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Abstract: 
Foodborne Disease (FBD) impacts individuals through the ingestion of foods contaminated with 

microbes and can lead to an array of adverse health consequences ranging from mild symptoms 

such as nausea to those that evolve to become life-threatening (World Health Organization, 

2015a). The incidence of FBD is expected to increase in the presence of climate change due to an 

increase in ambient temperature creating an environment where microbes can rapidly multiply 

and thrive (Gregory, Johnson, Newton, & Ingram, 2009; Kovats et al., 2004). Foodborne cases of 

Salmonella make up the second largest cause of gastrointestinal infection in the United States 

(Scallan et al., 2011). In the United States, the Centers for Disease Control and Prevention’s 

National Outbreak Response System database documents nation-wide occurrences of FBD 

outbreaks. In state-level analyses for Florida, Illinois, Maryland, Michigan, Minnesota, New 

York, Ohio, and Washington, negative binomial regression models were used to examine the 

association between monthly average maximum daily temperature and monthly incidence of 

foodborne Salmonella between 1998 and 2017, using models with the same month’s average 

maximum daily temperature as the predictor (zero-month lag) and models with the previous 

month’s average maximum daily temperature as the predictor (one-month lag). The zero-month 

lag analysis yielded significant results for Illinois, Maryland, Minnesota, New York, Ohio, and 

Washington, and the one-month lag analysis yielded significant results for Maryland, Minnesota, 

New York, and Washington. A single model with state as an additional covariate, was also run 

and found summary statistics with the middle and highest temperature categories having 1.52 

(95% CI: 1.05, 2.21; p= 0.03) and 3.46 (95% CI: 2.40, 5.01; p <0.001) times greater risk of 

illness due to Salmonella than in the lowest temperature category. This study illustrates a 

connection between higher temperatures and increased incidence of Salmonella infection, both at 

the individual state level and across all analyzed states.  
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Background: 

Introduction 

This paper investigates the relationship between meteorological variables and foodborne 

disease (FBD) outbreaks in the United States by analyzing the relationship between outbreaks of 

Salmonella and temperature in selected areas. The analysis of temperature and precipitation 

impacts can illuminate potential consequences associated with climate change, as climate change 

will impact these meteorological variables. Researchers have already seen an impact of climate 

change on aspects of agriculture, such as through decreasing nutrient contents in foods, and, in 

turn, nutrition and health (Zhu et al., 2018). Food security and health can be impacted through 

increases in droughts, decreases in water access, increases in extreme weather events, along with 

an increase in FBD. While there have been many initiatives to curb the number of outbreaks of 

FBD in the developed world, few exist in developing countries, which face the highest burden 

(World Health Organization, 2015b). Through focusing on the relationship between temperature 

and FBD outbreak cases of Salmonella, this paper aims to better understand the role ambient 

temperature play in FBD outbreaks. 

What is FBD? 

FBD occurs around the world mainly from the ingestion of foods contaminated with 

microbes, chemical residues, and other toxic substances (World Health Organization, 2015a). 

However, in addition to food sources, the disease can be transmitted through environmental and 

human sources. FBD cases are frequently characterized by milder symptoms such as nausea, 

vomiting, and diarrhea. However, if not treated properly these cases can evolve to be life-

threatening. Severe cases have led to kidney and liver failure, brain and neurological disorders, 



paralysis, and death, and are a suspected contributor to the future development of cancers (World 

Health Organization, 2015b).  

While FBD is caused by both chemical and microbial sources, this paper focuses on 

bacterial cases, specifically those attributed to Salmonella, as cases of Salmonella transmitted by 

solely food make up the second largest cause of intestinal infection in the United States (Centers 

for Disease Control and Prevention, 2018c, 2019b; Scallan et al., 2011). 

Transmission 

Animals raised for food serve as a major reservoir for FBD. With bacteria being shed 

through animal fecal matter, infection can be transmitted via the contamination of animal 

products, particularly during the slaughtering and processing stages (Tauxe, 1997). From here, 

humans are presented with animal products such as meat and milk that, if not properly treated 

with high enough heat to kill bacteria, will infect humans (Food and Agriculture Organization, 

2017; World Health Organization, 2008). Another mechanism of transmission via food occurs 

with fresh produce and unpasteurized juices (Bennett et al., 2017; Berger et al., 2010; Jain et al., 

2009). Produce can cause infections following exposure to manure that hosts bacteria. 

Contamination occurs when manure is improperly used on crops or, more frequently, when large 

farms have too much manure to properly contain, causing the manure to flow into local water 

sources that are then used to water crops. An additional contamination risk is when large storms 

drop heavy volumes of rainwater, resulting in flooding wherein the rainwater comes in contact 

with manure, which flows downstream contacting crops (Tauxe, 1997). These contaminated 

crops may then be sold as fresh produce or can be turned into juices that are sold to distributors 

or the public.  



The human-to-human pathway is also a common way that FBD is transmitted where 

transmission occurs via the fecal-oral route (Centers for Disease Control and Prevention, 2013a). 

