
Generation of a virtual library of terpenes using graph

theory, and its application in exploration of the

mechanisms of terpene biosynthesis

A thesis submitted in partial requirements for the degree of

MASTER OF SCIENCE

IN

BIOINFORMATICS

RHODES UNIVERSITY, SOUTH AFRICA

Department of Biochemistry and Microbiology

By

Washington Dendera

DECEMBER 2018

ii

Abstract

Terpenes form a large group of organic compounds which have proven to be of use to many

living organisms being used by plants for metabolism (Pichersky and Gershenzon, 1934;

McGarvey and Croteau, 1995; Gershenzon and Dudareva, 2007), defence or as a means to

attract pollinators and also used by humans in medical, pharmaceutical and food industry

(Bicas, Dionísio and Pastore, 2009; Marmulla and Harder, 2014; Kandi et al., 2015).

Following on literature methods to generate chemical libraries using graph theoretic

techniques, complete libraries of all possible terpene isomers have been constructed with the

goal of construction of derivative libraries of possible carbocation intermediates which are

important in the elucidation of mechanisms in the biosynthesis of terpenes.

Virtual library generation of monoterpenes was first achieved by generating graphs of order

7, 8, 9 and 10 using the Nauty and Traces suite. These were screened and processed with a set

of collated Python scripts written to recognize the graphs in text format and translate them to

molecules, minimizing through Tinker whilst discarding graphs that violate chemistry laws.

As a result of the computational time required only order 7 and order 10 graphs were

processed. Out of the 873 graphs generated from order seven, 353 were converted to

molecules and from the 11,7 million produced from order 10 half were processed resulting in

the production of 442928 compounds (repeats included).

For screening, 55 366 compounds were docked in the active site of limonene synthase; of

these 2355 ligands had a good Vina docking score with a binding energy of between -7.0 and

-7.4 kcal.mol-1. When these best docked molecules were overlaid in the active site a map of

possible ligand positions within the active site of limonene synthase was traced out.

iii

Declaration

I Washington Dendera, declare that this thesis submitted to Rhodes University is wholly my

own work and has not been previously submitted for a degree at this or any other institution.

The research described in this thesis was carried out as part of the one-year MSc coursework

and research thesis programme in Bioinformatics and Computational Molecular Biology,

from July 2018 to 14 December 2018 under the supervision of Prof Kevin Lobb.

Signature:

Date:

iv

Acknowledgements

This work is supported by the National Research Foundation (NRF) South Africa (Grant

Number 105267) allocated to Prof Ozlem Tastan Bishop.

I would like to thank Rhodes University for the learning resources. I also would like to thank

the CSIR Centre for High Performance Computing (the CHPC) for their supercomputing

resources.

I would like to thank Prof Ozlem Tastan Bishop to whom I am grateful for being not only

supportive financially but in a motherly way made it her business to be supportive in every

manner possible, as well as instilling the sense of urgency with which every matter had to be

attended to maximize efficiency. I also thank her for accepting me to join the RUBI

(Research Unit in Bioinformatics) group at Rhodes University. I thank my supervisor Prof

Kevin Lobb for a great mentorship experience and guiding me through all the new scopes I

had to learn, in and outside normal curricula so as to meet the required computational

chemistry expertise the research demanded.

With great pleasure I also take to acknowledge efforts of all who enabled the success of my

study, my lectures Dr Vuyani Moses, Dr Rowan Hatherley, Miss Caro Ross, Mr Jeremy

Baxter. I thank Dr Thomas Musyoka for his support with literature prior to my

commencement of studies and Mr Michael Glenister and Mr Olivier Sheik Amamuddy whose

pc maintenance skills came in extra handy in rescuing my data each time I encountered data

threatening errors.

I am also thankful for non-academic assistance I received to make my studies a success, I

thank Dr C Grobler for her financial assistance in getting a study visa, I thank Mr Ryan

Ferguson for providing me with a monitor to use at home. I also am grateful to all RUBI

group colleagues, Chemistry department colleagues Arthur Sarron and Tendamudzimu

Tshiwawa my family for their constant support.

v

Table of Contents

Contents
Abstract .. ii

Declaration .. iii

Acknowledgements ... iv

Table of Contents ... v

List of Figures ... viii

List of Tables ... x

List of web servers and applications ... xi

List of acronyms .. xii

Chapter 1: Literature review .. 1

1.1 Introduction .. 1

1.1.1 Uses of terpenes ... 3

1.1.2 Mechanism of formation of terpenes ... 6

1.1.3 The Mevalonate pathway (MVP) .. 6

1.1.4 The Non-mevalonate or Methylerythritol phosphate (MEP) pathway 8

1.1.5 Laboratory synthesis of terpenes ... 9

1.1.6 Terpene synthases .. 10

1.1.7 Monoterpene synthase reaction mechanisms .. 11

1.1.8 Terpene synthase product space exploration ... 13

1.1.9 Post modification of terpenes .. 15

1.2 Problem statement and justification ... 15

1.3 Aim ... 17

1.3.1 Objectives .. 17

1.4 Overview of methodology .. 17

vi

1.4.1 Graph theoretic techniques .. 17

1.4.2 Tinker .. 18

1.4.3 Virtual screening (Docking) .. 18

Chapter 2: Concepts and Software ... 19

2.1 Graph theory ... 19

2.1.1 Graph isomorphism ... 20

2.1.2 Nauty and Traces ... 22

2.2 Tinker and Molecular Mechanics ... 23

2.2.1 Molecular Mechanics .. 23

2.2.1.2 Geometry Optimization…...……………………………………………………..26

2.2.2 Tinker .. 26

2.3 Molecular Docking ... 27

2.3.1 Autodock Vina ... 27

Chapter 3: Generation of the Virtual Libraries .. 29

3.1 Graph generation .. 29

3.2 Graph processing .. 34

3.3 Calculation of Chirality .. 42

3.4 Summary of the graph generation .. 49

3.4.1 Order 7 Graphs .. 49

3.4.2 Order 10 graphs ... 50

Chapter 4: High Throughput Virtual Screening .. 52

4.1 Methodology .. 52

4.1.1 Ligand preparation ... 52

4.1.2 Receptor preparation ... 53

4.1.3 Molecular Docking .. 53

4.2 Results and Discussion ... 54

4.2.1 Ligand interactions .. 58

vii

Chapter 5: Conclusion and future work ... 59

References .. 60

Appendix .. 68

viii

List of Figures

Figure 1.00: The terpenes alpha-pinene and limonene, and the terpenoid linalool 2

Figure 1.01: Terpene based drugs antimalarial drug Artemisinin and anticancer drug

Paclitaxel .. 4

Figure 1.02: 1,8-cineole ... 5

Figure 1.03: A range of terpenes together with their sources .. 5

Figure 1.04: The Mevalonate Pathway .. 7

Figure 1.05: Methylerythritol phosphate (MEP) pathway or Non-mevalonate pathway 8

Figure 1.06: (b) and (c) respectively show 4(S)-α-terpinyl carbocation before protonation and

after protonation. (d) shows a distance of 4.70 Å, between His579 and the C atom on

positively charged methyl group of the product state of the (4S)-α-terpinyl carbocation 13

Figure 1.07: a) Generation of a full set of carbocations from a starting set; b) 5 allowed

transformations (reaction types) to build the full set ... 14

Figure 2.00: A is an undirected graph, while, B is a directed and C a bidirectional graph with

only two nodes. .. 19

Figure 2.01: An illustration of a typical undirected graph. .. 20

Figure 2.02: An illustration of isomorphism. In this figure G1 & G2 are isomorphic and G3 is

non-isomorphic to neither G1 nor G2. Labels on graphs are for clarification purposes and

serve no bias to orientation .. 21

Figure 3.00: Results of graphs of order 7, 8, 9 and 10 created from Nauty and Traces 30

Figure 3.01: Raw encoding of graphs 135-147 of order 10 as generated by geng 30

Figure 3.02: Output of showg for graph 146 of order 10 ... 31

Figure 3.03: Graph 146 constructed in terms of nodes and edges. The edges have been drawn

thicker to give the illusion of bonds in this illustration. ... 31

Figure 3.04: First graph of order 10 constructed by geng .. 32

Figure 3.05: Text representation of Graph 1, an impossible graph in terms of molecular

representation. .. 32

Figure 3.06: A is a constructed representation of Graph 1 showing the impossible connections

..33

Figure 3.07: Tinker input file with random coordinates and atom type 1 included 34

Figure 3.08: Tinker warnings regarding valency ... 35

Figure 3.09: The results of optimization of a system using the BFGS algorithm in Tinker 36

ix

Figure 3.10: Resultant coordinate file after successful optimization in Tinker 36

Figure 3.11: Graph 146 (Order 10) .. 37

Figure 3.12: Repeats of optimization for Graph 9 (of order 7). Repeats 2 and 8 are identically

a symmetrical conformation, different to the lower energy conformation obtained in all other

optimizations. ... 40

Figure 3.13: Equation showing calculation for chirality index .. 42

Figure 3.14: Minimizations of molecules from graph 8096 (order 10) 45

Figure 3.15: Repeat molecules of Graph 4858 .. 47

Figure 3.16: 85517_6_a (left) and 87155_2_a (right) ... 48

Figure 3.17: 87330_2_a and 1740727_3_a .. 48

Figure 3.18: 11362438_2_a. A knotted molecule. The molecular mechanics bond threading

through the loop is not shown. ... 49

Figure 3.19: Bar graph showing the distribution of order 7 molecules throughout the

screening procedure ... 49

Figure 3.20: Bar graph showing distribution of order 10 molecules during the screening

procedure.. 51

Figure 4.00: The 2ONG with crystal structure ligand (stick) and docked ligand (CPK)

overlaid. ... 52

Figure 4.01: Random docked molecules overlay ... 55

Figure 4.02: 2ONG with lowest binding energy ligands overlaid ... 56

Figure 4.03: 2ONG with a single ligand randomly selected from the ligands with lowest

binding energy ... 57

Figure 4.04: 2ONG with an overlay of ligands with lowest binding energy 57

Figure 4.05: Protein ligand interactions between 2ONG receptor and molecule 20588_8 58

x

List of Tables

Table 3.00: Results of optimization of molecule generated from Graph 4 (order 7) 38

Table 3.01: Results of optimization of molecule generated from Graph 9 (order 7) 39

Table 3.02: Results of optimization of molecule generated from Graph 478 (order 7) 41

Table 3.03: Table showing minimization energy and chirality indexes for graph 146 43

Table 3.04: Results of optimization of molecule generated from Graph 8096 (order 10) 45

Table 3.05: Minimization energy and chirality index for Graph 4858 46

xi

List of web servers and applications

Nauty and Traces: http://pallini.di.uniroma1.it/

Protein Dabank RCSB: https://www.rcsb.org/

Tinker: https://dasher.wustl.edu/Tinker/

http://pallini.di.uniroma1.it/
https://www.rcsb.org/

xii

List of acronyms

CDP-MEP: 4-diphosphocytidyl-2-C-methyl-Derythritol-2-phosphate

DMAPP: Dimethylallyl pyrophosphate

DPP: Dimethylallyl diphosphate

DXP 1-Deoxy-D-xylulose 5-phosphate

GPP Geranyl pyrophosphate

Hbond: Hydrogen Bonds

HTVS: High Throughput Virtual Screening

IPP: Isopentenyl diphosphate

LS: Limonene synthatase

MD: Molecular Dynamics

MM: Molecular Mechanics

MEP: Methylerythritol Phosphate Pathway

MVA: Mevalonate pathway

MVK: Mevalonic Acid Kinase

NAUTY: No AUTomorphism Yes

PDB: Protein Data Bank

PMK: Phosphomevalonate Kinase

TS: Terpene synthases

QM: Quantum Mechanics

1

Chapter 1: Literature review

1.1 Introduction

Terpenes form a large group of plant natural products (Pichersky and Gershenzon, 1934;

McGarvey and Croteau, 1995; Gershenzon and Dudareva, 2007), which consists of about

63,000 known chemical compounds (Oldfield and Lin, 2012; Tian, Poulter and Jacobson,

2016). Their sources of production span all the branches of living organisms, and in each of

these living organisms they participate in crucial roles (Dicke, 1999; Kessler and Baldwin,

2002; Köllner, Gershenzon and Degenhardt, 2009; Kandi et al., 2015). These natural

hydrocarbons are constructed from isoprene units (containing 5 carbon atoms) which

combine to form a variety of products each containing a multiple of 5 carbon atoms

(Pichersky and Gershenzon, 1934; Ajikumar et al., 2008; Morehouse et al., 2017). In plants

the isoprene units are formed either through the mevalonate pathway (MVA) (Bloch, 1965;

Miziorko, 2011) in the cytosol or the methylerythritol phosphate pathway (MEP) (Chang et

al., 2013) in plastids (Jia et al., 2018). Due to structural cellular differences with plants, other

organisms resort to the MVA pathway, examples being, yeast, animals and archaea while

bacteria often use the MEP pathway, however some bacteria use both (Boucher and Doolittle,

2000; Vickers and Sabri, 2015; Zebec et al., 2016). The word terpene itself is derived from

the word turpentine; the substance turpentine contains a mixture of terpenes (Hostettmann et

al., 2014).

After formation, the isoprene units isopentenyl pyrophosphate (IPP) and its isomer

dimethylallyl pyrophosphate (DMAPP) undergo condensation reactions which result in the

formation of precursors of terpenes, geranyl diphosphate (GPP, C10), farnesyl diphosphate

(FPP, C15), and geranylgeranyl diphosphate (GGPP, C20) (Bochar et al., 1999; Breitmaier,

2006; Miziorko, 2011; Chang et al., 2013).

Structural variations amongst terpenes are accredited to the action of a group of enzymes

called terpene synthases (TP). Terpene synthases further process the terpene intermediates to

form various terpene products (Cane, 1990; Sacchettini and Poulter, 1997; Christianson,

2006, 2017; Yao, Chen and Guo, 2018). These are classified depending on the number of

2

isoprenes added to the terpene structures. Terpenes composed of 2, 3, 4, 5, 6 or 7 isoprene

units are named monoterpenes (C10), sesquiterpenes (C15), diterpenes (C20), sesterterpenes

(25), triterpenes (C30) and sesquiterpenes (C35) respectively (Tian, Poulter and Jacobson,

2016) . As an example, γ-humulene synthase from Abie grandis produces 52 kinds of

sesquiterpenes from the sole substrate farnesyl pyrophosphate (Steele et al., 1998; Little and

Croteau, 2002; Yoshikuni, Ferrin and Keasling, 2006; Xu et al., 2018). Terpenoids or

(isoprenoids) are terpenes which contain an additional functional group, usually oxygen in the

form of an alcohol or a ketone (Bicas, Dionísio and Pastore, 2009) (see Figure 1.00) shows

examples of two monoterpenes and a terpenoid.

ɑ-Pinene Limonene Linalool

Figure 1.00: The terpenes alpha-pinene and limonene, and the terpenoid linalool

(Gindulyte et al., 2018)

The action of different terpene syntheses on GPP and FPP, for example, results in a variety of

of terpenes forming, such as monoterpenes, sesquiterpenes and diterpenes etc. (Tian, Poulter

and Jacobson, 2016).; however, of major interest to this research are the monoterpenes.

Monoterpenes are members of the terpene family containing ten carbon atoms (two isoprene

units) (Croteau, 1987; Yao, Chen and Guo, 2018).

3

1.1.1 Uses of terpenes

The uses of terpenes span all walks of life, from plants that produce them using them in

metabolical and defence systems (Dicke, 1999; Kessler and Baldwin, 2002; Köllner,

Gershenzon and Degenhardt, 2009), to humans using them in home and industry (Bicas,

Dionísio and Pastore, 2009). In plants terpenes, such as 1,8-cineole act as a repellent of

insects or as a means to attract specific insects for pollination. Furthermore, they can be used

as a means of indirect defense, where their release as volatile compounds attract enemies or

predators of phytophagous insects (insects which feed on plant material) (Dicke, 1999; Al-

Alawi, 2014; Filipe et al., 2017). Plants like conifers defend themselves through the use of

the oleoresin terpenoids defense system which makes use of diterpene resin acids (DRAs)

(Hamberger et al., 2011). In grapes like Cabernet sauvignon some terpenes like (+)-

valencene and (-)-7-epi-α-selinene are produced in the anthers and pollen grains and are

believed to be as a means of plant defense as well as a means of aid for pollination

(Martin et al., 2009; Kandi et al., 2015). In most of those plants producing insect repellents,

the main ingredients include at least one of the terpenes citronella, menthol, eucalyptol (1,8

cineole), limonene or linalool (Kandi et al., 2015).

Terpenes also have a wide range of uses in the industrial realm, in medical, pharmaceutical,

perfumery and food industries. In the medical and pharmaceutical industry, they have been

used for the treatment of diseases (Bicas, Dionísio and Pastore, 2009). As Zhang et al notes,

in 2002 the worldwide sales for terpene-based pharmaceuticals was approximately US $12

billion. Renowned terpene-based medicines include the anti-malaria drug Artemisinin

(Klayman, 1985) and the anticancer drug Paclitaxel (Taxel®) (Wani et al., 1971) (see Figure

1.01) (Zhang and Demain, 2005; O’Brien et al., 2018).

