.0 300 ON OFF
a1 0.1 1.0 100 ON ON
a3 0.3 1.0 100 ON ON
a5 0.5 1.0 100 ON ON
vf05 0.1 0.5 100 ON ON
vf1 0.1 1.0 100 ON ON
vf15 0.1 1.5 100 ON ON
vf3 0.1 3.0 100 ON ON

7.1 Rotational Velocity

Varying the rotational velocity is studied extensively because the rest of the mod-

els e.g., vf05-vf3, show many similarities to v1-v5. Three di�erent types of systems
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are presented to emphasize di�erent physical processes. The �rst set of �gures in-

clude tidally enhanced winds from Tout & Eggleton (1988) and wind mass transfer

from Bondi & Hoyle (1944) (models v1-v5). A series of models were made ignoring

both these mechanisms (v1o�-v5o�) and another set just ignoring wind mass transfer

(v1to� and v3to�).

7.1.1 Pre Bi-stability Jump

The bi-stability jump for v1-v5 happens at tsystem ≈ 6.4 Myr. After the jump,

until the termination of the models, the system is extremely dynamic. The physical

characteristics of the binary model change on short timescales in comparison to the

nuclear timescale. The primary and secondary reach the jump temperature (Tjump)

at approximately the same time for v1 and v2, however this is not true for v3-v5.

The bi-stability jump for the primary is smaller than the jump of the secondary for

v1 and v2, thus causing a wind mass transfer event (the spike in Figure 7.12).

The location of (1) and (3) in Figure 7.1 shows the start of the model and a hook

like feature for both the primary and secondary. The hook itself is the result of the

high initial rotation velocity. The v5 model provides the most prominent form of this

feature for both stars.

The equatorial radii of both stars are larger than the polar radii due to the high

rotational velocity. For example, Req/Rpolar = 1.14 for the primary for v5. The

deviation from radial symmetry causes a decrease in Teff . As the stars evolve the
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rotational velocity decreases due to tidal torques, spin-orbit coupling, and Ω di�usion

due to instabilities.

In the beginning of this evolutionary hook geff is small because gcent is large due

to the high vinit (note that ~geff = ~ggrav − ~gcent − ~grad ). Proceeding to the top of

the hook, geff increases since the value of gcent has fallen due the decrease of vrot

(see Chapter 4). The luminosity is lower at the beginning of the hook than at the

top because geff decreases and so the pressure gradient decreases throughout the star

(Based on Equation 4.6). Therefore the luminosity generation in the core is lower.

Then geff increases and the pressure gradient increases, so the central core density

rises, which leads to an increase in energy output in the core. The star's rotation

slows, Req contracts, and the luminosity increases which also leads to an increase in

the surface temperature. This creates the hook feature for all models of the primary

and secondary.

For a star with the mass of the primary, Teff would continually decrease while L

would remain constant during the MS stage (see Figure 3.1). However as shown in

Figures 7.1 and 7.2 the luminosity of the primary decreases dramatically during the

MS. Starting from the location of (1) on the evolutionary tracks and going towards

(2) in Figure 7.1, the primary's Teff decreases by ∼ 0.225 dex and logL by ∼ 0.5 dex

in ∼ 7.6 Myrs. The signi�cant decrease of logL in this time frame is fascinating. The

primary is losing a signi�cant portion of its envelope due to high wind mass loss and

geff is decreasing rapidly. The Mass-Luminosity vector points downwards starting
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Figure 7.1: Evolutionary tracks on the HR-diagram for the primary (left) and sec-
ondary (right). Five models are presented with various rotational Velocity. (1) and
(3) give the location of the beginning of model in the HR-Diagram. (2) shows the
location of hydrogen exhaustion for the primary. The vertical dashed line shows the
approximate bi-stability jump temperatures for both the primary and secondary.

from (I) and going down towards (II) in Figure 7.2 because ṀW is so high (see Figure

2.4 for how ṀW e�ects the �ML-vector�). Since the mass of the star decreases the

luminosity will decrease (see Equation 2.15).

Wind enhancement due to rotation and tides, discussed in Chapters 5 and 6,

contributes to the high ṀW for both stars. The example from section 6.3.2 shows

the contribution to ṀW from tides was ∼ 157ṀW (0), which is a signi�cant increase.

Enhanced winds due to rotation contribute ∼ 1.7ṀW (0) for the primary in model

v5, therefore tides and winds will amplify each other. The contribution of tidally

enhanced winds is shown by the comparison of ṀW for v1-v5 and v1o�-v5o� models

(see Figure 7.7). After ∼ 2 Myr the wind mass loss of the primary decreases by a

factor of 30. If the separation distance increases (which it does, see Figure 7.3) then

wind enhanced mass loss due to tides will decrease. The primary's rotational speed,
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Figure 7.2: Mass-Luminosity plane for the primary (left) and secondary (right). (I)
and (III) show the start of the models. (II) and (IV) are the locations when the
primary reaches its �rst bi-stability jump and secondary reaches its bi-stability jump.

shown in Figure 7.12, decreases quickly before ∼ 2 Myrs, due to tides and mass loss,

and therefore enhanced winds due to rotation will decrease. The total mass lost from

the primary is tremendous. At the termination of models v1-v5 the �nal mass of the

primary is ≈ 10M� as shown in Figure 7.2.

The secondary is a more interesting case than the primary. Instead of the lumi-

nosity decreasing continually throughout it's evolution, the evolutionary track per-

forms a bigger loop, L increases afterwards, and then decreases dramatically below

log Teff ≈ 4.0 as shown in Figure 7.1. The decrease after the loop and after the

black-dash line is consistent with the argument of high mass loss. The secondary's

�ML vector� points down giving the steep slope after the loop. Then, later on in its

lifetime, it decreases at the same slope as the primary. The change in log Teff past the

black-dash line in Figure 7.1 is caused by the secondary's radius slightly decreasing,

therefore increasing the surface temperature. The reason for the sudden drop in logL
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is due to the bi-stability jump of the secondary, discussed in the next section.
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7.1.2 Bi-Stability Jump

The bi-stability jump of both stars causes the system to be extremely dynamic. Dur-

ing this period the hows an evolutionary loop caused by it reaching the TAMS. The
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secondary performs an elongated evolutionary hook in the HR-Diagram due to it

reaching its TJump (black-dash line in 7.1). ȧ and Ṗorb increase during this time pe-

riod from t ∼ 6.4 Myr onward. The location of the dash black and green lines, shown

in Figure 7.4, indicate that Ṗorb increases due to the bi-stability jumps. vrot increases

for v3-v5 near this location and then decreases immediately afterwards. There is a

spike in the 14N surface abundance due to wind mass transfer for both the primary

and secondary.

The primary's evolutionary track performs a loop beginning at (2) in Figure 7.1.

At the beginning of the loop the luminosity decreases, while the temperature re-

mains the same. Then the temperature increases quickly and the luminosity in-

creases slightly. The primary's radius begins to increase quickly at log Teff ∼ 4.45

and therefore log Teff decreases to ∼ 4.35 which is the end of the model. The loop

exists because the primary has reached hydrogen core exhaustion, has hydrogen shell

burning, and is slowly initiating core helium burning.

For a typical model at TAMS the envelope of the star is expanding, which decreases

log Teff , while the core temperature and density continually increase. When the core

density and temperature are high enough to initiate helium core burning the core's

energy generation will increase. During the onset of helium burning the radius will

increase dramatically so log Teff decreases. This evolutionary feature is shown in

Figure 3.1. The primary follows the same evolutionary features, but the change in

logL and log Teff are more dramatic, leading to a loop like feature. This loop feature
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can be attributed to the high ṀW (see �gure 7.7 for the magnitude di�erence) because,

before the onset of this evolutionary phase, the primary reaches Tjump (dash dotted

line in Figure 7.1).

As indicated in Figure 7.1, the primary actually evolves to TJump three times,

twice from the hot side of the jump and once from the cold side. Note that TJump

is not always constant throughout the evolution of the primary and secondary, it lies

within the range of 4.414 ≤ log Teff ≤ 4.42. First the temperature and luminosity

continually decrease and the mass loss rate remains the same until the primary crosses

TJump the �rst time (location II in Figure 7.2). Then the core reaches hydrogen

exhaustion (2 in Figure 7.1) and the luminosity generation by hydrogen burning

decreases. Then hydrogen shell burning begins, the luminosity generation increases

slightly and the star's radius does not change. Therefore log Teff and logL increase

and the primary approaches log TJump again, but from a lower to higher temperature.

Finally, the star expands rapidly because of the hydrogen shell burning and the core

starts helium burning. Therefore log Teff decrease and the primary reaches the jump

again near the termination of the model. However each time the primary reaches

the bi-stability jump it has di�erent physical characteristics e.g. the logL and the

mass are di�erent. Therefore the magnitude of the jump is di�erent, since the ṀW

is dependent on mass and luminosity.

Explaining the characteristics of ṀW for the primary near the bi-stability jumps

is straight forward. The star reaches the bi-stability jump (PJ1 shown in Figure 7.3)
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from the hot side, therefore there is an increase in ṀW . Next the star goes through

the evolutionary path describe above, therefore the star approaches the jump from

the cool side of TJump (PJ2), thus leading to a decrease in ṀW . Then, very rapidly,

the star approaches again from the hot side of the jump (PJ3), which causes yet

another jump in ṀW .

It takes the primary ∼ 7 × 104 yrs to perform this loop. Therefore any physical

changes because of this loop, for instance the binary separation, happens on short

timescales in comparison to the system age. This leads to the discontinuity-like

feature near the end of the models in Figure 7.3. After PJ1 the primary evolves to

TJump again and therefore reaches PJ2 where log ṀW value is ∼ −5.5. Finally, in

∼ 3 × 103 yrs the primary evolves past TJump for the third time (PJ3), and now

log ṀW is ∼ −4.4.

The dramatic decrease of ṀW at PJ2 has to do with FeIII ionizing to FeIV.

As described in chapter 6, FeIV does not have many lines and is not a signi�cant

contributor to ṀW . Only when the majority of Iron is in FeIV state, when Teff is

greater then TJump, does FeIV signi�cantly contribute to ṀW . When FeIII ionizes to

FeIV at TJump, only a small fraction of iron is in the FeIV state at this temperature,

leading to a lower ṀW . The sudden decrease in ṀW is due to the quick ionization of

FeIII to FeIV throughout the wind.

According to Keszthelyi (private communication), the bi-stability jump has not

been constrained by observations for the evolutionary transition of TAMS to helium
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core burning. Keszthelyi et al. (2017) provide a brief description of the uncertainty

of modeling the bi-stability jump during TAMS and near core helium burning. As

described above, the stellar parameters of the primary are changing drastically on

short timescales. Therefore, from this point on, I will only focus on the primary's

bi-stability jump before TAMS. Therefore the labeling of primary jump 1 (PJ1) will

simply become PJ now that PJ2 and PJ3 will no longer be included in the discussion.
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For log T between 4.46 and 4.51 the primary is less massive then the secondary.