Typically, humans are exposed to the fecal matter of other humans through eating food that has 

contacted human feces. However, direct contact with fecal matter will also facilitate disease 

transmission. This also frequently happens in restaurant and home settings where there are poor 

hygiene standards, particularly with improper handwashing prior to food preparation 

(Washington State Department of Health, 2017). 

Transmission to humans also occurs from the environment through exposure to animals 

and their fecal matter in the environment. While this is not a food source of FBD cases, these 

infected humans can then spread the infection further through human-to-human transmission 

pathways. 

Prevention 

Prevention is the first and biggest line of defense when dealing with FBD cases. Due to a 

strong trend in changing dietary patterns, many individuals are increasingly eating foods 

produced from outside of their homes (Cheng, Olsen, Southerton, & Warde, 2007; Warde, 

Cheng, Olsen, & Southerton, 2016). From this change it can be deduced that there is an 

increasing risk of developing FBD as there are more steps involved in producing the food served. 

There are multiple levels in which prevention techniques can be implemented. From a public 

perspective, prevention strategies include proper education regarding techniques to minimize 

FBD cases as well as prompt communication when there are outbreaks reported. Prevention 

strategies can also be implemented through recalling food products if they have been identified 

as the source of outbreaks. Some of these educational techniques can be implemented at the 



individual level, including the “Five Keys to Safer Food” that were developed by the World 

Health Organization, seen as follows (World Health Organization, 2006): 

1. Keeping clean 

2. Separating raw and cooked foods 

3. Cooking foods thoroughly 

4. Keeping foods at safe temperatures 

5. Using safe water and raw materials 

Furthermore, individual prevention actions include using antibiotics properly, avoiding contact 

with wild animals, exercising caution with pets, and choosing to consume products that are 

pasteurized (Centers for Disease Control and Prevention, N. D.). Additionally, the WHO has 

published guidelines on safe food handling as a training guide to prevent occurrences of 

foodborne disease (Jacobs, 1989). Many states and countries also mandate food safety training 

for individuals as part of food safety programs.  

The Infectious Agent: Salmonella 

Salmonella is a bacterium in the family Enterobacteriaceae that consists of two species, 

Salmonella enterica and Salmonella bongori, with 2,463 serotypes (Brenner, Villar, Angulo, 

Tauxe, & Swaminathan, 2000). This illness typically lasts between four to seven days and does 

not require further treatment; however in severe cases patients may develop sepsis and can lead 

to death (Centers for Disease Control and Prevention, 2019b). Certain populations are at an 

elevated risk of severe consequences from Salmonella infection, specifically children under the 

age of 5, the elderly, and those with weakened immune systems (Centers for Disease Control and 

Prevention, 2014b). In some cases, those infected with Salmonella develop reactive arthritis 

lasting from months to years and potentially developing into chronic arthritis (Centers for 



Disease Control and Prevention, 2014b). Infection by certain Salmonella serotypes can also lead 

to the development of enteric fevers, such as those caused by S. typhi, however this infection has 

been deemed rare (Baron, 1996).  

In the United States, the CDC estimates 1 million illnesses, 19,000 hospitalizations, and 

380 deaths attributed to food transmitted cases of Salmonella infection per year (Centers for 

Disease Control and Prevention, 2019b). The following food sources have been connected to 

Salmonella outbreaks in the United States: vegetables, sprouts, eggs, chicken, pork, fruits, and 

nut butters (Centers for Disease Control and Prevention, 2019c). 

Diagnosis 

Diagnosis of Salmonella relies heavily on the patients’ history in addition to the 

epidemiologic features and objective findings of the case (Guerrant et al., 2001). Early symptoms 

and their timing are identified to aid the diagnosis process. Telling signs of a case of FBD due to 

Salmonella are the presence of diarrhea (particularly within 24-48 hours of ingestion and 

potentially bloody), dehydration, fever, abdominal pain, and weakness; in some instances sepsis 

may develop (Centers for Disease Control and Prevention, 2015b). 

In addition to looking at early symptoms, a physical examination should be conducted 

where one takes general physical assessments (such as mental status, skin turgor to assess 

dehydration, and abdomen pain), orthostatic pulse, and blood pressure (Guerrant et al., 2001). 

Further tests can be conducted if deemed necessary, primarily collecting a stool culture and in 

severe cases collecting blood cultures. Collection of a stool culture is necessary to identify the 

bacterial causes of FBD cases, making this one of the reasons for underreporting as not all 

individuals provide samples. If a sample is collected, it can be useful for identifying outbreaks 

(Guerrant et al., 2001). 



When an outbreak is suspected, a laboratory analysis of bacterial samples is conducted 

for confirmation. Typically, health departments utilize Pulsed-field Gel Electrophoresis (PFGE) 

in identifying FBD cases including those caused by Salmonella. PFGE is a technique where a 

unique “DNA fingerprint” is created for the bacteria sampled. PFGE separates DNA fragments 

according to size through an agarose gel with an electrical field (MacCannell, 2013). 

Laboratories have the potential capacity to produce gel patterns in about 24 hours (Ribot et al., 

2006). 