4

Artemisinin

Paclitaxel

Figure 1.01: Terpene based drugs antimalarial drug Artemisinin and anticancer drug

Paclitaxel (Taxel®) (Gindulyte et al., 2018)

After extraction from natural sources, some monoterpenes become active ingredients for a

variety of terpene products namely, resins, oils and various flavourings and fragrances (Bicas,

Dionísio and Pastore, 2009). Essential oils are fragrant oils extracted from plants and

comprise of a complex mixture of volatile liquids and lipophilic compounds, their

composition is of mixtures of phenylpropanoids and terpenes (predominantly monoterpenes

and sesquiterpenes (Rai and Kon, 2013; Herrera et al., 2015). Essential oils have many uses

which are of economic importance, such as additives in food, cosmetics and pharmaceuticals

(Tongnuanchan and Benjakul, 2014).

Other pure terpenoid systems with medical use include eucalyptol (1,8- cineole), (see Figure

1.02), which is an oxygen containing monoterpenoid which is used at a broader scale in

pharmaceutical and medical industries, as an antiseptic and analgesic. It also has

immunostimulant activity, anti-tussive bronchodilator effects and myorelaxant, properties

(Bastos et al., 2011; Rocha Caldas et al., 2015). 1,8-ceneole is also a constituent of Elettaria

cardamomum (Zingii bereceae) also known as cardamom which is used in treating various

gastrointestinal, cardiovascular and neuronal disorders (Miguel, 2010; Rocha Caldas et al.,

2015) .

5

Figure 1.02: 1,8-cineole (Gindulyte et al., 2018)

Eucalyptus based medicines attribute their anti-inflammatory action to the presence to this

1,8–cineole (eucalyptol). There is potential use with 1,8-cineole to deal with side effects of

immunosuppressive treatments such as chemotherapy or treatments involving steroids

(Williams, 2011).

Figure 1.03: A range of terpenes together with their sources (Gindulyte et al., 2018)

Figure 1.03 shows some more terpenes or terpenoid systems, together with the natural source

from which they are extracted.

6

1.1.2 Mechanism of formation of terpenes

Biosynthesis of terpenoids involves four stages, the first stage involving the formation of IPP

and DMAPP through the MVP or the MEP pathways (Boucher and Doolittle, 2000; Tiwari,

Brunton and Brennan, 2013; Zebec et al., 2016). The second stage involves isoprenyl

diphosphate synthases which convert the products of the MVP or MEP pathways (Jia et al.,

2018). If the condensation reaction happens in a 1’- 4’ or “head-to-tail” fashion, geranyl

diphosphate (GPP, C10), farnesyl diphosphate (FPP, C15), and geranylgeranyl diphosphate

(GGPP, C20) are consecutively formed (Boucher and Doolittle, 2000; Dewick, 2002). The

third stage involves the cyclizations of C10-C20 diphosphates to produce parent carbon

skeletons of each terpene class. GPP is converted to monoterpenes, FFP to sesquiterpenes and

GGPP to diterpenes. FFP and GGP can also dimerise to form the precursors of C30 and C40

terpenoids respectively. In the 4th stage conversions of parent terpene groups to various

terpene products is done through a multiple of oxidations, reductions, isomerizations and

conjugation and transformations (Tiwari, Brunton and Brennan, 2013)

1.1.3 The Mevalonate pathway (MVP)

The mevalonate pathway also known as the isoprenoid pathway or HMG-CoA reductase

pathway, is a metabolic pathway found in most eukaryotes, archaea, and some eubacteria

(Zhao et al., 2013). This pathway is responsible for the conversion of acetyl-CoA to

isopentenyl pyrophosphate (IPP) and its isomer dimethylallyl diphosphate (DPP) (Dewick,

2002; Miziorko, 2011). Miziorko states that, the metabolical products of this pathway

accounts for the production of sterols and polyisoprenoids in fungi, plant cytoplasm, animals,

eukaryotes, archaea and some eubacteria.

The mevalonate pathway (see Figure 1.04) begins by acetylation of coenzyme A (CoA) to

form acetyl-CoA, condensation of two acetyl-CoA then produces acetoacetyl-CoA.

Consequently, addition of a third acetyl-CoA to the acetoacetyl-CoA by a carbonyl

condensation reaction results in the formation of 3-hydroxy-3-methylglutaryl-CoA (HMG-

7

CoA). HMG reductase (HMGR) facilitates the reduction of HMG-CoA to give mevalonate

(MVA). After going through a series of phosphorylation steps which are catalysed by

mevalonic acid kinase (MVK) and phosphomevalonate kinase (PMK), MVA is converted to

mevalonate-5-diphosphate. This is then converted, in an ATP-coupled decarboxylation

reaction by the enzyme mevalonate-5-diphosphate decarboxylase (MPD) to IPP. The

interconversion between two of the isomers IPP and DMAPP is then facilitated by the

enzyme IPP: DMAPP isomerase (Bloch, 1965; Vella, 2005; Miziorko, 2011).

Figure 1.04: The Mevalonate Pathway (Miziorko, 2011; Thurnher, Nussbaumer and

Gruenbacher, 2012)

8

1.1.4 The Non-mevalonate or Methylerythritol phosphate (MEP) pathway

The “MEP pathway was discovered in the 1990’s” (Rohmer et al., 1993; Zhao et al., 2013),

and in the same way as the MVP pathway its purpose is for generating IPP and its isomer

DMAPP. The MEP pathway is found in eubacteria, green algae and higher plants. In plants

both the MVP and MEP pathway exist but in segmented regions (Eisenreich et al., 2004;

Chang et al., 2013).

Figure 1.05: Methylerythritol phosphate (MEP) pathway or Non-mevalonate pathway

(Zhao et al., 2013)

Zhao et al states that the initial reaction in this pathway (see Figure 1.05) is a thiamin

diphosphate dependant condensation between D-glyceraldehyde-3-phosphate and pyruvate

resulting in 1-Deoxy-D-xylulose 5-phosphate (DXP), which, through reductions is

isomerized to MEP by the enzyme DXP reductoisomerase (DXR/IspC). Through the enzyme

9

CDP-ME synthetase (CMS, IspD), 4-diphosphocytidyl-2-C-methylerythritol (CDP-ME) is

formed from the MEP and cytidine-5’-triphosphate precursors. The hydroxyl group of (CDP-

ME) is then phosphorylated by an ATP dependant enzyme (ISPE) to produce 4-

diphosphocytidyl-2-C-methyl-D-erythritol-2-phosphate (CDP-MEP) which is then catalysed

by IspF (MCS) to 2-C-methyl-D-erythritol-2,4-cyclodiphosphate (MecPP). Through the

catalysis of enzyme IspG (HDS), 4-hydroxy-3-methyl-butenyl-1-diphosphate (HMBPP) is

formed from the opening of the ring of the cyclic pyrophosphate and C3 reduction of MecPP.

In the final step of the MEP pathway, unlike the MVP (which requires IPP: DMAPP

isomerase, IDI) to produce the isomers IPP and DMAPP, the MEP pathway rather makes use

of IspH (HDR) to convert HMBPP to IPP and DMAPP (Zhao et al., 2013 and references

therein).

1.1.5 Laboratory synthesis of terpenes

Methods of artificially synthesizing terpenes differ, Zebec et al. in a synthetic biology study

showed that terpene production is also possible through manipulation of a natural approach

by using engineered bacteria and yeast (Zebec et al.). They demonstrated production of

terpenes via biosynthetic pathways with the use of Escherichia Coli and Yeast

(Saccharomyces Cerevisae). Gene enhancement in the E. coli production system involved

addition of genes for the MVA pathway as well as inclusion of genes for enzymes GPP

synthase and Limonene synthase. In S. Cerevisae genes for an engineered Farnesyl

pyrophosphate synthase (FPP synthase) Erg20 enzyme were introduced for the production of

sibinene and limonene. Production titre was boosted by optimization of gene regulation and

growth conditions. Product diversity of the mutant libraries was attained by alteration of

genes by incorporating genes for appropriate enzymes.

From a purely synthetic organic chemistry perspective, full and partial syntheses of terpenes

are extensive in the literature. In an example of a partial synthesis, the monoterpene myrecene

may be used as a starting material in the synthesis of (-)-menthol. The synthesis process

involves the conversion of myrecene to diethylgeranylamine by adding diethylamine in the

presence of a lithium catalyst. The product diethylgeranylamine is isomerised to 3R-

10

citronellal enamine, and this is transformed to (-)-menthol (Leffingwell and Shackelford,

1974; STINSON, 1996; Iwata, Okeda and Hori, 2004).

1.1.6 Terpene synthases

All organisms spanning from plants, bacteria, insects, social amoeba, fungi to archaea possess

terpene synthases (Bohlmann, Meyer-Gauen and Croteau, 1998; Yamada et al., 2015; Beran

et al., 2016; Chen et al., 2016; Jia et al., 2018). As highlighted before, several enzymes,

including terpene synthases are responsible for catalyzing the production of terpenes, from

small 5C units called isoprenes (Pichersky and Gershenzon, 1934; Ajikumar et al., 2008;

Morehouse et al., 2017). A means of classification of terpene synthases is by splitting them

into two categories, Type 1 and Type 2 terpene synthases. Type 1 terpene synthases utilize a

divalent cation (Mg2+ or Mn2+) to remove the diphosphate group (from IPP/GPP/GGPP) in

order to generate carbocations, whereas Type 2 terpene synthases catalyse the protonation of

a C-C π-bond (or an epoxide) to accomplish the same result (McGarvey and Croteau, 1995;

Christianson, 2006; O’Brien et al., 2018) .

Most of the known plant terpene synthases are of Type 1 (Chen et al., 2011). As an example,

experimental observations by Chen et al demonstrated, using grand fir, that the monoterpene

synthases, myrcene synthase, (-)-pinene synthase and, (-)-limonene synthase all require Mn2+

for catalytic activity; however, Mg2+ was proved ineffective as a divalent cofactor. They

noted that structurally the enzyme sequences contain an aspartate-rich element (DDXXD)

which is believed to be connected to metal binding (Ashby and Edward, 1990; Chen et al.,

2011). In addition to the Mn2+ the enzymes require a monovalent potassium cation, K+, a

feature which applies to gymnosperms and not angiosperm monoterpene synthases (Savage,

Hatch and Croteau, 1994; Chen et al., 2011).

Since carbocations intermediates are highly reactive, the terpene synthase active sites are

usually non-polar (greasy) enabling them to accommodate carbocations without allowing

nucleophilic centres to quench the carbocationic centre. The non-polar active sites will allow

for a longer-lived carbocation centre. The absence of water in the active site prevents the

formation of alcohols from the carbocationic species. Lastly, they make use of weak

11

interactions to promote creation of one terpene product over another (Bojin and Tantillo,

2006; Hong and Tantillo, 2010, 2011, 2013; O’Brien et al., 2018).

Yamanda et al states that terpene synthases from bacterial, fungal, and plant origin have a

construct containing two conserved metal binding domains which is composed of an amino

acid rich motif [D/N)DXX(D/E) or DDXXXE] positioned in either of the ranges of 80-120 or

230-270 amino acids of the N-terminus. Plant terpene synthases contain a conserved N-

terminal region (PF01397) which bacterial terpene synthases lack (Whittington et al., 2002;

Yamada et al., 2015).

Hyatt et al. state that limonene synthase consists of two helical domains; the C-terminal

possessing the active site and the N-terminal which is of unknown function (Christianson,

2006; Hyatt et al., 2007). Extending past the N-terminal is the N-terminal strand which folds

back across the C-terminal forming a part of the active site “lid or cap”. Hyatt et al. presume

that this lid shields the carbocations from water. The significance of the well-conserved N-

terminal region is yet to be discovered; it is imperative however to note that this region is

well conserved (Hyatt et al., 2007).

1.1.7 Monoterpene synthase reaction mechanisms

In the past research has established that the reaction mechanism for the formation of a terpene

skeleton mediated by a Type 1 monoterpene synthase is initiated by a divalent metal ion-

dependent ionization of the substrate (Christianson, 2006; Degenhardt, Köllner and

Gershenzon, 2009; O’Brien et al., 2018). This cationic intermediate will subsequently go

through a string of cyclizations, hydride shifts or various rearrangements until the reaction is

terminated by loss of a proton or the addition of a nucleophile (Croteau, 1987; Degenhardt,

Köllner and Gershenzon, 2009).

Yao et al. focused on the reactions producing 4(S)-α-terpinyl carbocation starting from 3(S)-

linalyl diphosphate ((3S)-LPP) and in generating the 4(S)-limonene product. In their research

12

they noted that in 4(S)-limonene synthase ((4S)-LS), 4(S)-α-terpinyl carbocation is changed

by deprotonation to 4(S)-limonene using the histidine His579 as a base and stabilizer for the

4(S)-α-terpinyl carbocation (see Figure 1.06). Using a QM/MM approach they observed that

both wild type and recombinant (4S)-LS in mint species were restricted to producing a

specific main product (4S)-limonene. This was unlike in (+)-bornyl diphosphate synthase

(BPPS) which produced BPP as the main product. As a point of difference lying in the highly

conserved active sites of LS and BPPS they noted that this difference in observation was due

to the difference His579 (LS)/Phe578 (BPPS). Since they found in the LS system that the

distance between the His579 of the product state of the (4S)-α-terpinyl carbocation and the C

atom of the positively charged methyl group was 4.70 Å (see Fig 1.06), they wanted to

further establish if this was the main base or one of the bases involved in the protonation of

4(S)-α-terpinyl carbocation. The resolve was that in the active site of (4S)-LS, His579 may

accept a proton from the positively charged methyl group of the 4(S)-α-terpinyl carbocation

to promote formation of limonene, but in the case of BPPS Phe578 in the active site provides

hydrophobic interactions which promote the formation of BPP, through an intermediate 2-

bornyl carbocation. The results from their further tests after decreasing the distance between

the hydrogen atom (H) and nitrogen atom (N) of His579 proved that proton transfer does not

occur synchronously with other reactions since this would require free movement of the

substrate within the active site (Yao, Chen and Guo, 2018). This study highlights how

nuances in the varying active sites may result in very large differences in product outcome for

terpene synthases. In conclusion they noted that the reaction pathway of (4S)-LS-catalysed

13

Figure 1.06: (b) and (c) respectively show 4(S)-α-terpinyl carbocation before

protonation and after protonation. (d) shows a distance of 4.70 Å, between His579 and

the C atom on positively charged methyl group of the product state of the (4S)-α-

terpinyl carbocation. (Yao, Chen and Guo, 2018). (Reproduced with permission)

formation of limonene follows a coordinated-asynchronous (three-steps) reaction pathway consisting of

isomerisations,cyclisation process and proton transfer process. The formation of the 4(S)-α-terpinyl

carbocation results from the 3(S)-LPP isomerization and cyclisation process and this is was noted as the

rate determining step. In addition they also concluded that proton transfer from 4(S)-α-terpinyl carbocation

may use His 579 as a general base.

1.1.8 Terpene synthase product space exploration

Terpene synthases, during formation of terpenes accommodate carbocation intermediates

(Christianson, 2017). Tian et al. performed an investigation of all possible cations (containing

10 C atoms) as intermediates for reactions within terpene synthases. Their research was

aimed at inferring enzyme function (in terms of target terpenes) to protein sequences amongst

terpene synthases. The strategy was to explore possible enzyme activity amongst

uncategorized enzymes. They achieved this by building a library of potential carbocations

using a computer aided simulation approach. Out of the 74 possible cyclic systems identified

and constructed at least 5 were represented among the known characterized terpene products.

In terms of generating a full set of carbocations from the starting systems, simulations to

14

perform virtual carbocation rearrangements were performed (in the gas phase).

Figure 1.07 illustrates their general workflow in generating the full carbocation set from starting structures, together

with the five reaction types were considered in order to generate the full set (intramolecular alkylation of double

bonds, alkyl shifts, hydride shifts, 1,2-methyl shifts and proton transfers).

.

Figure 1.07: a) Generation of a full set of carbocations from a starting set; b) 5 allowed

transformations (reaction types) to build the full set (Tian, Poulter and Jacobson, 2016).

(Reproduced with permission).

After carrying each of these reactions (in the virtual sense) for each of the carbocationic

intermediates, 18758 distinct carbocations were obtained. To consider next was stability of

the carbocations with the intention of avoiding secondary carbocations (“since secondary

carbocations are avoided in most terpene reactions”). Use of more stringent energy filters

ranging from 0 kcal/mol -10 kcal/mol energy cut offs (“energies relative to the geranyl

carbocation, in kcal/mol”) resulted in decrease particularly of the less stable secondary

carbocations from 48% to 16% in the set. After classification of their compounds 5 out of the

identified 74 ring systems could be identified as corresponding to existing natural compound.

15

1.1.9 Post modification of terpenes

Although the focus of this work is on mechanism within terpene synthases, it is important to

remember that post-modification often occurs in the process of terpenoid biosynthesis.

Enzymes such as cytochrome P450 monooxygenases and oxidoreductases are entailed in the

post-modification of the terpene skeletons to yield the various terpenoids found in nature

(Marta et al.). For example, (+)-camphor is converted by cytochrome P450 monooxygenase

from Pseudomonas putida to 5-exo-hydoxycamphor, 𝛂-pinene is oxidised to 𝛂-pinene oxide

by pinene oxygenase, and eucalyptol (1,8-cineole) is converted by P450 monooxygenase

from Bacillus cerus to 2R-endo- or 2R-exo-hydroxy-1,8-cineole (Marmulla and Harder,

2014). Yet another example is that of (+)-nootkatone, a sesquiterpene, which is produced via

oxidation of valencene by a member of the P450 monooxygenase superfamily (Kutyna and

Borneman, 2018).