Since secondary's mass is higher and ṀW is lower than the primary, the seconary's

luminosity increases. Then the secondary reaches the bi-stability jump and its lu-

minosity decreases signi�cantly (black dash-line shown in Figure 7.1). When the

secondary reaches the jump (see Figure 7.3) the mass loss rate is so high that the
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Figure 7.5: 14N surface abundance vs. Age for the primary (left) and secondary
(right) for v1 and v3. The top two graphs include wind mass-transfer and the bottom
two graphs do not.

logL decreases dramatically, as seen in Figure 7.2. Near the termination of the mod-

els, the relative amount of mass loss for both the primary and secondary are the same,

as shown by the slope of the ML-plane. The "bump" in the HR-diagram for v3-v5

at log T ≈ 4.4 − 4.45 in the secondary's plot is due to the decrease in ṀW of the

secondary and bi-stability jump of the primary (See Figure 7.6).

The ratio of ṀW below the jump temperature to above the jump temperature

for the primary is ṀW,cool/ṀW,hot ∼ 3.46. For the secondary the ratio of ṀW is
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Figure 7.6: Ṁ? vs Age for the primary (left) and secondary (right) for wind mass-
transfer included in the models (top) and not included (bottom).

ṀW,cool/ṀW,hot ∼ 13.26. There is a di�erence because the secondary is more massive

and has a higher luminosity at its bi-stability jump, its ratio of ṀW,cool/ṀW,hot will be

larger than the primary. Note the oscillatory behavior of ṀW near PJ is due to the

primary maintaining the same temperature (near log TJump), but both the luminosity

and mass are decreasing during this period (see Figure 7.1).

In Figures 7.3 and 7.4 there is a clear indication of the bi-stability jumps of the

secondary and primary. For Figure 7.3 the separation and period evolve at the same
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rate up to PJ and SJ. Afterward the slope increases. The di�erence bewtween v1-v2

and v3-v5 in Figure 7.4 is due to wind mass transfer by the bi-stability jumps.

As shown in Figure 7.12 there is a sudden increase in rotational velocity for v3-v5

during this time. Comparing the data for rotation velocity for v3to� and v3 during

this time shows that a jump in rotational velocity does not occur. Wind mass transfer,

due to the bi-stability jump of the primary, is spinning up the secondary's surface

for v3-v5. For v1 and v2 PJ and SJ line up such that the secondary does not gain

any matter (see Figure 7.6) and therefore there is not a dramatic increase in vrot for

either star. This is the reason for the di�erent slopes when comparing v1 and v2 to

v3-v5 for a and Porb as shown in Figure 7.3. a and the period are changing because of

how large ṀW is for both the primary and secondary. J̇ml is always negative and J̇ls

is general positive (occasionally J̇ls is negative, but this does not happen frequently).

As the system evolves, J̇ml is ∼ 10 times larger then J̇ls, therefore a and Porb increase

due to the loss of orbital angular momentum. Finally the black and green dashed

lines shown in Figure 7.4 indicates the e�ects the bi-stability jumps have on Jorb,

J̇orb, and period of the primary and secondary. The bi-stability jump, caused by the

recombination of FeIV to FeIII, a�ects the binary characteristics and therefore can

not be ignored.
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7.1.3 Tidally Enhanced Winds & Wind Mass Transfer

The tidal enhancement factor, as described above, has a large impact on the models.

For v1o�-v5o� the lifetime of the system is shorter than v1-v5, where the model

terminates at t ≈ 2.5 Myr (See Figure 7.7). The primary and secondary evolutionary

tracks exhibit typical characteristics of an O and B star (Shown in Figure 7.8). The

change in the mass from the beginning of the model to end is only a few solar masses,

which allows the primary to burn through its fuel faster. There is a deviation in the

beginning of the models, but this is due to a high vinit and the contribution of enhanced

winds due to rotation. Note that the primary and secondary of the v1o�-v5o� models

do not experience the bi-stability jump (shown in Figure 7.7). The mass loss rate are

more appropriate for stars of their respective masses. The comparison emphasizes

the strength that tidally enhanced winds have on the model binary systems. Due to

this large impact on the binary system, the tidal enhancement parameter BW , was

investigated for v3.

Wind mass transfer using the Bondi & Hoyle (1944) method is not shown in the

ṀW plots, however it is shown in the Ṁ? vs. age plots. Ṁ? is the total mass loss

rate (ṀRLOF , wind mass transfer, and ṀW ) of a model star. Shown in Figure 7.6,

there is a clear indication of wind mass transfer near the location of PJ and SJ. The

spike in Figure 7.12 is due to the primary accreting matter from the secondary. The

secondary's surface has less 14N then the primary's surface. Therefore the primary's

14N surface abundance will decrease during the wind mass transfer. While for higher
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Figure 7.7: ṀW vs age for the primary (left) and secondary (right). The top two
graphs include tidally enhanced winds and wind mass-transfer (models v1-v5). The
bottom graphs do not include these e�ects (v1o�-v5o�)

velocity's models v3-v5 PJ is shifted from SJ, then accretion will happen onto the

secondary's surface. Therefore the secondary will have an increase in surface 14N as

shown in Figure 7.12 near 6.5 Myr.

There is a bene�t of plotting the primary and secondary on the same graph (Figure

7.6). For example, for v1 the primary and secondary Ṁ? are almost identical after

5 Myrs, while this is not true for v1to�. What is even more interesting is the PJ

happens at the same time as SJ as discussed above. The ṀW for SJ is larger than
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Figure 7.8: HR-diagram for the primary (left) and secondary (right) for models using
tidally enhanced winds and wind mass-transfer (top). The bottom graphs do not
include these e�ects. The blue diamond indicates the location of the start of the
models.

for PJ, so Ṁ? of the primary evolves di�erently. However this is not the case for v3

and v3to�. This is due to tidally enhanced winds, which will drastically change Ṁ?.

The orbital period for v1o�-v5o� only di�er from their starting values (4 days)

by about a day. ṀW of the primary and secondary are low enough that throughout

the evolution |J̇ml| ≤ |J̇ls| and therefore J̇orb is positive and the orbital period will

decrease. Overall J̇ml for v1o�-v5o� is an order of magnitude lower than J̇ml for
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v1-v5.
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Figure 7.9: 14N surface abundance vs. Age for the primary (left) and secondary
(right). The top graphs include tidally enhanced winds and wind mass transfer (v1-
v5). The bottom do not include them (v1o�-v5o�)

7.1.4 Surface Abundance & Rotation

14N surface abundances for massive rotating binary stars are of great interest. The

observed 14N surface appears to be higher for slow rotating B stars, and lower for

fast rotating O stars. The connection between these two cases is the focus of Maeder
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& Meynet (2012), Higgins & Vink (2019), Brott et al. (2011), and Ekström et al.

(2012). The relationship between the 14N surface abundances and surface rotation is

believed to be due to rotational mixing inside stars that were initially fast rotators.

This was brie�y discussed in Chapter 4. In binary systems, mass transfer, mass loss,

tidal forces and mixing due to tidal dissipation can also lead to this connection (see

Langer 1998 for the theory of mass transfer and 14N surface abundances).
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Figure 7.10: Shear vs. Radius for the primary of v3 at t ∼ 2.2 Myr (left) and v3o�
at t ∼ 2.5 Myr (right)

For v5o� the 14N abundance changes by just under 0.2 dex for the primary and

there is a minute change in the secondary. The surface rotational velocity decreases

but stops decreasing near vrot ∼ 100 km s−1 for both the primary and secondary

for v1o�-v5o�. There are three reasons for the low 14N surface abundance for the

v1o�-v5o� models compared to v1-v5. First, as shown in Figure 7.10, the shear in

the envelope is small for v3o� in comparison to v3. This implies v3o� has nearly
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Figure 7.11: Shear vs. Radius for the primary of of v3 at t ∼ 7.62 Myr.

uniform rotation throughout its interior. While, clearly shown in Figure 7.11, v3 has

di�erential rotation in the envelope. Note that the convective core for v3 for the top

two panels are at R ∼ 2R� since the shear is ∼ 0. This is because convection enforces

solid body rotation in the core of massive stars. The strength of chemical mixing is

dependent on turbulence and horizontal di�erential rotation. Therefore the surface

and envelope of v3 will be more 14N rich than v3o�. Second, the ṀW for v1-v5 is so

high that it causes �stripping� of the envelope revealing the nitrogen-rich interior.

The change in 14N surface abundance for v3 is 1.2 dex for both stars as shown

in Figure 7.12. Thus the dramatic increase of 14N is due to the strength of ṀW .

This envelope is enriched in 14N due to αov drawing 14N out of the core into the

envelope (discussed in Chapter 2). In addition, the rotational induced circulations

and instabilities also contribute to the enrichment of 14N in the envelope (see Chapter

4).

For the 14N surface abundance, the primary's evolutionary pattern closely resem-
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Figure 7.12: Panel of the Surface 14N abundance vs Age (top) and rotational velocity
vs age (bottom) for the primary (left) and secondary (right) for v1-v5 models. The
Black triangle and diamond are the location when the total mass of the system is
45M� and 35M�, respectively. The system age at the black triangle is ∼ 1.9 Myrs
and for the diamond ∼ 5.4 Myrs. The letter J is the location of the �rst bi-stability
jump of the primary and the bi-stability jump of the secondary. The location of 1 in
the primary's graph is the location of the two other jumps.

bles Figure 1 in Higgins & Vink (2019). However the di�erence is ≈ 0.5 dex which

could be attributed to a di�erence in ṀW and initial mass. The secondary's 14N

abundance and Ω evolution are rather interesting before the onset of the bi-stability

jump. Shown in Figure 7.12 are deviations between v1-v5 which develop after∼1 Myr.

There are also small deviations from v1-v5 that can be seen in the HR-Diagram. The
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speci�c angular momentum2 of matter that is lost from the surface causes vrot to

decreases. Since ṀW for the primary is nearly 10 times greater than the secondary

in the beginning, the primary's surface rotation rate will decay more quickly. Also,

ṀW for the primary is always signi�cantly higher than the secondary, also leading to

greater decrease in vrot than the secondary.

When the system mass is ∼ 45M� the ratio of vrot the primary to the secondary's

is ∼ 2.6. This is shown by the triangle in Figure 7.12. At this time, the 14N surface

mass fraction of the primary is ∼ 3.2 times greater than the secondary's as shown

in Figure 7.12. Therefore, at this evolutionary period the primary is rotating slower

but is more nitrogen-rich than the secondary. This evolutionary period shows, in

these models, that a slower rotating nitrogen-rich massive star exists because of high

wind mass loss due to binarity. So the reason for slow rotating nitrogen-rich B stars

observed in the Large Magellanic Cloud (see Figure 1 in Hunter et al. 2008) may be

enhanced winds in binary systems.

When the mass of the system is ∼ 35M� the ratio of the surface rotation of the

secondary over the primary is ∼ 2. The ratio of the primary over the secondary's 14N

surface mass fraction ∼ 2.9. However at this point both the secondary and primary

are slow rotators, where the primary's vrot is ∼ 6.34 km s−1 and secondary's vrot is

∼ 12.9 km s−1. At the termination of the models both the primary and secondary

are slow rotators and the ratio of their surface 14N is ∼ 1. The secondary's high mass

2speci�c angular momentum is angular momentum per unit mass (cm2 s−1)
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loss rate due to the bi-stability jump is peeling of the layers of envelope at the end

of the models and revealing the 14N rich envelope . This is why the secondary's 14N

and surface rotation are similar to the primary's when approaching RLOF.