Following the running of the gel the unique “DNA fingerprint” is produced, which can 

then be analyzed, typically with a software program such as BioNumerics (Centers for Disease 

Control and Prevention, 2016). The pattern is then uploaded to the database where an 

investigation can occur to determine if the case is part of an outbreak. It is critical to interpret 

PFGE data in the context of the epidemiology in the region of interest. This is because the 

pattern itself does not offer sufficient information to determine an outbreak as some PFGE 

patterns may be common or similar strains may have infected individuals through different 

pathways (Barrett, Gerner-Smidt, & Swaminathan, 2006). Additionally, studies have shown that 

patterns may be different but still related epidemiologically, such as when four different patterns 

were found from E coli O157 isolates with the same source (Jackson et al., 2000). 

There are issues associated with utilizing PFGE in outbreak investigations as some 

observed differences may not be real (i.e. could be artifacts due to a multitude of factors such as 

utilizing the incorrect primers or contamination of samples), organism diversity may impact 

PFGE patterns, and differences in timing of outbreaks can impact PFGE patterns (longer 

outbreak periods may lead to increased diversity in patterns as it provides time for mutations to 

occur) (Barrett et al., 2006).  



Climate Change and Salmonella 

It is predicted that climate change will increase the number of cases of FBD due to an 

increase in ambient temperature creating an environment where microbes can rapidly multiply 

and thrive (Gregory et al., 2009; Kovats et al., 2004). Additionally, increases in the number of 

extreme weather events will impact food access and safety (National Institute of Environmental 

Health Sciences, 2010).  

Many studies have looked to establish a relationship between seasonality and FBD 

outbreaks, forming the basis of hypotheses that climate change will impact outbreaks. Most of 

these studies assess the impact of temperature through a proxy of seasonality, as well as the 

impact of relative humidity. These studies have typically found a relationship between 

seasonality and the appearance of outbreaks (Kim, Park, Chun, Choi, & Bahk, 2015; Lee, Lee, 

Kim, & Park, 2009; Wang et al., 2016). 

Research has also shown a connection between high precipitation levels and increases in 

cases of FBD, especially caused by Campylobacter, Salmonella, Vibrio, and E.Coli (Park, Park, 

& Bahk, 2018; Semenza et al., 2011; Soneja et al., 2016). These studies have indicated that 

heavy precipitation may lead to flooding that brings bacterial agents (from sewage or manure) in 

contact with food products. One study found that Salmonella may be transmitted between from 

an airborne source to produce through a medium of rain, then surviving for up to 3 days on 

plants, indicating a potential relationship between elevated precipitation levels and Salmonella 

cases (Cevallos-Cevallos, Danyluk, Gu, Vallad, & van Bruggen, 2012). Through studying the 

impact of climatic variables on FBD outbreaks, one may determine if there is cause for concern 

given a changing climate with projected higher temperatures and precipitation levels. 



There have been a number of studies specific to addressing the seasonality impacts on 

FBD cases attributed to Salmonella. General caution to consumers has been suggested by the 

CDC, warning that Salmonella cases are higher in the summer and a 2014 FoodNet report stating 

that the highest number of cases for Salmonella in the United States was found in August, due to 

the warm weather promoting Salmonella growth (Centers for Disease Control and Prevention, 

2014a, 2019c). Research has looked at the impact of temperature and precipitation on Salmonella 

both in the United States and abroad. Studies in Europe have found a relationship between 

increasing temperature and increases in cases of Salmonellosis, another term for FBD cases 

caused by Salmonella, with one in Macedonia finding ambient temperature to be a predictor for 

cases (Kendrovski & Gjorgjev, 2012; Kovats et al., 2004; Yun et al., 2016). Studies in Canada 

have found a relationship with ambient temperature and cases of Salmonella, however one study 

did not find a relationship with precipitation (Ravel et al., 2010; Varga et al., 2013). An 

Australian study in Queensland also found a correlation between ambient temperature and 

Salmonellosis (Stephen & Barnett, 2016). Specific to the United States, a study in Georgia found 

Salmonella cases to be more associated with food festivals occurring during the summer and fall, 

and a study focusing on Mississippi, Alabama, and Tennessee, found a strong relationship 

between high temperature and cases of Salmonella infection (Akil, Ahmad, & Reddy, 2014; 

Wilson, 2015). 

With a possible rise in Salmonellosis due to climate change, the United States may be 

faced with a number of adverse consequences. One of these is the potential economic burden 

from not only higher numbers of individuals becoming ill leading to lost productivity, but also 

higher costs in healthcare expenditure. Increases in outbreaks may also impact agricultural 

practices, with consumers exercising caution with certain food items associated with outbreaks, 



leading to profit losses. A 2013 publication by the United States Department of Agriculture 

(USDA) found that the economic burden associated with Salmonella cases in the United States 

was over $3.6 billion (Hoffmann, 2015). Additionally, increases in case numbers may lead to 

elevated mortality rates, particularly among vulnerable populations.  

