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Abstract

Circulants form a well-studied and important class of matrices, and they arise in many
algebraic and combinatorial contexts, in particular as multiplication tables of cyclic groups
and as special classes of latin squares. There is also a known connection between circulants
and mathematical juggling. The purpose of this note is to expound on this connection de-
veloping further some of its properties. We also formulate some problems and conjectures
with some computational data supporting them.

Keywords: Juggling, permutations, permanent, circulant matrices.

Math. Subj. Class.: 05A05, 05E25, 15A15

1 Introduction
Let n be a positive integer, and let t = (t1, t2, . . . , tn) be a sequence of n nonnegative
integers. Then t is a juggling sequence of length n provided that

1 + t1, 2 + t2, . . . , n+ tn (1.1)

are distinct modulo n, implying, in particular, that t1 + t2 + · · ·+ tn ≡ 0 (mod n). Thus
if (1.1) holds and balls are juggled where, at time i, there is at most one ball that lands in
the juggler’s hand and is immediately tossed so that it lands in ti time units (1 ≤ i ≤ n)1,
then there are no collisions; that is, juggling balls with one hand according to these rules is
possible (for a talented juggler!). The number of balls juggled equals (t1+t2+ · · ·+tn)/n.
If we extend t to a two-way infinite sequence (ti : i ∈ Z) where ti = ti mod n, then a ball

∗We are indebted to a referee who helped improve our exposition.
E-mail addresses: brualdi@math.wisc.edu (Richard A. Brualdi), schroederm@marshall.edu (Michael W.

Schroeder)
1If ti = 0, then there is no ball to toss at time i.

cb This work is licensed under http://creativecommons.org/licenses/by/3.0/



2 Art Discrete Appl. Math. 1 (2018) #P2.01

caught at time i is tossed so that it lands at time i + ti. This defines certain orbits of the
balls being juggled determined by the times at which a specified ball is caught and then
tossed.

The sequence t is a minimal juggling sequence provided that the integers ti have been
reduced modulo n to 0, 1, . . . , n − 1. In particular, ti = n (a ball is caught and tossed at
time i to land in n time units) is equivalent to ti = 0 (no ball is caught and tossed at time
i). For some references on mathematical juggling and related work, see e.g. [1, 4, 10].

We now briefly summarize the contents of this paper. In the next section we introduce
many examples and discuss some basic properties of juggling sequences and show how
they correspond to decompositions of all 1’s matrices. We also show how palindromic jug-
gling sequences correspond to a special graph property. In Section 3, we elaborate on the
connection between juggling sequences and circulant matrices as discussed in [3], and re-
late juggling sequences to the permanent of circulants defined in terms of n indeterminates.
In Section 4, we present some calculations concerning the coefficients of the distinct terms
in the permanents of these circulants and discuss certain questions and conjectures. Finally,
in Section 5 we discuss the existence of juggling sequences with additional properties. Part
of the purpose of this paper is to draw attention to a number of directions, questions, and
conjectures concerning juggling sequences and the permanent expansion of circulants.

2 Juggling sequences
In this section we introduce some of the basic ideas of juggling sequences with many
examples and, in the case of palindromic juggling sequences, establish a connection with
matchings in complete graphs.

A theorem of M. Hall, Jr. [8] for abelian groups when restricted to cyclic groups yields
the following result concerning juggling sequences.

Theorem 2.1. Let U = {u1, u2, . . . , un} be a multiset of n integers. Then there is at least
one permutation π of {1, 2, . . . , n} such that uπ = (uπ(1), uπ(2), . . . , uπ(n)) is a juggling
sequence, that is, for which

1 + uπ(1), 2 + uπ(2), . . . , n+ uπ(n)

are distinct modulo n, if and only if

u1 + u2 + · · ·+ un ≡ 0 (mod n). (2.1)

In this theorem there is no loss in generality in assuming that 0 ≤ u1, u2, . . . , un ≤
n− 1.

In view of Theorem 2.1, we call a multiset U = {u1, u2, . . . , un} of n integers satisfy-
ing (2.1) a juggleable set of size n. If u1, u2, . . . , un have been reduced modulo n, then we
have a minimal juggleable set. It follows from Theorem 2.1 that U = {0, 1, 2, . . . , n− 1}
is a (minimal) juggleable set if and only if n is odd.

Given U = {u1, u2, . . . , un}, whether or not U is a juggleable set is independent of
which representatives of the equivalence classes modulo n determined by the ui have been
chosen, in particular, whether or not the integers ui have been reduced modulo n. But if
t = (t1, t2, . . . , tn) is a juggling sequence for the juggleable set U , the number of balls
that are juggled depends on which representatives of the equivalence classes modulo n
have been chosen, in particular, on whether or not the integers in U have been reduced
modulo n.
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A juggling sequence (t1, t2, . . . , tn) is determined by a unique permutation of
{1, 2, . . . , n} and conversely any permutation of {1, 2, . . . , n} determines a unique jug-
gling sequence.

Example 2.2. Let n = 7 and consider the permutation σ of {1, 2, 3, 4, 5, 6, 7} whose cycle
decomposition is (1, 5, 6)(2, 4, 7, 3). (Thus in σ, 1→ 5→ 6→ 1 and 2→ 4→ 7→ 3→
2). For each i = 1, 2, . . . , 7, define ti = σ(i) − i mod 7, then t = (4, 2, 6, 3, 1, 2, 3) is a
minimal juggling sequence.

Reversing this procedure, let n = 9 and consider the juggling sequence t = (1, 5, 3, 4,
8, 3, 3, 6, 3). We obtain a permutation σ of {1, 2, 3, 4, 5, 6, 7, 8, 9} by calculating and re-
ducing modulo 9:

σ(1) = 1 + 1 = 2, σ(2) = 5 + 2 = 7, σ(3) = 3 + 3 = 6,

σ(4) = 4 + 4 = 8, σ(5) = 8 + 5 = 4, σ(6) = 3 + 6 = 9,

σ(7) = 3 + 7 = 1, σ(8) = 6 + 8 = 5, σ(9) = 3 + 9 = 3.