Note that the binary mass is more useful for observations than the system age.

The age of the system is di�cult to determine from observations. So, if the separation

distance and period can be determined from observations, then, by using the general

form of Kepler's 3rd law, the binary mass can be determined.

As described above, the models experience a wind mass transfer event at PJ

and SJ. This is shown in Figure 7.12 for the primary and secondary; also the little

�bump� in Figure 7.12 for the secondary. After PJ and SJ, the evolution of vrot and

14N surface abundance continue approximately the same evolutionary trend. When

MESA accounts for mass lost from the primary it does this by removing the surface

cell. Then MESA will accrete the mass lost from the primary onto the secondary,

therefore creating a new cell surface on the secondary. The matter of this cell has the

speci�c angular momentum and 14N surface abundance of the primary. Therefore if

there is a large di�erence of 14N surface abundance of the primary compared to the

secondary this will cause a spike in the graphs. Then MESA will di�use the properties

of the cell into the interior by e.g., convection and/or ES-circulation. Therefore as

the system ages, and if mass transfer stops, the physical quantity's evolution will

approximately follow its original path. I would like to note that accreting speci�c

angular momentum is a little di�erent, because the accreted matter gains additional
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speci�c angular momentum by �falling� down the gravitational well of the secondary.

This is why the secondary's rotational rate increases rapidly during RLOF.

Varying the velocity between models v1-v5, as shown in the HR-diagram, has little

e�ect until close to the beginning of PJ. The main sequence width is increased slightly

around this region. Turning the tidal enhancement factor on and o� has drastic e�ects

on the models, as discussed in the next section. One interesting evolutionary feature is

the loop in the primary's HR-diagram which results in the multiple bi-stability jumps

(PJ,PJ2, and PJ3) in Figure 7.3. The evolution of the surface velocity decreases

quickly for the primary and decays slower for the secondary. The orbital parameters

e.g., Porb, a, and J̇orb follow the same trend up to the location of the bi-stability jump.

This is not surprising, since all quantities depend on the mass loss rate (see Equation

5.16).

7.1.5 Tidal Enhancement Factor BW

Two papers, Han et al. (1995) and Han (1998), constrained the value of the Tout &

Eggleton (1988) BW parameter from observations (See Equation 6.20). Han et al.

(1995) created a grid of models by varying BW , ranging from 0 − 104, to match

observations of Be stars. Han et al. (1995) found a value BW = 500 reproduced

the observations. Han (1998) focused on double degenerate binary stars and found

BW = 103 closely reproduced observations. Frankowski & Tylenda (2001) derived

a more complex formula to model tidally enhanced winds. For the Frankowski &
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Tylenda (2001) formula, the BW would be smaller than the values used by Tout &

Eggleton (1988), Han (1998), and Han et al. (1995). Note that these values were

constrained from observations of lower mass stars ∼ (1− 1.5M�).
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The v3 parameters were used for models using di�erent values of the tidal en-

hanced wind coe�cient BW . Shown in Figure 7.13, changing BW from 104 to 0 has

drastic e�ects on the binary models. There are two prominent features that can be

seen on both Figures 7.13 and 7.14. First is the increase in the age of the system

when increasing BW from 0 up to 104. There is a correlation of an increase in mass

loss rate and the age of the system. The higher BW the longer the age of the system

until termination. A large ṀW lowers the star mass and therefore slows the rate of

hydrogen burning. For example, for the primary at t ∼ 3 Myr the core hydrogen

mass fraction is 0.482 for BW = 104 and 0.414 for BW = 500. Thus for values of

BW = 0 or BW = 100 the primary has more mass, and therefore goes through H

burning faster and reaches TAMS sooner. This relation is also shown in Section 7.3

for all models (vf05-vf3). Second, when BW = 500, from 4 Myr until the model ter-

minates, mass transfer by RLOF 3 exists. Figure 7.14 shows that the PJ is reached

for BW = 500. Note that the red evolutionary track is model v3, which was dis-

cussed previously and reaches PJ and SJ. The mass transfer rate by RLOF is small

enough (ṀRLOF ≈ 10−15M� yr−1) that the secondary does not spin up past its vcrit.

Changing this parameter along with tidal dissipation has the ability to prevent RLOF

events in close binaries. In addition, the increase of ṀW due to the primary's jump

slows the increase of mass loss by RLOF. Since ȧ is a�ected by the bi-stability jump,

the increase of ȧ is able to prevent the increase of mass transfer by ROLF (see Figure

3In this case the majority of the evolution happens during RLOF. Therefore the data were not
removed for the BW cases.
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7.15). This enables the model to evolve longer before the secondary begins to reach

its break-up velocity. Therefore, the combination of the bi-stability jump, a lower

BW , and altering the period may prevent a RLOF in a close binary system.

Shown in Figure 7.13, as BW decreases logL increases, which is not surprising

since the primary has more mass due to a lower mass loss rate. This phenomenon is
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also shown in Figure 7.16 and is discussed further in depth in the following section.

It would be bene�cial if BW was constrained by observations of close massive binary

systems for more accurate modeling of ṀW .

7.2 Wind Factor

The wind factor coe�cient can increases or decreases the wind mass loss rate by

altering its value. The primary exhibits the evolutionary loop for all vf models shown

in Figure 7.16. The evolutionary loop for the primary happens at lower logL for

higher values of fv. Described above, this evolutionary loop represents the TAMS to

the onset of helium burning in the HR-diagram for the primary. The reason for the

apparent dependency of luminosity on fv is simple. When the mass loss rate decreases

the primary and secondary have higher masses, therefore a higher logL and shorter

lifetimes (see Equation 2.15).

The secondary's evolutionary track, for various values of fv, resembles model

v1, but at di�erent logL. However the secondary evolutionary track for vf3 has

a quick increase in logL and then performs a loop at the end of the evolutionary

track. Near the end of vf3 model the secondary has reached the TAMS and then

is slowly initiating core helium burning. In the ML-plane (Figure 7.18) the primary

experiences PJ at approximately the same mass (sudden decrease in the slope), while

the secondary experiences its bi-stability jump at di�erent masses. The shift of the

bi-stability jump vs. age is not surprising. If ṀW is lower the system age will be
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shorter (discussed above). Therefore the bi-stability jump will appear to be shifted

to the left in Figure 7.18. Apparently, the secondary is more sensitive to a change in

mass loss rate than the primary. Note that dashed line goes through the �kink� in

all models for the secondary's track in Figure 7.16, because this is the location of the

secondary's TJump.
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As noted above, if a bi-stability jump happens during or past the TAMS, I do

not discuss it. However, I would like to explain why vf05 experiences the bi-stability

jump (shown in Figure 7.18), but does not cross the TJump for the primary as shown

in Figure 7.16. The jump temperature for the Vink et al. (2001) scheme is dependent

on the metallicity and the physical properties of the star. So in the case of vf05,

log TJump ≈ 4.426 instead of the location of the black dashed line. Therefore at the

end of the vf05 model the primary reaches the bi-stability jump.

The ML-plane shows the di�erence in �nal mass and logL indicated by the black

circles in Figure 7.21. For both the primary and secondary it is clear that an increase

of the fv decreases the �nal logL and mass of the system.

The evolution of 14N surface abundance (Figure 7.18) and size of the evolutionary

loop in the HR-diagram for vf05, vf15 and vf3 are di�erent then models v1-v5. For

instance at ∼ 1 − 2.5 Myr the slope of the 14N abundance changes drastically for

vf3 and vf15, is constant for vf05 and dips slightly for vf1. The primary is losing a

tremendous amount of material in the beginning, (log ṀW ≈ −4.0) for vf3. Therefore

more surface layers of the star are being blown away in a short amount of time for

vf3 compared to v1, thus the envelope that is more nitrogen-rich is being exposed.

The vf3 14N surface abundance evolution levels o� between 2 and 4 Myr, as shown

in Figure 7.18. The slight increase of 14N surface abundance for vf3 for the primary

is due to internal mixing within this time period. The star proceeds through the

evolutionary loop stage and 14N abundance begins to increase due to the PJ. For
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meant to emphasize the bi-stability jump.

vf05 the mass loss is low enough at the beginning that the surface layers are slowly

being peeled away and giving a gradual increase of the 14N surface abundance. For

vf05 the primary experiences a mass transfer event as in model v1, while the secondary

experiences a mass transfer event for only the model vf15. The characteristics of the

14N jump in the secondary shown in Figure 7.18 resemble that of models v3-v5.

As shown in Figure 7.19, the system experiences the bi-stability jump at di�erent
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Figure 7.19: Separation vs. age for di�erent fv values.

ages. In addition, it is easy see the drastic change in ȧ due to the bi-stability jumps

in the plot. The evolution of the magnitude of ṀW for SJ of vf3, though lower than

vf05-vf13, decays slower than vf05-vf15. Therefore ȧ will remain constant on a longer

timescale. Figure 7.19 shows that, by changing the fv, the bi-stability jump has an

e�ect on the change in the binary separation over time.

Changing fv, as expected, changes the total amount of mass lost from the system at

the termination of the models. Higher values of fv allows the system to evolve longer

due to the lower masses of both the primary and secondary. The two interesting cases

are the surface 14N and the PJ characteristics at di�erent values of fv.

7.3 Convective Overshoot

Convective overshoot, as discussed in Section 2.3, has the ability to lengthen the

lifetime of the star by having hydrogen pulled from the envelope to the interior of
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the star, providing more nuclear fuel over a star's lifetime. Figures 7.20 and 7.21

show a clear indication of the di�erence in age of the onset of the bi-stability jump

and termination of the models. For example, the bi-stability jump for a1 happens at

≈ 6.4 Myr, but for a5 the jump happens later at ≈ 8.2 Myr.
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(right) for αov
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The primary, for v1-v5 and vf05-vf3, reaches the TAMS and then helium burning

at lower mass, logL, and Teff compared to a5. Core hydrogen exhaustion and then

helium burning provide an increase in the luminosity generation from the core and, if

the radius remains constant or shrinks, an increase in surface temperature. Convective

overshoot allows the primary to remain more massive and compact during the TAMS

to helium burning for a5 compared to a1 and a3. Figure 7.23 shows the �nal mass

for a5 of the primary and secondary are higher than a1.
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Figure 7.22: HR-diagram for di�erent αov values for the primary (left) and secondary
(right). The black dash-lines indicate the location of jump temperature.

a3 reaches the PJ closer to the TAMS then a1. The primary's bi-stability jump

of a3 is smaller due to the di�erence in logL and M . The a5 model never reaches the

PJ before the onset of RLOF. Note that the primary jump occurs before TAMS. The

a3 model reaches SJ and the magnitude of the jump is signi�cantly higher than the

PJ of a3. Also, model a5 of the secondary does not reach SJ. The jump that is shown
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Figure 7.23: Mass-Luminosity plane for di�erent values of αov for the primary (left)
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in Figure 7.21 of the secondary happens during hydrogen exhaustion. Apparently a

convective overshoot value of 0.5 allows the secondary to reach hydrogen exhaustion.