Materials and Methods: 

National Outbreak Response System / Foodborne Disease Outbreak Surveillance System 

Data regarding cases of foodborne Salmonella infection was obtained from the CDC’s 

National Outbreak Response System (NORS) (Centers for Disease Control and Prevention, 

2019a). NORS receives data on FBD outbreaks from the CDC’s Foodborne Disease Outbreak 

Surveillance System (FDOSS). In addition to Salmonella infections, NORS contains information 

on cases caused by Astrovirus, Bacillus, Brucella, Campylobacter, Ciguatoxin, Clostridium, 

Cryptosporidium, Cyclospora, Escherichia coli, Giardia, Hepatitis A, Histamine, Listeria, 

mycotoxins, Norovirus, Rotavirus, Scombroid, Shigella, Staphylococcus, Streptococcus, 

Trichinella, Vibrio, and Yersinia. State, local, and territorial public health agencies report 

outbreaks of FBD (defined as having two or more cases) and include details on the cases 

involved to FDOSS; however reporting is not mandatory (Centers for Disease Control and 

Prevention, 2015a, 2019d). The NORS dashboard contains an open-access dataset spanning from 

January 1998 to December 2017 (Centers for Disease Control and Prevention, 2018b). The 

information reported includes the month and year of outbreak, the number of cases involved in 

each outbreak, the state, food or drink implicated, where the food or drink was prepared, and the 

agent involved (Centers for Disease Control and Prevention, 2018a). Data on case numbers was 

collected for Salmonella infections from 1998 to 2017 where every case belonged to an outbreak, 



such that all cases were part of an outbreak and were not individually reported cases. As data was 

restricted to the month level, the analysis could not be performed using the daily case numbers. 

National Oceanic and Atmospheric Administration / National Centers for Environmental 

Information 

Temperature and precipitation data was gathered from the National Oceanic and 

Atmospheric Administration’s (NOAA) National Centers for Environmental Information 

(NCEI), specifically the Statewide Time Series in their Climate at a Glance program (National 

Oceanic and Atmospheric Administration, 2019c). Climate at a Glance provides monthly 

temperature and precipitation data for states in the contiguous United States from January 1895 

to the present gathered from the U.S. Climate Divisional Database (National Oceanic and 

Atmospheric Administration, 2019b). This data has been adjusted to account for artificial effects 

such as instrument changes (National Oceanic and Atmospheric Administration, 2019a). 

Monthly data for Florida, Illinois, Maryland, Michigan, Minnesota, New York, Ohio, and 

Washington were utilized, specifically monthly average mean daily temperature, monthly 

average maximum daily temperature, monthly average minimum daily temperature, and monthly 

average precipitation. Temperature data are reported in degrees Fahrenheit while precipitation 

data are reported in inches. 

Statistical methods 

An analysis of the relationship between temperature and incidence of outbreak-associated 

foodborne Salmonella case incidence was conducted. This analysis focused on Salmonella 

because, among bacterial causes of FBD reported to FDOSS, the highest number of cases were 

reported for Salmonella. This opportunity to study Salmonella was exploited to add to the 

growing body of research looking into the impacts of seasonality and ambient temperature on 



Salmonella incidence. This study focuses on the states of Florida, Illinois, Maryland, Michigan, 

Minnesota, New York, Ohio, and Washington due to the high Salmonella case numbers in these 

states. California, the state with the highest number of Salmonella cases, was excluded due to the 

large variability in temperature across the state (the Salmonella case data was restricted to the 

state level). In our analyses, the outcome variable was state-level monthly number of outbreak-

associated cases from 1998 to 2017. Comparably, state-level temperature (°F) and precipitation 

(inches) data were averaged for every month from 1998 to 2017. 

Because the relationship between temperature and Salmonella incidence is most likely 

non-linear, temperature was analyzed as a categorical rather than continuous variable. To 

account for differences in temperature distributions across states, a standardization function was 

applied to the temperature data using the scale function in R. This function centers the data by 

calculating the state-specific mean and standard deviation, then scales the temperature according 

to the number of standard deviations from the mean. Temperature categories were set from -2.5 

to -1, -0.99 to 0.5, and 0.51 to 2. The lowest temperature category was set as the reference 

category for analysis. Analysis was conducted using the monthly averages of average daily 

temperature, maximum daily temperature, and minimum daily temperature, with preliminary 

findings yielding similar results. For simplicity, the results are presented looking at the impact of 

maximum temperature only. 

Data were collected on the yearly population in each state as well through Statista from 

the US Census Bureau, with this yearly value being applied to each month in that respective year 

as a population offset (Statista, 2019). To control for long-term trends in case reporting, such that 

these effects can be separated from short-term associations between temperature and Salmonella 



incidence, we created a continuous monthly time variable  (Bhaskaran, Gasparrini, Hajat, 

Smeeth, & Armstrong, 2013).  

Poisson regressions were conducted for each state looking at the outcome of case 

numbers, with a primary predictor of maximum temperature (categorical as explained above), a 

co-variate of precipitation (continuous), a long-term time trend indicator, and a population offset. 

Models were run with zero-month and one-month lag. In the zero-month models, the predictor 

was the temperature in the same month in which the cases occurred; in the one-month lag 

models, the predictor was the prior month. Over-dispersion was accounted for by using a 

quasipoisson model. Utilizing a Poisson regression, however, led to a poor fit for the data 

yielding p-values for the deviance goodness of fit test of less than 0.05.  