Thus σ is the permutation with cycle decomposition (1, 2, 7)(3, 6, 9)(4, 8, 5). ♦

Example 2.3. Let n = 3 and consider t = (4, 4, 1). Then to juggle according to t requires
three balls and the balls determine three orbits of Z:

· · · → 1→ 5→ 9→ 10→ 14→ 18→ 19→ · · · ,
· · · → 2→ 6→ 7→ 11→ 15→ 16→ 20→ · · · ,
· · · → 3→ 4→ 8→ 12→ 13→ 17→ 21→ · · · .

(Here, for instance, 2 → 6 represents the fact that at time unit 2, a ball is tossed so that it
lands in 4 time units in the future, that is, at time unit 6; then the ball is tossed to land in 1
time unit in the future, that is at time unit 7.) Reducing t mod 3 to (1, 1, 1) results in only
one ball and only one orbit:

· · · → 1→ 2→ 3→ 4→ 5→ 6→ · · · .

Let Jm,n denote the m × n matrix of all 1’s. Juggling using the juggling sequence
(4, 4, 1) gives a decomposition of the matrix J3,3 of all 1’s whereby any three consecutive
matrices sum to J3,3. (The first subscript ‘3’ in J3,3 represents the number of balls juggled,
the second ‘3’ represents the number of terms in the juggling sequence. The ordering of
the rows is arbitrary.) This is indicated by

· · ·

∣∣∣∣∣∣∣∣
4 4 1 4 4 1 4 4 1

1 1 1
1 1 1

1 1 1

∣∣∣∣∣∣∣∣ · · · ,
giving

J3,3 =

 1
1

1

+

 1
1

1

+

 1
1

1

 .
Using the mod 3 reduction (1, 1, 1) of (4, 4, 1) gives the trivial decomposition

J1,3 =
[
1 1 1

]
. ♦
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Example 2.4. Let n = 5 and consider t = (3, 3, 4, 4, 1). Then juggling (with three balls)
using this juggling sequence is indicated by

· · ·

∣∣∣∣∣∣∣∣
3 3 4 4 1 3 3 4 4 1 3 3 4 4 1

1 1 1 1 1
1 1 1 1 1

1 1 1 1 1

∣∣∣∣∣∣∣∣ · · · ,
giving the decomposition

J3,5 =

 1 1
1

1 1

+

 1
1 1

1 1

+

 1 1
1 1

1

 .
The juggling sequence t = (2, 4, 2, 3, 4) corresponds to

· · ·

∣∣∣∣∣∣∣∣
2 4 2 3 4 2 4 2 3 4 2 4 2 3 4

1 1 1 1 1
1 1 1 1 1

1 1 1 1 1

∣∣∣∣∣∣∣∣ · · · ,
and gives a different decomposition of J3,5. ♦

We call a juggling sequence t = (t1, t2, . . . , tn) decomposable provided the per-
mutation associated with t has at least two nontrivial cycles in its cycle decomposition.
Equivalently, t is decomposable provided t = r + s where r = (r1, r2, . . . , rn), s =
(s1, s2, . . . , sn) are juggling sequences such that {ri, si} = {0, ti} for i = 1, 2, . . . , n,
and r, s 6= t. Any juggling sequence can be uniquely written as a sum of indecomposable
juggling sequences arising from the unique cycle decomposition of the associated permu-
tation.

Example 2.5. With n = 9, t = (1, 5, 3, 4, 8, 3, 3, 6, 3) is a juggling sequence (4 balls).
The corresponding decomposition is not that of J3,9 but, after permutation of columns, is

J1,3 ⊕ J1,3 ⊕
([

1 1
1

]
+

[
1

1 1

])
. ♦

We summarize this discussion with the following theorem.

Theorem 2.6. Let t = (t1, t2, . . . , tn) be a sequence of n integers. Then t is a (minimal)
juggling sequence if and only if σ : {1, 2, . . . , n} → {1, 2, . . . , n} defined by

σ(i) ≡ ti + i (mod n)

is a permutation of {1, 2, . . . , n}. There is a one-to-one correspondence between minimal
juggling sequences of length n and permutations of {1, 2, . . . , n}.

Notice that Theorem 2.6 provides an algorithm to determine whether a sequence is a
juggling sequence.

Knutson (see [10]) showed how to generate all juggling sequences of length n with k
balls (1 ≤ k ≤ n) from the constant juggling sequence (k, k, . . . , k) of length n. There are
two transformations used in the algorithm:
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I. Given a juggling sequence (k1, k2, . . . , kn), the cyclic shift (kn, k1, k2, . . . , kn−1) is
also a juggling sequence.

II. Given a juggling sequence (k1, . . . , ki, . . . , kj , . . . , kn), then the swap (k1, . . . ,
(j − i) + kj , . . . ,−(j − i) + ki, . . . , kn) is also a juggling sequence:

i+ ((j − i) + kj) = j + kj and j + (−(j − i) + ki) = i+ ki

where the balls thrown at times i and j swap landing times.

Theorem 2.7 ([10]). Any juggling sequence of length n with k balls can be generated from
the constant juggling sequence (k, k, . . . , k) by cyclic shifts and swaps.

We now consider a special property of juggling sequences that are palindromic. In the
following argument, we use that a sequence (t0, t1, . . . , tn−1) is a juggling sequence of
length n if ti + i 6≡ tj + j (mod n) for each i ∈ {0, 1, . . . , n − 1}, which is a direct
consequence of the original definition. That is, if p is a juggling sequence of length n,
then, modulo n, p+ (0, 1, 2, . . . , n− 1) will be a permutation of {0, 1, 2, . . . , n− 1}.

Let n be odd and n = 2m+ 1. Let p = (pm, pm−1, . . . , p1, p0, p1, . . . , pm−1, pm) be
a minimal palindromic juggling sequence. For each i ∈ {1, 2, . . . ,m}, define

xi = pi + i mod n and yi = pi − i mod n.

Since p is a juggling sequence, we have that, modulo n,

(ym, . . . , y2, y1, p0, x1, x2, . . . , xm) =

(pm −m, . . . , p2 − 2, p1 − 1, p0, p1 + 1, p2 + 2, . . . , pm +m) =

p+ (0, 1, . . . , n− 1)− (m,m, . . . ,m).

