Quinolone-isoniazid hybrids: Synthesis and preliminary *in vitro* cytotoxicity and anti-tuberculosis evaluation

Richard M. Beteck^{a1}, Audrey Jordaan^b, Ronnett Seldon^b, Digby F. Warner^{c,d}, Heinrich C. Hoppe^{e,f}, Dustin Laming^f, Lesetja J. Legoabe^g, Setshaba D. Khanye^{a,f,h2}

^aFaculty of Science, Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa

^bDrug Discovery and Development Centre (H3-D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa

^cMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology, University of Cape Town, Rondebosch 7701, South Africa

^dInstitute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa

^eFaculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa

^fCentre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown 6140, South Africa

^gCentre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa

^hFaculty of Pharmacy, Rhodes University, Grahamstown 6140, South Africa

¹ E-mail: richmbi1@yahoo.com

²Corresponding Author. Tel.: +27 46 603 8393; fax: +27 46 622 5109.

E-mail: s.khanye@ru.ac.za

Contents

1.	Experimental procedure	S3-10
2.	<i>In vitro</i> anti-TB assay	S 11
3.	¹ H NMR spectra of synthesized compounds	812-17
4.	¹³ C NMR and ¹³ C DEPT135 spectra of synthesized compounds	S18-28
5.	Mass spectrometry spectra for synthesized compounds	S29-3 4
6.	HPLC chromatograms of synthesized compounds	S35-38

1. Experimental procedure

All the chemicals and solvents used were purchased from various chemical suppliers and were used without further purification. Melting points were determined using a Reichert hot stage microscope and are uncorrected. The progress of the reactions was monitored by thin layer chromatography (TLC) using Merck F254 silica gel plates supported on aluminium. The desired intermediates were purified by a silica gel column chromatography using Merck Kieselgel 60 Å: 70 – 230 (0.068 – 0.2 mm) silica gel mesh. ¹H and ¹³C NMR spectra were recorded on Bruker Biospin 300 MHz, or 400 MHz spectrometers, and the chemical shifts are given in δ values referenced to deuterated DMSO- d_6 and are reported in parts per million (ppm). The highresolution mass spectrometric data (HRS-MS) of final compounds was recorded on Bruker Daltonics Compact QTOF mass spectrometer (Rhodes University, South Africa), or Waters Synapt G2 quadrupole time-of-flight (QTOF) mass spectrometer (Stellenbosch University) using electrospray ionization (ESI) in the positive ionization mode. Purity was determined by HPLC, and all compounds were confirmed to have purity >95%. The chromatographic system consisted of an Agilent HP1100 LC-MSD, which is equipped with a quaternary pump, in-line degasser, DAD detector, 1100 MSD and ChemStation for collection and analysis of data. A ZORBAX Elipse Plus C18 4.6 i.d. x 150 mm x 5 µm column was used for reversed-phase HPLC analysis. A mixture of aqueous solution of monobasic sodium phosphate 0.01M and acetonitrile (90:10) on isocratic elution mode was used as the mobile phase. Five different concentrations (5 - 500 μ g/mL) of samples to be analysed were made, filtered using 0.45 μ m Millipore filters before their injection.

1.1 General synthesis for aroylhydrazone conjugates

A 100 mL round bottom flask was charged with 20 mL of 95 % ethanol, 400-500 mg of 4 or 5, few drops of glacial acetic acid and 1.5 equivalent of isoniazid. The mixture was stirred under reflux for 12-24 h. The products precipitated out during the course of reaction, and were filtered, washed twice with 10 mL portions of ethanol and dried to obtain 200-400 mg of target compounds in 30-70 % yields.