The data was then modeled using a negative binomial regression model, with an outcome 

of case numbers, and included a primary predictor of maximum temperature (categorical), a co-

variate of precipitation (continuous), a long-term time trend indicator, and a population offset. 

Models were again run with zero-month and one-month lag. A model including all of the states, 

with state as an additional covariate, was also run to calculate a summary result. All statistical 

analyses were conducted using R, an open-source statistical software. 

Results and Discussion: 

All states analyzed had at least 1,000 outbreak cases of Salmonella during the period of 

interest from 1998 to 2017. As illustrated in Table 1, these case numbers range from 1,035 in 

Washington to 3,116 in Illinois, totaling 13,664 cases and 850 outbreaks occurring during the 

study period. Cases originated from a range of sources, including restaurants, private homes, and 

grocery stores. Figure 1 showcases the trend over time in case reporting, with a seemingly 



Figure 1. Trends in Reported Salmonella Cases. Number of Salmonella cases reported to the 
CDC from 1998 to 2017. These numbers are summed from the cases in Florida, Illinois, 
Maryland, Michigan, Minnesota, New York, Ohio, and Washington. This figure includes a 
trend line and bands representing a 95% confidence interval. 

downward trend during the study period. Long-term time trends in reporting were controlled for 

through a continuous monthly time variable, as explained above. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

State Salmonella Cases Number of Outbreaks 
Florida 1,747 160 
Illinois 3,116 129 
Maryland 1,173 87 
Michigan 1,214 59 
Minnesota 1,368 98 
New York 2,100 122 
Ohio 1,911 114 
Washington 1,035 81 
Total 13,664 850 

Table 1. Number of Salmonella Case and Outbreaks in the States Analyzed from 
1998 to 2017. Total number of Salmonella Cases reported for the states of interest from 
1998 to 2017. All cases are from outbreaks of Salmonella. 



Reported case numbers were visualized in conjunction with monthly average maximum 

daily temperature for each state (Figures 2a-h). These figures show a typically normal 

distribution for average, maximum, and minimum temperature and a generally normal trend in 

Salmonella cases for all states except for Michigan which has a multimodal distribution. 

Temperatures for states varied dramatically, such as the monthly averages of daily maximum 

temperature in Minnesota ranging from 11.4°F-86°F (74.6°F difference) and the average 

temperature in Florida ranging from 63.1°F-95.7°F (32.6°F difference). This variation led to the 

use of a standardized temperature in determining temperature categories for analysis, as 

described in Methods. As seen in Figure 2, all states exhibited peaks in case numbers during the 

warmest months of the year (June, July, and August); however, in Michigan, this peak was not as 

large as the peaks in November or February.  

Tables 2 and 3 detail the results of the negative binomial models for each state, with 

Table 2 presenting results for the zero-month lag and Table 3 presenting results for the one-

month lag. The Akaike Information Criterion (AIC) estimates between models looking at no lag 

and a one-month lag were similar, with differences ranging from 0.15 to 5, well below the 

standard difference of 10 used to distinguish models of better fit, indicating that both sets of 

models fit the data well. 

 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 

 
 
 
 
 

Figures 2a-h. State Specific Case Numbers and Meteorological Variables. Monthly number of 
Salmonella cases (orange) and maximum monthly temperature (red) for Florida, Illinois, Maryland, 
Michigan, Minnesota, New York, Ohio, and Washington from 1998 to 2017. 



 
 

 