Hence {p0, x1, . . . , xm, y1, . . . , ym} is a set of distinct values.
Construct a digraph G(V,E) with vertex set V = {0, 1, 2, . . . , n − 1} and edge set

E = {e1, . . . , em}, where ei = (xi, yi) for each i ∈ {1, 2, . . . ,m}. We define the length
of edge ei to be yi − xi mod n. Hence each ei has length n− 2i; thus G is a directed near
1-factor whose set of edge lengths is {1, 3, 5, . . . , n− 2}.

Conversely, let V = {0, 1, 2, . . . , n − 1} and suppose G(V,E) is a directed near 1-
factor whose set of edge lengths is {1, 3, 5, . . . , n − 2}. Then we may assume E =
{e1, . . . , em}, where ei is the directed edge of length n − 2i with ei = (xi, yi). Let
p0 denote the vertex in G not incident to any edge, and for each i ∈ {1, 2, . . . ,m}, let
pi = xi − i mod n. Then pi = yi + i mod n for each i ∈ {1, 2, . . . ,m}. Define
p = (pm, pm−1, . . . , p1, p0, p1, . . . , pm−1, pm). Then modulo n we have

p+ (0, 1, . . . , n− 1) = (ym, . . . , y2, y1, p0, x1, x2, . . . , xm) + (m,m, . . . ,m).

Since all values in {p0, x1, . . . , xm, y1, . . . , ym} are distinct, p is a juggling sequence.
These two operations which map between minimal palindromic juggling sequences of

length n and directed near 1-factors on n vertices whose set of edge lengths is {1, 3, 5, . . . ,
n− 2} are inverses of one another, which leads to the following theorem.

Theorem 2.8. Let n be an odd positive integer. Then there is a one-to-one correspondence
between minimal palindromic juggling sequences of length n and directed near 1-factors
on the vertex set {0, 1, . . . , n− 1} whose set of edge lengths is {1, 3, 5, . . . , n− 2}.
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A similar construction gives a result for all positive even integers n.

Theorem 2.9. Let n be a positive even integer. Then there is a one-to-one correspondence
between minimal palindromic juggling sequences of length n and directed 1-factors on the
vertex set {0, 1, . . . , n− 1} whose set of edge lengths is {1, 3, 5, . . . , n− 1}.

Proof. Let n = 2m. The proof method is similar to that given for the argument to Theo-
rem 2.8, so in what follows we give only the construction for the correspondence.

Let {(xi, yi) | i ∈ {1, 2, . . . ,m}} be a 1-factor on {0, 1, 2, . . . , n − 1} with (xi, yi)
having length 2i − 1 for each i ∈ {1, 2, . . . ,m}. For each i ∈ {1, 2, . . . ,m}, let pi =
xi −m+ i mod n. Then pi = yi −m− i+ 1 mod n. So modulo n,

(xm, . . . , x2, x1, y1, y2, . . . , ym)− (0, 1, . . . , n− 1) =

(pm, . . . , p2, p1, p1, p2, · · · , pm).

Therefore (pm, . . . , p2, p1, p1, p2, . . . , pm) is a minimal palindromic juggling sequence.
Conversely, if (pm, . . . , p2, p1, p1, p2, . . . , pm) is a minimal palindromic juggling se-

quence, then we may define xi = pi + m − i mod n and yi = pi + m + i − 1 mod n
and have that {(xi, yi) | i ∈ {1, 2, . . . ,m}} is the edge set of a directed 1-factor in which
(xi, yi) has length 2i− 1 for each i ∈ {1, 2, . . . ,m}.

Example 2.10. For n = 6, (2, 5, 2, 2, 5, 2) is the minimal palindromic juggling sequence
corresponding to the directed 1-factor with edge set {(4, 5), (0, 3), (2, 1)}. Note the edges
have lengths 1, 3, and 5, respectively. Similarly for n = 7, (2, 5, 3, 1, 3, 5, 2) is the minimal
palindromic juggling sequence corresponding to the directed near 1-factor with unused
vertex 1 and edge set {(4, 2), (0, 3), (5, 6)}. In this case, the edges have lengths 5, 3, and
1, respectively. ♦

3 Juggleable sets and circulants
Let Pn be the set of minimal juggleable sets of size n. For U ∈ Pn, let Jn(U) be the set
of juggling sequences of length n with U as juggleable set. It follows from [2] that the
number of minimal juggleable sets of size n is given by

|Pn| =
1

n

∑
d|n

(
2d− 1

d

)
φ
(n
d

)
(3.1)

where φ is Euler’s totient function and the summation extends over all positive integers d
dividing n. The number of minimal juggling sequences of length n is n!, since for each
permutation (i1, i2, . . . , in) of {1, 2, . . . , n}, we have

(i1 − 1) + (i2 − 2) + · · ·+ (in − n) =
n∑
i=1

i−
n∑
i=1

i = 0,

and hence the multiset {i1−1, i2−2, . . . , in−n} of integers taken modulo n, is a juggleable
set.

Let n, k, and ν be positive integers. In [7] it is proved that the number of nonnegative
integer solutions of

u1 + u2 + · · ·+ un = k and
n∑
i=1

iui ≡ ν (mod n) (3.2)
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equals the number of nonnegative integer solutions of

v1 + v2 + · · ·+ vk = n and
k∑
i=1

ivi ≡ ν (mod k). (3.3)

Taking ν = 0, we get the following duality result.

Theorem 3.1. The number of minimal juggleable sets {u1, u2, . . . , un} with u1 + u2 +
· · ·+un = k equals the number of minimal juggleable sets {v1, v2, . . . , vk} with v1+v2+
· · ·+ vk = n.

The above discussion gives a characterization of the number of juggling sequences
corresponding to each minimal juggleable set.

Theorem 3.2. Let U = {u1, u2, . . . , un} be a minimal juggleable set. The number
|J (U)| of juggling sequences with U as juggleable set equals the number of permuta-
tions (j1, j2, . . . , jn) of {1, 2, . . . , n} such that ji ≡ i + r (mod n) has ui solutions for
each r = 0, 1, . . . , n− 1.