This is interesting because the secondary does not reach hydrogen exhaustion for

models v1-v5, vf05-vf3, a1, and a3. Since a5 is able to keep the primary more compact

and allow the system to age longer, then the secondary is able to reach hydrogen
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exhaustion

The deviation in Figure 7.20 from a1 before the onset of the bi-stability jumps is

the result of the mixing provided by overshoot. Higher values of αov implies greater

mixing of elements and the Figure provides the best example. Processed nuclear

material from the CNO cycle are drawn out into the envelope and surface as discussed

in Chapter 2.

Changing αov, from lower a1 to higher a5, appears to create a more smooth evo-

lution for all physical characteristics (binary and stellar) near the end of the models.

The time for the secondary and primary to go through the TAMS to helium burning

processes for a5 is longer than a1. Therefore the physical changes of the models for

a5 during this period are less drastic than a1. As discussed in Section 7.1.3, the

bi-stability jump is shown to a�ect ȧ, which is shown in Figure 7.19 by altering the

value of fv. The SJ and BJ do alter ȧ for di�erent values of αov as shown by a1 and

a3 in Figure 7.24.

Therefore increasing αov increases the �nal mass, logL, and age. The age increases

because a higher value of αov extends the primary's time on the MS, thus preventing a

RLOF event. For higher values of αov the primary and secondary mass are larger from

the TAMS to onset of core helium burning. If the mass increases then the luminosity

will increase since both are roughly proportional to each other (See equation 2.15).
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7.4 Brott & Higgins Comparison

When creating the models for Higgins and Brott comparison, the masses, period, and

eccentricity were the same as discussed at the beginning of this Chapter. For Higgins

αov = 0.3 and vinit = 120 km s−1 for the primary and αov = 0.5 and vinit = 250

km s−1 for the secondary. Enhanced winds due to rotation was not implemented for

Higgins. This was done to follow the work of Higgins & Vink (2019). fv was set

to one for both models. I included gold_tolerance in the provided inlists for greater

restriction on energy conservation. All other parameters provided by Higgins (private

communication) were not changed. For the Brott models, vinit = 267 km s−1 for the

primary and vinit = 271 km s−1 for the secondary. Both the primary and secodary's

αov was set to 0.335. Note that both models terminated because MESA was unable

to �nd an acceptable solution (therefore a small δt).

I would like to note the di�erent initial stellar parameters between the Higgins and

the Brott models besides vinit and αov. First, the Brott model includes the Spruit-

Taylor dynamo for di�usion of angular momentum while the Higgins model does not.

When looking at the Brott model data, the SP-dynamo is occasionally the strongest

contributor to mixing in the envelope. Therefore it can e�ectively keep the envelope

and surface rotation from decaying quickly. In addition, the Spruit-Taylor dynamo

has the ability to enforce solid body rotation. Second, the initial abundances are

di�erent between the models (See Table 2.3). This will have an e�ect on the stellar

winds and the surface nitrogen enrichment (See chapters 2, 4, and 6). Finally di�erent
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mixing theory and opacity tables are implemented (See table 2.2).
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Figure 7.25: HR-Diagram for the primary (left) and secondary (right) comparing the
Higgins model and the Brott model in binaries
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Figure 7.26: Mass-Lumionsity plane for the primary (left) and secondary (right) for
the comparison of the Higgins model and the Brott model.

Starting with Figure 7.25, the primary for the Higgins model does a small hook

towards the end of its evolution. Its evolutionary path closely resembles that of

a3. This is not surprising, because Higgins' initial settings for the primary for vinit
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and αov are approximately the same as model a3 (however enhanced winds due to

rotation are included for a3). The initial velocity di�ers by 20 km s−1 between Higgins

model and a3. Actually, all primary graphs of Higgins have approximately the same

characteristics as a3.

The primary for the Brott model initially starts to perform a large hook resem-

bling the primary of v3-v5 models. However extremely close to the beginning of the

hook the primary closely resembles the secondary's v1-v5 models. The di�erence be-

tween Higgins and Brott's primary in the start of the evolution is due to the Brott

model having a higher initial rotation rate and rotational enhanced wind mass loss

is included. The primary's evolution for both models after the hook feature resemble

each other until hydrogen exhaustion.

 

-6.2

-5.7

-5.2

-4.7

-4.2

0 1 2 3 4 5 6 7 8 9

lo
g

 Ṁ
W

(M
ʘ
/y

r)

Age (Myr)

Vink & Higgins

Brott et. al.

0 1 2 3 4 5 6 7 8 9

-6.2

-5.7

-5.2

-4.7

-4.2

lo
g

 Ṁ
W

(M
ʘ
/y

r)

Age (Myr)

Figure 7.27: ṀW vs Age comparison for the primary (left) and secondary (right) for
the Higgins model and the Brott model.

The di�erences in the initial abundances and αov causes the deviation in the evo-
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lutionary tracks when comparing Brott and Higgins primaries. Recall that changing

vinit does not cause a large di�erence in the evolutionary track in the HR-Diagram

when there is a large ṀW . However, as discussed in section 7.3, αov does have a large

e�ect on the evolution of the primary. The Brott models have convective overshoot

value of 0.335 and for Higgins it is 0.3. Therefore the Higgins primary should be

cooler and less luminous. This is clearly the case, as shown by Figure 7.25. The

Brott primary track resembles the a3 and a5 models near hydrogen exhaustion to

helium burning. Shown in the mass-luminosity plane (Figure 7.27) the �nal mass

and luminosity is lower for Higgins compared to Brott. There are two reasons for the

di�erence in mass and luminosity. First, as described previously, the initial abun-

dances of the two models di�er. Brott's metallicity is lower than Higgins (see Figure

7.28), and therefore the envelope is more nitrogen-poor than Higgins. This will lead

to more fuel for the core of Brott's primary implying a more compact, higher mass,

less evolved star. Second, the inclusion of the Spruit-Taylor dynamo may lead to a

more hydrogen rich core. The Spruit-Taylor dynamo may enhance chemical mixing

by its in�uence on the rotational velocity through other circulations and instabilities.

Higgins' secondary evolutionary track preforms a small loop in the beginning like a5.

However, vinit for the Higgins secondary is higher than a5 (vinit = 100 km s−1 ) so

the hook is more prominent. The more prominent hook is due to the larger change

in req because the decrease in the secondary's rotational speed is larger (discussed

in Section 7.1). After the loop-like feature the secondary follows nearly the same
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Figure 7.28: 14N surface abundance vs Age comparison for the primary (left) and
secondary (right) for the Higgins and Brott models.

evolutionary path as a5. The slight deviations are due to the higher initial rotation

velocity of Higgins model. The secondary's evolutionary track for both Brott and

Higgins deviates slightly. This is not surprising since the di�erence in convective

overshoot between the models is larger than the primary, where Higgins secondary's

convective overshoot is αov = 0.5 and Brott's secondary is αov = 0.335.

The ṀW for both Higgins and Brott are nearly identical. This is not surprising,

since Brott uses the �Dutch� wind scheme and, when Teff ≤ 10 kK and surface 1H <

0.4 it will switch to Nugis & Lamers (2000) wind scheme, otherwise the �Dutch� wind

scheme applies the Vink et al. (2001) wind scheme. The �Dutch� Teff and surface 1H

conditions are not reached in Brott's model and therefore both the Brott and Higgins

models use the Vink et al. (2001) scheme. Unfortunately, as shown in Figures 7.27

and 7.25 the bi-stability jump for both stars for Brott's models happens at TAMS

moving towards helium core burning and therefore the results are not reliable. The
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Higgins primary and secondary also experience the bi-stability jump at the TAMS.

The 14N surface evolution of both models closely resemble each other for both

the primary and secondary. The ≈ 0.2 dex di�erence for the initial 14N surface

abundance in Figure 7.28 is due to the di�erence in initial abundances of the two

models. The di�erences in evolution can be attributed to the di�erence in vinit, αov,

and di�erent types of instabilities used (ST-dynamo for Brott). See sections 7.1 and

7.3 for the in�uence of vinit and αov on the 14N surface abundance for both the

primary and secondary. The sudden change in 14N abundance at ∼ 8 Myrs is due to

the bi-stability jump (See section 7.1).
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Figure 7.29: Binary separation, primary and secondary rotation vs Age for the pri-
mary (left) and secondary (right). The left graph is the Higgins model and the right
graph is the Brott model.

The surface velocity for the secondary of Brott decays slower than Higgins models

as shown in Figure 7.29. The primary for Brott is has less shear in its envelope

than the Higgins primary. This could be due to the inclusion of the Spruit-Taylor
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dynamo in Brott's model, which may be e�ectively �smoothing" out the shears and

preventing the surface rotation rate from decreasing quickly. The change in the

period and separation for both Brott and Higgins are gradual and follows the same

relationship as v1-v5 from the beginning of the model to 5 Myrs. However unlike the

the sudden change in ȧ in models v1-v5 due to the bi-stability jumps, Higgins and

Brott ȧ only gradually increase. The ȧ for Higgins and Brott's models follows closely

for models a3 and a5.

7.4.1 Grid of Masses

I end this chapter with an analysis of the result of varying secondary and primary

masses using Brott and Higgins parameters. I created a grid of models for the primary

and secondary by using the condition that q ≈ 0.7 and changing the primary mass

by increments of 5M�. Starting from the highest mass binary system to the lowest,

the primary and secondary masses are as follows: (60+40) M�, (55+40) M�, (50+35)

M�, (45+30) M�, (40+30) M�, (35+25) M�, (30+20) M�, and (25+20) M�. The

(35+25)M� is used as a base comparison since it was discussed in depth. For Higgins

models ranging from (35+25) M� to (60+40) M� the evolutionary track is the same

for the primary. The only di�erence of course is the increase in logL and log Teff at

the end of the model, which can be attributed to the increase in the primary's mass.

For the (25+20) M� system, the primary's evolutionary track shows the loop

feature shown in the v1-v5 models. The secondary track resembles the v1-v5 models.
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Figure 7.30: HR-Diagram of the Higgins model for the primary (left) and secondary
(right) for di�erent primary and secondary masses.

Apparently near this mass range the Higgins models will reproduce the track of the

v1-v5 models. Therefore the bi-stability jump may be more prominent in binaries

with lower masses using the Higgins parameters. Binary masses between (40+30)

M� and (60+40) M� reach TAMS sooner and therefore will not reach the PJ. The

secondary's evolutionary track, in this mass range, behaves like the a5 model which

did not reach SJ. Therefore the bi-stability jump will not happen pre-RLOF for binary

masses in the ranges of (40+30) M� to (60+40) M�.

The Brott model is fascinating because either below or above the (35+25) M�

evolutionary track shows the same feature. Unlike the Higgins model for (25+20)

M� binary system, Brott's primary evolutionary track does not exhibit the loop-

like feature. However the secondary for Brott follows closely that of Higgins for the

(25+20) M�. The reasoning follows from previous arguments; the initial values of
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vinit and αov for the secondary are close for Higgins and Brott, thus their evolutionary

tracks will be similar.