This research will exploit the use of a terpene synthase limonene synthase as a target docking

site since the virtual library being generated comprises of precursors of terpenes. Use of

mono-terpene synthases then, helps to prove the closeness in relation between virtual library

compounds and natural terpene precursors as well as help in elucidating on possible reaction

mechanisms within the active site of the mono-terpene synthases. Limonene synthase is

available as a crystal structure, with substrate bound from the RCSB (2ONG) (Hyatt et al.

2007).

1.2 Problem statement and justification

The Chemical Abstracts Service reports that over 60 million compounds have been produced

through synthetic chemistry over the past 20 years and that the combined academic and

commercial collections of small molecules worldwide are at an estimate of above 100 million

(Lipkus et al., 2008; ARNAUD, 2011; Ruddigkeit et al., 2012) . A point to note however is

that the existence of a large number of compounds cannot ensure that there are compounds

that have efficacy against particular disease targets, including absence of side effects and

16

toxicity, and thus there is a need for computational drug design to search for innovative

structures that may display better selectivity and efficacy. However, due to the immense

number of possible compounds systematic exploration of chemical space is difficult. In order

to work around this Ruddigkeit et al. have made use of the graph theory to this end. Their

idea has involved the enumeration of molecules from first principles using sets of non-

isomorphic graphs. In these graphs the nodes represented the atoms (C, N, O and more) and

the edges bonds. The graphs were run through a series of filters (algorithms developed to

screen the molecules according to rules of the protocol’s chemistry) to generate a diverse set

of compounds with acceptable chemistry, taking note that all valency rules were observed.

Filters enabled screening of problematic functional groups and all undesirable compounds,

the result then was a diversification of skeletons into “CNO” types, which after post

processing further generated additional diverse molecules and the result was 166.4 billion

substances which make up the complete GDB-17 chemical universe. The GDB-17 dataset

contains millions of isomers and analogues of known drugs. When compared to the

molecules in PubChem, the GDB-17 molecules are much richer in non-aromatic heterocycles,

quaternary centres and stereoisomers. When GDB-17 and PubChem are compared with

respect to molecules of a similar size, the number of molecules in GDB-17 proved to contain

many orders of magnitude more of these compounds, with PubChem-17 being only 0.001%

of GDB-17) (Ruddigkeit et al., 2012) .

Various mechanisms on the formation of terpenes have been presented in the literature,

however this information is not sufficient to deal with all terpene formation mechanisms. In

consideration, the establishment of the GDB-17 database (a huge chemical database) has

demonstrated that graph theoretic approaches are powerful (Ruddigkeit et al., 2012). It is

therefore in the light of the principles of the graph theory, that the interest of this MSc

research seeks to employ and modify such techniques so as to follow a rigorous graph

theoretical approach to generate a library of monoterpenes and monoterpene carbocations

which will then be used to explore the substrate chemical space of a terpene synthase enzyme

active site. Extension of this work is being considered to accommodate monoterpenoid

ketones such as camphor, verbenone and fenchone (in terms of oxidative post-modification of

terpenes by cytochrome P450 family enzymes).

17

1.3 Aim

The project seeks to generate a library of monoterpenes using graph theory techniques, and

through high-throughput virtual screening (docking) on enzyme active sites, determine which

of the library are possible product or intermediates in the mechanism mediated by the terpene

synthase enzyme.

1.3.1 Objectives

1. To generate a comprehensive library of monoterpenes using graph theoretic techniques and

to confirm if this matches literature

2. To perform docking of the generated library to monoterpene synthases and thus establish

the most likely monoterpenes to be produced or to be intermediates in the transformation

from GPP mediated by the synthase.

1.4 Overview of methodology

The application of graph theory exploits algebraic invariants to establish non-biased selection

of possible binding patterns. In this research non-isomorphic graphs are generated using geng

in the Nauty and Traces suite of software. All graphs generated are converted to 3D

molecules by use of scripts (see appendix) to provide input to the Tinker suite of software to

enable use of this software to perform molecular mechanics optimizations. Docking of the

generated library to the terpene synthases is performed through the use of AutoDock Vina.

1.4.1 Graph theoretic techniques

This is based on the graph theory which makes use of graphs to model chemical structure. In

this case the graph represents a molecule which is represented by atoms as vertices and bonds

as edges. The procedure in question will be characterised by construction of complete sets of

18

non-isomorphic graphs through the use of the package “geng” in the Nauty and Traces suite.

As a test case the geng code will be called to enumerate all graphs containing 7 vertices

(given that this is a relatively small number). This will then be used to explore graphs with 10

vertices, ultimately corresponding to the generation of structures containing 10 carbon atoms.

Non-isomorphic graphs generated will be converted to 3D through MM techniques by the

exploitation of the program “Tinker”, controlled through the use of Python scripts (see

appendix).

1.4.2 Tinker

The Tinker suite of software provides for efficient geometry optimization of systems using a

molecular mechanics force-field based approach. In particular scripts (see appendix) will be

used to screen the sets of graphs and write them in a Tinker-readable format, from which

molecular mechanics geometry optimizations will be possible.

1.4.3 Virtual screening (Docking)

As part of a high throughput virtual screening procedure for the structures generated.

Molecular docking will be performed using AutoDock Vina. All filtered compounds from the

library will be docked to a synthase target, limonene synthase, obtained from the PDB

database. The detailed methodology for this will be discussed in chapter 4.

19

Chapter 2: Concepts and Software

2.1 Graph theory

Since molecules may be represented as a graph, that is a series of atoms (nodes) connected in

various ways by bonds (edges) (Kearnes et al., 2016), this research makes of use the

principles of graph theory to create a graph representation of a molecule, followed by

construction of the corresponding molecular models from these graphs. It is therefore

imperative to point out that the graphs mentioned here are not the graphs of functions that

many are familiar with, visually illustrated on an x-y plot. In the context of graph theory and

this research, a graph is “a set of objects (nodes or vertices) that are connected together

through edges or links” (Bang-Jensen, Jørgen and Gutin, 2007; accessed 31 January 2019).

Graphs can either be directed or undirected (Mckay, 2013). Directed graphs are graphs with

edges pointing in one direction whilst undirected graphs are graphs with non-directional

edges (without pointers) (Bang-Jensen, Jørgen and Gutin, 2007; accessed 31 January 2019).

Graphs with bidirectional edges may be argued as being undirected (if all edges are

bidirectional) (Figure 2.00 A). For this research undirected graphs were used.

Figure 2.00: A is an undirected graph, while, B is a directed and C a bidirectional graph

with only two nodes.

20

An example of a complex undirected graph with several nodes is illustrated in Figure 2.01. In

this graph of order 11 (there are 11 vertices), the degree of this graph is 4 (the maximum

connectivity or degree for any vertex in the graph is 4).

Figure 2.01: An illustration of a typical undirected graph.

2.1.1 Graph isomorphism

Since graphs are defined by their vertices and edges, and not by the way they are drawn it is

important to be able to compare two graphs as being identical or different. Identical graphs

are said to be isomorphic, that is they have the same number of nodes and exactly the same

connectivity between nodes. More formally, two graphs are considered isomorphic if there is

“a bijection between their vertex sets that maintains adjacency” (Tian, Liu and Xie, 2012;

McKay and Piperno, 2014). This implies that there is freedom to represent a single graph in a

variety of different shapes whilst preserving the integrity of connections as well as the

number of vertices and edges. Non-isomorphic graphs on the other hand do not maintain the

same type of connections, even if the number of vertices might be the same (Mckay, 2013).

Figure 2.02 demonstrates this relationship, in the figure G1 and G2 are isomorphic, and G3 is

non-isomorphic to either of the two G1 and G2. For example, it can be seen that G3 has a

21

vertex of degree 1, whilst the other two graphs have no such vertex. On the other hand, G1

and G2 as the correspondence A-1, B-2, C-3, D-4, E-5 maintains identical adjacency between

the graphs and so these two graphs are isomorphic (there are other correspondences that work

with this pair, but this suffices). G1 also has a set of isomorphisms with itself (e.g A-B, B-C,

C-D, D-E), called automorphisms, the set of which is an automorphism group (McKay and

Piperno, 2014).

Figure 2.02: An illustration of isomorphism. In this figure G1 & G2 are isomorphic and

G3 is non-isomorphic to neither G1 nor G2. Labels on graphs are for clarification

purposes and serve no bias to orientation

Graphs in a non-isomorphic relationship show no correspondence no matter how many times

the vertices in the graphs are spatially arranged; no edge connectivity correspondence may be

found (Jonathan L. Gross, 1999). In the description of a molecule as a graph, where all

vertices are identical (such as all being C atoms for example) a pair of non-isomorphic graphs

of exactly the same degree are representations of two different molecules (isomers if, upon

addition of hydrogen atoms, the atom count of each type is preserved) (Kearnes et al., 2016).

Further the existence of tools with the capability of generating a complete set of non-

22

isomorphic graphs of a particular degree provides a means by which one can generate a

complete set of isomers (chirality issues withstanding).

In this project, a tool was required to generate these graphs, conducting graph creation in a

manner that met these two requirements: firstly, that all graphs had to be non-isomorphic; and

secondly that all possible graphs were created without exception. To this end the tool “geng”

within the Nauty and Traces suite of software was used (McKay and Piperno, 2014).

2.1.2 Nauty and Traces

Nauty derives its name from the words “No AUTomorphism Yes” and is a package that

includes a suite of programs (together with an API) within which there are the so-called “g

tools” that are capable of processing files or graphs stored in graph6 or sparse6 format.

However, the primary purpose of nauty is to work with graph automorphism groups. Traces

is an alternate set of programs that performs much the same tasks as does nauty. One of the

useful programs used from the Nauty and Traces suite, in this project was “geng” which is a

tool for generating a complete set of non-isomorphic graphs of a particular order; in order to

analyse the output, tools in the suite were used to change graph formats to easily readable

formats included “listg” and the similar but less powerful “showg” (showg is a more compact

program than listg with a subset of the functionality) (Mckay, 2013). These tools were used to

generate graphs, and to format these graphs appropriately for further processing.

23

2.2 Tinker and Molecular Mechanics

2.2.1 Molecular Mechanics

Molecular mechanics is a modelling technique where bonded and non-bonded interactions are

calculated (Patrikeev, 1973) using a “ball and spring” approach centred on Hooke’s law

(Lamberti et al., 2002). The bonded interactions include the stretch, bend and torsion

interactions, while the non-bonded interactions include van der Waal’s and electrostatic

interactions (Patrikeev, 1973; Burkert and Allinger, 1982).

For the bond energy calculation, the distance between two atoms, and a constant defining that

particular pair of atoms are used to calculate the energy as a function of the interatomic

distance (Equation 1) (Van Westen, Vlugt and Gross, 2011).

(1)

In the MM3 forcefield (used in this study) this is elaborated further to describe more

accurately a Morse potential, and this elaboration is in the form of a polynomial expression

(Equation 2) (Allinger, Yuh, and Lii 1989).

𝐸(𝑅𝐴𝐵) = 71.94𝑘𝐴𝐵(𝑅𝐴𝐵 − 𝑅0
𝐴𝐵)2[1 − 2.55(𝑅𝐴𝐵 − 𝑅0

𝐴𝐵) +
7

12
× 2.55(𝑅𝐴𝐵 − 𝑅0

𝐴𝐵)2]

 (2)

In all cases kAB is the force constant, while the difference describes the deviation of the bond

length from equilibrium. In order to calculate energy of a system due to bond deviation, the

contribution to the total energy of all bonds must be calculated according to the sum

24

(Equation 3).

 (3)

Similar terms may be set up for bond angles and dihedrals (involving three or four

consecutively bonded atoms) where the appropriate constants are dependent on the three (or

four) atoms involved. So, generally for bond angles in molecular mechanics, again the

deviation from equilibrium provides a means to calculate an energy cost due to this deviation

(Equation 4).

(4)

Again, there is a force constant that is dependent on the three atoms A, B and C (kABC).

In MM3, this is extended again with a polynomial expression (Equation 5)

𝐸(𝜃𝐴𝐵𝐶) = 0.021914𝑘𝐴𝐵𝐶(𝜃𝐴𝐵𝐶 − 𝜃0
𝐴𝐵𝐶)2[1 − 0.014(𝜃𝐴𝐵𝐶 − 𝜃0

𝐴𝐵𝐶) + 5.6 × 10−5(𝜃𝐴𝐵𝐶 − 𝜃0
𝐴𝐵𝐶)2

−7.0 × 10−7(𝜃𝐴𝐵𝐶 − 𝜃0
𝐴𝐵𝐶)3 + 9.0 × 10−10(𝜃𝐴𝐵𝐶 − 𝜃0

𝐴𝐵𝐶)4]

 (5)

This term has to be calculated across all bond angles within a molecule and these values

summed to provide for the contribution of bending to the total energy of the molecule

(Equation 6).

 (6)

In a slightly different manner dihedral angles may be described in terms of a periodic

function (a cosine function) in order to calculate the energy due to rotation about bonds

(Equation 7). In this equation n defines the periodicity of the function.

25

(7)

For the MM3 force field, the torsion is defined by a Fourier expansion (Equation 8)

𝐸(𝜔𝐴𝐵𝐶𝐷) = 0.5𝑉1
𝐴𝐵𝐶𝐷(1 + cos𝜔) + 0.5𝑉2

𝐴𝐵𝐶𝐷(1 + cos 2𝜔) + 0.5𝑉3
𝐴𝐵𝐶𝐷(1 + cos 3𝜔)

 (8)

Again, this energy value must be calculated over all torsions in a molecule to provide for the

torsional contribution to the total energy (Equation 9).

(9)

Non-bonded terms also contribute to the total energy. Van der Waals interactions are

determined between all pairs of non-bonded atoms (Equation 10).There are minor differences

with a softer potential in MM3.

(10)

The second non-bonded term included in molecular mechanics calculations is the electrostatic

term. For a single pair of non-bonded atoms, it is calculated using Equation 11:

(11)

26

Again there are slight differences in MM3. In Equation 11 QA and QB are the charges on

atoms A and B and RAB is the distance between them. This electrostatic value must be

calculated over all pairs of nonbonded atoms to give Eel, the electrostatic contribution to the

total energy.

Total energy calculated summing up all these terms (Equation 12)

E = Estr + Ebend + Etors + Evdw + Eel + Ecross (12)

2.2.1.2 Geometry Optimization

Geometry optimization or energy minimization is a process that is executed to minimize a conformation of

a molecule, through calculation of bond length and angles which lower the total energy of the

conformation. Optimization involves adjustments to a system by variation of intramolecular degrees of

freedom until a minimum on the potential energy surface is reached. To achieve all this a force field

calculation of energy and first derivatives may be used. In this research geometry optimization is

performed with energy calculations from the MM3 force field (designed by Allinger and detailed in part

2.2.1) (Patrikeev, 1973; Burkert and Allinger, 1982). The MM3 force field is used extensively in the

processing of the virtual chemical library in Chapter 3. Optimizers or minimizers are algorithms that help

to compute the new geometrical positions of atoms in a molecule. As shown in Fig 3.09 the optimizer used

in this study was the Limited Memory Boryden-Fletcher-Goldfarb-Shanno minimizer (L-BFGS), an

algorithm belonging to the set of Quasi-Newton methods (Andrew and Gao 2007; Byrd et al. 1995;

Malouf 2002). L-BFGS efficiently locates the energy minimum. In Fig 3.09 the “Final Function Value” is

regarded as the final low energy minimum.

2.2.2 Tinker

Tinker (Ponder and Richards) is a molecular modelling package, with a set of programs and

procedures for molecular mechanics and dynamics, and various energy based structural

manipulation calculations (Paine, 2018). Tinker has many capabilities but of interest to this

research is its ability to perform energy minimization and structural optimization using

molecular mechanics and its ability to use any of the common parameters such as Amber,

Allinger (MM2 and MM3), OPLS, Merck Molecular Force Field, Liam Dang’s polarizable

model, and the AMOEBA Force Field (Mckay, 2013).

The Tinker suite includes individual programs such as scan, monte, sniffer for performing

27

global optimization; dynamic and anneal for dynamics; minimize, optimize, newton for

local searches, and many more programs for structural manipulation, parameterization and for free

energy calculations and properties (Rackers et al., 2018). Even though all programs from Tinker suit

can be communicated with directly through reading standard input, a “key word mechanism” can be

used for external commands which can be effectively communicated through an external

configuration file in .key format. In this .key configuration file may contain detailed options, so that

these options do not have to be repeatedly input on the command line (Ponder, 2018).

2.3 Molecular docking

Molecular Docking is a method employed to establish the bound confirmations and affinity of

receptors which are the macromolecules and ligands which are the smaller molecules (Trott

and Olson, 2009). This is achieved through prediction of non-covalent binding of receptors

and ligands (Trott and Olson, 2009; Forli et al., 2016) through the aid of various tools such as

AutoDock (Österberg et al., 2002), AutoDock Vina (Trott and Olson, 2009), Glide (Friesner

et al., 2004), USCF Dock (Allen et al., 2015) and many more.

These tools make use of various scoring functions which rely on algorithms that calculate

(often using a forcefield approach) energy functions and perform various searches for bound

conformations, to statistically predict the different binding modes of ligand to receptor

protein (regarded as a pose). The poses are the various modes in which the ligand may bind,

as a result of different shapes and energy interactions (electrostatic, van der Waals,

Coulombic and H bonds). Each pose will give a different binding affinity which can be used

to then resolve the best binding pose. A very large negative binding energy is regarded as

best when scoring (Huang, 2014).