Another viewpoint (see [2]) is the following. Consider the n× n circulant matrix

C(x0, x1, . . . , xn−1) =


x0 x1 · · · xn−2 xn−1
xn−1 x0 · · · xn−3 xn−2

...
...

. . .
...

...
x2 x3 · · · x0 x1
x1 x2 · · · xn−1 x0

 . (3.4)

Thus
C(x0, x1, . . . , xn−1) = x0In + x1Pn + x2P

2
n + · · ·+ xn−1P

n−1
n ,

where Pn is the n × n permutation matrix corresponding to the cyclic permutation
(2, 3, . . . , n, 1) (thus P 0

n = Pnn = In). The book [6] contains a thorough discussion of
circulants.

Recall that the permanent of an n× n matrix A = [aij : 0 ≤ i, j ≤ n] is

per(A) =
∑

(i1,i2,...,in)

a1i1a2i2 · · · an,in

where the summation extends over all the permutations (i1, i2, . . . , in) of {1, 2, . . . , n}.
Each term a1i1a2i2 · · · an,in in the permanent of C(x0, x1, . . . , xn−1) is of the form

xk00 x
k1
1 · · ·x

kn−1

n−1

where k0, k1, . . . , kn−1 are integers such that

0 ≤ ki ≤ n, (0 ≤ i ≤ n− 1) and k0 + k1 + · · ·+ kn−1 = n,

and ki is the number of integers r with 0 ≤ r ≤ n− 1 such that ir − r ≡ ki (mod n) and

k0 · 0 + k1 · 1 + · · ·+ kn−1 · (n− 1) ≡ 0 (mod n).
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Thus the number of distinct terms in the permanent of the circulant C(x0, x1, . . . , xn−1)
equals the number |Pn| of juggleable sets of size n and thus is given by (3.1). Theorem 2.1
implies that the monomial x0x1 . . . xn−1 is a term in per(A) if and only if 1 · 0 + 1 · 1 +
· · ·+1 · (n−1) ≡ 0 (mod n); since 0+1+ · · ·+(n−1) = n(n−1)/2, x0x1 . . . xn−1 is
a term in per(A) if and only if n is odd. Now let n be even. Then a monomial of the form
xk00 x

k1
1 · · ·x

kn−1

n−1 with kr = 2, ks = 0, and all other ki’s equal to 1, is a term in per(A) if
and only if |r − s| = n/2.

In [9] it is shown that |Pn| equals the dimension of a certain symmetric space associated
with a cyclic group of order n. See [12] for a comparison with the number of distinct terms
occurring in the determinant.

The following corollary is a direct consequence of Theorem 3.2 and the definitions of
a circulant matrix and the permanent.

Corollary 3.3. Two permutations j1, j2, . . . , jn and l1, l2, . . . , ln of {1, 2, . . . , n} give the
same term in the permanent of C(x0, x1, . . . , xn−1) if and only if

|{i : ji ≡ i+ r (mod n)}| = |{i : li ≡ i+ r (mod n)}|
for each r = 0, 1, . . . , n− 1.

If the common values are k0, k1, . . . , kn−1, then the term in the permanent equals
xk00 x

k1
1 · · ·x

kn−1

n−1 .

Example 3.4. Table 1 gives the minimal juggleable sets of size n = 4 and their correspond-
ing terms in per(C(x0, x1, . . . , xn−1)), along with the juggling sequences corresponding

Table 1: Minimal juggleable sets and juggling sequences for n = 4.

Juggleable
sets U

{u0, u1, u2, u3}

Corresponding
term in the
permanent

Corresponding
juggling sequences

J4(U)

Cardinalities
|J4(U)|

(coefficients)

{0, 0, 0, 0} x40 (0, 0, 0, 0) 1

{1, 1, 1, 1} x41 (1, 1, 1, 1) 1

{2, 2, 2, 2} x42 (2, 2, 2, 2) 1

{3, 3, 3, 3} x43 (3, 3, 3, 3) 1

{0, 0, 2, 2} x20x
2
2 (0, 2, 0, 2), (2, 0, 2, 0) 2

{1, 1, 3, 3} x21x
2
3 (1, 3, 1, 3), (3, 1, 3, 1) 2

{0, 0, 1, 3} x20x1x3
(0, 0, 1, 3), (0, 1, 3, 0),
(1, 3, 0, 0), (3, 0, 0, 1)

4

{0, 1, 1, 2} x0x
2
1x2

(0, 1, 1, 2), (1, 1, 2, 0),
(1, 2, 0, 1), (2, 0, 1, 1)

4

{1, 2, 2, 3} x1x
2
2x3

(1, 2, 2, 3), (2, 2, 3, 1),
(2, 3, 1, 2), (3, 1, 2, 2)

4

{0, 2, 3, 3} x0x2x
2
3

(0, 2, 3, 3), (2, 3, 3, 0),
(3, 3, 0, 2), (3, 0, 2, 3)

4

to each such pattern and their number. ♦
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As in Table 1 for n = 4, constant juggleable sets correspond to the n monomials terms
xn0 , xn1 , . . ., xnn−1 of the permanent of the matrix C(x0, x1, . . . , xn−1) each occuring with
coefficient equal to 1.

If {u1, u2, . . . , un} is a minimal juggleable set of size n, we define c(u1, u2, . . . , un) to
be the number of juggling sequences of length nwhose pattern is given by {u1, u2, . . . , un}.
Therefore, c(u1, u2, . . . , un) equals the number of permutations (i1, i2, . . . , in) of {1, 2,
. . . , n} such that ir− r ≡ ki (mod n) has ui solutions for i = 1, 2, . . . , n. The permanent
of C(x0, x1, . . . , xn−1) is then given by the homogeneous polynomial of degree n,∑

{u1,u2,...,un}∈Pn

c(u1, u2, . . . , un)x
u1
0 xu2

1 · · ·xun−1
n ,

whose number of terms is given by (3.1). Thus from Table 1 we see that the permanent of
C(x0, x1, x2, x3) equals

1x40x
0
1x

0
2x

0
3 + 1x00x

4
1x

0
2x

0
3 + 1x00x

0
1x

4
2x

0
3 + 1x00x

0
1x

0
2x

4
3 + 2x20x

0
1x

2
2x

0
3 +

2x00x
2
1x

0
2x

2
3 + 4x20x

1
1x

0
2x

1
3 + 4x10x

2
1x

1
2x

0
3 + 4x00x

1
1x

2
2x

1
3 + 4x10x

0
1x

1
2x

2
3.