It appears there is a transition between the (25+20) M� and (35+25) M� binary

systems where the evolutionary tracks are vastly di�erent for both the primary and

secondary. At lower masses the secondary clearly reaches its bi-stability jump as

shown in Figures 7.30 and 7.31. The primary performs a loop like feature for the

Higgins case at (25+20) M�. This transition can also be seen between a1 and a3

models and comparison between vf05 and vf3. It may have to do with the combination

of the mass of the primary and secondary and ṀW near this period of evolution.
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(right) for di�erent primary and secondary masses.
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Chapter 8

Count Rates from Predicted Wind-Blown Bubble Using

PIMMS

Using the numerical outputs of the models, predictions can be made for future ob-

servations. This includes the wind-blown bubbles discussed at the end of Chapter 6.

Observations can determine the: Msys, M1, M2 a, vorb, Porb, the
14N surface abun-

dance, ṀW , v∞, and Teff . However some characteristics will be easier to determine

than others, for instance, Teff . All the characteristics of the models presented can be

used to either check the literature for possible candidates or predict future observa-

tions using PIMMS (discussed in the next section). However, using ṀW , tsys and v∞

a predication can be made regarding the observability of a wind-blown bubble.

Several assumptions need to made to model the bubbles: the ambient ISM density

n0, the foreground absorption column density Nh, and the distance to the binary sys-

tem, r. These parameters, and values discussed in the section, are based on Strickland

& Stevens (1998). They follow the work of Weaver et al. (1977) and Weaver et al.

(1978) to model bubbles around massive O and Wolf-Rayet stars within the �rst 10-20

thousand years.
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8.1 Wind-Blown Bubbles

As discussed at the end of Chapter 6, stars, when surrounded by an ISM that is

dense enough, will create �Wind-Blown bubbles� or a shock fronts. Regions within

the bubbles are hot (T ∼ 106 K, as shown in Table 8.1) in comparison to T ∼ 100 K

for the ISM . In region (b) soft X-rays1 are produced by Bremsstahlung radiation2.

There are currently two telescopes that can observe soft X-rays, the Chandra X-ray

Observatory and X-ray Multi-Mirror Mission-Newton (XMM).

The expansion velocity and current radius can be found by assuming an ambient

ISM density of n0 = 10 cm−3 (Strickland & Stevens 1998) and using equations 6.30

and 6.31 (shown in Table 8.1). In Table 8.1 H60M+40M and H25M+20M implies

using Higgins & Vink (2019) parameters for a system of mass with (60 +40) M� and

(25 +20) M�, respectively. The reference to �High� and �Low� has to do with the size

of the bubble: at the end of the evolution the bubble's radius is larger and earlier it

is smaller. This can give an observer an order of magnitude estimate for radius of the

bubble produced by the various models.

The information in Table 8.2 is important for using PIMMS to predict the required

observing time. In order to calculate the �ux of an object, as shown in Equation 6.32,

the object distance needs to be known. I use r = 2 kpc which follows the work of

Strickland & Stevens (1998). This is reasonable, as OB stars, though few in number,

1Soft X-rays have photon energies below ∼ 5 keV as shown in Table 8.2
2Bremsstahlung radiation is caused by electron scattering, in the case of region (b), this would

be due to either electron scattering o� of a free electrons or protons
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are extremely luminous. In addition, the bubbles themselves are luminous in the soft

X-rays. However, interstellar absorption due to material along the line of sight to the

bubble can cause the source �ux to be substantially attenuated.

Table 8.1: ISM and Bubble Characteristics

Model LMech/L36 t6 R2 v2

- - - (pc) (km s−1)
H60M+40M 1109 5.92 319 31.9

vf3 115 8.81 257 17.3
a5 8.824 9.01 156 10.3

Higgins High 8.390 8.4 148 10.4
Higgins Low 124.7 0.19 5.14 26.96

v3 10.15 7.68 146 11.3
Brott High 3.18 8.5 77.54 5.4
Brott Low 49.83 0.28 17.36 36.68
H25M+20M 0.14 10.9 75.9 4.13

Bv3 0.13 5.77 52 5.29
v3o� 0.007 3.95 23.1 3.46

LMech/L36 is the mechanical luminosity divided by 1036 ergs s−1 and t6 is the age of
the system divided by 106 yrs. The data is organized by the size of the predicted
bubble.

8.1.1 Possible Observation

To use PIMMS �ve parameters need to be input. They are the unabsorbed �ux of

the object as seen from the telescope, Nh, and kTb (the hot gas temperature in energy

units for region (b)). The �ux and kTb are calculated as shown in Tables 8.3 and 8.4.

Strickland & Stevens (1998) used Nh = 3.16× 1021 cm−2 for their models. The �nal

two parameters are the input and ouput energy range. Both are set to (0.1-2) keV for
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Table 8.2: Bubble Characterstics for Region (b)

Model nb Tb Lb Rc

- (cm−3) (K) (ergs s−1) (pc)
Multiplier 10−3 106 1035 -
H60M+40M 14.5 3.16 824 169

vf3 7.89 2.83 110 136
a5 3.00 1.23 0.32 82.7

Higgins High 4.98 2.31 5.23 78.5
Higgins Low 72.2 2.68 5.71 4.32

v3 5.63 2.46 7.56 77.3
Brott High 5.05 2.32 8.11 65.1
Brott Low 50.0 2.59 3.14 14.6
H25M+20M 1.83 1.51 0.033 40.3

Bv3 2.42 1.34 0.012 27.3
v3o� 1.80 1.10 0.00037 12.2

Lb, Tb, nb are the luminosity, temperature, density of region (b) and Rc is the radius
from the star to the shock interstellar gas (Shown in Figure 6.3).

this exercise. The input/output energy range sets the spectral bandwidth that will

be used to calculate the count-rate. Chandra and XMMs energy ranges are (0.2-10)

keV and (0.4-10) keV, respectively.

Table 8.3 shows the calculations for Chandra's ACIS-I instrument for the various

models while Table 8.4 shows XMM values. The count-rates had to be adjusted for

the size of the bubble. PIMMS assumes the object �lls the telescope �eld of view.

However the bubbles above, based on their size and distance, have angular sizes larger

then the �eld of views of the telescopes. Therefore the ratio of the array area over

the bubble area was calculated. Then taking the ratio times the PIMMS output gives

the correct count-rate.

However, some of the model bubbles are enormous. Therefore using Chandra
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would be prohibitive. The required observing time to observe the entire bubble using

Chandra would be long. For example, the bubble predicted for model v3 subtends

7o and the count-rate is 0.026 counts/s for Chandra, while XMM's predicted count-

rate for v3 is 1.316 counts/s. Therefore XMM might be more fruitful for the larger

modeled bubbles, because of its larger �eld of view. Note that the count-rate for

the predicted bubble of v3o� is so low for both Chandra and XMM the likelihood of

�nding the bubble is minuscule.

Columns 2-5 in Tables 8.3 and 8.4 are the input parameters for PIMMS. The

last column in each table are the corrected outputs from PIMMS for both Chandra's

ACIS-I instrument and XMM's thin instrument. ACIS-I was used because it has a

square �eld of view. The thin instrument for XMM was used because it provided the

highest count-rate. Between Higgins High and Lower bound the count rates may be

fruitful for an observation. A proposal could be made to observe a younger binary

system for the Higgins model, for which R2 is small, nb is high, and the count-rate is

high. The above argument made for the Higgins model can be applied for the Brott

model as well. The generation of Bremsstahlung radiation will increase when nb is

high because there are more electron and proton scattering events. Therefore the

amount of �ux coming from the bubble will grow and the predicted count-rates will

increase.

Tables 8.5-8.10 presents the numerical output for the evolution of the primary

star, secondary star, and binary parameters of the Higgins and Brott models. I used
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Table 8.3: Parameter Inputs for PIMMS & Count Rates for Chandra ACIS-I

Model kTb Source Flux Count Rate
keV erg/cm2/s (10−9) counts/s (10−3)

H60M+40M 0.272 688 1520
vf3 0.244 91.8 214
a5 0.106 0.26 0.299

Higgins High 0.199 4.37 13.9
Higgins Low 0.231 4.77 9040

v3 0.212 6.32 26.8
Brott High 0.200 1.69 9.75
Brott Low 0.223 2.65 202
H25M+20M 0.130 0.028 0.0429

Bv3 0.116 0.001 0.0178
v3o� 0.095 0.00031 0.000844

Table 8.4: Parameter Inputs for PIMMS & Count Rates for XMM Thin

Model kTb Source Flux Count Rate
keV erg/cm2/s (10−9) counts/s

H60M+40M 0.272 688 51.3
vf3 0.244 91.8 8.41
a5 0.106 0.26 0.00640

Higgins High 0.199 4.37 0.7532
Higgins Low 0.231 4.77 386.2

v3 0.212 6.32 1.316
Brott High 0.200 1.69 0.528
Brott Low 0.223 2.65 9.11
H25M+20M 0.130 0.028 0.00565

Bv3 0.116 0.001 0.00307
v3o� 0.095 0.00031 0.000234
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Msys as an evolutionary variable because it changes so drastically and Msys can be

determined observationally. Typically the numerical output of models are presented

by speci�c evolutionary stages of the binary system or stars themselves e.g. TAMS or

the onset of RLOF. However RLOF is not studied here and the primary star reaches

TAMS near the end of the models. Therefore intervals of Msys = 5M� were used

instead of a binary or single star evolutionary stage.

All physical quantities of the six tables can be determined observationally as

explained throughout this thesis. The evolution of each quantity for the Higgins

and Brott models has been explained in chapter 7. If an observer were to �nd the

bubble, at say tsys ≈ 4 Myr then hopefully they will be able to determine the binary

mass, logL and log Teff of the primary and secondary stars. Using these values as

constraints and using the information provided in Tables 8.5-8.10 to match the model

information to observed values. Matching the tables data to an observation result

may be the connection between the grid of models and observations.