State  Corresponding 
Temperature 

IRR 95% CI P-Value 

 Temp. Cat. 1 63.1°F – 73.7°F 1   
Florida Temp. Cat. 2 73.8°F – 85.7°F 1.33 (0.54, 3.26) 0.53 
 Temp. Cat. 3 86.3°F – 95.7°F 1.05 (0.37, 3.04) 0.92 
 Precipitation  1.08 (0.92, 1.27) 0.36 
 Temp.  Cat. 1 25.5°F – 44.9°F 1   
Illinois Temp. Cat. 2 45°F – 72.4°F 2.19 (0.82, 5.85) 0.12 
 Temp. Cat. 3 72.5°F – 95°F 4.64 (1.77, 12.14) 0.0018* 
 Precipitation  0.90 (0.72, 1.12) 0.33 
 Temp.  Cat. 1 35°F – 49.9°F 1   
Maryland Temp. Cat. 2 50°F – 73.9°F 3.26 (1.07, 9.94) 0.038* 
 Temp. Cat. 3 74°F – 91°F 11.18 (3.64, 34.33) <0.001* 
 Precipitation  1.05 (0.83, 1.33) 0.66 
 Temp.  Cat. 1 18.6°F – 36.5°F 1   
Michigan Temp. Cat. 2 36.6°F – 65.6°F 0.62 (0.15, 2.46) 0.49 
 Temp. Cat. 3 65.7°F – 86°F 0.96 (0.24, 3.77) 0.95 
 Precipitation  0.89 (0.56, 1.42) 0.64 
 Temp.  Cat. 1 11.4°F – 30.8°F 1   
Minnesota Temp. Cat. 2 30.9°F – 63.4°F 2.73 (1.01, 7.41) 0.048* 
 Temp. Cat. 3 63.5°F – 86°F 8.18 (3.07, 21.79) <0.001* 
 Precipitation  1.17 (0.93, 1.48) 0.17 
 Temp.  Cat. 1 20°F – 38.4°F 1   
New York Temp. Cat. 2 38.5°F – 65°F 2.07 (0.81. 5.29) 0.13 
 Temp. Cat. 3 65.1°F – 84°F 7.61 (2.91, 19.90) <0.001* 
 Precipitation  1.04 (0.80, 1.36) 0.75 
 Temp.  Cat. 1 27°F – 44.4°F 1   
Ohio Temp. Cat. 2 44.5°F – 70.9°F 2.57 (0.95, 6.93) 0.062 
 Temp. Cat. 3 71°F – 89.4°F 4.60 (1.64, 12.88) 0.0037* 
 Precipitation  0.83 (0.63, 1.10) 0.19 
 Temp.  Cat. 1 30.5°F – 41.9°F 1   
Washington Temp. Cat. 2 42°F – 64.4°F 1.36 (0.42, 4.44) 0.61 
 Temp. Cat. 3 64.5°F – 83.9°F 10.75 (2.28, 50.77) 0.023* 
 Precipitation  1.17 (0.93, 1.48) 0.17 
 Temp.  Cat. 1 11.4°F – 42.5°F 1   
Summary Temp. Cat. 2 42.6°F – 71.3°F 1.52 (1.05, 2.21) 0.03* 
 Temp. Cat. 3 71.4°F – 95.7°F 3.46 (2.40, 5.01) <0.001* 
 Precipitation  0.96 (0.89, 1.03) 0.27 

Table 2. Results from Negative Binomial Models with Zero-Month Lag. Results from the 
negative binomial regressions analyzing the impact of the primary predictor of temperature on case 
numbers, while accounting for precipitation, population, and long-term trends in reporting at the state 
level. Resultant Incidence Rate Ratios (IRR), Confidence Intervals (CI), and p-values are reported.  



 
 

State  Corresponding 
Temperature 

IRR 95% CI P-Value 

 Temp. Cat. 1 63.1°F – 73.7°F 1   
Florida Temp. Cat. 2 73.8°F – 85.7°F 0.89 (0.37, 2.18) 0.81 
 Temp. Cat. 3 86.3°F – 95.7°F 2.27 (0.81, 6.37) 0.12 
 Precipitation  0.97 (0.83, 1.12) 0.66 
 Temp.  Cat. 1 25.5°F – 44.9°F 1   
Illinois Temp. Cat. 2 45°F – 72.4°F 1.29 (0.48, 3.49) 0.62 
 Temp. Cat. 3 72.5°F – 95°F 2.63 (0.99, 6.98) 0.053 
 Precipitation  0.82 (0.65, 1.02) 0.073 
 Temp.  Cat. 1 35°F – 49.9°F 1   
Maryland Temp. Cat. 2 50°F – 73.9°F 2.17 (0.68, 6.89) 0.19 
 Temp. Cat. 3 74°F – 91°F 4.01 (1.24, 12.94) 0.020* 
 Precipitation  1.11 (0.86, 1.42) 0.43 
 Temp.  Cat. 1 18.6°F – 36.5°F 1   
Michigan Temp. Cat. 2 36.6°F – 65.6°F 1.50 (0.37, 6.00) 0.57 
 Temp. Cat. 3 65.7°F – 86°F 1.19 (0.30, 4.74) 0.81 
 Precipitation  0.84 (053, 1.33) 0.45 
 Temp.  Cat. 1 11.4°F – 30.8°F 1   
Minnesota Temp. Cat. 2 30.9°F – 63.4°F 1.76 (0.64, 4.82) 0.27 
 Temp. Cat. 3 63.5°F – 86°F 4.91 (1.83, 13.17) 0.0016* 
 Precipitation  1.08 (0.86, 1.37) 0.51 
 Temp.  Cat. 1 20°F – 38.4°F 1   
New York Temp. Cat. 2 38.5°F – 65°F 5.78 (2.16, 15.46) <0.001* 
 Temp. Cat. 3 65.1°F – 84°F 7.85 (2.80, 22.05) <0.001* 
 Precipitation  1.08 (0.81, 1.43) 0.60 
 Temp.  Cat. 1 27°F – 44.4°F 1   
Ohio Temp. Cat. 2 44.5°F – 70.9°F 0.90 (0.33, 2.45) 0.83 
 Temp. Cat. 3 71°F – 89.4°F 1.64 (0.59, 4.56) 0.34 
 Precipitation  0.90 (0.68, 1.19) 0.45 
 Temp.  Cat. 1 30.5°F – 41.9°F 1   
Washington Temp. Cat. 2 42°F – 64.4°F 1.77 (0.56, 5.59) 0.33 
 Temp. Cat. 3 64.5°F – 83.9°F 7.43 (1.96, 28.21) 0.0032* 
 Precipitation  1.05 (0.86, 1.27) 0.65 
 Temp.  Cat. 1 11.4°F – 42.5°F 1   
Summary Temp. Cat. 2 42.6°F – 71.3°F 1.41 (0.91. 2.05) 0.073 
 Temp. Cat. 3 71.4°F – 95.7°F 2.83 (1.95, 4.11) <0.001* 
 Precipitation  0.95 (0.89, 1.02) 0.19 