As the referee pointed out, c(u1, u2, . . . , un) is the number of ways to arrange the multiset
consisting of u1 0’s, u2 1’s, . . . , un (n− 1)’s into a juggling sequence. Some evaluation of
these numbers can be found in sequence A006717 [11].

Theorem 3.5. If U = {u1, u2, . . . , un} is a minimal juggleable set of size n, then

c(u1, u2, . . . , un) ≥ 1. (3.5)

Equality holds in (3.5) if and only if U is a constant multiset. If n is a prime p and U is not
a constant multiset, then p is a divisor of c(u1, u2, . . . , un).

Proof. If U is a constant minimal juggleable set {k, k, . . . , k}, then xnk occurs as a term in
the permanent of C(x0, x1, . . . , xn−1) corresponding to the positions of the 1’s in P kn , that
is, the positions (1, k + 1), (2, k + 2), . . . , (n, k + n) taken modulo n. If {u1, u2, . . . , un}
is a non-constant juggleable set, there is a term in the permanent of C(x0, x1, . . . , xn−1)
equal to xu1

0 xu2
1 · · ·x

un
n−1 not arising solely from the n positions (1, k+ 1), (2, k+ 2), . . . ,

(n, k + n) modulo n corresponding to the 1’s in the permutation matrices In, Pn, P 2
n , . . . ,

Pn−1n .
The k × k principal submatrix C[i1, i2, . . . , ik | i1, i2, . . . , ik] = C(xi1 , xi2 , . . . , xik)

of C determined by rows and columns i1, i2, . . . , ik is cyclically permutation equivalent
(row and column indices are taken modulo n) to the submatrix C[i1+1, i2+1, . . . , ik+1 |
i1 +1, i2 +1, . . . , ik+1] = C(xi1+1, xi2+1, . . . , xik+1) determined by rows and columns
i1 + 1, i2 + 1, . . . , ik + 1 taken modulo n. Thus if we take a monomial in the permanent
corresponding to a permutation j1, j2, . . . , jn, we get n − 1 other equal monomials by
sequentially adding 1 modulo n to each of j1, j2, . . . , jn and cyclically permuting:

(j1, j2, . . . , jn)→ (jn + 1, j1 + 1, . . . , jn−1 + 1)

→ · · · (3.6)
→ (j2 + (n− 1), . . . , jn + (n− 1), j1 + (n− 1)).

If U is a non-constant juggleable set, then not all these permutations can be equal. (If
e.g. all of these n permutations are equal, then (j1, j2, . . . , jn) is a cyclic permutation
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a, a+1, a+2, . . . , a+(n−1) modulo n giving the monomial xni with coefficient equal to
1.) This amounts to simultaneously permuting rows and columns of C(x0, x1, . . . , xn−1)
using the permutation matrix Pn and replacing the permutation (and its corresponding term
in the permanent) with the image of (j1, j2, . . . , jn) under this action. The result is a term
in the permanent with the same value; basically we have that the position (i, j) moves into
the position (i + 1, j + 1) (indices taken mod n) under the action of Pn, so to position
(i+ l, j + l) (indices taken mod n) under the action of P l. So the set of positions in those
sets corresponding to powers of P have to be invariant under a cyclic shift by l in order to
get another term in the permanent with the same value. If n is a prime this cannot happen
unless the term is of the form xni . Since there may be other terms of equal value in the
permanent of C(x0, x1, . . . , xn−1), we have that p | c(u1, u2, . . . , un).

Corollary 3.6. If n is odd, the coefficient of c(1, 1, . . . , 1) of x0x1 · · ·xn−1 in the perma-
nent per(C(x0, x1, . . . , xn−1)) is divisible by n.

Proof. The corollary follows as in the proof of Theorem 3.5 since the term x0x1 · · ·xn−1
comes from the juggleable set {0, 1, . . . , n − 1} and whatever order gives a juggling se-
quence, each of the (n− 1) cyclic shifts is different, resulting in a contribution of n to the
coefficient.

4 Coefficients in per(C(x0, x1, . . . , xn−1))

We first consider the special case of n = 5.

Example 4.1. Let n = 5. The formula (3.1) for the number of distinct terms in the perma-
nent of C(x0, x1, x2, x3, x4) is

1

5

(
φ(5) +

(
9

5

)
φ(1)

)
=

1

5
(4 + 126) = 26.

There are five constant terms in the permanent each with coefficient 1 and there are twenty-
one terms each with coefficient divisible by 5. So either we have two terms each with
coefficient 10 and nineteen terms with coefficient 5, or we have one term with coefficient
15 and twenty terms with coefficient 5.

The term x0x1x2x3x4 occurs in each of the following:
x0

x1
x2

x3
x4

 ,

x0

x3
x1

x4
x2

 ,

x0

x2
x4

x1
x3

 .
and thus, by cyclically simultaneously permuting rows and columns (changing the diagonal
position in which x0 occurs by shifting along the main diagonal), appears in the permanent
with coefficient at least 15 and therefore exactly 15. Note the positions occupied by the xi
with i 6= 0 above: 

x1 x2 x3
x4 x1 x2
x3 x4 x1
x2 x3 x4

 .
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Each xi with i 6= 0 occupies all the positions in the submatrix obtained by striking out row
1 and column 1 that it occupies in C(x0, x1, x2, x3, x4). Thus this simple analysis gives

per(C(x0, x1, x2, x3, x4)) =

4∑
i=0

x5i + 5(twenty other terms) + 15x0x1x2x3x4. ♦

From calculations of per(C(x0, x1, . . . , xn−1)) using Sage, we found the following
information:

• (n = 5): largest coefficient is 15 occuring uniquely for

x0x1x2x3x4.

Coefficients are 1, 5, 15. This confirms the calculations in Example 4.1.