Table 8.5: Stellar Evolution Information from Higgins model

Msys M1 logL1 log Teff,1 M2 logL2 log Teff,2
(M�) (M�) (L�) (K) (M�) (L�) (K)
60 35 5.22 4.61 25.0 4.89 4.57
55 30.7 5.11 4.6 24.3 4.86 4.57
50 26.8 5.00 4.58 23.3 4.84 4.56
45 23.2 4.92 4.55 21.9 4.82 4.54
40 19.8 4.87 4.52 20.3 4.84 4.52
35 16.5 4.87 4.52 18.5 4.86 4.49
30 13.6 4.85 4.44 16.5 4.90 4.44
25 11.4 4.88 4.42 13.7 4.90 4.42
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Table 8.6: Stellar Evolution Information from Higgins Model

Msys vrot,1 log(N/H)1 + 12 vrot,2 log(N/H)2 + 12
(M�) (km s−1) (km s−1)
60 245 8.01 118 8.01
55 60.1 8.01 53.0 8.01
50 35.2 8.31 38.0 8.01
45 20.7 8.68 25.8 8.01
40 11.8 8.82 15.4 8.15
35 6.69 8.95 8.70 8.42
30 4.3 9.1 4.30 8.58
25 3.03 9.22 3.07 9.01

Table 8.7: ṀW & Binary Evolution from Higgins Model

Msys T a vorb,1 vorb,2 log ṀW,1 log ṀW,2 q
(M�) (days) (R�) (km s−1) (km s−1) (M� yr−1) (M� yr−1)
60 4.00 41.5 219 306 -4.36 -5.18 0.714
55 4.78 45.4 212 268 -4.91 -5.50 0.792
50 5.79 50 203 234 -5.35 -5.76 0.869
45 7.15 55.6 191 202 -5.67 -5.97 0.945
40 9.05 62.5 177 173 -5.79 -6.00 1.03
35 11.9 71.6 161 144 -5.77 -5.92 1.12
30 16.3 84 143 118 -5.74 -5.74 1.21
25 23.6 101 119 98.6 -5.68 -5.55 1.21

Table 8.8: Stellar Evolution Information from Brott model

Msys M1 logL1 log Teff,1 M2 logL2 log Teff,2
(M�) (M�) (L�) (K) (M�) (L�) (K)
60 35.0 5.20 4.60 25.0 4.85 4.55
55 30.8 4.61 5.11 24.2 4.84 4.57
50 26.9 5.01 4.58 23.2 4.83 4.56
45 23.2 4.94 4.56 21.9 4.83 4.55
40 19.6 4.90 4.53 20.4 4.85 4.52
35 16.3 4.89 4.50 18.7 4.89 4.48
30 13.6 4.91 4.47 16.4 4.91 4.42
25 12.3 4.96 4.44 12.7 4.88 4.41
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Table 8.9: 14N & vrot Evolution from Brott model

Msys vrot,1 log(N/H)1 + 12 vrot,2 log(N/H)2 + 12
(M�) (km s−1) (km s−1)
60 247 7.85 257 7.85
55 92.4 7.85 182 7.85
50 39.6 8.04 114 7.85
45 18.0 8.48 68.4 7.85
40 6.60 8.74 36.8 7.94
35 2.22 8.89 13.4 8.14
30 1.05 9.00 2.41 8.38
25 0.655 9.06 0.736 8.90

Table 8.10: ṀW & Binary Evolution from Brott Model

Msys Porb a vorb,1 vorb,2 log ṀW,1 log ṀW,2 q
(M�) (days) (R�) (km s−1) (km s−1) (M� yr−1) (M� yr−1)
60 4.00 41.5 219 306 -4.37 -5.12 0.714
55 4.80 45.6 211 269 -5.08 -5.65 0.787
50 5.81 50.1 202 234 -5.47 -5.90 0.861
45 7.15 55.6 191 202 -5.70 -6.04 0.942
40 9.04 62.5 178 172 -5.77 -6.02 1.04
35 11.8 71.5 163 142 -5.72 -5.65 1.15
30 16.2 83.7 143 119 -5.69 -5.72 1.21
25 23.2 100 111 108 -6.49 -6.35 1.03
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Chapter 9

Summary

9.1 Conclusion

Two single star models (Higgins & Vink 2019 and Brott et al. 2011) were used to study

the interactions and evolution of a close massive binary system using MESA. Higgins

& Vink (2019) parameter values were used to model the observations of the detached

massive binary system HD 166734, while Brott et al. (2011) created an extensive

grid of models to match the observations of Hunter et al. (2008). Four parameters

were varied and studied extensively as follows: the initial rotation rate (vinit), step

convective overshoot (αov), wind factor (fv), and the tidal enhancement factor (BW )

using the inlist provided by Higgins (private communication). A comparison was

made between the Higgins & Vink (2019) and Brott et al. (2011) models using their

parameters that were constrained to observations. A grid of di�erent primary and

secondary masses was created using the parameter values of Higgins & Vink (2019)

and Brott et al. (2011). In the majority of models, the bi-stability jump temperature

was reached, which induces a dramatic increase in the mass loss rate. Finally, using

the data from the models, the temperature, luminosity and radius of a wind-blown

bubble were calculated. The calculated values were used to estimate the count rate

for observations with the Chandra X-ray Observatory and XMM using PIMMS.

Varying vinit slightly increases the main sequence width. However the evolutionary
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tracks remain, in most part, the same for di�erent values of vinit. The �nal
14N surface

abundance for the lowest and highest vinit did not change, implying that vrot was not

the only contributor to the change in 14N surface abundance. Not allowing for tidal

enhanced winds and wind mass transfer clearly showed how in�uential ṀW is on the

14N surface abundance and the rotational velocity. After about 2 Myrs the ratio of

the rotation velocities of the secondary star to the primary star was ∼ 2.6 and for

the 14N surface abundance of the primary to secondary was ∼ 3.6. Therefore the

primary star was more nitrogen-rich but rotated slower. ṀW due to binarity may

be the reason for slow rotators that have a high 14N surface abundance in the LMC

(Hunter et al. 2008).

The Mass-Luminosity plane provided insight when changing the mass loss rate

parameters for tidally enhanced winds and increasing the rate of mass loss by the

wind factor (fv). As fv and BW values increased the �nal luminosity and mass of

the system decreased. This follows the theory of the mass luminosity plane where

an increase in these parameters would make the �ML-vector� point downward on the

plot, and a decrease of the parameters will move it up on the plane. When BW = 500

the system experiences mass transfer by Roche Lobe over�ow, but the secondary does

not spin up. Therefore for lower values of the tidally enhanced wind parameter and if

the secondary and/or primary reaches their bi-stability jump, than it is possible that

a Roche-lobe over�ow event may be prevented in massive close binary systems. For

models when fv = 1.5 and fv = 3 for the primary the wind mass rate was so high the
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increase of 14N surface abundance vs. age slowed. The high mass loss rate is stripping

the surface of the primary and therefore exposing the nitrogen-rich envelope.

When increasing αov from 0.1 to 0.5 the age of the system increased. This is

not surprising, because for higher αov the amount of hydrogen being drawn from the

envelope to the core increases. Therefore, the primary star remains compact and

reaches the TAMS later. There is a slight deviation after 5 Myrs for 14N surface

abundance vs age for various αov values. Higher values αov are extracting more CNO-

cycle elements to the envelope.

When comparing the Higgins and the Brott models, the deviations in the begin-

ning of the evolutionary track in the HR-Diagram were due to the di�erence in vinit

for the primary, and also the use of rotationally enhanced winds for the Brott models.

Both models shared similarities for the evolution of the secondary, however this was

not true for the primary. This is partly due to the di�erence in vinit and αov. For

example, the di�erence can be seen between Higgins' primary and Brott's primary,

where αov = 0.3 and vinit = 120 km s−1 for Higgins' primary and for Brott's primary

αov = 0.365 and vinit = 267 km s−1.

The deviations in the tracks could also be attributed to the inclusion of the Spruit-

Taylor dynamo mixing angular momentum. In addition Brott et al. (2011) use a lower

metallicity than Higgins models which can also induce the deviation. Both the Higgins

and Brott models did not experience the bi-stability jump before the TAMS. Between

the primary and secondary mass ranges of (25 + 20) M� to (35 + 25) M� for both
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Higgins and Brott models there appears to be a transition period where there is a

noticeable di�erence in the evolutionary tracks of both the primary and secondary.

For Higgins' (25 + 20) M� model, both the primary and secondary will experience the

bi-stability jump. For Brott's (25 + 20) M� model only the secondary will experience

the bi-stability jump. For system masses around (60 + 40) M� the system terminates

before either Higgins or Brotts models reach the bi-stability jump before TAMS.

The changes to the binary system were due to the large mass loss rate of both the

primary and secondary. The contribution to spin-orbit coupling and tides were two

orders of magnitude smaller than the change in orbital angular momentum due to

mass loss. The bi-stability jump provided the greatest example of this. The signi�cant

increase of the mass loss rate due to the bi-stability jump does increase ȧ and ˙Porb.

This was clearly shown in the J̇ graphs for di�erent vinit. It appears the bi-stability

jump does have an impact on the evolution of the binary system. When the jumps of

the secondary and primary overlap, depending the magnitude of jumps of both, the

primary or secondary will experience mass transfer. This was clearly shown in the

majority of the 14N surface abundance plots.

Wind blown-bubble calculations were made using the equations of Weaver et al.

(1977) and Weaver et al. (1978). From the information from the models, and using

PIMMS, soft x-ray count rates were estimated. A broad range of calculated count

rates were created for the Higgins and Brott models to use to compare to binary and

stellar model characteristics. With this information it may be possible to propose for
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observation time for either of the telescopes.

In all models that included the tidally enhanced winds, the primary and secondary

became slow rotators and nitrogen rich near the end of the model. The primary

early on in its evolution was more nitrogen rich and rotating more slowly then the

secondary. The bi-stability jump does have a noticeable e�ect on binary mechanics,

and may prevent a RLOF event. A future study would need to be made to see if this

is true.

9.2 Future Work

Possible future work would include searching the literature for observed systems or

proposing for observing time on the Chandra X-ray Observatory. When performing

this thesis it was found the Tout & Eggleton (1988) coe�cient BW was large and

the value has not been constrain for massive binary star observations. It would be

bene�cial to have more accurate value since the range of values used in the literature

is large. The location of the jump temperature is believed to be lower than what

is used in MESA T ≈20 kK. This change would prevent binary models from ever

experiencing the jump. A new grid of models would need to be created to account

for this new jump temperature. Finally, expanding the model grid to include the

metallicities of the Small and Large Magellanic Cloud would expand the possible

observed sample size.
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Appendix A

Inlists provided by Erin Higgins & Dr. Jorick Vink
In the following "true" means the option is turned on therefore "false" is o�. If there
is an "!" this means the line is commented out and the FORTRAN library is not
initialized.

&star_job show_log_description_at_start = .true.
eos_�le_pre�x = 'mesa'
kappa_�le_pre�x = 'gs98'
set_initial_age = .true. ! begin without pre-MS
initial_age = 0 ! starting model age in years
create_pre_main_sequence_model = .false. ! begin with a pre-main sequence

model
pgstar_�ag = .true. ! display on-screen plots
pause_before_terminate = .true. ! allow plots to remain on screen
!�������ROTATION�������!
new_rotation_�ag = .true.
change_rotation_�ag = .true.
change_initial_rotation_�ag = .true.
new_surface_rotation_v = 200 ! in km/s
set_surface_rotation_v = .true.
set_initial_surface_rotation_v = .true.
change_v_�ag = .true.
change_initial_v_�ag = .true.
new_v_�ag = .true.
/ ! end of star_job namelist
&controls
!������- STOPPING CONDITIONS ���������!
! run_star_extras stopping condition for log[N/H]+12 <= [some value]
! currently turned o�
xa_central_lower_limit_species(1) = 'h1'
xa_central_lower_limit(1) = 0.01
! max_age = 4.5d6
! star_mass_min_limit = 30
! log_L_upper_limit = 1d99
!������-OUTPUT PARAMETERS ����������!
do_history_�le = .true.
history_interval = 10
star_history_name = 'test/rot/27Mv200.data'
pro�le_interval = 25
terminal_interval = 5
write_header_frequency = 10
num_trace_history_values = 1
trace_history_value_name(1) = 'log_abs_mdot'
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trace_history_value_name(2) = 'log[N/H]+12'
!�������BASIC PARAMETERS�������!
initial_mass = 27 ! Mass in Msun units
mesh_delta_coe� = 1.5 ! Larger values increase the max deltas,decreases the no.

of grid points
mesh_delta_coe�_for_highT = 2.5 ! �for high T
varcontrol_target = 1d-4 ! Target value for relative variation in the structure

between models
use_Type2_opacities = .true. ! Default opacities for Massive stars
Zbase = 0.02 ! Base Metallicity: Galacticz=0.014, SMCz=0.004, LMC/Bonn=0.0088
!�������MIXING PARAMETERS�������!
mixing_length_alpha = 1.5 ! Geneva use 1.6 <40 Msol, and 1.0 >40 Msol.