Table 3. Results from Negative Binomial Models with a One-Month Lag. Results from the 
negative binomial regressions analyzing the impact of the primary predictor of temperature on case 
numbers, while accounting for precipitation, population, and long-term trends in reporting at the state 
level. The one-month time lag results in analyzing the impact of the temperature from the prior month 
on the current month’s case numbers. Resultant Incidence Rate Ratios (IRR), Confidence Intervals 
(CI), and p-values are reported.  



For models with no time lag, Illinois, Maryland, Minnesota, New York, Ohio, and 

Washington had significant results, with no significant results in Florida and Michigan. In 

Illinois, there was a 4.64 (95% CI: 1.77, 12.14) greater risk for Salmonella cases in the highest 

temperature category (72.5-95°F) than in lowest temperature category (25.5-44.9°F). In 

Maryland, there was a 3.26 (95% CI: 1.07, 9.94) times greater risk and an 11.18 (95% CI: 3.64, 

34.33) greater risk for Salmonella cases in the middle (50-73.9°F) and highest (74- 91°F) 

temperature categories, respectively, than in the lowest temperature category (35-49.9°F). In 

Minnesota there was a 2.73 (95% CI: 1.01, 7.41) times greater risk and an 8.18 (95% CI: 3.07, 

21.79) times greater risk for Salmonella cases in the middle (30.9-63.4°F) and highest (63.5-

86°F) temperature categories, respectively, than in the lowest temperature category (11-30.8°F). 

In New York, there was a 7.61 (95% CI: 2.91, 19.90) times greater risk for Salmonella cases in 

the highest temperature category (65.1-84°F) than in the lowest temperature category (20-

38.4°F). In Ohio, there was a 4.60 (95% CI: 1.64, 12.88) times greater risk for Salmonella cases 

in the highest temperature category (71-89.4°F) than in the lowest temperature category (27-

44.4°F). In Washington there was a 10.75 (95% CI: 2.28, 50.77) times greater relative risk for 

Salmonella cases in the highest temperature category (64.5-83.9°F) than in the lowest 

temperature category (30.5-41.9°F). 

For models with a one-month time lag, there were significant results in the states of 

Maryland, Minnesota, New York, and Washington, with no significant results in Florida, Illinois, 

Michigan, and Ohio. In Maryland, there was a 4.01 (95%CI: 1.24, 12.94) greater risk for 

Salmonella cases in the highest temperature category (74- 91°F) than in the lowest temperature 

category (35-49.9°F). In Minnesota, there was a 4.91 (95% CI: 1.83, 13.17) greater risk for 

Salmonella cases in the highest temperature category (63.5-86°F) than in the lowest temperature 



category (11-30.8°F). In New York, there was a 5.78 (95% CI: 2.16, 15.46) greater risk and a 

7.85 (95% CI: 2.80, 22.05) greater risk for Salmonella cases in the middle (38.5-65°F) and 

highest (65.1-84°F) temperature categories, respectively, than in the lowest temperature category 

(20-38.4°F). In Washington, there was a 7.43 (95% CI: 1.96, 28.21) greater risk for Salmonella 

cases in the highest temperature category (64.5-83.9°F) than in the lowest temperature category 

(30.5-41.9°F). The significance associated with lag time could be interpreted to mean that high 

temperatures in one month influences the occurrence of Salmonella cases in the following 

month. The temperatures between adjacent months, however, are highly correlated, thus this may 

be an inaccurate interpretation. To account for this, models were run that included both the zero-

month lag and one-month lag variables and assessed for significance. For all states, except for 

New York, significance only remained for the zero-lag variables. Additionally, the IRRs are 

generally greater for zero-month lag models, suggesting that the zero-month lag models are a 

better predictor. Kendrovski and Gjorgev have found significance associated with a one-month 

lag and the potential for sustained higher temperatures to lead to elevated case numbers in 

Macedonia, highlighting the potential influence of a one-month lag and the need for further 

research in the United States (2012).  

Both the no time lag and one-month time lag models had similar states with significant 

results, with Ohio and Illinois being the only states different between the two as there were no 

significant results when accounting for a time lag. Additionally, when looking at both sets of 

models, the highest incidence rate ratios were observed for the highest temperature category 

compared with middle category, showing that a dose response relationship exists with the most 

impact at the highest temperatures. The 95% confidence intervals for these categories, however, 

are fairly wide, particularly for Washington. Wide confidence intervals are indicative of small 



sample sizes, thus it is not surprising that Washington, as seen in Table 1, had the lowest number 

of Salmonella cases. 