• (n = 6): largest coefficient is 24 occuring for the six terms of the form

x20x1x2x
0
3x4x5.

Coefficients are 1, 2, 3, 6, 9, 12, 18, 24.

• (n = 7): largest coefficient is 133 occuring uniquely for

x0x1x2x3x4x5x6.

Coefficients are 1, 7, 14, 21, 35, 42, 49, 133.

• (n = 8): largest coefficient is 256 occuring for the 8 terms

x20x1x2x3x
0
4x5x6x7, x0x

2
1x2x3x4x

0
5x6x7,

x0x1x
2
2x3x4x5x

0
6x7, x0x1x2x

2
3x4x5x6x

0
7,

x00x1x2x3x
2
4x5x6x7, x0x

0
1x2x3x4x

2
5x6x7,

x0x1x
0
2x3x4x5x

2
6x7, x0x1x2x

0
3x4x5x6x

2
7.

For instance, x20x1x2x3x
0
4x5x6x7 occurs in the term

x0
x2

x3
x6

x0
x5

x1
x7


.

There are 810 different terms that occur in per(C(x0, x1, . . . , x7)). The full set of
coefficients in the permanent are

{1, 2, 4, 6, 8, 12, 16, 20, 24, 32, 40, 48, 56, 64, 72, 80, 96, 128, 160, 256}.

Note that the differences of consecutive coefficients in this list are:

1, 2, 2, 2, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 16, 32, 32, 96.

Only the last is not a power of 2.
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Conjecture 4.2. Our calculations have shown that for n = 4, the largest coefficient in
per(C(x0, x1, . . . , xn−1)) is 4 = 22 occuring 4 times, and for n = 8, the largest coeffi-
cient is 256 = 28 occuring 8 times. We conjecture that if n is a power of 2, then the largest
coefficient is also a power of 2 occuring for the terms of the form x20x1x2 · · · x̂n/2 · · ·xn−1,
and cyclical translates of terms of this form (total number of different terms is n). Unfor-
tunately, the occurrence of these terms does not seem to have a pattern. For instance, with
n = 8, we have

x0 x1 x2 x3 x4 x5 x6 x7
x7 x0 x1 x2 x3 x4 x5 x6
x6 x7 x0 x1 x2 x3 x4 x5
x5 x6 x7 x0 x1 x2 x3 x4
x4 x5 x6 x7 x0 x1 x2 x3
x3 x4 x5 x6 x7 x0 x1 x2
x2 x3 x4 x5 x6 x7 x0 x1
x1 x2 x3 x4 x5 x6 x7 x0


(x20x1x2x3x5x6x7).

This corresponds to the permutation σ of {1, 2, 3, 4, 5, 6, 7, 8} such that

σ(1) = 1, σ(2) = 2, σ(3) = 8, σ(4) = 5,

σ(5) = 7, σ(6) = 4, σ(7) = 6, σ(8) = 3.

The coefficient of x20x1x2x3x5x6x7 is the number of permutations π of {1, 2, 3, 4, 5, 6, 7, 8},
such that

π(i)− i ≡ j (mod 8)

has two solutions for j = 0, no solutions for j = 4, and one solution for j = 1, 2, 3, 5, 6, 7.
A similar statement holds for all even n, and we seek the number of such solutions.

Conjecture 4.3. Three conjectures/problems for n even (or perhaps just n a power of 2):

(a) There exists a term x20x1x2 · · · x̂n/2 · · ·xn−1 in per(C(x0, x1, . . . , xn−1)) arising
from every choice of the two x0’s on the main diagonal.

(b) In reference to (a), the largest number of terms occurs when the x0’s are chosen to
be n/2 apart (cyclically, the same number of elements on the main diagonal between
them). In the case of n = 8, there are 16 terms for a choice of x0’s which are 4 apart
(5th x0 on the main diagonal minus 1st x0 on main diagonal) and 8 terms for all
other choices of x0’s.

(c) If n is a power of 2, the coefficient of x20x1x2 · · · x̂n/2 · · ·xn−1 is a power of 2.

Problem 4.4. The matrix C(x0, x1, . . . , xn−1) can be regarded as a special latin square.
The coefficient of x0x1 · · ·xn−1 in per(C(x0, x1, . . . , xn−1)) equals the number of trans-
versals of this latin square. In [5] it is shown that if n is odd and sufficiently large, the
coefficient of x0x1 · · ·xn−1 in per(C(x0, x1, . . . , xn−1)) is greater than (3.246)n. In the
cases of n = 5 and n = 7, the number of latin square transversals of C(x0, x1, . . . , xn−1)
equals 15 = 5 × 3 and 133 = 7 × 19, respectively. Since a latin square transversal is
mapped into a latin square transversal by multiplyingC(x0, x1, . . . , xn−1) by the full cycle
permutation matrix Pn, it follows that for odd n, the number of latin square transversals,
that is, c(1, 1, . . . , 1) is divisible by n. See also Theorem 3.5 and Corollary 3.6.
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If n is odd, the term x0x1 · · ·xn−1 occurs in per(C(x0, x1, . . . , xn−1) with a nonzero
coefficient. A conjecture would be that this term has the largest coefficient. Thinking of
the xi as n different colors giving n! multicolored transversals, the conjecture is saying that
the number of multicolored transversals with all colors different is greater than the num-
ber of multicolored transversals of any other prescribed color type (so at least two colors
the same). This coefficient is equal to the number of transversals of C(x0, x1, . . . , xn−1)
considered as a latin square, so finding this exactly is probably not attainable (see [5]).