6-Acetyl-1-benzyl-N-(2-((2-hydroxyethyl)amino)ethyl)-4-oxo-1,4-dihydroquinoline-3carboxamide, 8

Orange powder, 0.320 g (48%), m.p. 169-171 °C; ¹H NMR (300 MHz, DMSO) δ 9.93 (t, *J* = 4.8 Hz, 1H, -CONH-), 9.10 (s, 1H, Ar-H), 8.85 (d, *J* = 1.7 Hz, 1H, Ar-H), 8.19 (dd, *J* = 8.9, 1.7 Hz, 1H, Ar-H), 7.79 (d, *J* = 9.0 Hz, 1H, Ar-H), 7.54 (d, *J* = 8.3 Hz, 2H, Ar-H), 7.20 (d, *J* = 8.3 Hz, 2H, Ar-H), 5.79 (s, 2H, -<u>CH₂</u>-Ar), 5.03 (s, 1H,-OH)4.62 (t, *J* = 5.2 Hz, 2H, -CH₂-), 3.60 – 3.49 (m, 6H, -CH₂- × 3), 2.43 (s, 3H, -CH₃). ¹³C NMR (75 MHz, DMSO) δ 197.1, 176.2, 164.1, 150.2, 142.2, 135.7, 133.4, 132.2, 132.0, 129.3, 127.4, 121.6, 118.9, 112.7, 111.9, 72.7, 69.7, 60.7, 55.02, 39.7, 27.2. ESI-HRMS *m/z* calcd for C₂₃H₂₆N₃0₄ 408.1923 [M+H]⁺, found 408.1923. HPLC Purity: 96 %, *t_R* = 8.2 min.

6-Acetyl-1-(2,4-dichlorobenzyl)-N-(2-methoxyethyl)-4-oxo-1,4-dihydroquinoline-3carboxamide, 9

Brown powder, 0.370 g (44%), m.p. 203-205 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ 9.99 (t, *J* = 5.1 Hz, 1H, -CONH-), 9.16 (s, 1H, Ar-H), 8.92 (d, *J* = 2.2 Hz, 1H, Ar-H), 8.26 (dd, *J* = 8.9, 2.2 Hz, 1H, Ar-H), 7.85 (d, *J* = 9.0 Hz, 1H, Ar-H), 7.72 – 7.59 (m, 2H, Ar-H), 7.21 (dd, *J* = 8.3, 2.2 Hz, 1H, Ar-H), 5.87 (s, 2H, -<u>CH₂-Ar</u>), 3.56 – 3.39 (m, 4H, -CH₂- × 2), 3.37 (s, 3H, -OCH₃), 2.70 (s, 3H, -CH₃). ¹³C NMR (75 MHz, DMSO) δ 197.1, 176.3, 164.0, 150.2, 142.1, 137.4, 133.4, 132.1, 131.9, 131.6, 131.1, 129.4, 127.7, 127.4, 127.2, 118.7, 112.8, 71.2, 58.5, 55.3, 39.0, 27.2. ESI-HRMS *m/z* calcd for C₂₂H₂₁Cl₂N₂0₄ 447.0878 [M+H]⁺, found 447.0873. HPLC Purity: 96 %, *t_R* = 7.3 min.

Ethyl (*E*)-6-(1-(2-isonicotinoylhydrazono)ethyl)-1-methyl-4-oxo-1,4-dihydroquinoline-3carboxylate, 10

Red powder, 303 mg (56%), m.p. 224-226 °C; ¹H NMR (300 MHz, DMSO) δ 11.14 (s, 1H, -C(=O)NH-N-), 8.78 (s, 1H, Ar-H), 8.65 (d, J = 9.0 Hz, 2H, Ar-H), 8.38 (s, 1H, Ar-H), 7.93 – 7.64 (m, 4H, Ar-H), 4.34 (q, J = 7.1 Hz, 2H, -CH₂), 3.94 (s, 3H, -CH₃), 2.42 (s, 3H, -CH₃), 1.28 (t, J = 7.1 Hz, 3H, -CH₃). ¹³C NMR (75 MHz, DMSO) δ 164.8, 163.1, 158.6, 153.2, 150.3, 141.8, 140.9, 134.5, 131.0, 128.2, 124.6, 122.5, 118.2, 110.6, 109.3, 59.9, 41.4, 15.12, 14.7. ESI-HRMS *m/z* calcd for C₂₁H₂₁N₄O₄ 393.1479 [M+H]⁺, found 393.1479. HPLC Purity: 96 %, $t_R = 8.7$ min.