Florida and Michigan yielded models with no significant results. The lack of significant 

results for Florida may be explained by the relatively small amount of temperature variation 

throughout the year, with a low in the maximum temperature of 63.1°F and a high of 95.7°F, 

only a 32.6°F variation. This may not have been enough variation in temperature to make a 

significant difference in the resultant number of Salmonella cases, which in itself affirms the role 

that elevated temperatures may play in disease outcomes. Looking at Michigan, Figure 2 

illustrates how cases in the state followed a multimodal, rather than a normal distribution. In this 

analysis, the multimodal case distribution was unique to Michigan and may have influenced the 

relationship between temperature and Salmonella cases. Finally, both Florida and Michigan may 

have appreciable north-south temperature gradients, such that analyzing their data on the state 

level resulted in substantial exposure misclassification and therefore bias toward the null. 

In creating a single model adjusting for state, a similar result was found, with the middle 

and highest temperature categories having 1.52 (95% CI: 1.05, 2.21; p= 0.03) and 3.46 (95% CI: 

2.40, 5.01; p <0.001) times greater risk of illness due to Salmonella, than in the lowest 

temperature category. The elevated IRR’s indicate the higher risk of illness when the temperature 

is warmer, especially when the temperature is in the highest range as the greatest risk is 

associated with the third temperature category. When accounting for a one-month time lag, the 

middle and highest temperature categories had 1.41 (95% CI: 0.91, 2.05; p= 0.073) and 2.83 

(95% CI: 1.95, 4.11; p <0.001) times greater risk of illness due to Salmonella, than in the lowest 

temperature category. In this instance, however, there was a lack of significance associated with 

the IRR comparing the lowest and middle categories, indicating that overall, the one-month lag is 



most significant when dealing with the highest temperatures, and suggesting a stronger zero-

month lag effect than a one-month lag effect. 

Limitations: 

Inherent to the topic of FBD, this analysis is limited by the large amounts of 

underreporting that is expected to occur as the majority of individuals afflicted by FBD may not 

experience symptoms that they believe warrant medical attention or the need to alert health 

officials. Additionally, stool samples are not collected for most people seeking medical attention 

for a gastrointestinal infection, another cause of underreporting. One study suggests only 

collecting samples when symptoms persist for longer than one day, the individual is 

immunocompromised, if there is bloody stool, fever, symptoms of sepsis, or if they work in a 

role that may lead to lead to infecting others (such as food services) to optimize cost-

effectiveness (Hatchette & Farina, 2011). Research in Canada has approximated that for every 

reported case of gastrointestinal illness there are hundreds of unreported cases, with studies 

reporting a median of 285 to 347 unreported cases for every reported case (MacDougall et al., 

2008; Majowicz et al., 2005). While a limitation, this analysis assumed that underreporting 

trends would be consistent throughout the period of interest. The lack of Salmonella case 

information at lower administration levels, such as counties or cities, limited the analysis to 

solely the state level. In order to account for the temperature variation within states, states with 

high case numbers and large variation in temperature, such as California, were excluded. Even 

though this was implemented, the inability to analyze data beyond the state level proved a 

limitation within the selected states. Similarly, the restriction of cases to the month of occurrence 

limited this analysis, as data at the daily level would have supported a more detailed analysis. 

Conclusions: 



This study illustrates an association between seasonality, particularly high temperatures, 

and cases of Salmonella connected with outbreaks in the states of Illinois, Maryland, Minnesota, 

New York, Ohio, and Washington. While there may be influence from a one-month lag, the 

zero-month lag models were a better fit for the data.  Further research can explore the impact of 

time lags with larger datasets, as well as the causality of this relationship. 

Underreporting may have impacted results, limiting the number of cases included in the 

analysis compared to the actual number of cases that occur leading to a bias if there were a trend 

in underreporting that was not linear. Improving surveillance and monitoring programs may be 

useful in improving data quality, as well as aiding individuals impacted by FBD. Given the 

significant findings, if underreporting is reduced in the future, it may be possible to glean more 

precise results. More research can also be done into the apparent downward trend in case 

numbers, whether this is general underreporting, potentially an increase in less severe cases but a 

decline in severe cases leading to a lack of reporting, or a true decline. 

Climate change is already having a pronounced and deleterious impact around the world, 

from an increase in extreme weather events to shifting ranges of infectious disease vectors. 

Given the results of this analysis, there exists the likelihood for rising case numbers of FBD, 

potentially beyond Salmonella, as temperature increases and climate change advances. 

Additionally, FBD cases can spread from the occurrence of extreme weather events leading to 

the flooding of manure systems, thereby potentially introducing bacteria to food stuffs. The 

confluence of these variables may exacerbate and compound the number of Salmonella 

outbreaks, with the introduction of greater numbers of bacteria along with elevated temperatures 

supporting growth. Therefore, it is imperative to implement appropriate interventions to address 

Salmonella outbreaks as temperature increases continue. In order to properly address this 



concern, additional research is needed to further analyze the relationship between seasonality and 

Salmonella outbreaks in the United States, rather than just eight states. Improving surveillance 

systems and expanding open-source data to beyond the state and monthly levels may facilitate 

this process. By better understanding the relationship between seasonality, ambient temperature, 

and cases of FBD caused by Salmonella and other agents, health officials will be better able to 

prepare and support vulnerable populations in the face of rising outbreaks. 
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