
Yale University Yale University

EliScholar – A Digital Platform for Scholarly Publishing at Yale EliScholar – A Digital Platform for Scholarly Publishing at Yale

Yale Day of Data

Hardware-Entangled Software Execution using Dynamic PUFs Hardware-Entangled Software Execution using Dynamic PUFs

Wenjie Xiong
Yale University, wenjie.xiong@yale.edu

Follow this and additional works at: https://elischolar.library.yale.edu/dayofdata

 Part of the Computer and Systems Architecture Commons, and the Hardware Systems Commons

Xiong, Wenjie, "Hardware-Entangled Software Execution using Dynamic PUFs" (2019). Yale Day of Data. 8.
https://elischolar.library.yale.edu/dayofdata/2019/posters/8

This Event is brought to you for free and open access by EliScholar – A Digital Platform for Scholarly Publishing at
Yale. It has been accepted for inclusion in Yale Day of Data by an authorized administrator of EliScholar – A Digital
Platform for Scholarly Publishing at Yale. For more information, please contact elischolar@yale.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Yale University

https://core.ac.uk/display/270046144?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://elischolar.library.yale.edu/
https://elischolar.library.yale.edu/dayofdata
https://elischolar.library.yale.edu/dayofdata?utm_source=elischolar.library.yale.edu%2Fdayofdata%2F2019%2Fposters%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=elischolar.library.yale.edu%2Fdayofdata%2F2019%2Fposters%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/263?utm_source=elischolar.library.yale.edu%2Fdayofdata%2F2019%2Fposters%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://elischolar.library.yale.edu/dayofdata/2019/posters/8?utm_source=elischolar.library.yale.edu%2Fdayofdata%2F2019%2Fposters%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elischolar@yale.edu

Hardware-Entangled Software Execution
using Dynamic PUFs

1. Hardware-Entangled Software Execution (HESE)

Wenjie Xiong1, André Schaller2,
Stefan Katzenbeisser2, and Jakub Szefer1

1Computer Architecture and Security Laboratory, Yale University, USA
2Security Engineering Group, Technische Universität Darmstadt, Germany caslab.csl.yale.edu

www.seceng.
informatik.tu-
darmstadt.de

T0

T1

T2

Device DRAM

PUF
region

OS & App
memory

OS & App
memory

OS & App
Memory cont.

OS & App
Memory cont.

OS & App
Memory cont.

OS & App
memory

OS & App
Memory cont.

OS & App
memory

OS & App
Memory cont.

OS & App
memory

If querying
PUF at T1:

If querying
PUF at T2:

PUF query 1

Tamper response 1:
Call function X@T1, T2…

Fun A

main
loop Ref. T1

Ref. T2
Ref. ……

Fun B

……

layout of the code in memory:

Pub. HDS, g_cnt

d)a) layout of the code in memory:

Public HDS

Self-checksum 1

Self-checksum 2

PUF query 1

PUF query 2

Tamper response 1

Tamper response 2

Se
gm

en
t 1

Se
gm

en
t 2

Segment 1

Segment 2

Query PUF@T1

Query PUF@T2

Reset
PUF@T0

Checksum 1:
Checking segment 2

Checksum 2:
Checking segment 1
Tamper Resp. 2

Tamper Resp. 1

Call function A @T1

Call function A @T2

PUF query A

Tamper response A:
Ref. T1

Fun A

Ref. T2

b) layout of the code in memory:

Pub. HDS, g_cnt

main

Call function A

PUF query A

Tamper response A:

Fun A

Ref.

c) layout of the code in memory:

Public HDS

main
loop

Self-checksum A

e)

@T1
Fun A
called

@T2
Fun B
called

loop

Query
PUF(@Tx)

…

Tamper
Response

h)

Fun A
called

Query
PUF

Reset
PUF

loop

Tamper Resp. A
Checksum A

g) Control
Flow

Fun A
Called
@T1

Fun A
Called
@T2

Query PUF@T1

Tamper Resp. A
Checksum A

Query PUF@T2

Tamper Resp. A
Checksum A

f) Control
Flow

Control
Flow

Reset
PUF@T0

Reset PUF
@T0

Inc. g_cnt
Inc. g_counter

Inc. g_counter

DRAM regions

PUF
Initialize

PUF
Query

Crypto.
Hash

function

Dynamic
PUF

Reset

Raw PUF
Resp. (m)

Dynamic
PUF Query

(idx)

HDS
(H)

PUF
Resp.

(r)

Control
Logic

(idx, H)

4. Protecting Software with Different Control Flows

2. Dynamic PUFs

Source
C code

Protected
LLVM assembly

.c .ll

AutoPatcher

Python code for
auto-patching

protection code
within LLVM
framework

Dynamic PUF
Data

Original unprotected
LLVM assembly

Protected
binary

.bin

Self-
Checksumming

Code
Dynamic

PUF Query
Code
Call

Graph
Scrambling

.ll

Softw
are

obfuscation

.ll

LLVM
compiler

Dynamic PUF
enrollment

.dat

LLVM
complier

Register
Value

Scrambling

Obf. Self-
Checksumming

Code 1
Obf. Dynamic

PUF Query
Code 1

Obf. Call
Graph

Scrambling 1
Obf. Reg.

