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4. Protecting Software with Different Control Flows

2. Dynamic PUFs
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The goal of the Hardware-Entangled Software Execution (HESE) protection scheme
is to protect software from malicious modification and to bind the execution of the
software to a specific device that it was compiled for.
Protection Mechanisms:
• Tamper detection:

• Dynamic PUF binds the execution to an authorized device and detects the
abnormal timing of software execution.

• Self-checksum function checks the integrity of the code segment. And
multiple checksum functions will check each other mutually.

• Tamper response:
• Call graph scrambling code decides the callee function based on the

checksum, the PUF response and a reference value.
• Register value scrambling code changes the value in the registers if the

PUF response and the checksum match a reference value.
Contributions:
• We introduce the notion of Dynamic PUFs which have time-dependent responses.
• We develop a practical Dynamic PUF with a controlled PUF interface in kernel

module and the DRAM on Intel Galileo Gen 2 platform.
• We propose a linear checksum function on a prime finite field, which allows for

mutual authenticating of self-checksumming functions with low overhead.
• We implement a fully automatic framework that deploys the HESE protection

scheme to the existing unprotected source code through an AutoPatcher written in
Python that works on LLVM assembly.

3. Linear Checksum Function on a Finite Field

Steps of AutoPatcher to apply the protection scheme:
1. Assign places to insert protection codes, assign code segments to checksum

functions, and get expected PUF responses.
2. Pre-patch protection code and compute checksum value.
3. Solve reference values for all tamper response function and patch.

Straight-line code (Fig. 4. a, e): The tamper response function will change the
program behavior depending on the checksum and PUF response. As shown in
the Fig. 4, The self-checksumming functions check each other mutually.

Repeated function calls (Fig. 4. b, f): If the PUF query is called several times,
Dynamic PUF response will be different for each query. So a reference value is
needed for each query. A global counter points to the reference value to use.

Function call in a loop (Fig. 4. c, g): Dynamic PUF can be reset at the beginning of
a loop. And the PUF query will return the same response in every iteration.

Time-dependent control flows (Fig. 4. d, h): In a loop, a different function can be
called by the tamper response function based on the time-dependent Dynamic
PUF response.

Fig 1.  Time-dependent DRAM PUF responses.

Fig 2.  Controlled PUF interface to DRAM PUF. Fig 3.  Time Resolution of DRAM PUFs.

Physically Unclonable Functions (PUFs) extract the unique and stable physical
features from physical objects. Given a challenge, a PUF instance can generate a
stable response, which is a function of the challenge and the physical features.
Dynamic PUFs have time-dependent PUF responses, i.e., the response depends
not only on the challenge but also on the time of the PUF query.
DRAM PUFs are an example of Dynamic PUFs. As shown in Fig. 1, after reset at
T0, the PUF will generate different responses for queries at T1 and T2.

HDS: As PUF measurements always have noise, a Helper Data System (HDS) is
needed to help correct the error in the PUF measurements. And to make a PUF
query, idx should be given to indicate which DRAM region and HDS to use.
Controlled PUF: DRAM PUFs is a weak PUF, meaning attackers can exhaustively
measure all possible PUF responses. A Controlled PUF interface is needed to
prevent the attacker from directly access the raw DRAM PUF responses (Fig. 2).
The time resolution of DRAM PUF is the smallest dt such that the difference
between responses at T1 and T1+dt are bigger than the noise of PUF responses
measured at T1 repeatedly (Fig. 3).

Given code segment D=[d1, d2,..., dn], where di is the ith 32-bit word in D, the linear
checksum function is defined as h0(D)=0 and hi(D)= di+c*hi−1(D), for 0<i≤n, where
c is a parameter. The addition and multiplication are over the 232-5 prime field,
which has lightweight implementations with integer arithmetic on 32-bit processors.
The checksum is also equal to h(D)= ∑# li∗di, where li=cn-i+1 is the multiplier for di.

Fig 4.  Examples of protection on software with different control flow.

Fig 6.  Overhead of the protection codes.

An AutoPatcher is implemented in Python,
and the protection scheme is applied to
AES and SHA applications of different
control flow types . To patch the sample
programs, it takes about 2.6 seconds. The
runtime overhead is shown in Fig. 6. The
overlap factor is the number of
checksum functions that check the same
code segment.

5. Deployment of Protection

Fig 5. HESE framework that automatically patches the protection codes into program.
The framework takes the source code, the protection codes and PUF enrollments as
inputs and the AutoPatcher applies the protection to LLVM assembly.
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