2.3.1 AutoDock Vina

AutoDock Vina is a molecular docking program which relies on a simple scoring function as

well as a rapid gradient-optimization conformational search (Trott and Olson, 2009). In order

to carry out a docking procedure using Vina the target docking region on the protein must be

28

specified, and Vina makes use of a quadrant box to define this particular search area. If an

active site is known prior to docking, and if the docking region required is the active site, the

quadrant box is defined to cover that region, since this then defines the search space in which

all likely ligand binding conformations are explored. This box can be adjusted in size

depending on the search area to be explored, with the provision that the box is not too small

since this could result in an inadequate number of ligand conformations. By contrast making

the box too large may result in a lot of unnecessary poses, although, with extensive

conformational search in a large box (blind docking) the best ligand binding site may be

located (Feinstein and Brylinski, 2015).

As a requisite for input and output file format AutoDock Vina has been designed to recognize

a special type of protein and ligand input file format called pdbqt (Trott and Olson, 2009) this

file format contains information like atomic charges, atom type and topological information.

AutoDock Vina allows for the use of a rigid receptor which in turn allows for a reliable

search since the size of the conformational space is reduced, in addition this then reduces the

computational time needed to score each trial conformation (Forli et al., 2016). The Scoring

function for Autodock Vina is based on the combination between knowledge based and

empirical approaches (Trott and Olson 2009).

29

Chapter 3: Generation of the Virtual Libraries

3.1 Graph generation

The main purpose of this study was to generate a virtual library of terpene precursors. In

order to do this we used graph-theoretical software to produce a complete set of non-

isomorphic graphs. These graphs were screened for suitability and then suitable ones were

converted to molecular models. There were complicating factors in this process, particularly

with respect to knotted molecules and the computational time required to process these

graphs, and the process and complications are detailed in this chapter.

Using Nauty and Traces a complete set of non-isomorphic graphs were created by running

selected programs from the suite on the command line. These commands are presented

below, the “geng” command creates the graphs then the “showg” command translates the

information into a readable text representation of the graph. The redirection of the output

stream to “number_of_nodesout.txt” allows for access to the output stream by scripts.

geng -c -v number_of_nodes > number_of_nodes.txt

showg < number_of_nodes.txt > number_of_nodesout.txt

The aim was to generate graphs of order 7, 8, 9 and 10 thus “number_of_nodes” was set as

the order of the graph in each case. The purpose was ultimately to use the nodes to represent

carbon atoms (vertices) and the edges to represent bonds (or links). Bear in mind that the

well-known norbornane (Gindulyte et al., 2018) has 7 carbon atoms (and therefore its

carbocation derivatives such as the non-classical 2-norbornyl carbocation all have 7 carbon

atoms), while all monoterpenes have 10 carbon atoms. All generated graphs were converted

from the encoded graphs in “number_of_nodes.txt” to the more easily human readable graphs

in text format in “number_of_nodesout.txt”. The total number of graphs generated ranged

from 873 (for all graphs of order 7) to 11 million (for graphs of order 10), with the final file

size ranging from a few hundred kilobytes to 2 gigabytes as the number of nodes increased

from 7 to 10.

30

135 I???CBozo

136 I???CBo^o

137 I???CBozg

138 I???CBo^g

139 I???CBorw

140 I???CBoZw

141 I???CBo~o

142 I???CBo~g

143 I???CBozw

144 I???CBo^w

145 I???CBo~w

146 I???C@wp_

147 I???C@wx_

The numbers of the complete set of non-isomorphic graphs of each order initially generated

are shown in Figure 3.00

Figure 3.00: Results of graphs of order 7, 8, 9 and 10 created from Nauty and Traces

The 853 graphs of order 7 are simple to explore and manage; however, the 11 716 571 graphs

of order 10 required strategies and filters in order to trim to a more manageable number. Each

order in this case represents the number of nodes, which also represents the number of carbon

atoms in each molecule generated from the graph. Graphs of the same order were all

compiled into a single text file upon generation. This results in various text representations of

graphs as shown below.

The initial encoding for the graphs is quite difficult to work with (Figure 3.01)

Figure 3.01: Raw encoding of graphs 135-147 of order 10 as generated by geng

31

Graph 146, order 10.

0 : 7 9;

1 : 8 9;

2 : 8;

3 : 8;

4 : 8;

5 : 9;

6 : 9;

7 : 0;

8 : 1 2 3 4;

9 : 0 1 5 6;

The tool showg converts the encoded graph to a more readable format. Figure 3.02 shows the

output from conversion of graph 146 (Figure 3.01) to more readable format using showg.

Figure 3.02: Output of showg for graph 146 of order 10

In Figure 3.02 reading the graph is not difficult. There are 10 nodes (labelled 0 to 9), and the

nodes they are connected to are listed next to the label, so node 0 is connected to nodes 7 and

9. Figure 3.03 shows what graph 146 looks like drawn out with its edges and nodes.

Figure 3.03: Graph 146 constructed in terms of nodes and edges. The edges have been

drawn thicker to give the illusion of bonds in this illustration.

32

I??????~w

Graph 1, order 10.

0 : 9;

1 : 9;

2 : 9;

3 : 9;

4 : 9;

5 : 9;

6 : 9;

7 : 9;

8 : 9;

9 : 0 1 2 3 4 5 6 7 8;

Conversion to molecular format will involve setting up bonds and atoms in Tinker format.

Geng creates a complete set of non-isomorphic graphs of a particular order. Each graph text

representation shows this information about a molecule, the degree or number of connections

per node (vertices) and the relationship between the vertices through edges (links). The

degree of each vertex is important, because in the current problem nodes correspond to

carbon atoms (with maximum valence of 4) and therefore the degree of any vertex may not

be greater than

4. Many graphs in the set will have vertices with degree greater than four, and these

correspond to impossible molecules and must be filtered out before further work.

An example of an impossible graph is the first graph created of order 10 by geng (Figures

3.04 and 3.05).

Figure 3.04: First graph of order 10 constructed by geng.

Figure 3.05: Text representation of Graph 1, an impossible graph in terms of molecular

representation.

By drawing the graph (Figure 3.06) it may be seen easily that one node (node 9) has order 9

(it is connected to nodes 0-8) while all remaining nodes have order 1. In the context of

33

chemistry this gives rise to an “impossible molecule” as it violates the valency rules expected

per carbon. Normal carbon molecules have a valency of 4, and even though the aim is to

generate as many theoretically possible compounds, it is still important to observe bonding

rules, thus this deviation will disqualify all molecules failing to adhere to this rule.

Figure 3.06: A is a constructed representation of Graph 1 showing the impossible

connections

The previous graph on the other hand, graph 146 in Figure 3.02 however, has absolutely no

issues upon transformation into a 3-dimensional molecule, all nodes demonstrate possible

bonding patterns. Connectivity per node does not exceed 4 and so the degree of the feasible

graphs are less than or equal to 4. It is through this criteria that the first screening of graphs

was conducted. The Python code written to generate the molecules has an initial function

written to recognize and discard graphs representing “impossible molecules”.

34

3.2 Graph processing

In order to process the various text representations of the graphs, the first Python script was

written to deal with the data format generated by Nauty, filtering out graphs that are

nonsensical in a molecular sense, translating these graphs to a molecular format ready for

geometry optimization, and finally calling Tinker to produce minimized molecules.

In developing the script to process the graphs the first aim was to eliminate all graphs for

which classical bonding to carbon (maximum of four bonds, due to the valency of carbon)

was not represented. This involved eliminating all graphs which had vertices with a degree

greater than 4 (see appendix). Screened graphs were then further processed individually by

extracting the connectivity information for each node in a graph and writing this to a Tinker

“.xyz” file. To this purpose each atom was defined as atom type 1 (aliphatic carbon in the

MM3 force field) and this was written to the Tinker “.xyz” file, together with the appropriate

connections according to each graph. Figure 3.07 shows an example of one of the Tinker

input files. In the input, the first six columns relate to atom number, element, x, y and z

coordinates, and atom type respectively. The remaining columns relate to connectivity. Note

that the numbering has been altered from 0-9 to 1-10. The atom type is “1” in all cases. The

x, y and z coordinates are random since the script incorporates a random coordinate generator

supplying each atom with random coordinates in the range of 1.0-5.0 Å (see the appendix for

the functions used in python).

10

1 C 1.492 2.792 3.243 1 8 10

2 C 1.707 2.204 3.275 1 9 10

3 C 1.586 2.89 2.582 1 9

4 C 1.613 2.92 2.624 1 9

5 C 1.709 1.835 2.81 1 9

6 C 2.226 1.818 2.169 1 10

7 C 1.592 3.715 1.81 1 10

8 C 2.729 1.957 2.928 1 1

9 C 1.959 3.447 3.008 1 2 3 4 5

10 C 2.289 3.672 3.166 1 1 2 6 7

Figure 3.07: Tinker input file with random coordinates and atom type 1 included

35

Atoms with an Unusual Number of Attached Atoms :

Type Atom Name Atom Type Expected Found

From the input from Figure 3.07 the fact that there are no hydrogens present in the molecule

causes warnings, but exact geometries still result due to the force-field restraints for aliphatic

carbon atoms. Examples of these warnings are in Figure 3.08.

Valence 1-C 1 4 2

Valence 2-C 1 4 2

Valence 3-C 1 4 1

Valence 4-C 1 4 1

Valence 5-C 1 4 1

Valence 6-C 1 4 1

Valence 7-C 1 4 1

Valence 8-C 1 4 1

Figure 3.08: Tinker warnings regarding valency

In order to obtain the best molecular structure per graph, the molecules generated were

optimized, involving structural adjustments that maintained the appropriate connectivity

among atoms (defined by the particular graph) whilst altering the angles, torsions and bond

lengths until the lowest energy structure was generated (the energies are calculated in terms

of the force-field parameters already described). The use of force-fields within Tinker enables

the optimization of many structures across a large library, derived from large numbers of

graphs in manageable time. (Paine, 2018). In order to perform local minimizations, the

“BFGS (Broden-Fletcher-Goldfarb-Shanno) Quasi-Newton Optimization” method was used

as implemented in Tinker. Figure 3.09 shows the result of use of this algorithm which, for the

structure minimized, achieved geometric convergence in 101 steps, optimizing in Cartesian

coordinate space (Rackers et al., 2018). The result of those structural adjustments throughout

the energy minimization are monitored Figure 3.09 and the resulting energy of the minimized

molecule is recorded as “The final function value”. In Figure 3.09 the Final function value is

5.4298 (kcal/mol).

36

Limited Memory BFGS Quasi-Newton Optimization:

QN Iter F Value G RMS F Move X Move Angle FG Call Comment

LBFGS -- Normal Termination due to SmallGrad

 0 0.1462D+08 0.9856D+08 1

1 0.6447D+06 0.2469D+07 0.1397D+08 0.1318 0.00 2 Success

2 0.5703D+06 0.2047D+07 0.7438D+05 0.0033 1.43 3 Success

3 0.4452D+06 0.1421D+07 0.1252D+06 0.0074 11.28 4 Success

4 0.2670D+06 0.6759D+06 0.1782D+06 0.0185 17.74 5 Success

5 0.1724D+06 0.3592D+06 0.9457D+05 0.0199 18.74 6 Success

...

6 0.1106D+06 0.1906D+06 0.6184D+05 0.0251 20.29 7 Success

100 5.4298 0.0170 0.0000 0.0003 82.05 103 Success

101 5.4298 0.0073 0.0000 0.0001 77.19 104 SmallGrad

Final Function Value : 5.4298

Final RMS Gradient : 0.0073

Final Gradient Norm : 0.0232

Figure 3.09: The results of optimization of a system using the BFGS algorithm in Tinker

10

1 C 2.638283 4.519097 4.172044 1 8 10

2 C 1.357549 2.594440 3.249577 1 9 10

3 C 0.495794 2.289409 0.896903 1 9

4 C -0.095910 0.676166 2.674808 1 9

5 C 2.213354 0.721629 1.793635 1 9

6 C 3.761558 2.980549 2.572965 1 10

7 C 1.992612 4.542408 1.790391 1 10

8 C 3.095298 3.699156 5.375600 1 1

9 C 1.010035 1.588739 2.150524 1 2 3 4 5

10 C 2.433425 3.638406 2.938553 1 1 2 6 7

Figure 3.10: Resultant coordinate file after successful optimization in Tinker

Figure 3.10 shows the Tinker xyz file that is written by Tinker upon completion of the

optimization. The coordinates are no longer random (clearly no atoms are overlapping).

37

Initial work with the order 7 graphs resulted in several molecules which were highly strained

and defined to be disjoint when coordinates only were inputted to a visualization (i.e. there

was more than one part of the molecule not connected by visible bonds upon visualization).

To attempt to mediate this problem a perl script using the DiscoveryScript API in Discovery

Studio Visualizer was used to screen these systems out (increasing the selection of atoms in a

molecule through bonds should select every atom in a connected molecule; where this did not

happen, it was clear a highly strained system was present). However, it became evident that

the high stains were happening as a result of highly unfavourable conformations occurring

sometimes during optimization on the random coordinates. A strategy was developed based

on this evidence which ensured that no highly strained molecules resulted from an

optimization.

For each individual graph eight separate Tinker “.xyz” input files were created with

connectivity matching the graph; in each of these eight files random x, y, and z coordinates

were provided for each carbon atom. These eight input files were then subjected to eight

separate Tinker molecular mechanics optimizations using the MM3 force field. The MM3

parameters used were as follows. As mentioned previously all atoms were MM3 atom type 1

(Alkane (Csp3)), such that “equilibrium” bond distances, angles and dihedrals (i.e. 𝑅0, 𝜃0,

𝜔0) were set to be 1.5247Å , 109.5°, and 180°, including force constants for the

Figure 3.11: Graph 146 (Order 10)

38

stretches and bends as 4.490 mol.Å -2 and 0.670 mol.deg-2 respectively. Hydrogen atoms were

not present or included in the minimization of the carbon skeleton as already mentioned. All

eight structures per graph were optimized (minimized) using the minimize program from the

Tinker suite Figure 3.11 shows the results of minimization of molecules derived from graph

146 (order 10).

This series of eight optimizations proved to be a successful approach. When working with

graphs of order 7, many of the molecules formed were inflexible, and this was reflected in the

reproducibility of the optimization approach. For example, Table 3.00 shows the

minimization energy from eight sets of random coordinates for Graph 4 (of the order 7

graphs)

Table 3.00: Results of optimization of molecule generated from Graph 4 (order 7)

Graph number 4 repeat number Minimization Energy (kcal/mol)

2 1.2459

3 1.2459

4 1.2459

5 1.2459

6 1.2459

7 1.2459

8 1.2459

9 1.2460

The variation in optimized energy is insignificant for these, showing high reproducibility of

the structure formed. Where flexibility was possible the optimizations showed this in terms of

the energy values. Table 3.01 shows the results of optimization of graph 9 (of order 7).

39

Table 3.01: Results of optimization of molecule generated from Graph 9 (order 7)

Graph number 9 repeat number Minimization Energy (kcal/mol)

2 3.9739

3 2.3367

4 2.3367

5 2.3367

6 2.3367

7 2.3367

8 3.9739

9 2.3367

In the case of Graph 9 (from graphs of order 7) it may be observed that repeats 2 and 8 are

identically a different conformation compared to the other repeats. This is confirmed when

viewing the 3-dimensional structures generated by optimization of Graph-9 derived

molecules (Figure 3.12)

40

Figure 3.12: Repeats of optimization for Graph 9 (of order 7). Repeats 2 and 8 are

identically a symmetrical conformation, different to the lower energy conformation

obtained in all other optimizations.

The eight repeats of optimization clearly “saved the day” in some instances. For instance,

with Graph 478 (Table 3.02), a problematic conformation, destabilized by 650 kcal/mol is

evident.

41

Table 3.02: Results of optimization of molecule generated from Graph 478 (order 7)

Graph number 478 repeat number Minimization Energy (kcal/mol)

2 440.0833

3 439.5004

4 440.0833

5 440.0833

6 440.0833

7 439.5004

8 440.0833

9 1110.8715

The 8 optimizations introduced some certainty that unrealistic 3-dimensional structures, such

as knotted systems could be accounted for and removed. A knotted system would have just

such a higher molecular mechanics energy than reasonable conformations and would give

rise to disconnected systems upon import of coordinates into visualization software such as

Discovery Studio Visualizer.

Since eight structures were generated from each individual graph, information from

minimization included the final geometry and the resultant energy of each of these eight

structures. This information was redirected to a log file accessed by a Python script. For

graphs of order 7, conversion of minimized structures from Tinker xyz format to pdb format

was handled by a system call to OpenBabel:

os.system("babel -ixyz temporary.xyz -h -opdb "+converted_pdb_name)

The recalculation of bond orders that Open Babel performs, may have also contributed to

highly strained molecular systems for graphs of order 7.

In later cases this was replaced with functions written in the Python script (see appendix)

managing conversion of the minimized Tinker xyz coordinates to pdb file format for each of

42

these 9 structures. However, the primary reason for handling Tinker xyz to pdb file format

conversion within the script, was the time required for Open Babel (babel) to perform a single

molecular conversions. This was too long to make treatment of tens of thousands of structures

an efficient process, as was required for dealing with graphs of order 10. The custom code

meant that this stage of the processing was no longer the time limiting step.

While exploring the minimization of molecules derived from the order 7 graphs, it was

observed that the optimization process could lead to two low energy structures (with identical

molecular mechanics optimized energy); however, these structures were observed to be

differing in chirality. Since molecules of different chirality interact very differently with

protein targets it was important that all enantiomers were included within the library. In order

to automate this, a calculable measure of chirality was needed in order to identify chiral

systems.