Value
Scrambling 1

Obf. Self-
Checksumming

Code N

Obf. Call
Graph

Scrambling N
Obf. Reg.

Value
Scrambling N

…

…

…

…

.ll

.ll

Public Helper
Data System (HDS)

Self-checksum code 1

Self-checksum code N

PUF query 1

PUF query N

Call graph scrambling 1

Call graph scrambling N

Reg. scrambling 1

Reg. scrambling N

Ta
m

pe
r D

et
ec

tio
n

Ta
m

pe
r R

es
po

ns
e

Obf. Dynamic
PUF Query

Code N

The goal of the Hardware-Entangled Software Execution (HESE) protection scheme
is to protect software from malicious modification and to bind the execution of the
software to a specific device that it was compiled for.
Protection Mechanisms:
• Tamper detection:

• Dynamic PUF binds the execution to an authorized device and detects the
abnormal timing of software execution.

• Self-checksum function checks the integrity of the code segment. And
multiple checksum functions will check each other mutually.

• Tamper response:
• Call graph scrambling code decides the callee function based on the

checksum, the PUF response and a reference value.
• Register value scrambling code changes the value in the registers if the

PUF response and the checksum match a reference value.
Contributions:
• We introduce the notion of Dynamic PUFs which have time-dependent responses.
• We develop a practical Dynamic PUF with a controlled PUF interface in kernel

module and the DRAM on Intel Galileo Gen 2 platform.
• We propose a linear checksum function on a prime finite field, which allows for

mutual authenticating of self-checksumming functions with low overhead.
• We implement a fully automatic framework that deploys the HESE protection

scheme to the existing unprotected source code through an AutoPatcher written in
Python that works on LLVM assembly.

3. Linear Checksum Function on a Finite Field

Steps of AutoPatcher to apply the protection scheme:
1. Assign places to insert protection codes, assign code segments to checksum

functions, and get expected PUF responses.
2. Pre-patch protection code and compute checksum value.
3. Solve reference values for all tamper response function and patch.

Straight-line code (Fig. 4. a, e): The tamper response function will change the
program behavior depending on the checksum and PUF response. As shown in
the Fig. 4, The self-checksumming functions check each other mutually.

Repeated function calls (Fig. 4. b, f): If the PUF query is called several times,
Dynamic PUF response will be different for each query. So a reference value is
needed for each query. A global counter points to the reference value to use.

Function call in a loop (Fig. 4. c, g): Dynamic PUF can be reset at the beginning of
a loop. And the PUF query will return the same response in every iteration.

Time-dependent control flows (Fig. 4. d, h): In a loop, a different function can be
called by the tamper response function based on the time-dependent Dynamic
PUF response.

Fig 1. Time-dependent DRAM PUF responses.

Fig 2. Controlled PUF interface to DRAM PUF. Fig 3. Time Resolution of DRAM PUFs.

Physically Unclonable Functions (PUFs) extract the unique and stable physical
features from physical objects. Given a challenge, a PUF instance can generate a
stable response, which is a function of the challenge and the physical features.
Dynamic PUFs have time-dependent PUF responses, i.e., the response depends
not only on the challenge but also on the time of the PUF query.
DRAM PUFs are an example of Dynamic PUFs. As shown in Fig. 1, after reset at
T0, the PUF will generate different responses for queries at T1 and T2.

HDS: As PUF measurements always have noise, a Helper Data System (HDS) is
needed to help correct the error in the PUF measurements. And to make a PUF
query, idx should be given to indicate which DRAM region and HDS to use.
Controlled PUF: DRAM PUFs is a weak PUF, meaning attackers can exhaustively
measure all possible PUF responses. A Controlled PUF interface is needed to
prevent the attacker from directly access the raw DRAM PUF responses (Fig. 2).
The time resolution of DRAM PUF is the smallest dt such that the difference
between responses at T1 and T1+dt are bigger than the noise of PUF responses
measured at T1 repeatedly (Fig. 3).

Given code segment D=[d1, d2,..., dn], where di is the ith 32-bit word in D, the linear
checksum function is defined as h0(D)=0 and hi(D)= di+c*hi−1(D), for 0<i≤n, where
c is a parameter. The addition and multiplication are over the 232-5 prime field,
which has lightweight implementations with integer arithmetic on 32-bit processors.
The checksum is also equal to h(D)= ∑# li∗di, where li=cn-i+1 is the multiplier for di.

Fig 4. Examples of protection on software with different control flow.

Fig 6. Overhead of the protection codes.

An AutoPatcher is implemented in Python,
and the protection scheme is applied to
AES and SHA applications of different
control flow types . To patch the sample
programs, it takes about 2.6 seconds. The
runtime overhead is shown in Fig. 6. The
overlap factor is the number of
checksum functions that check the same
code segment.

5. Deployment of Protection

Fig 5. HESE framework that automatically patches the protection codes into program.
The framework takes the source code, the protection codes and PUF enrollments as
inputs and the AutoPatcher applies the protection to LLVM assembly.

	Hardware-Entangled Software Execution using Dynamic PUFs
	

	DRAM_binding_poster_Apr2018_36x48