Remark 4.5. Concerning Problem 4.4 and the juggleable set {1, 2, . . . , n} with n odd,
corresponding to the term x0x1 · · ·xn−1 in per(C(x0, x1, . . . , xn−1)). A permutation
(i1, i2, . . . , in) of this juggleable set is a juggling sequence giving the term x0x1 · · ·xn−1
in per(C(x0, x1, . . . , xn−1)) provided 1 + i1, 2 + i2, . . . , n+ in are distinct modulo n. If
this is the case, then any cyclic permutation of (i1, i2, . . . , in) is also a juggling sequence
(since subtracting 1 modulo n from distinct integers modulo n gives distinct integers mod-
ulo n, thereby giving n terms in per(C(x0, x1, . . . , xn−1)) equal to x0x1 · · ·xn−1. The
difficulty in calculating the coefficient of x0x1 · · ·xn−1 in per(C(x0, x1, . . . , xn−1)) is
knowing how many permutations i1, i2, . . . , in of the set {1, 2, . . . , n} have the property
that 1 + i1, 2 + i2, . . . , n + in are distinct modulo n. So one might consider the additive
group Z(n)

n = Zn × Zn × · · · × Zn (n copies of Zn) and the mapping

T : Z(n)
n → Z(n)

n

given by

T (i1, i2, . . . , in) = (1 + i1, 2 + i2, . . . , n+ in)

= (1, 2, . . . , n) + (i1, i2, . . . , in) mod n.

Unfortunately, this mapping is not a homomorphism and so does not seem useful. But
it does seem that for a juggleable set {u1, u2, . . . , un} with at least one repeat, that is, the
number of permutations (u1, u2, . . . , un) of this pattern such that 1+u1, 2+u2, . . . , n+un
are distinct modulo n is smaller than when there is no repeat in {u1, u2, . . . , un}. But it
seems difficult to make a comparison.

Remark 4.6. Assume n is odd. Then x10x
1
1x

1
2 · · ·x1n−1 occurs in per(C(x0, x1, . . . , xn−1))

with a nonzero coefficient. We can think of this term as generating other terms that occur
in per(C(x0, x1, . . . , xn−1)) as follows:

We increase or decrease (by 1) some of the exponents of this term to get

x1+a00 x1+a11 x1+a22 · · ·x1+an−1

n−1

where each ai ∈ {1, 0,−1}, and
n−1∑
i=0

ai = 0 (4.1)

and, in order that the result is a term in per(C(x0, x1, . . . , xn−1)), we must have

n−1∑
i=0

iai ≡ 0 (mod n). (4.2)
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(By (4.2),
∑n−1
i−0 (1 + ai) = 0 and

∑n−1
i=0 i(ai + 1) ≡ 0 (mod n) and thus gives a term in

this permanent.) We can do a similar operation on the resulting term but then we need to
be sure that the resulting exponents are always between 0 and n. Continuing like this we
can generate all terms that occur in this permanent.

So in this operation we increase s ≥ 1 exponents by 1 and decrease s exponents by−1,
so adding (a0, a1, a2, . . . , an−1), subject to the condition (4.2), to the vector of exponents
in a term in our permanent. One line of investigation is to try to determine when this
operation increases/decreases the coefficient of the corresponding terms in our permanent.
In particular, when with one application starting with the term x10x

1
1x

1
2 · · ·x1n−1, does the

coefficient decrease? Note that in one application, we must reduce two exponents to 0 in
order that we satisfy (4.2); in general there must be at least four changes in exponents. See
the following example.

Example 4.7. Let n = 9. We start with the term x0x1x2x3x4x5x6x7x8. We can change
exponents by using the vector (0, 0, 1,−1, 0,−1, 1, 0, 0). Since 1 · 2− 1 · 3 + (−1) · 5 +
1 · 6 = 0 ≡ 0 (mod 9),

x0x1x
2
2x4x

2
6x7x8

is a term in our permanent. ♦

Problem 4.8. If n is even, then we can also ask for the term(s) with the largest coefficient.
If n = 4, there are four terms that appear with the largest coefficient of 4, namely

x20x1x3, x0x
2
1x2, x1x

2
2x3, x0x2x

2
3.

A conjecture might be:
If n is even then the terms in per(C(x0, x1, . . . , xn−1)) that occur with the largest

coefficient are the terms with the property that xi occurs with exponent 2, xi+n/2 (subscript
mod n) occurs with exponent 0, and all other xi appear with exponent 1.

Remark 4.9. We have that there is a nonzero term in per(C(x0, x1, . . . , xn−1)) with ex-
actly two nonzero exponents (so binomials) if and only if n is not a prime. The reason is
as follows: Suppose xai x

b
j occurs with a nonzero coefficient where 0 ≤ j < i ≤ n− 1 and

i 6= j, and a, b ≥ 1, and a+ b = n (and so a, b ≤ n− 1). Then by Hall’s theorem

ai+ bj = ai+ (n− a)j ≡ 0 (mod n), that is, a(i− j) ≡ 0 (mod n).

If n is a prime p, this is a contradiction since p - a and p - (i− j). If n is not a prime, say
n = uv where 1 < u, v < n−1. Then we may choose a = u, and i and j so that i−j = v,
and get a term xai x

(n−a)
j with a nonzero coefficient.

In investigating binomials in per(C(x0, x1, . . . , xn−1)) it is sufficient to consider bi-
nomials of the form xa0x

b
k where 1 ≤ k ≤ n − 1. Thus we consider the terms of

per(x0In + xkP
k
n ) different from xn0 and xnk . This permanent is easily computed:

per(x0In + xkP
k
n ) =

d∑
t=0

(
d

t

)
x
tnd
0 x

(d−t)n
d

k where d = gcd(n, k).

Thus the largest coefficient of a binomial is
(
d
d
2

)
.

More generally, let H ⊆ {0, 1, . . . , n − 1}. If we set xj = 0 if j 6∈ H , then the
permanent of the resulting matrix CH(x0, x1, . . . , xn−1) gives all the terms that occur in
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per(C(x0, x1, . . . , xn−1)) and their coefficients in which the only xi that can occur are
those with i ∈ H . By also setting xi = 1 for i ∈ H , the permanent equals the number of
terms in per(CH(x0, x1, . . . , xn−1)).

Remark 4.10. Now consider terms in per(C(x0, x1, . . . , xn−1)) where there are exactly
three nonzero exponents (so in the juggling context, three different heights in throwing
the balls). These terms are then trinomials. Which trinomial has the largest coefficient
among all trinomials that occur in per(C(x0, x1, . . . , xn−1))? The conjecture is that the
maximum coefficient occurs when the exponents are as equal as possible; in particular if
n = 3k, then the trinomial will largest coefficient is conjectured to be xk0x

k
kx

k
2k and its

cyclic permutations. In investigating trinomials in per(C(x0, x1, . . . , xn−1)) it suffices to
consider terms of the form xa0x

b
rx
c
s where 0 < r < s < n and a + b + c = n, that is it

suffices to consider the trinomials in

per(x0In + xrP
r
n + xsP

s
n).