3.3 Calculation of Chirality

Wilson et al. have defined a chirality index that does not change under rotation and

translation but is noted to change sign on mirror images of molecules. For non-chiral systems

this metric assumes a value of zero. In this study, the calculation of chirality was conducted

according to this metric (Wilson et al.) (Figure 3.13)

𝐺𝑂𝑆 =
4!

𝑁4

1

3

[

∑ 𝑤𝑖𝑤𝑗𝑤𝑘 𝑤𝑙

𝑁

𝑎𝑙𝑙 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠 𝑜𝑓
𝑖,𝑗,𝑘,𝑙=1,…,𝑁

 ×
[(𝐫𝑖𝑗 × 𝐫𝑘𝑙) ∙ 𝐫𝑖𝑙](𝐫𝑖𝑗 ∙ 𝐫𝑗𝑘)(𝐫𝑗𝑘 ∙ 𝐫𝑘𝑙)

(𝑟𝑖𝑗𝑟𝑗𝑘𝑟𝑘𝑙)𝑛𝑟𝑖𝑙
𝑚

]

Figure 3.13: Equation showing calculation for chirality index as derived from Wilson et

al.

43

In this equation, wi, wj, wk, wk, wl, are values of physical quantities associated with atoms i - l;

in this study, for carbon atoms with mass 12 these values are set to 12. The choice of m and n

are important; choosing as constants n=2 and m=1 results in a chirality index which is

dimensionless. N represents the number of atoms (7 for graphs of order 7, 10 for graphs of

order 10) and rij, rjk, rkl, ril are atom to atom vectors across four atoms i, j, k and l. The values

of rij, rjk, rkl, ril are size of these vectors, which is simply the interatomic distance. The sum is

over all permutations of four atoms from the full set of atoms in the molecule.

Table 3.03 shows that all the repeats of minimization of molecules derived from graph 146

were successfully minimised, and the calculated chirality index calculated is indicated. The

Table 3.03: Table showing minimization energy and chirality indexes for graph 146

Graph number 146 repeat

number

Minimization Energy

(kcal/mol)

Chirality index

2 5.4306 -110.382

3 6.9762 -2.816

4 5.5006 7.549

5 6.9762 -2.84

6 5.4551 83.669

7 5.4297 109.542

8 5.4375 73.986

9 5.5244 -113.295

lowest minimization energy recorded for Graph 146 molecules is 5.4297 kcal/mol on

molecule repeat number 7 and the maximum is 6.9762 which is recorded for both molecule

repeat number 3 and 5. The energy difference between the highest minimization energy and

the lowest is 1.5465 kcal/mol; this is not as large in magnitude as for example graph 478

which showed a 671.3711 kcal/mol difference between the least and most stable systems

(1110.8715 kcal/mol - 439.5004 kcal/mol). This implies that there are small structural

differences in the molecules arising from graph 146. The repeats, molecules 3 and 5 both

have the same minimization energy; this does not mean they have the same stereochemistry;

44

however, both have very low values for chirality index, and we would classify these as being

non-chiral (our criteria for a non-chiral molecule is where the chirality index CI satisfies -3 <

CI < +3). Optimizations 2 and 7 show opposite chirality (see Fig 3.11 previously in this

chapter), in this case it means the conformations are mirror images (and that the two

optimizations are not necessarily of enantiomers). Although it would appear in this case,

simply looking at the energies, that there are two energy values (5.4 and 6.9 kcal/mol) the real

diversity in the systems comes from looking at the chirality together with this energy value,

in which case it is apparent that there are at least three conformations with energy value 5.4

(and enantiomers in one case) and a single conformation with energy value 6.9 kcal/mol.

For initial work, inclusion of both chirality optimizations in the library provides some

redundant entries, but ensures when chiral molecules do exist, both enantiomers are certainly

included. Several strategies were followed, the main two focused only on the lowest energy

structure or focused on chirals (ensuring the enantiomer was present).

Comparisons were made per graph for best energy of minimization, this was done by

selecting molecules with the lowest energy of minimization through a “helper” script that was

constructed and run separately to analyse the log file. In early work, molecules with the

lowest minimization energies were identified through the result-analysing script, which

automated the copying of identified structures to a new folder. However, as observed there

were many situations where various molecules generated per graph presented similar

minimization energies, there was still the concern with regard to stereo-chemistry amongst

molecules of the same graph, thus the chirality test was included and was then included in the

updated result analysis script. The updated final script (see appendix) for processing the order

10 graphs, towards the end of the project, merged both the graph processing script and result

analysis script into a single tool handling the conversion of graphs to a series of minimized

molecules, and identifying both final energy and chirality of all systems. All molecules

presenting chirality and the molecules exhibiting no chirality were copied to respective

folders, with subfolders being titled according to graph name. Simultaneously, a summary of

all minimization energies and chirality index values were included in a log file.

Table 3.04 and Figure 3.14 below are illustrative of the need to both minimize several times

45

and calculate chirality. Repeats 2 and 6 result in knotted molecules and the energy is

Table 3.04: Results of optimization of molecule generated from Graph 8096 (order 10)

Graph number Minimization Energy Chirality Index

8096

Repeats

2 659.3845 -16.73

3 166.7268 -17.417

4 166.7268 17.496

5 166.7268 -17.629

6 852.9841 -52.646

7 166.7268 17.377

8 166.7268 -17.709

9 166.7268 17.566

Figure 3.14: Minimizations of molecules from graph 8096 (order 10)

correspondingly very high. Other molecules are acceptable as a tricyclic system with fused 4,

4 and 6 membered rings (a dimethyl tricyclooctane). However, repeats 3, 5 and 8 a l l

46

h a v e e nded up with a negative chirality index and are the enantiomer of the molecule

repeated in 4, 7 and 9 which has a positive chirality index.

The repeating of molecules certainly helps to overcome the possibility of generating knotted

molecules.

Table 3.05: Minimization energy and chirality index for Graph 4858

Graph 4858

Repeat Minimization Energy Chirality Index

2 226.0014 -93.782

3 226.0455 -361.727

4 228.5384 -8.696

5 229.3959 -227.794

6 229.2197 -95.944

7 229.3415 -30.433

8 228.5226 89.924

9 228.1573 53.275

The calculation of chirality index is not ideal. For instance, when examining Graph 4858

(Table 3.05 and Figure 3.15) which defines a very flexible 1,2-n-propyl-t-butylcyclopropane,

both cis and trans isomers are possible. The cis-isomer is created 5 times in the set of 8

optimizations (repeats 4, 5, 6, 7, 8), while the trans-isomer is created 3 times (repeats 2, 3,

and 9). However, interference from the flexible propyl substituent changes the chirality index

significantly. The chirality index is an instantaneous chirality highly dependent on the

conformation, and the chirality indexes are therefore not reproducible.

47

Figure 3.15: Repeat molecules of Graph 4858

One way to ensure diversity in the set was to generate mirror images of systems where

chirality was certainly an issue, and this would ensure that with cis/trans substitution as for

Graph 4858, both enantiomers of each diastereomer would be present. These mirror image

pairs were termed “a” and “b” and were included in the chiral molecule dataset.

Knotting produces impossible molecules, and the repeats of minimization certainly reduce the

chances of knotted systems ending in the final library. This characterization of impossible

molecules comes not from valence information, but from structural information, in which it is

clear that bonds are strained to the point that this bonding would not be possible. The

minimization energy provides the main clue that this has occurred, and contextually the first

comparison is between the eight repeat minimizations for a single system. It is possible to

order all isomers in the final library according to energy, in order to further test for less

possible (or very high energy systems). Further the library could be further refined using

48

Quantum Mechanical optimizations (such as semi-empirical AM1 or DFTB+ optimizations)

to further filter out such systems.

To give a more general idea of the systems in the library of 10 carbon systems, the final chiral

library included aliphatic systems (such as the chiral 3-ethyl-3-methyl-heptane 85517_6_a,

Figure 3.16), spiro cyclic systems (such as the methyl spiro[4.4]nonane 87155_2_a, Figure

3.16). Fused cyclic systems were common (including the di-substituted bicyclo[3.2.0]heptane

87330_2_a, Figure 3.17). Not all fused cyclic systems are realistic, and QM-based

optimizations will filter these out (the multifused ring system 1740727_3_a, Figure 3.17 is an

example of such an unrealistic system).

Figure 3.16: 85517_6_a (left) and 87155_2_a (right)

Figure 3.17: 87330_2_a and 1740727_3_a

Knotted systems have already been mentioned as being unrealistic. However, as system sizes

increase, they become more and more plausible. The knotted system 11362438_2_a was the

one most plausibly possible (although still extremely strained) of all of the 10 membered

knotted systems encountered in this study (Figure 3.18)

49

Figure 3.18: 11362438_2_a. A knotted molecule. The molecular mechanics bond

threading through the loop is not shown.

3.4 Summary of the graph generation

3.4.1 Order 7 Graphs

Figure 3.19 shows a summary of graph creation. After running Nauty and Traces the number

of graphs created for order 7 totalled 853. Screening of those graphs ensured that only valid

graphs (all which had acceptable valencies) were reproduced as repeats eight per each graph.

Graph screening resulted in 353 (Figure 3.19) graphs remaining from the 853 created. As a

result, a total of 2824 (Figure 3.19) molecules were generated since 8 repeats were generated

8 molecules per graph out of the 353 valid graphs remaining. When the molecules were

checked for chirality 136 graphs included chiral molecules. This also meant that 217

remained as non-chiral systems.

Figure 3.19: Bar graph showing the distribution of order 7 molecules throughout the

screening procedure

50

3.4.2 Order 10 graphs

A summary of order 10 graph creation is shown in Figure 3.20. The total number of graphs

created after running Nauty and traces is 11 716 571. Graph processing was done in parts and

not all graphs created were processed to molecules due to computational time needed. Thus,

of the total of 101161 valid graphs generated, only 55366 were processed due to time

constraints. With repeats per graph, a total of 442928 optimizations were performed. Where

enantiomers were forced into the set 885856 systems are now available for both “a” and “b”

molecules. For the initial virtual screening only the best optimization for each graph screened

was used, resulting in the use of 55366 systems in the high throughput virtual screening

(Figure 3.20). Therefore, after all filters were applied a total of 55 366 molecules were left for

docking. Although doubling up non chiral systems is not ideal, this ensures that if a chiral

molecule is present in the set, its enantiomer will also be present in the set.

This number represents all the molecules (considered ligands in this case) which had the lowest

minimization energy per graph. After docking on Vina, determination of the molecules with the

lowest binding energy was done through a script that analyzed the log file. A total of 2355

(Figure 3.20) were selected after noting the molecules with the lowest binding energy fell

between -6.9 kcal mol-1 and (including) -7.4 kcal mol-1 (mostly -7.0 kcal mol-1 and -7.4 kcal

mol-1). Since most of the graphs created were not processed an estimation was made to predict

the total number of molecules that would score an energy a binding energy of -7.0 kcal mol -1

or lower. With the current information we may infer that an estimated 4302 (Figure 3.20)

would provide optimal binding.

In this section a complete library of C7 molecules and C10 molecules were generated – in the

case of C7 this was exhaustive, but in the case of C10 a significant portion of all possibilities

was processed. Further computational time will easily complete this work. Complications

have been identified and partially addressed particularly with respect to chirality.

51

Navy blue: Total number of graphs created

Orange: Valid graphs including repeats

Yellow: Valid graphs including a and b repeats

Light green: Docked ligands

Purple: Best ligands

Sky blue: Estimate outcome of best ligands

Figure 3.20: Bar graph showing distribution of order 10 molecules during the screening

procedure.

52

Chapter 4: High Throughput Virtual Screening

4.1 Methodology

Given the extent of the library generated in Chapter 3, it was of interest to see how this

library performed in docking studies with limonene synthase (the choice of limonene

synthase is discussed in Chapter 1).

In screening the C10 compounds against a terpene synthase receptor, AutoDock Vina was

used to establish the orientation of the ligands in the protein receptor (molecular docking).

Limonene synthase from Mentha spicata (pdb code 2ONG) (Hyatt et al. 2007) was used as

the protein receptor (Figure 4.00).

Figure 4.00: The 2ONG with crystal structure ligand (stick) and docked ligand (CPK)

overlaid.

4.1.1 Ligand preparation

Ligands used for docking were selected with a preference being for those which simply had

the lowest minimization energy amongst the repeats generated per graph and also all were not

enantiomers of the repeats (only ‘_a’ molecules were used). After using this criteria for

53

selection, the library used for docking contained 55 366 molecules. These ligands were

copied from their respective library and converted to pdbqt formats files to meet AutoDock

Vina file format requirements (Trott and Olson, 2009). The conversion of files from pdb to

pdbqt was through an AutoDock Tools script for ligand preparation prepare_ligand4.py.

4.1.2 Receptor preparation

Receptor preparation commenced by downloading the required receptor, limonene synthase

(pdb code 2ONG) from the Protein Databank website. Ligands and water downloaded with

the molecule were manually removed using Discovery Studio Visualizer. The receptor was

prepared for molecular docking with an AutoDock Tools script prepare_receptor4.py.

4.1.3 Molecular Docking

In nature binding of ligands to active sites involves an “induced fit” or “hand in glove

mechanism”. In order to mimic such, during a typical docking procedure, the binding of

ligands to protein requires for molecular flexibility and which is made possible through either

of the structures undergoing different conformations, this though is computationally intensive

since there are a lot of rotatable bonds (Mukhopadhyay, 2014). To overcome time losses that

may result from conformational searches, AutoDock Vina allows for use of a rigid receptor

which in turn allows for acceleration of the search through ligand conformational space.

(Feinstein and Brylinski, 2015; Forli et al., 2016).

Since the target site is already known prior to docking, the docking parameters were

established for the active site pocket. Molecular docking was performed using the following

parameters. The centre of the grid box was set on the xyz coordinates, (23.454, 56.349,

53.915). The grid box was set to size 22 for all dimensions (x, y and z). This was adapted

from the default as a standard to avoid the box being too big (to accelerate accurate pose

prediction) and not too small (to avoid forced docking). Even though the aim of the docking

was to ensure that the docking results be as accurate and reliable as possible, using a Vina

exhaustiveness value of 4 was used as a trade-off between docking speed and accuracy; the

54

number of CPUs was set to one. Given the size of the molecules and the high abundance of

inflexible rings in this dataset, this exhaustiveness was a good compromise for dealing with

this system.

All ligand poses with lowest binding energy were extracted and compiled into a single file. A

small subset of the library (2355 compounds) docked with binding energies less than -7.0

kcal/mol, and this subset was used in one analysis of the binding to the terpene synthase.

Another selection was that of 1107 randomly docked molecules with no special preference

for binding energy, as a comparison set for visualization (it would have been advantageous to

have viewed the entire set, but due to the size of the set of dockings, this was not possible).

All ligands were docked on the protein 2ONG and for visualisation purposes Discovery

Studio Visualizer was used.

4.2 Results and Discussion

As discussed earlier, 55366 systems were docked using AutoDock Vina. After running

AutoDock Vina the docking results showed that 2355 had energies lower than -7 kcal/mol as

shown in Figure 3.20 (chapter 3), out of those 6 had the best at -7.4 kcal.mol-1.

All selected ligands from the library were docked on 2ONG as the receptor. According to

literature a higher exhaustiveness yields better results, as it gives a chance for many trials

before scoring for a recordable pose. However, a very high exhaustiveness means that each

individual docking run will require a longer time. Thus, a balance between a reasonable result

and a reasonable time was sought. To this end an exhaustiveness of 4 was used to reduce the

computational time given the large size of the library. Out of the 9 poses generated per

molecule the binding energy range was -5 to -7.4 kcal.mol-1.

Both visualizations showed the same interesting pattern. All the overlaid molecules in the

active site, whether the overlay of the lowest binding energy set or the random set, showed

that the ligands all bind to a particular region in the active site pocket. Further, the ligands

mapped out the shape of the docking site. This overlay was compact with all ligands taking

55

up minimal space without shifting to reach for longer distances in the active site. Obrien et al

observed a similar result in their research after docking of the reaction intermediates of

terpenes. They showed that all the intermediates were localised in the same region with less

movement between different docked structures. For future work it will be interesting to see if

it is possible to deconvolute this shape in order to accurately predict the preferred products of

the synthase. Since there are many ligands with the same binding energy (for the set of best

binding ligands) detailed examination of the 2355 best docked systems, and their structural

relationship to each other, may give insight into possible rearrangement mechanisms within

the active site.

Figure 4.01: Random docked molecules overlay

Figure 4.01 illustrates the shape mapped out by the random ligands. Towards the left, the

docking area available is accurately defined, to the right, there is more flexibility in the extent

and position of the ligand.

56

Figure 4.02: 2ONG with lowest binding energy ligands overlaid

Figure 4.02 shows much the same situation, but in this figure the overlay is in the context of

the synthase. Again, part of the area spanned is precise at some parts (lower left), but looser

in others (top right).

Since there were several ligands with the best binding energy of -7.4 kcal/mol, a random

ligand pose was selected to illustrate a single ligand. Figure 4.03 shows a methylated fused

tricyclic system with optimal binding to the active site of this enzyme.

Finally, another view of the best binding ligands is provided in Figure 4.04, but in this case

the crystal structure ligand, 2-fluorogeranyl diphosphate (FGPP) is also overlaid to give

context to the active site.

57

Figure 4.03: 2ONG with a single ligand randomly selected from the ligands with lowest

binding energy.

Figure 4.04: 2ONG with an overlay of ligands with lowest binding energy

58

4.2.1 Ligand interactions

Of course, it is only possible for there to be hydrophobic interactions, since no heteroatom is

present on any system in this library. Figure 4.05 shows some of the residues interacting with

a dimethylated tricyclic system that shows good binding.