Bonn/MESA default use 1.5
MLT_option = 'Henyey' ! Options: Cox, ML1, Ml2, Mihalas, Henyey, none

Orginially Henyey
okay_to_reduce_gradT_excess = .false. ! MLT++ on=true/o�=false
gradT_excess_lambda1 = -1.0 ! Full MLT++ on
use_Ledoux_criterion = .true. ! Schwarzschild criterion if false
alpha_semiconvection = 1 ! Determines e�ciency of semiconvective mixing
!�������OVERSHOOTING PARAMETERS�������!
overshoot_f0_above_nonburn_core = 0.005 ! overshoot distance in the expense

of the core: pre-MS
overshoot_f0_above_nonburn_shell = 0.005
overshoot_f0_below_nonburn_shell = 0.005
overshoot_f0_above_burn_h_core = 0.005 ! overshoot distance in the expense

of the core: MS
overshoot_f0_above_burn_h_shell = 0.005
overshoot_f0_below_burn_h_shell = 0.005
overshoot_f0_above_burn_he_core = 0.005 ! overshoot distance in the expense

of the core: post-MS
overshoot_f0_above_burn_he_shell = 0.005
overshoot_f0_below_burn_he_shell = 0.005
overshoot_f0_above_burn_z_core = 0.005 ! overshoot distance in the expense

of the core: post-MS
overshoot_f0_above_burn_z_shell = 0.005
overshoot_f0_below_burn_z_shell = 0.005
step_overshoot_D0_coe� = 1 ! Di�usion coe�cient D at point r0
step_overshoot_f_above_burn_h_core = 0.1 ! Step overshooting values:
step_overshoot_f_above_burn_h_shell = 0.1 ! alpha_ov= 0.335 -> Bonn Model
step_overshoot_f_below_burn_h_shell = 0.1 ! alpha_ov= 0.1 -> Geneva Model
step_overshoot_f_above_burn_he_core = 0
step_overshoot_f_above_burn_he_shell = 0
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step_overshoot_f_below_burn_he_shell = 0
step_overshoot_f_above_burn_z_core = 0
step_overshoot_f_above_burn_z_shell = 0
step_overshoot_f_below_burn_z_shell = 0
!�������MASS LOSS�������!
hot_wind_scheme = 'Vink' !Vink et al 2001 treatment of mass loss
hot_wind_full_on_T = 1.2d4 !T limits
cool_wind_full_on_T = 1.0d4 !T limits �- hot_wind_full_o�_T command

doesn't exist
Vink_scaling_factor = 1.0d0 !"Mass-loss predictions for O and B stars as a func-

tion of metallicity" mdot_omega_power = 0.0d0
!�������ROTATION�������!
! Chemical Mixing ! 1 -> on, 0 -> o� D_DSI_factor = 1 ! dynamical shear

instability D_SH_factor = 0 ! Solberg-Hoiland D_SSI_factor = 1 ! secular shear
instability D_ES_factor = 1 ! Eddington-Sweet circulation D_GSF_factor = 1 !
Goldreich-Schubert-Fricke D_ST_factor = 0 ! Spruit-Tayler dynamo

! this is for ang.mom. transport
am_nu_DSI_factor = 1
am_nu_SH_factor = 0
am_nu_SSI_factor = 1
am_nu_ES_factor = 1
am_nu_GSF_factor = 1
am_nu_ST_factor = 0
am_gradmu_factor = 0.1d0 ! f_mu from Brott et al
am_nu_factor = 1d0 ! this factor accounts for angular momentum transfer
am_D_mix_factor = 0.0333333333333333d00
/ ! End of controls namelist
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Inlists provided by Zsolts Keszthelyi for Brott Model
! inlist to compare rotating MESA models with Bonn group models. Published by
Keszthelyi, Puls, Wade (2017) A&A 598 A4. (Figure 3.) ! Note that the comparison
holds for rotational velocities up to 300 km/s. Closer to the critical rotation ( 500
km/s) di�erences arise when using this simple inlist.

& star_job
! display on-screen plots pgstar_�ag = .true.
pause_before_terminate = .false.
!=========NewMETALLICITY =========================!
relax_initial_Z = .true. ! gradually changes abundance from Z = 0.02
new_Z = 0.014d0
relax_initial_Y = .true.
new_Y = 0.2638d0
set_uniform_initial_composition = .true. ! if false the rest are not set.
initial_h1 = 0.7274d0 initial_he4 = 0.2638d0
initial_h2 = 0d0 initial_he3 = 3.27733d-5
initial_zfracs = 5 ! 5 Asplund et al 2005. ! 0 when you de�ne them in controls
!========= surface ROTATION ==================!
new_rotation_�ag = .true.
change_rotation_�ag = .true.
change_initial_rotation_�ag = .true.
new_surface_rotation_v = 315 ! in km/s
set_surface_rotation_v = .true.
set_initial_surface_rotation_v = .true.
/ !end of star_job namelist
&controls
do_history_�le = .true.
max_model_number = 150000
history_interval = 30
pro�le_interval = 50
terminal_interval = 5
write_header_frequency = 10
!========= The OUTPUT =========== - �lename -
star_history_name = 'Bonn_rot/M20_v274_Bonn.data'
log_directory = 'LOGS'
photo_directory = 'photos'
! INITIAL speci�cations
!��� initial MASS����
initial_mass = 20
!������������
! initial mass fraction of elements, only when initial_zfracs = 0
!z_fraction_c = 0.1139
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!z_fraction_n = 0.1070
!z_fraction_o = 0.1198
!z_fraction_f = 0.0639
!z_fraction_ne = 0.1098
!z_fraction_na = 0.0864
!z_fraction_mg = 0.1025
!z_fraction_al = 0.0892
!z_fraction_si = 0.1038
!z_fraction_fe = 0.1037
!�������������������
! STOPPING options
! max_age = 3d6
Te�_lower_limit = 13d3
! stop when the center mass fraction of h1 drops below this limit
! xa_central_lower_limit_species(1) = 'h1'
! xa_central_lower_limit(1) = 1d-1
!=======MASS-LOSS RATES =============================
! enhance mass loss due to rot. see control defaults for Eq.
mdot_omega_power = 0.43
! use_other_wind = .true.
hot_wind_scheme = 'Vink'
Vink_scaling_factor = 1.0d0
cool_wind_RGB_scheme = 'Dutch'
cool_wind_AGB_scheme = 'Dutch' ! wind schemes and naming have been

changed in new versions!
Dutch_scaling_factor = 1.0d0
!======== ROTATIONAL INSTABILITIES =========!
skip_rotation_in_convection_zones = .true.
!================================
am_nu_factor = 1d0 ! this factor accounts for angular momentum transfer
!================================
am_D_mix_factor = 0.0228d0 ! commenting out sets it to zero
!================================
! factor for rot.instabilities => D_mix = di�usion coe�cient => this is multiplied

by f_c
! D_mix = D_mix_nonrot + am_D_mix_factor * ( D_SI + ...) this is f_c

from Heger et al
! 1 is normal, 0 turns o�
! this is for chemical mixing
D_DSI_factor = 1 ! dynamical shear instability
D_SH_factor = 0 ! Solberg-Hoiland
D_SSI_factor = 1 ! secular shear instability



155

D_ES_factor = 1 ! Eddington-Sweet circulation
D_GSF_factor = 1 ! Goldreich-Schubert-Fricke
D_ST_factor = 0 ! Spruit-Tayler dynamo
! this is for ang.mom. transport
am_nu_DSI_factor = 1
am_nu_SH_factor = 0
am_nu_SSI_factor = 1
am_nu_ES_factor = 1
am_nu_GSF_factor = 1
am_nu_ST_factor = 1
!�����������������
am_gradmu_factor = 0.1d0 ! This is f_mu from Brott et al
!����������������
! mix_factor = 0 ! for every single di�usion coe�. including D_conv !
!==============MIXING LENGTH parameters ================!
mixing_length_alpha = 1.5d0
! allow_semiconvective_mixing = .true. command no longer exists
use_Ledoux_criterion = .true. ! Need this to have mixing in semiconvection
alpha_semiconvection = 1d0
MLT_option = 'ML1' ! Cox, ML1 - Bohm-Vitense, Ml2 - Bohm-Cas, Mihalas,

Henyey, none
! ============= OVERSHOOTING =================== !
! This procedure gives back the 0.335 H_P extension used by Brott et al.
!��� exponential decay ������� !
! overshoot_f_above_burn_h = 0.001d0 command no longer exists
overshoot_f_above_burn_h_core = 0.001d0
overshoot_f_above_burn_h_shell = 0.001d0
overshoot_f0_above_burn_h_shell = 0.001d0
!��� overshoot distance in the expense of the core ������-!
! overshoot_f0_above_burn_h = 0.03d0
overshoot_f0_above_burn_h_core = 0.03d0
!���� step function � extension above the core �������-!
! step_overshoot_f_above_burn_h = 0.365d0 command no longer exists
step_overshoot_f_above_burn_h_core = 0.365d0
step_overshoot_D0_coe� = 1d0
!��������������������������
/ ! end of controls namelist
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Appendix C

Binary Star Inlist
&binary_job

inlist_names(1) = 'inlist1'
inlist_names(2) = 'inlist2'
evolve_bot_stars = .true.
/ ! end of binary_job namelist
&binary_controls
!������- INITIAL PARAMETERS ���!
m1 = 35.0d0 ! Primary mass in Msun
m2 = 25.0d0 ! Secondary mass in Msun
initial_period_in_days = 4.0d0
limit_retention_by_mdot_edd = .false.
max_tries_to_achieve = 20
mdot_scheme = "Ritter" ! Options are Ritter, Kolb, roche_lobe, and contact
!������- WIND PARAMETERS ����!
do_enhance_wind_1 = .true. ! tidally enhance the wind mass loss from one or

both components From Tout & Eggleton (1988) do_enhance_wind_2 = .true.
tout_B_wind_1 = 1d4
tout_B_wind_2 = 1d4
do_wind_mass_transfer_1 = .true. ! transfer part of the mass lost due to stellar

winds From Bondi & Hoyle (1944) do_wind_mass_transfer_2 = .true.
!������- OUTPUT �������!
history_name = ' ' ! Name of �le for binary output
log_directory = ' ' ! Directory for binary output
history_interval = 20
terminal_interval = 5
write_header_frequency = 10
!������- STOPPING CONDITIONS �������-!
! accretor_over�ow_terminate = 1.0d0
terminate_if_initial_over�ow = .true. ! terminate evolution if �rst model of run

is over�owing
terminate_if_L2_over�ow = .true. ! terminate evolution if there is over�ow

through the L2 point
!������- MASS TRANSFER EFFICIENCY CONTROLS���!
! mass_transfer_alpha = 0.0d0 ! fraction of mass lost from the vicinity of the

donor as fast wind
! mass_transfer_beta = 0.0d0 ! fraction of mass lost from the vicinity of the

accretor as fast wind
! mass_transfer_delta = 0.0d0 ! fraction of mass lost from circumbinary coplanar

toroid
! mass_transfer_gamma = 0.0d0 ! radius of the circumbinary coplanar toroid is