The conjecture is that the largest coefficient of a trinomial in this permanent occurs when
the exponents are as equal as possible and the powers of Pn, i.e. the subscripts of the x’s
are as equally spaced as possible (in the cyclic sense). If n = 3k, then after permutations
x0In + xkP

k
n + x2kP

2k
n becomes a direct sum of k 3× 3 matrices of the form

x0I3 + xkP3 + x2kP
2
3 .

5 Juggling sequences with additional properties
Let U = {u1, u2, . . . , un} be a minimal juggleable set, and let uτ(1), uτ(2), . . . , uτ(n) be a
juggling sequence corresponding to U . Thus τ is a permutation of {1, 2, . . . , n} and it is
natural to ask about the existence of such permutations τ with additional properties, equiv-
alently, extensions of Theorem 2.1 by imposing additional restrictions on the permutation
τ . Juggling sequences correspond to transversals in the circulant C(x0, x1, . . . , xn−1) and
thus we seeks transversals of C(x0, x1, . . . , xn−1) whose pattern has additional properties.

Two natural permutations to consider are involutions and centrosymmetric permutations
of σ of {1, 2, . . . , n}. Involutions are permutations σ of {1, 2, . . . , n} where for all i and
j, σ(i) = j implies σ(j) = i, and these correspond to transversals of C(x0, x1, . . . , xn−1)
whose positions have a symmetric matrix pattern, that is, transversal patterns invariant
under a reflection about the main diagonal. A permutation σ is centrosymmetric pro-
vided that for all i, σ(i) + σ(n + 1 − i) = n + 1 and these correspond to transversals
of C(x0, x1, . . . , xn−1) whose positions have a centrosymmetric matrix pattern, that is,
transversal patterns invariant under a 180 degree rotation. There are permutations that are
both symmetric and centrosymmetric.

Example 5.1. Let n = 4 and let σ = (2, 1, 4, 3). As a permutation matrix, σ equals
1

1
1

1


which is invariant under a reflection about the diagonal and a rotation of 180 degrees. Thus
σ is both an involution (invariant under a reflection about the main diagonal) and a cen-
trosymmetric permutation (invariant under a 180 degree rotation). Notice that σ is also
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invariant under reflection about the antidiagonal running from the lower left to the upper
right, and this holds in general for permutations that are both symmetric and centrosym-
metric. ♦

LetU = {u1, u2, . . . , un} be a multiset where ui ∈ {0, 1, . . . , n−1} for 0 ≤ i ≤ n−1.
We say thatU is balanced mod n provided that its nonzero elements can be paired as {a, b}
so that a+b ≡ 0 (mod n). Thus if n is even, 0 and n/2 each occur an even, possibly zero,
number of times, and if n is odd, 0 occurs an odd number of times. If U is balanced mod n,
then it is an immediate consequence of Theorem 2.1 that U is a juggleable set with each xi
with i 6= 0 occurring with an even, possibly zero, exponent in per(C(x0, x1, . . . , xn−1)).

Example 5.2. Let n = 8 and let U = {0, 0, 1, 7, 1, 7, 4, 4}. Then U is balanced mod 8
and hence is a juggleable set. In C(x0, x1, . . . , x7) below we have realizations

1 2 3 4 5 6 7 8

1 x0 x1 x2 x3 x4 x5 x6 x7
2 x7 x0 x1 x2 x3 x4 x5 x6
3 x6 x7 x0 x1 x2 x3 x4 x5
4 x5 x6 x7 x0 x1 x2 x3 x4
5 x4 x5 x6 x7 x0 x1 x2 x3
6 x3 x4 x5 x6 x7 x0 x1 x2
7 x2 x3 x4 x5 x6 x7 x0 x1
8 x1 x2 x3 x4 x5 x6 x7 x0

.

corresponding to the term x20x
2
1x

2
4x

2
7 in per(C(x0, x1, . . . , x7)), achieved in the permanent

per(C(x0, x1, . . . , x7)) by an involution (dark gray) and by a centrosymmetric permutation
(light gray). ♦

Example 5.3. Let n = 6 and consider the multiset U = {2, 2, 2, 4, 4, 4} balanced mod 6
with the pairing {2, 4}, {2, 4}, {2, 4}. In both case we seek a corresponding transversal in

x0 x1 x2 x3 x4 x5
x5 x0 x1 x2 x3 x4
x4 x5 x0 x1 x2 x3
x3 x4 x5 x0 x1 x2
x2 x3 x4 x5 x0 x1
x1 x2 x3 x4 x5 x0

 ,

consisting of three x2’s and three x4’s. We have indicated such a realization in the cen-
trosymmetric case, but it is straightforward to check that it cannot be attained by an invo-
lution. ♦

We have done a substantial amount of calculation with the following consequences:

(i) For n ≤ 19 a prime, all balanced mod n multisets can be achieved by a transversal
with a symmetric pattern. When n = 15, there are 16 balanced mod 15 multisets
that cannot be achieved by a transversal with a symmetric pattern, e.g. the multiset
{0, 6, 6, 6, 6, 6, 6, 6, 9, 9, 9, 9, 9, 9, 9} cannot be so achieved. On the other hand, for
n = 18, there are 48 620 balanced mod 18 multisets satisfying (2.1) and only 36 195
can be achieved with a symmetric pattern.
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(ii) For odd n ≤ 21, all balanced mod n multisets can be achieved by a transversal with
a centrosymmetric pattern.

As a consequence of the data obtained we make two conjectures:

Conjecture 5.4. If n is a prime, then every balanced mod n multiset can be achieved by
a transversal with a symmetric pattern.

Conjecture 5.5. If n is odd, then a balanced mod nmultiset can be achieved by a transver-
sal with a centrosymmetric pattern. If n is even, then the unachievable balanced mod n
multisets only have terms with the same parity.
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