Figure 4.05: Protein ligand interactions between 2ONG receptor and molecule 20588_8

59

Chapter 5: Conclusion and future work

Exploration of both C7 and C10 hydrocarbon chemical product space has been attempted

using a graph theoretic approach. We have successfully generated the compounds of choice

by translating the graphs (in text representation from Nauty) into chemical data that has

allowed for the optimization and visualization of these structures. In this case C7 and C10

molecules were generated, the initial number of graphs in C7 were 873; after screening there

were 373 compounds. C10 graphs initially generated were 11 716 571 and out of those

101161 were valid.

After performing docking in the active site of limonene synthase, 2355 compounds of 55366

docked compounds provided the lowest binding energies of between -7.0 and -7.4 kcal.mol-1.

These were now compounds of interest to us in terms of the mechanism of terpene synthesis

by limonene synthase. It was noted that the overlaid structures all the compounds either best

or randomly selected, merged in the same region of the active site, this similar convergence

was also demonstrated by O’Brian et al. In addition a closer view of compounds docked in

the active site, whether randomly selected or best, provided a visual representation of the

space into which hydrocarbons will feasibly dock.

The current work is not quite at the point where work may proceed in the prediction of

rearrangement mechanisms within the active site. Future work will involve completing the

library, extending to cations and also performing of molecular docking with different terpene

synthases. QM/MM techniques need to be used in the evaluation of the best binding

structures and also in the determination of reactivity. Future work also seeks to encompass

libraries of terpenoids, of compounds such as the ketones camphor, verbenone and fenchone.

60

References

Ajikumar, Parayil Kumaran, Keith Tyo, Simon Carlsen, Oliver Mucha, Too Heng Phon, and Gregory

Stephanopoulos. 2008. “Reviews Terpenoids : Opportunities for Biosynthesis of Natural Product

Drugs Using Engineered Microorganisms.” 5(2):167–90.

Al-Alawi, Mohammad S. 2014. “Efficacy of Essential Oils from Medicinal Plants in Control of the Hairy

Rose Beetle, Tropinota Squalida (Scopoli) and Their Comparative Toxicity to the Honey Bee, Apis

Mellifera L.” American Journal of Agricultural and Biological Science 9(3):284–88.

Allen, William J., Trent E. Balius, Sudipto Mukherjee, Scott R. Brozell, Demetri T. Moustakas, P. Therese

Lang, David A. Case, Irwin D. Kuntz, and Robert C. Rizzo. 2015. “DOCK 6: Impact of New Features

and Current Docking Performance.” Journal of Computational Chemistry 36(15):1132–56.

Allinger, Norman L., Young H. Yuh, and Jenn Huei Lii. 1989. “Molecular Mechanics. The MM3 Force

Field for Hydrocarbons. 1.” Journal of the American Chemical Society 111(23):8551–66.

Andrew, Galen and Jianfeng Gao. 2007. “Scalable Training of L1-Regularized Log-Linear Models.” Pp.

33–40 in Proceedings of the 24th International Conference on Machine Learning, ICML ’07. New

York, NY, USA: ACM.

ARNAUD, CELIA HENRY. 2011. “SPEEDING UP MASS SPEC IMAGING.” Chemical & Engineering

News Archive 89(51):38–39.

Ashby, N. and A. Edward. 1990. “Elucidation of the Deficiency in Two Yeast Coenzyme Q Mutants.”

265(22):13157–64.

Bang-Jensen, Jørgen and Gutin, Gregory Z. 2007. “Digraphs: Theory, Algorithms and Applications.”

Software Testing, Verification and Reliability (August):59–60.

Bastos, Vasco P. D., Antoniella S. Gomes, Francisco J. B. Lima, Teresinha S. Brito, Pedro M. G. Soares,

João P. M. Pinho, Claudijane S. Silva, Armênio A. Santos, Marcellus H. L. P. Souza, and Pedro J. C.

Magalhães. 2011. “Inhaled 1,8-Cineole Reduces Inflammatory Parameters in Airways of Ovalbumin-

Challenged Guinea Pigs.” Basic & Clinical Pharmacology & Toxicology 108(1):34–39.

Beran, Franziska, Peter Rahfeld, Katrin Luck, Raimund Nagel, Heiko Vogel, Natalie Wielsch, Sandra

Irmisch, Srinivasan Ramasamy, Jonathan Gershenzon, David G. Heckel, and Tobias G. Köllner.

2016. “Novel Family of Terpene Synthases Evolved from Trans -Isoprenyl Diphosphate Synthases in

a Flea Beetle.” Proceedings of the National Academy of Sciences 113(11):2922–27.

Bicas, Juliano Lemos, Ana Paula Dionísio, and Gláucia Maria Pastore. 2009. “Bio-Oxidation of Terpenes:

An Approach for the Flavor Industry.” Chemical Reviews 109(9):4518–31.

Bloch, Konrad. 1965. “The Biological Synthesis of Cholesterol.” Science 150(3692):19 LP – 28.

61

Bochar, Daniel A., Jona. Freisen, Cynthia V. Stauffacher, and Victor W. Rodwell. 1999. “Biosynthesis of

Mevalonic Acid from Acetyl-CoA.” Comprehensive Natural Products Chemistry 15–44.

Bohlmann, J., G. Meyer-Gauen, and R. Croteau. 1998. “Plant Terpenoid Synthases: Molecular Biology

and Phylogenetic Analysis.” Proceedings of the National Academy of Sciences 95(8):4126–33.

Bojin, Mihaela D. and Dean J. Tantillo. 2006. “Nonclassical Carbocations as C-H Hydrogen Bond

Donors.” Journal of Physical Chemistry A 110(14):4810–16.

Boucher, Yan and W. Ford Doolittle. 2000. “MicroReview The Role of Lateral Gene Transfer in the

Evolution of Isoprenoid Biosynthesis Pathways.” 37.

Breitmaier, Eberhard. 2006. Terpenes : Flavors, Fragrances, Pharmaca, Pheromones. WILEY-VCH.

Burkert, U. and N. L. Allinger. 1982. “Molecular Mechanics.” Accurate Molecular Structures Their

Determination and Importance 117:1–10.

Byrd, R., P. Lu, J. Nocedal, and C. Zhu. 1995. “A Limited Memory Algorithm for Bound Constrained

Optimization.” SIAM Journal on Scientific Computing 16(5):1190–1208.

Cane, David E. 1990. “Enzymatic Formation of Sesquiterpenes.” Chemical Reviews 90(7):1089–1103.

Chang, Wei-chen, Heng Song, Hung-wen Liu, and Pinghua Liu. 2013. “Current Development in

Isoprenoid Precursor Biosynthesis and Regulation.” Current Opinion in Chemical Biology 17(4):571–

79.

Chen, Feng, Dorothea Tholl, Jörg Bohlmann, and Eran Pichersky. 2011. “The Family of Terpene

Synthases in Plants: A Mid-Size Family of Genes for Specialized Metabolism That Is Highly

Diversified throughout the Kingdom.” The Plant Journal 66(1):212–29.

Chen, Xinlu, Tobias G. Köllner, Qidong Jia, Ayla Norris, Balaji Santhanam, Patrick Rabe, Jeroen S.

Dickschat, Gad Shaulsky, Jonathan Gershenzon, and Feng Chen. 2016. “Terpene Synthase Genes in

Eukaryotes beyond Plants and Fungi: Occurrence in Social Amoebae.” Proceedings of the National

Academy of Sciences 113(43):12132–37.

Christianson, David W. 2006. “Structural Biology and Chemistry of the Terpenoid Cyclases.” Chemical

Reviews 106(8):3412–42.

Christianson, David W. 2017. “Structural and Chemical Biology of Terpenoid Cyclases.” Chemical

Reviews 117(17):11570–648.

Croteau, Rodney. 1987. “Biosynthesis and Catabolism of Monoterpenoids.” Chemical Reviews 87(5):929–

54.

Degenhardt, Jörg, Tobias G. Köllner, and Jonathan Gershenzon. 2009. “Monoterpene and Sesquiterpene

Synthases and the Origin of Terpene Skeletal Diversity in Plants.” Phytochemistry 70(15–16):1621–

37.

62

Dewick, Paul M. 2002. “The Biosynthesis of C5-C25 Terpenoid Compounds.” Natural Product Reports

19(2):181–222.

Dicke, Marcel. 1999. Are Herbivore-Induced Plant Volatiles Reliable Indicators of Herbivore Identity to

Foraging Carnivorous Arthropods? Entomol Exp Appl. Vol. 91.

Eisenreich, W., A. Bacher, D. Arigoni, and F. Rohdich. 2004. “Biosynthesis of Isoprenoids via the Non-

Mevalonate Pathway.” Cellular and Molecular Life Sciences 61(12):1401–26.

Feinstein, Wei P. and Michal Brylinski. 2015. “Calculating an Optimal Box Size for Ligand Docking and

Virtual Screening against Experimental and Predicted Binding Pockets.” Journal of Cheminformatics

7(1).

Filipe, Alexandra, João C. R. Cardoso, Graça Miguel, Liliana Anjos, Helena Trindade, Ana Cristina

Figueiredo, José Barroso, Deborah M. Power, and Natália T. Marques. 2017. “Molecular Cloning and

Functional Characterization of a Monoterpene Synthase Isolated from the Aromatic Wild Shrub

Thymus Albicans.” Journal of Plant Physiology 218:35–44.

Forli, Stefano, Ruth Huey, Michael E. Pique, Michel Sanner, David S. Goodsell, and J. Arthur. 2016.

“HHS Public Access.” 11(5):905–19.

Friesner, Richard A., Jay L. Banks, Robert B. Murphy, Thomas A. Halgren, Jasna J. Klicic, Daniel T.

Mainz, Matthew P. Repasky, Eric H. Knoll, Mee Shelley, Jason K. Perry, David E. Shaw, Perry

Francis, and Peter S. Shenkin. 2004. “Glide: A New Approach for Rapid, Accurate Docking and

Scoring. 1. Method and Assessment of Docking Accuracy.” Journal of Medicinal Chemistry

47(7):1739–49.

Gershenzon, Jonathan and Natalia Dudareva. 2007. “The Function of Terpene Natural Products in the

Natural World.” Nature Chemical Biology 3(7):408–14.

Gindulyte, Asta, Benjamin A. Shoemaker, Bo Yu, Jia He, Jian Zhang, Jie Chen, Leonid Zaslavsky, Paul

A. Thiessen, Qingliang Li, Siqian He, Sunghwan Kim, Tiejun Cheng, and Evan E. Bolton. 2018.

“PubChem 2019 Update: Improved Access to Chemical Data.” Nucleic Acids Research

47(D1):D1102–9.

Hamberger, B., T. Ohnishi, B. Hamberger, A. Seguin, and J. Bohlmann. 2011. “Evolution of Diterpene

Metabolism: Sitka Spruce CYP720B4 Catalyzes Multiple Oxidations in Resin Acid Biosynthesis of

Conifer Defense against Insects.” Plant Physiology 157(4):1677–95.

Herrera, Jimena María, María Paula Zunino, Jose Sebastian Dambolena, Romina Paola Pizzolitto, Nicolás

Alberto Gañan, Enrique Ivan Lucini, and Julio Alberto Zygadlo. 2015. “Terpene Ketones as Natural

Insecticides against Sitophilus Zeamais.” Industrial Crops and Products 70:435–42.

Hong, Young J. and Dean J. Tantillo. 2010. “Quantum Chemical Dissection of the Classic

63

Terpinyl/Pinyl/Bornyl/Camphyl Cation Conundrum - The Role of Pyrophosphate in Manipulating

Pathways to Monoterpenes.” Organic and Biomolecular Chemistry 8(20):4589–4600.

Hong, Young J. and Dean J. Tantillo. 2011. “The Taxadiene-Forming Carbocation Cascade.” Journal of

the American Chemical Society 133(45):18249–56.

Hostettmann, Kurt, Shilin Chen, Andrew Marston, and Hermann Stuppner. 2014. Handbook of Chemical

and Biological Plant Analytical Methods, 3 Volume Set. John Wiley & Sons.

Huang, Sheng-You. 2014. “Search Strategies and Evaluation in Protein–Protein Docking: Principles,

Advances and Challenges.” Drug Discovery Today 19(8):1081–96.

Hyatt, D. C., B. Youn, Y. Zhao, B. Santhamma, R. M. Coates, R. B. Croteau, and C. Kang. 2007.

“Structure of Limonene Synthase, a Simple Model for Terpenoid Cyclase Catalysis.” Proceedings of

the National Academy of Sciences 104(13):5360–65.

Iwata, Takeshi, Yoshiki Okeda, and Yoji Hori. 2004. “Process for Producing Isopulegol.” United States

PatentS Patent 6(12):2–9.

Jackson, Ron S. 2008. Wine Science : Principles and Applications. Elsevier/Academic Press.

Jia, Qidong, Tobias G. Köllner, Jonathan Gershenzon, and Feng Chen. 2018. “MTPSLs: New Terpene

Synthases in Nonseed Plants.” Trends in Plant Science 23(2):121–28.

Jonathan L. Gross, Jay Yellen. 1999. Graph Theory and Its Applications, Second Edition. Second Edi.

New York: CRC Press.

Kandi, Sabitha, Vikram Godishala, Pragna Rao, and K. V Ramana. 2015. “Biomedical Significance of

Terpenes : An Insight.” Science & Education Publishing 3(1):8–10.

Kearnes, Steven, Kevin McCloskey, Marc Berndl, Vijay Pande, and Patrick Riley. 2016. “Molecular

Graph Convolutions: Moving beyond Fingerprints.” Journal of Computer-Aided Molecular Design

30(8):595–608.

Kessler, Andre and Ian Baldwin. 2002. Kessler, A. & Baldwin, I. T. Plant Responses to Insect Herbivory:

The Emerging Molecular Analysis. Annu. Rev. Plant Biol. 53, 299-328. Vol. 53.

Klayman, D. L. 1985. “Qinghaosu (Artemisinin): An Antimalarial Drug from China.” Science

228(4703):1049 LP – 1055.

Köllner, Tobias G., Jonathan Gershenzon, and Jörg Degenhardt. 2009. “Molecular and Biochemical

Evolution of Maize Terpene Synthase 10, an Enzyme of Indirect Defense.” Phytochemistry

70(9):1139–45.

Köllner, Tobias G., Paul E. O’Maille, Nathalie Gatto, Wilhelm Boland, and Jörg Degenhardt. 2006. “Two

Pockets in the Active Site of Maize Sesquiterpene Synthase TPS4 Carry out Sequential Parts of the

Reaction Scheme Resulting in Multiple Products.” Archives of Biochemistry and Biophysics 448(1–

64

2):83–92.

Kutyna, Dariusz R. and Anthony R. Borneman. 2018. “Heterologous Production of Flavour and Aroma

Compounds in Saccharomyces Cerevisiae.” Genes 9(7).

Lamberti, Vincent E., Lloyd D. Fosdick, Elizabeth R. Jessup, and Carolyn J. C. Schauble. 2002. “A

Hands-On Introduction to Molecular Dynamics.” Journal of Chemical Education 79(5):601.

Leffingwell, J. C. and R. E. Shackelford. 1974. “Leavo-Menthol – Syntheses and Organoleptic

Properties.” Cosmetics and Perfumery 89(6):69–78.

Lipkus, Alan H., Qiong Yuan, Karen A. Lucas, Susan A. Funk, William F. Bartelt, Roger J. Schenck, and

Anthony J. Trippe. 2008. “Structural Diversity of Organic Chemistry. A Scaffold Analysis of the

CAS Registry.” The Journal of Organic Chemistry 73(12):4443–51.

Little, Dawn B. and Rodney B. Croteau. 2002. “Alteration of Product Formation by Directed Mutagenesis

and Truncation of the Multiple-Product Sesquiterpene Synthases δ-Selinene Synthase and γ-

Humulene Synthase.” Archives of Biochemistry and Biophysics 402(1):120–35.

Malouf, Robert. 2002. “A Comparison of Algorithms for Maximum Entropy Parameter Estimation.” Pp.

1–7 in Proceedings of the 6th Conference on Natural Language Learning - Volume 20, COLING-02.

Stroudsburg, PA, USA: Association for Computational Linguistics.

Marmulla, Robert and Jens Harder. 2014. “Microbial Monoterpene Transformations-a Review.” Frontiers

in Microbiology 5(JULY):1–14.

Martin, D. M., O. Toub, A. Chiang, B. C. Lo, S. Ohse, S. T. Lund, and J. Bohlmann. 2009. “The Bouquet

of Grapevine (Vitis Vinifera L. Cv. Cabernet Sauvignon) Flowers Arises from the Biosynthesis of

Sesquiterpene Volatiles in Pollen Grains.” Proceedings of the National Academy of Sciences

106(17):7245–50.

McGarvey, D. J. and R. Croteau. 1995. “Terpenoid Metabolism.” The Plant Cell 7(7):1015–26.

Mckay, Brendan D. 2013. “Nauty and Traces User ’ s Guide (Version 2 . 5) How to Use This Guide.” 1–

94.

McKay, Brendan D. and Adolfo Piperno. 2014. “Practical Graph Isomorphism, II.” Journal of Symbolic

Computation 60(January 2013):94–112.

Miguel, Maria Graça. 2010. “Antioxidant and Anti-Inflammatory Activities of Essential Oils: A Short

Review.” Molecules 15(12):9252–87.

Miziorko, H. 2011. “Enzymes of the Mevalonate Pathway of Isopreniod Biosynthesis.” Archives of

Biochemistry and Biophysics 505(2):131–43.