`gamma**2 * orbital_separation`
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!������- ORBITAL ANGULAR MOMENTUM PARAMETERS ��!
do_jdot_ls = .true. ! Angular momentum loss due to mass transfer ine�ciency
do_jot_missing_wind = .true. ! Angular momentum loss due to winds (Requires

rotation)
do_jdot_ml = .true. ! Angular momentum loss due to mass leaving the system
do_jdot_mb = .false. ! Angular momentum loss due to magnetic breaking (This

and Tides can't be both be set to true)
do_jdot_gr = .false. ! Gravitational wave radiation
include_accretor_mb = .false.
keep_mb_on = .false.
! magnetic_braking_gamma = 3.0d0
! jdot_multiplier = 1d0
!������- ROTATION AND SYNC PARAMETERS ����-!
do_j_accretion = .false.
do_tidal_sync = .true. ! Applies tidal torque to the star
sync_type_1 = "Hut_rad" ! options are Instantaneous, Orb_period, Hut_conv,

Hut_rad, and None
sync_type_2 = "Hut_rad"
sync_mode_1 = "Uniform" ! Where angular momentum is deposited for syn-

chronization.
sync_mode_2 = "Uniform"
! Ftid_1 = 1d0 ! Tidal strength factor.
! Ftid_2 = 1d0
! do_initial_orbit_sync_1 = .true. ! Relax rotation of star to orbital period at

the beggining of evolution.
! do_initial_orbit_sync_2 = .true.
/ ! end of binary_controls namelist
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Appendix D

Example Fortran Algorithms Programmed in MESA

D.1 Vink prescription algorithum

This can be found in mesa/star/private/wind.f90. W is the pointer for wind. pow_cr
is de�ned in MESA's crlimb directory. This directory contains the functions such
tanx, cosx and pow(x,n) = xn example. pow(x,3) = x3 where x can be any function
or pointer. This is programmed for more precision by de�ning x3 = x ∗ x ∗ x for
example. dp is de�ned as double �oat precision.

subroutine eval_Vink_wind(w)
real(dp), intent(inout) :: w
real(dp) :: alfa, w1, w2, Te�_jump, logMdot, dT, vinf_div_vesc
! alfa = 1 for hot side, = 0 for cool side
if (T1 > 27500d0) then
alfa = 1
else if (T1 < 22500d0) then
alfa = 0
else ! use Vink et al 2001, eqns 14 and 15 to set "jump" temperature
Te�_jump = 1d3*(61.2d0 + 2.59d0*(-13.636d0 + 0.889d0*log10_cr(Z/Zsolar)))
dT = 100d0
if (T1 > Te�_jump + dT) then
alfa = 1
else if (T1 < Te�_jump - dT) then
alfa = 0
else
alfa = (T1 - (Te�_jump - dT)) / (2*dT)
end if
end if
if (alfa > 0) then ! eval hot side wind (eqn 24)
vinf_div_vesc = 2.6d0 ! this is the hot side galactic value
vinf_div_vesc = vinf_div_vesc*pow_cr(Z/Zsolar,0.13d0) ! corrected for Z
logMdot = &
- 6.697d0 &
+ 2.194d0*log10_cr(L1/Lsun/1d5) &
- 1.313d0*log10_cr(M1/Msun/30) &
- 1.226d0*log10_cr(vinf_div_vesc/2d0) & + 0.933d0*log10_cr(T1/4d4) &
- 10.92d0*pow2(log10_cr(T1/4d4)) &
+ 0.85d0*log10_cr(Z/Zsolar)
w1 = exp10_cr(logMdot)
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else
w1 = 0
end if
if (alfa < 1) then ! eval cool side wind (eqn 25)
vinf_div_vesc = 1.3d0 ! this is the cool side galactic value
vinf_div_vesc = vinf_div_vesc*pow_cr(Z/Zsolar,0.13d0) ! corrected for Z
logMdot = &
- 6.688d0 &
+ 2.210d0*log10_cr(L1/Lsun/1d5) &
- 1.339d0*log10_cr(M1/Msun/30) &
- 1.601d0*log10_cr(vinf_div_vesc/2d0) &
+ 1.07d0*log10_cr(T1/2d4) &
+ 0.85d0*log10_cr(Z/Zsolar)
w2 = exp10_cr(logMdot)
else
w2 = 0
end if
w = alfa*w1 + (1 - alfa)*w2
if (dbg) write(*,*) 'vink wind', w
end subroutine eval_Vink_wind

D.2 Eggleton & Tout Wind Enhancement Factor

This is found in /mesa/binary/private/wind.f90
subroutine Tout_enhance_wind(b, s)
type (binary_info), pointer :: b
type (star_info), pointer :: s
! Tidaly enhance wind mass loss as described by
! Tout & Eggleton 1988,MNRAS,231,823 (eq. 2)
real(dp) :: B_wind ! enhancement parameter, B in eq. 2
integer :: i, s_i
real(dp) :: dm
real(dp), DIMENSION(b % anomaly_steps):: rl_d, r_rl, mdot
if (s% id == b% s1% id) then
if (.not. b% do_enhance_wind_1) return
B_wind = b% tout_B_wind_1
s_i = 1
else
if (.not. b% do_enhance_wind_2) return
B_wind = b% tout_B_wind_2
s_i = 2
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end if
! phase dependent roche lobe radius
rl_d = (1-b%eccentricity**2) / (1+b%eccentricity*cos(b% theta_co)) * b% rl(s_i)
do i = 1,b% anomaly_steps !limit radius / roche lobe
r_rl(i) = min(pow6(b% r(s_i) / rl_d(i)), pow6(0.5d0))
end do
! actual enhancement
mdot = s% mstar_dot * (1 + B_wind * r_rl)
dm = 0d0
do i = 2,b% anomaly_steps ! trapezoidal integration
dm = dm + 0.5d0 * (mdot(i-1) + mdot(i)) * (b% time_co(i) - b% time_co(i-1))
end do
! remember mass-loss is negative!
!b% mdot_wind_theta = b% mdot_wind_theta + mdot ! store theta depen-

dance for edot
s% mstar_dot = dm ! return enhanced wind mass loss
end subroutine Tout_enhance_wind
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Appendix E

Variable Symbols and Descriptions
Below is a description for the variables shown in the thesis. The tables do not include
every variable mention in the paper. The purpose of the tables were to prevent
confusion between variables that had nearly the same symbol e.g., kr and kf .

Table of Symbols

Symbol Description
M Mass of a star
Msys Binary system mass
M1 Primary star mass
M2 Secondary star mass
L Luminosity of the star
T Local temperature
Teff Surface temperature
TJump Bi-stability jump temperature
P Pressure
G Gravitational constant
ρ Density
kr Thermal conductivity
ε Nuclear energy generation rate
σST Stefan-Boltzmann constant
φ Equation variable
σ Equation of state variable
vrot Surface rotation velocity
vinit Initial rotation velocity
Q Thermal energy
V Volume
κλ Opacity for a photon of speci�c wavelength
l Mean free path

ṀW Wind mass loss rate

ṀRLOF Mass transfer due to RLOF

Ṁ? Total mass loss rate from a star
αconv Convection coe�cient
αsc Semiconvection coe�cient
αconv Step overshoot coe�cient
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Table of Symbols continued

Symbol Description
fov Exponential overshoot coe�cient
∇rad Radiative gradient
∇ad Adiabatic gradient
µ Mean molecular weight
∇µ Mean molecular weight gradient
HP Pressure scale height
HP Velocity scale height
fv Wind factor for Vink scheme
β Mass Luminosity Parameter that varies as a function of mass
δt Time step
k Speci�c cell layer within MESA
~ggrav Gravitational acceleration
~geff Local gravity
~gcent Centripetal acceleration
~grad Radiative acceleration
Vc Solid body rotation potential
φ Gravitational potential
Ψ Sum of rotation and gravitation potentials

|~∇Ω| or dΩ
dr

Rotational shear
Ω Rotation rate
Ω(k) Rotation of cell k
Ωcrit Critical Rotation Rate

Ω̇k,j Change in rotation rate for either star at cell layer k
vcrit Critical rotation velocity
Ω̄ Average rotation rate over an isobaric surface

Ω̂ Zonal rotation rate over an isobaric surface
ωorb Orbital rotation rate
tdyn Dynamical timescale
tkh Thermal timescale
tsys System age
LW Mechanical Luminosity
v2(t) Expansion rate of a bubble
Lb Luminosity of region (b)
Tb Temperature of region (b)
n0 ISM atomic density
nb Atomic density of region (b)
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Table of Symbols continued

Symbol Description
LEdd Eddington luminosity
vin velocity before momentum transfer
vout velocity after momentum transfer
glinerad Line radiation acceleration
σe Thomson Cross section for an electron
gTHrad Thomson accleration
vs Sound speed in a gas
fi Resonance frequency of a transition
νi Resonance frequency of a line
vth Thermal velocity
Lν Luminosity for photon of a speci�c frequency
v∞ Wind velocity out to in�nity
v(r) Wind velocity as a function of radius
αT Ratio of line acceleration of optically thick lines to the sum of all lines
δi Describes the ionization in the wind
α

′
Coe�cient that is based upon αT and δ

kf Measure of the number of lines stronger than Thomson scattering
M(t) Ratio of the line acceleration to the Thomson acceleration
m Depends on αT and δ
vesc Escape velocity at the surface of the star
BW Tidally enhanced wind coe�cient
RL Rochle lobe radius
αW Wind mass transfer parameter
βW Wind mass transfer parameter based on spectral type
vorb Orbital velocity
σg Characteristic growth rate for the SP-dynamo
ωA Alfén Frequency
vA Alfén velocity
BA Magnetic �eld on the Alvén surface
ρW Wind Density
χn Mass fraction of species n
fc Angular momentum di�usion factor
fν Angular momentum transfer factor
fµ The ∇µ factor

Γfactor Eddington Factor
Porb Orbital period
Jorb Orbital angular momentum
ka Apsidal motion constant

J̇ml Change in orbital angular momentum due to mass loss

J̇ls Change in orbital angular momentum due to spin-orbit coupling

J̇mb Change in orbital angular momentum due to magnetic breaking


	The Pre-Roche Lobe Overflow Evolution of Massive Close Binary Stars: A Study of Rotation, Wind Enhanced Mass-Loss, and the Bi-Stability Jump
	Recommended Citation

	tmp.1576248557.pdf.xPnTq