Morehouse, Benjamin R., Ramasamy P. Kumar, Jason O. Matos, Sarah Naomi Olsen, Sonya Entova, and

Daniel D. Oprian. 2017. “Functional and Structural Characterization of a (+)-Limonene Synthase

65

from Citrus Sinensis.” Biochemistry 56(12):1706–15.

Mukhopadhyay, Mayukh. 2014. A Brief Survey on Bio Inspired Optimization Algorithms for Molecular

Docking. Vol. 7.

Nykamp DQ, “Graph definition.” From Math Insight. http://mathinsight.org accessed 31 January 2019

09:22

O’Brien, Terrence E., Steven J. Bertolani, Yue Zhang, Justin B. Siegel, and Dean J. Tantillo. 2018.

“Predicting Productive Binding Modes for Substrates and Carbocation Intermediates in Terpene

Synthases - Bornyl Diphosphate Synthase As a Representative Case.” ACS Catalysis 8(4):3322–30.

Oldfield, Eric and Fu-yang Lin. 2012. “Terpene Bioynthesis: Modularity Rules.” Angewandte Chemie

International Edition 51(5):1124–37.

Österberg, Fredrik, Garrett M. Morris, Michel F. Sanner, Arthur J. Olson, and David S. Goodsell. 2002.

“Automated Docking to Multiple Target Structures: Incorporation of Protein Mobility and Structural

Water Heterogeneity in Autodock.” Proteins: Structure, Function and Genetics 46(1):34–40.

Pagadala, Nataraj S., Khajamohiddin Syed, and Jack Tuszynski. 2017. “Software for Molecular Docking:

A Review.” Biophysical Reviews 9(2):91–102.

Paine, R. T. 2018. “Tinker.” Design (June).

Patrikeev, G. A. 1973. “Macromolecular Mechanics.” Polymer Mechanics 7(2):183–92.

Pichersky, Eran and Jonathan Gershenzon. 1934. “The Formation and Function of Plant Volatiles :

Perfumes for Pollinator Attraction and Defense.” 237–43.

Ponder, Jay William. 2018. “Software Tools for Molecular Design Version .0 2FWREHU 20.” (February

2018):0–219.

Rackers, Joshua A., Zhi Wang, Chao Lu, Marie L. Laury, Louis Lagardère, Michael J. Schnieders, Jean

Philip Piquemal, Pengyu Ren, and Jay W. Ponder. 2018. “Tinker 8: Software Tools for Molecular

Design.” Journal of Chemical Theory and Computation 14(10):5273–89.

Rai, Mahendra and Kateryna Kon. 2013. Fighting Multidrug Resistance with Herbal Extracts, Essential

Oils and Their Components. Academic Press.

Rocha Caldas, Germana Freire, Alisson Rodrigo da Silva Oliveira, Alice Valença Araújo, Simone Sette

Lopes Lafayette, Giwellington Silva Albuquerque, Jacinto da Costa Silva-Neto, João Henrique Costa-

Silva, Fabiano Ferreira, José Galberto Martins da Costa, and Almir Gonçalves Wanderley. 2015.

“Gastroprotective Mechanisms of the Monoterpene 1,8-Cineole (Eucalyptol)” edited by J. Gracia-

Sancho. PLOS ONE 10(8):e0134558.

Rohmer, M., M. Knani, P. Simonin, B. Sutter, and H. Sahm. 1993. “Isoprenoid Biosynthesis in Bacteria: A

Novel Pathway for the Early Steps Leading to Isopentenyl Diphosphate.” The Biochemical Journal

https://mathinsight.org/contributor/dqnykamp
http://mathinsight.org/definition/graph
http://mathinsight.org/

66

295 (Pt 2(Pt 2):517–24.

Ruddigkeit, Lars, Ruud Van Deursen, Lorenz C. Blum, and Jean Louis Reymond. 2012. “Enumeration of

166 Billion Organic Small Molecules in the Chemical Universe Database GDB-17.” Journal of

Chemical Information and Modeling 52(11):2864–75.

Sacchettini, James C. and C. Dale Poulter. 1997. “Creating Isoprenoid Diversity.” Science 277(5333):1788

LP – 1789.

Savage, T. J., M. W. Hatch, and R. Croteau. 1994. “Monoterpene Synthases of Pinus Contorta and Related

Conifers. A New Class of Terpenoid Cyclase.” Journal of Biological Chemistry 269(6):4012–20.

Steele, Christopher L., John Crock, Jörg Bohlmann, and Rodney Croteau. 1998. “Sesquiterpene Synthases

from Grand Fir (Abies Grandis).” The Journal of Biological Chemistry 273(4):2078–89.

STINSON, STEPHEN C. 1996. “SCIENCE/TECHNOLOGY.” Chemical & Engineering News Archive

74(29):35-45,54,57,61.

Thurnher, Martin, Oliver Nussbaumer, and Georg Gruenbacher. 2012. “Novel Aspects of Mevalonate

Pathway Inhibitors as Antitumor Agents.” Clinical Cancer Research 18(13):3524–31.

Tian, Boxue, C. Dale Poulter, and Matthew P. Jacobson. 2016. “Defining the Product Chemical Space of

Monoterpenoid Synthases.” PLoS Computational Biology 12(8):1–13.

Tian, Lijun, Chaoqun Liu, and Jianquan Xie. 2012. “A Partition Method for Graph Isomorphism.” Physics

Procedia 25:1761–68.

Tiwari, Brijesh K., Nigel. Brunton, and Charles S. Brennan. 2013. Handbook of Plant Food

Phytochemicals : Sources, Stability and Extraction. Wiley-Blackwell.

Tongnuanchan, Phakawat and Soottawat Benjakul. 2014. Essential Oils: Extraction, Bioactivities, and

Their Uses for Food Preservation. Vol. 79.

Trott, Oleg and Arthur J. Olson. 2009. “Software News and Update AutoDock Vina : Improving the Speed

and Accuracy of Docking with a New Scoring Function , Efficient Optimization , and

Multithreading.”

Vella, Frank. 2005. “The Organic Chemistry of Biological Pathways: McMurry, John, and Begley,

Tadhg.” Biochemistry and Molecular Biology Education 33(5):380.

Vickers, Claudia E. and Suriana Sabri. 2015. “Isoprene BT - Biotechnology of Isoprenoids.” Pp. 289–317

in, edited by J. Schrader and J. Bohlmann. Cham: Springer International Publishing.

Wani, M. C., H. L. Taylor, Monroe E. Wall, P. Coggon, and A. T. Mcphail. 1971. “Plant Antitumor

Agents.VI.The Isolation and Structure of Taxol, a Novel Antileukemic and Antitumor Agent from

Taxus Brevifolia2.” Journal of the American Chemical Society 93(9):2325–27.

Van Westen, Thijs, Thijs J. H. Vlugt, and Joachim Gross. 2011. “Determining Force Field Parameters

67

Using a Physically Based Equation of State.” Journal of Physical Chemistry B 115(24):7872–80.

Whittington, D. A., M. L. Wise, M. Urbansky, R. M. Coates, R. B. Croteau, and D. W. Christianson. 2002.

“Bornyl Diphosphate Synthase: Structure and Strategy for Carbocation Manipulation by a Terpenoid

Cyclase.” Proc Natl Acad Sci U S A 99(24):15375–80.

Williams, Cheryll J. 2011. Medicinal Plants in Australia. Volume 2, Gums, Resins, Tannin and Essential

Oils.

Xu, Jinkun, Jingwei Xu, Ying Ai, Roba A. Farid, Li Tong, and Dong Yang. 2018. “Mutational Analysis

and Dynamic Simulation of S-Limonene Synthase Reveal the Importance of Y573: Insight into the

Cyclization Mechanism in Monoterpene Synthases.” Archives of Biochemistry and Biophysics

638(October 2017):27–34.

Yamada, Yuuki, Tomohisa Kuzuyama, Mamoru Komatsu, Kazuo Shin-ya, Satoshi Omura, David E. Cane,

and Haruo Ikeda. 2015. “Terpene Synthases Are Widely Distributed in Bacteria.” Proceedings of the

National Academy of Sciences 112(3):857–62.

Yao, Jianzhuang, Feng Chen, and Hong Guo. 2018. “QM/MM Free Energy Simulations of the Reaction

Catalysed by (4S)-Limonene Synthase Involving Linalyl Diphosphate (LPP) Substrate.” Molecular

Simulation 44(13–14):1158–67.

Yoshikuni, Yasuo, Thomas E. Ferrin, and Jay D. Keasling. 2006. “Designed Divergent Evolution of

Enzyme Function.” Nature 440(7087):1078–82.

Zebec, Ziga, Jonathan Wilkes, Adrian J. Jervis, Nigel S. Scrutton, Eriko Takano, and Rainer Breitling.

2016. “Towards Synthesis of Monoterpenes and Derivatives Using Synthetic Biology.” Current

Opinion in Chemical Biology 34:37–43.

Zhao, Lishan, Wei-chen Chang, Youli Xiao, Hung-wen Liu, and Pinghua Liu. 2013. “Methylerythritol

Phosphate Pathway of Isoprenoid Biosynthesis.” Annual Review of Biochemistry 82:497–530.

68

Appendix

1. Script to create and processing graphs and creating molecular

models

#!/usr/bin/python

import random

import math

import os

import threading

import datetime

import sys

noargs=len(sys.argv)

#print "This is the name of the script: ", sys.argv[0]

#print "Number of arguments: ", noargs

#print "The arguments are: " , str(sys.argv)

if(noargs != 2):

print "Error - this script"

print "requires exactly one parameter relating to 10_XX.txt"

print "./test_Y10_alternate.py 0 will run the calculation on 10_0.txt

and produce logfile_0.txt"

exit(1)

thefile=sys.argv[1]

file_title="10_"+str(thefile)+".txt"

thelog="logfile_"+str(thefile)+".txt"

os.system("rm "+thelog)

69

acceptable =[] #List of acceptable used in

Route1 of the code which uses readlines and not read

needed_graphs_dict = {} #Dictionary from route1

graph_title_list = [] #List containing graph titles

from Route 1

nodes = 10

n1 = nodes + 2

#file_title = '10_0.txt'

def min_energy_dict(extracted_funct_list_local):

energy_dict = {}

for (index1, minimum_value_1) in

enumerate(extracted_funct_list_local):

if minimum_value_1 in energy_dict:

energy_dict[minimum_value_1].append(index1)

else:

energy_dict.update({minimum_value_1:[index1]})

#energy_main_dict.update({minimum_value_1:[index1]})

print ">>>"

print "preapring energy_dict"

return energy_dict

for key1, value1 in energy_dict.iteritems():

if len(value1) > 1:

#print "this is ", key1, " value", value1

energy_main_dict[key1] = value1

#print "**"

print "this is the main energy_dict", energy_

70

#print "this is the energy_dict", energy_dict

minimum_value = min(extracted_funct_list)

min_e = energy_dict[minimum_value]

print "\n minimum value", minimum_value

print "\n Index occurances of minimum value", min_e

for e_val in energy_dict:

#minimum_value = min(extracted_funct_list)

if float(e_val) == float(minimum_value):

print "\n Positions minimum duplicates occur:

", energy_dict[minimum_value]

print

"*************************************/////////////////////////////////////

/////////////////////////**"

def

chirals_screener(energy_dict_local2,minimum_value_local,dict_t,chiral_scale

_list_local):

for i_index in energy_dict_local2[str(minimum_value_local)]:

print "THE ENERGIES INDEXES",

energy_dict_local2[minimum_value_local]

if float(chiral_scale_list_local[i_index]) > 3 or

float(chiral_scale_list_local[i_index]) < -3:

print "values greater than 3 or less than -3",

chiral_scale_list_local[i_index]

print "value index", i_index

folder_name = str(dict_t)

71

print "folder name ",folder_name

file_ext = int(i_index)+2

finalstring2 = dict_t+"_"+str(file_ext)+".pdb"

if (not os.path.isdir("./Chirals")):

os.system("mkdir Chirals")

if (not os.path.isdir("./"+folder_name)):

os.system("mkdir "+folder_name)

#os.system("cd "+folder_name)

os.system("cp "+finalstring2+" "+folder_name)

os.system("cp -r "+folder_name+" "+"Chirals")

os.system("rm -r "+folder_name)

else:

no_chiral = float(chiral_scale_list_local[i_index])

file_ext = int(i_index)+2

if (not os.path.isdir("./Chiral_negative")):

os.system("mkdir Chiral_negative")

folder_name = str(dict_t)

finalstring2 = dict_t+"_"+str(file_ext)+".pdb"

if (not os.path.isdir("./Chirals")):

os.system("mkdir Chirals")

if (not os.path.isdir("./"+folder_name)):

os.system("mkdir "+folder_name)

os.system("cp "+finalstring2+" "+folder_name)

os.system("cp -r "+folder_name+" "+"Chiral_negative")

os.system("rm -r "+folder_name)

########

def graph_screener(file_name_local):

invalids_list =[]

graphnumber = 0

with open(file_name_local, 'r') as read_file_local:

72

lines_local = read_file_local.readlines()

#input the file

print "The length of the whole file as a list",

len(lines_local)

#print "Graph screener process starting first

loop..............."

#for line in lines:

#if line.startswith('Graph'):

#graph_title_list.append(line)

#print(len(graph_title_list))

#print(lines.index(line))

#index1 = lines.index(line) #identify

where in the lines this particular graph starts

#index_list.append(index1) #record

this index in the index_list

#print index_list

#for char in index_list:

#my_graphs = lines[char+1:char+n1] #+1 makes

this block start after the heading line

#my_graphs_list.append(my_graphs) #now we

know all of the indexes, we can strip out the blocks of lines

#print(my_graphs_list[852]) #per

graph

#print(my_graphs_list[5])

#print(my_graphs)

#with open("graph_content.txt", 'w') as g_content:

#g_content.write(str(my_graphs_list))

###B

print "Graph screening in progress."

for line_local in lines_local:

print "Graph screener process: Looping

through the whole file as a list"

73

line_local = line_local.strip()

#remove the newline

if not line_local:

continue #this is not

necessary

if line_local.startswith('Graph'):

#print(line)

list_for_title = line_local.split()

the_title = list_for_title[1].split(',')

actual_g_number= int(the_title[0])

header = line_local

graphnumber=graphnumber+1 #extract the

headers and counting the number of graphs

print "\nGraph screener process < THE LOOP

>:.................Now on graph number {}".format(actual_g_number)

if ":" in line_local:

#line2 = lines[3:16]

#print(line)

words=line_local.split()

#print(words)

length=len(words)-2

#print("number of attachments = "+str(length))

#print(line2)

if(length>4):

#print("Impossible number of attachments")

#print("invalid valency on carbon: ",

words[0], "on graphnumber", graphnumber)

#g_title.append(graphnumber)

#print "\nGraph screener

process:......................Appending invalid graps to list for screening

\n"

invalids_list.append(actual_g_number)

#identify the exact graph number that is invalid

print "\nGraph screener

process:..............Graph {} appended to invalid

list".format(actual_g_number)

74

###C

#print(invalids_list)

print "Graph screener

process:..........................invalids list compiled"

print "Graph screener process completed........\n\n|||||.....

returning to main code....||||||\n\n.\n\n"

invalids1 = list(set(invalids_list))

return invalids1

##########################

def calc_mod_list(graph_list3):

modified_list=[]

bonds_number_list = []

usables_list = []

print "Calc_mod_list process:.......generating modified list"

for needed_value in graph_list3:

if needed_value != graph_list3[0]:##### Handling the empty space

regarded as item in list and skipping it

needed_line_list = needed_value.split()

needed_line_list.pop(0)

needed_line_list.pop(0)

last_value_list = needed_line_list[-1].strip()####This makes a list

of the last item in the needed line list.['digit', ';'], where digit is any

integer value

last_value = last_value_list[0]#### This selects the digit only

needed_line_list2 = needed_line_list

needed_line_list2.remove(needed_line_list2[-1])#### Removing the

last digit, and handling the "digit;" problem.

needed_line_list2.append(last_value)#### Adds back the digit to list

this time without the ";".

bonds_number_list.append(len(needed_line_list2))

for usable_value in needed_line_list2:

usables = int(usable_value) + 1

usables_list.append(usables)

75

new_usables_list=list(usables_list)

modified_list.append(new_usables_list)

del usables_list[:]

print "Calc_mod_list process:...........Modificatio list generated"

return modified_list

###########################Route2##

def rvector(pointa,pointb):

#print "rvector point a "

#print pointa

returnvector = [float(pointb[0])-float(pointa[0]),float(pointb[1])-

float(pointa[1]),float(pointb[2])-float(pointa[2])]

return returnvector

def crossproduct(u,v):

#we return uxv

u1=float(u[0])

u2=float(u[1])

u3=float(u[2])

v1=float(v[0])

v2=float(v[1])

v3=float(v[2])

s=(u2*v3-u3*v2,u3*v1-u1*v3,u1*v2-u2*v1)

return s

def size(u):

u1=float(u[0])

u2=float(u[1])

u3=float(u[2])

return math.sqrt(u1*u1+u2*u2+u3*u3)

76

def dotproduct(u,v):

u1=float(u[0])

u2=float(u[1])

u3=float(u[2])

v1=float(v[0])

v2=float(v[1])

v3=float(v[2])

dot=u1*v1+u2*v2+u3*v3

return dot

def calc_chirality(inputpdb):

pdbfile=open(inputpdb,"r")

lines=pdbfile.readlines()

atomcount=0;

atomarray = [[0]*3 for i in range(12)]#only goes up to 12 atoms

with 3 coordinates

for line in lines:

if "HETATM" in line:

#print line

words=line.split()

#print str(words[5])+ " "+str(words[6]) + " " +

str(words[7])

n=2

atomarray[atomcount][0]=words[5]

atomarray[atomcount][1]=words[6]

atomarray[atomcount][2]=words[7]

atomcount=atomcount+1

4!

m=1 #powers that make the index dimensionless

prefactor=float(math.factorial(4))/float(((atomcount**4) * 3))

weight=12.0*12.0*12.0*12.0 #wi * wj * wk * wl where all atoms

are carbon with mass 12

77

factor=prefactor*weight

totalsum=0.0

for i in range(0,atomcount):

for j in range(0,atomcount):

for k in range(0,atomcount):

for l in range(0,atomcount):

if((i != j) and (i != k) and (i != l) and (j

!= k) and (j != l) and (k != l)):

#print str(i)+" "+str(j)+" "+str(k)+"

"+str(l)

rij=rvector(atomarray[i],atomarray[j])

rkl=rvector(atomarray[k],atomarray[l])

ril=rvector(atomarray[i],atomarray[l])

rjk=rvector(atomarray[j],atomarray[k])

cp1 = crossproduct(rij,rkl)

dot1 = dotproduct(cp1,ril)

dot2 = dotproduct(rij,rjk)

dot3 = dotproduct(rjk,rkl)

numerator=dot1*dot2*dot3

denominator =

(((size(rij)*size(rjk)*size(rkl))**n))*((size(ril))**m)

final=numerator/denominator

totalsum=totalsum+final

pdbfile.close();

totalsum=factor*totalsum

78

totalsum = round(totalsum,3)

return totalsum

########

def modify_line(modified_list_local):

counter=1

final_line_list_local=[]

print "\nModify_line process:............Generating final_line_list"

for modified_line in modified_list_local:

line=str(counter)+'\t' + "C"+'\t'+

str((round(((random.uniform(1,2)+random.uniform(1,4))/2), 3))+0.001) + '\t'

+ str((round(((random.uniform(1,5)+random.uniform(1,4))/2), 3))+0.001) +

'\t' + str((round(((random.uniform(1,5)+random.uniform(1,4))/2), 3))+0.001)

+ '\t' + " 1"

counter=counter+1

for char in modified_line:

line = line + " " + str(char)

final_line_list_local.append(str(line))

print "\nModify_line process..............final_line_list generated\n"

return final_line_list_local

def write_xyzfile(xyz_file_name,final_line_list_local,nodes_local):

with open(xyz_file_name, 'w') as my_atoms:

my_atoms.write(str(nodes_local) +'\n')

for xyz_string in final_line_list_local:

my_atoms.write(str(xyz_string)+'\n')

my_atoms.close()

my_atoms.write(str(final_line_list_local[0]) + '\n')

my_atoms.write(str(final_line_list_local[1]) + '\n')

my_atoms.write(str(final_line_list_local[2]) + '\n')

79

my_atoms.write(str(final_line_list_local[3]) + '\n')

my_atoms.write(str(final_line_list_local[4]) + '\n')

my_atoms.write(str(final_line_list_local[5]) + '\n')

my_atoms.write(str(final_line_list_local[6]) + '\n')

my_atoms.write(str(final_line_list_local[7]) + '\n')

my_atoms.write(str(final_line_list_local[8]) + '\n')

my_atoms.write(str(final_line_list_local[9]) + '\n')

def write_min_pdb(current_xyz_name_local,

converted_pdb_name_local,enantiomer_name_local):

xyz_to_pdb(current_xyz_name_local,converted_pdb_name_local,enantiomer

_name_local)

sentence_string_local = ''

header_local=''

with open(current_xyz_name_local) as read_in_file:

header1 = read_in_file.readline()

header_local = header1.strip()

for line in read_in_file:

sentence_string_local += str(line[8:48])+'\n'

with open("temporary.xyz", 'w') as xyz_output:

xyz_output.write(str(header_local)+'\n')

xyz_output.write("graph_"+str(header_local)+"_molecules"+'\n')

xyz_output.write(sentence_string_local)

xyz_output.close()

#os.system("babel -ixyz temporary.xyz -h -opdb

"+converted_pdb_name_local)

#xyz_to_pdb("temporary.xyz",converted_pdb_name_local)

#######

80

def minimize(xyz_to_minimize,output_xyz,temporary_name):

#print "minimize xyz "+xyz_to_minimize+" temp "+temporary_name

if os.path.isfile("./"+temporary_name):

os.system("rm "+temporary_name)#+" "+temporary_name+"_2")

if os.path.isfile("./"+temporary_name+"_2"):

os.system("rm "+temporary_name+"_2")

os.system("cp "+xyz_to_minimize+" "+temporary_name)

#logfile=temporary_name[:-4]

#logfile=logfile+".log"

#print "logfile ",logfile

#os.system("cat "+temporary_name)

result=os.popen("/opt/chemistry/Tinker/minimize "+temporary_name+" 0.01 |

grep Function").readline()

#line=""

#result=os.system("/opt/chemistry/Tinker/minimize "+temporary_name+" 0.01

> "+logfile)

#print("/opt/chemistry/Tinker/minimize "+temporary_name+" 0.01")

#with open(logfile) as file_temp:

lines=file_temp.readlines()

for line in lines:

if "Function" in line:

result=line

os.system("mv "+temporary_name+ "_2 "+output_xyz)

if os.path.isfile("./"+temporary_name):

os.system("rm "+temporary_name)#+" "+temporary_name+"_2")

if os.path.isfile("./"+temporary_name+"_2"):

os.system("rm "+temporary_name+"_2")

81

result=result[:-1]

return result

def

write_energy_values(logfilename,result_array_local,chirality_array_local,ne

eded_g_name_local):

logfile=open(logfilename,'a')

logfile.write("Graph"+"\t"+str(needed_g_name_local)+"\t"+"-----------

-----------------------------\n")

for repeat in range(2,10):

#print "repeat is :"+str(repeat)

#print "the ", result_array_local[repeat]

logfile.write("repeat is :"+str(repeat)+"

"+str(result_array_local[repeat])+" : CI

"+str(chirality_array_local[repeat])+"\n")

logfile.close()

def full_calc(needed_g_name, repeat, nodes,final_line_list_local):

graph_xyz_file_name = str(needed_g_name)+'_'+str(repeat)+'.xyz'

current_xyz_name=graph_xyz_file_name+"_"+str(repeat)

temp_file_name= "temporary_"+str(repeat)+".xyz"

converted_pdb_name=str(needed_g_name)+"_"+str(repeat)+"_a.pdb"

enantiomer_name=str(needed_g_name)+"_"+str(repeat)+"_b.pdb"

#print "graph_xyz "+graph_xyz_file_name+" current_xyz

"+current_xyz_name+" temp_file_name "+temp_file_name+" converted

"+converted_pdb_name

write_xyzfile(graph_xyz_file_name,final_line_list_local,nodes)

result=minimize(graph_xyz_file_name,current_xyz_name,temp_file_name)

write_min_pdb(current_xyz_name, converted_pdb_name,enantiomer_name)

#print "result in full_calc "+str(result)

return result

82

def full_calc_name(needed_g_name, repeat):

converted_pdb_name=str(needed_g_name)+"_"+str(repeat)+"_a.pdb"

return converted_pdb_name

class myThread (threading.Thread):

def init (self, threadID, name,

needed_g_name,repeat,nodes,final_line_list):

print "myThread process:..............Running threads in classes"

threading.Thread. init (self)

self.threadID = threadID

self.name = name

self.result=""

self.needed_g_name=needed_g_name

self.repeat=repeat

self.nodes=nodes

self.final_line_list=final_line_list

self.chirality=0.0

def getresult(self):

return self.result

def getid(self):

return self.repeat

def getchirality(self):

return self.chirality

def run(self):

#print "Starting " + self.name

self.result=str(self.repeat)+":

"+full_calc(self.needed_g_name,self.repeat,self.nodes,self.final_line_list)

final_file=full_calc_name(self.needed_g_name,self.repeat)

self.chirality=calc_chirality(final_file)

83

print "\n myThread process:.............thread end of

function..................................\n "

def xyz_to_pdb(file_to_open,pdb_output,enantiomer_output):

writing_cont_list = []#List containing the HETATM section

writing_enant_list=[]

connect_list =[]#List containing the connectivity section

conect_output=[]

with open(file_to_open, 'r') as read_file:

lines = read_file.readlines()

for line in lines:

if line != lines[0]:

line_cont_list = line.split()

n=int(line_cont_list[0])

x=float(line_cont_list[2])

y=float(line_cont_list[3])

z=float(line_cont_list[4])

xn=-x

yn=-y

zn=-z

line_string = "HETATM%5d C LIG

1%4s%8.3f%8.3f%8.3f%6.2f%6.2f%11sC" % (n,"",x,y,z,0.0,0.0,"")

enantiomer_string = "HETATM%5d C LIG

1%4s%8.3f%8.3f%8.3f%6.2f%6.2f%11sC" % (n,"",xn,yn,zn,0.0,0.0,"")

writing_cont_list.append(line_string)

84

writing_enant_list.append(line_string)

con_string="CONECT%5d" % n

for con in line_cont_list[6:]:

con_string += "%5d" % int(con)

connect_list.append(con_string)

with open(pdb_output, 'w') as write_146:

write_146.write("COMPND graph_10_molecules "+'\n')

write_146.write("AUTHOR W. DENDERA CUSTOM GENERATION"+'\n')

for needed_string in writing_cont_list:

write_146.write(str(needed_string)+'\n')

for connect in connect_list:

write_146.write(str(connect)+'\n')

write_146.write("END\n")

write_146.close()

with open(enantiomer_output, 'w') as write_146:

write_146.write("COMPND graph_10_molecules "+'\n')

write_146.write("AUTHOR W. DENDERA CUSTOM GENERATION"+'\n')

for needed_string in writing_enant_list:

write_146.write(str(needed_string)+'\n')

for connect in connect_list:

write_146.write(str(connect)+'\n')

write_146.write("END\n")

write_146.close()

85

graph_dict={}

with open(file_title, 'r') as order_10:

#Opening the file required as a read file

lines = order_10.read()

#Reading in the whole document

lines_split_on_g = lines.split('Graph')

#Creating a list of graphs by spliting graph

content on the line containing "Graph"

#for i in lines_split_on_g:

#for i in range(0,len(lines_split_on_g)):

print "###"

print lines_split_on_g[i]

#print "Number of graphs", len(lines_split_on_g)-1

#graph_dict = {}

print "\n\nInitializing Graph screener>>>>> >>>>>>>>>> >>>>>>>>>>>>>

>>>>>>>>>>>\n\n"

invalids_list_set = graph_screener(file_title)

#calling the graph screening function

print "\n\nGraph screening

completed<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<\n\n"

for g_raph in range(0,len(lines_split_on_g)):

#Range for all graph names to be called

print "we are now at position

"+str(g_raph)+"........................Graphs left to proces

"+str(len(lines_split_on_g)-int(g_raph))

if g_raph not in invalids_list_set:

#Selecting the valid graph basing on the

condition that it is not in the invalids list

86

dictionary"

#if "order" in g_raph:

graph_dict[str(g_raph)] = lines_split_on_g[g_raph]

#Adding valid graphs to the graph disctionary

print "\nGraph "+str(g_raph)+" added to the

print "\nnow have graph_dict\nInitializing arrays and

threads..............\n"

triplesarray=[]

counter=0

triple=[]

for needed_g_name in graph_dict:

print "setting ", counter," ", needed_g_name

triple.append(needed_g_name)

if(counter==2):

counter=0

triplesarray.append(triple)

triple=[]

else:

counter=counter+1

triplesarray.append(triple)

for triple in triplesarray:

print len(triple)

for i in range(0,-1):

print i," ",triple[i]

#####################

#####################

#####################

#####################

#####################

#####################

#####################

#####################

87

full_progress=len(graph_dict)

actual_progress=0

for needed_g_name in graph_dict:

graph_select = graph_dict[needed_g_name]

#Calling individual needed graphs from the

dictionary

if not graph_select == "": #prevents proceeding with empty string

actual_progress+=1

print

"##

####Working through graph # ",actual_progress," of ",full_progress

resultarray=['','','','','','','','','','','']

chiralityarray=['','','','','','','','','','','']

threadLock = threading.Lock()

threads = []

#graph_select = graph_dict[needed_g_name]

#Calling individual needed graphs from the

dictionary

graph_select_split = graph_select.split('.')

#spliting the whole graph at the full stop. Since

there is only one full stop the whole graph becomes a list of two elements

print "graph_select ",graph_select

print "graph_select_split[0]",graph_select_split[0]

print "***",needed_g_name,"***"

graph_select_lines_split = graph_select_split[1].split('\n')

#Making a list of lines from by splitting on new lines

graph_select_lines_split.pop()

#Removing unwanted empty spaces at the

end of the list treated as elements of the list

graph_select_lines_split.pop()

#Removing unwanted empty spaces at the

end of the list treated as elements of the list

print "aaaaaaaaaaa ",datetime.datetime.now()

for repeat in range(2,10):

modified_list = calc_mod_list(graph_select_lines_split)

88

final_line_list=modify_line(modified_list)

thread = myThread(repeat, "Thread_"+str(repeat),

needed_g_name,repeat,nodes,final_line_list)

threads.append(thread)

thread.start()

print "bbbbbbbbbbb ",datetime.datetime.now()

#for t in threads:

t.start()

print "ccccccccccc ",datetime.datetime.now()

for t in threads:

t.join()

print "ddddddddddd ",datetime.datetime.now()

extracted_funct_list =[]

chiral_scale_list =[]

for t in threads:

theid=t.getid()

theresult=t.getresult()

#print "id "+str(theid)+" result "+str(theresult)

resultarray[theid]=theresult

chiralityarray[theid]=t.getchirality()

print

"**

****"

print "the result "+str(theresult)

print "the id "+str(theid)

print "chirality "+str(chiralityarray[theid])

print

"**

****"

#for minimized_value in funct_values:

minimized_value_line_list = theresult.split()

89

actual_minimized_value = minimized_value_line_list[-1]

#print "actual minimized value ", actual_minimized_value

extracted_funct_list.append(float(actual_minimized_value))

chiral_scale_list.append(chiralityarray[theid])

#print extracted_funct_list

#indx, minimum_value = min((enumerate(extracted_funct_list)))

extracted_funct_list = map(float, extracted_funct_list)

#minimum_value = min(extracted_funct_list)

minimum_value=100000

minimum_index=0

current_index=0

for cvalue in extracted_funct_list:

print current_index," : ",cvalue

if cvalue<minimum_value:

minimum_value=cvalue

minimum_index=current_index

current_index+=1

minimum_chirality=chiral_scale_list[minimum_index] #not min

chirality but chirality of lowest energy conformer

print "minimum_value***********", minimum_value

print "minimum_index***********", minimum_index

print "minimum_chirality***********", minimum_chirality

actual_index=minimum_index+2 #0 is _2 1 is _3

actual_enantiomer_a=needed_g_name+"_"+str(actual_index)+"_a.pdb"

actual_enantiomer_b=needed_g_name+"_"+str(actual_index)+"_b.pdb"

print "enantiomer a ",actual_enantiomer_a

print "enantiomer b ",actual_enantiomer_b

if minimum_chirality<0.0:

minimum_chirality=-minimum_chirality

if minimum_chirality>3.0:

print "definitely chiral compound"

folder_name = str(needed_g_name)

90

print "copying folder:...", folder_name

if (not os.path.isdir("./Chirals")):

os.system("mkdir Chirals")

if (not os.path.isdir("./"+folder_name)):

os.system("mkdir "+folder_name)

#os.system("cd "+folder_name)

os.system("cp "+actual_enantiomer_a+" "+folder_name)

os.system("cp "+actual_enantiomer_b+" "+folder_name)

os.system("cp -r "+folder_name+" "+"Chirals")

os.system("rm -r "+folder_name)

######## copy both files into a folder

else:

print "not a chiral compound"

folder_name = str(needed_g_name)

print "copying folder:...", folder_name

if (not os.path.isdir("./Chiral_negative")):

os.system("mkdir Chiral_negative")

if (not os.path.isdir("./Chirals")):

os.system("mkdir Chirals")

if (not os.path.isdir("./"+folder_name)):

os.system("mkdir "+folder_name)

os.system("cp "+actual_enantiomer_a+" "+folder_name)

#os.system("cp "+actual_enantiomer_b+" "+folder_name)

os.system("cp -r "+folder_name+" "+"Chiral_negative")

os.system("rm -r "+folder_name)

copy one file into a folder

energy_dict = min_energy_dict(extracted_funct_list)

print energy_dict

chirals_screener(energy_dict,minimum_value,needed_g_name,chiral_scale_list)

91

#print "Exiting Main Thread"

print resultarray

print "chiralityarray", chiralityarray

print " needed g name", needed_g_name

write_energy_values(thelog,resultarray,chiralityarray,needed_g_name)

##*************************

ROUTE1*******************************######################################

invalids_list_set = graph_screener(file_title)#calling the graph

screening function

print "lines lens", len(graph_title_list)

for valid in range(1,len(graph_title_list)+1):

if valid not in invalids_list_set:

acceptable.append(valid)

acceptable_set = list(set(acceptable))

print len(acceptable)

print len(invalids_list_set)

print len(acceptable_set)

graphs_dict = {}

for acceptable_g_title in acceptable_set:

graphs_dict[str(acceptable_g_title)]=

needed_graphs_dict[str(acceptable_g_title)]

print graphs_dict['146']

##3

92