Ethyl (*E*)-1-ethyl-6-(1-(2-isonicotinoylhydrazono)ethyl)-4-oxo-1,4-dihydroquinoline-3carboxylate, 11

Orange powder, 350 mg (57%), m.p. 201-203 °C; ¹H NMR (300 MHz, DMSO) δ 11.12 (s, 1H, -C(=O)NH-N-), 8.76 (s, 2H, Ar-H), 8.66 (d, *J* = 7.9 Hz, 1H, Ar-H), 8.30 (d, *J* = 7.9 Hz, 1H, Ar-H), 8.04 – 7.75 (m, 4H, Ar-H), 4.43 (q, *J* = 6.5 Hz, 2H, -CH₂-), 4.23 (q, *J* = 7.0 Hz, 2H, -CH₂-), 2.43 (s, 3H, -CH₃), 1.32 (dt, *J* = 6.5, 7.0 Hz, 6H, -CH₃ × 2). ¹³C NMR (75 MHz, DMSO) δ 173.5, 172.6, 164.9, 155.9, 150.6, 150.0, 140.0, 134.4, 131.0, 128.4, 125.1, 126.4, 122.3, 117.9, 111.1, 60.2, 49.0, 15.1, 14.8, 14.7. ESI-HRMS *m/z* calcd for C₂₂H₂₃N₄O₄ 407.1718 [M+H]⁺, found 407.1717. HPLC Purity: 97 %, *t_R* = 8.2 min.

(*E*)-1-ethyl-6-(1-(2-isonicotinoylhydrazono)ethyl)-N-(2-methoxyethyl)-4-oxo-1,4dihydroquinoline-3-carboxamide, 12

Yellow powder, 324 mg (58%), m.p. 215-217 °C; ¹H NMR (400 MHz, DMSO) δ 11.15 (s, 1H, -C(=O)NH-N-), 10.07 (s, 1H, -CONH-), 8.89 (s, 1H, Ar-H), 8.75 (d, J = 8.9 Hz, 1H, Ar-H), 8.34- 8.04 (m, 4H, Ar-H), 7.99 (d, J = 8.9 Hz, 1H, Ar-H), 7.83 (s, 1H, Ar-H), 4.57 (q, J = 6.5 Hz, 2H, -CH₂-), 3.58 – 3.50 (m, 4H, -CH₂- × 2), 3.31 (s, 3H, -OCH₃), 2.43 (s, 3H, -CH₃), 1.42 (t, J = 6.5 Hz, 3H, -CH₃). ¹³C NMR (101 MHz, DMSO) δ 176.0, 175.7, 164.3, 155.9, 150.6, 148.6, 140.3, 134.9, 131.2, 127.5, 124.8, 122.5, 122.2, 118.2, 111.8, 72.7, 58.6, 48.9, 38.2, 15.2, 14.9. ESI-HRMS *m/z* calcd for C₂₃H₂₆N₅O₄ 436.1985 [M+H]⁺, found 436.1983. HPLC Purity: 96 %, $t_R = 9.3$ min.

(*E*)-N-(3-(1H-imidazol-1-yl)propyl)-1-ethyl-6-(1-(2-isonicotinoylhydrazono)ethyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide, 13

Yellow powder, 400 mg (63%), m.p. 211-213 °C; ¹H

NMR (300 MHz, D₂O) δ 8.88 (s, 1H, Ar-H), 8.42 (d, *J* = 8.4 Hz, 1H, Ar-H), 8.15 – 7.97 (m, 4H, Ar-H), 7.86 – 7.20 (m, 4H, Ar-H), 4.36 (q, *J* = 6.7 Hz, 2H, -CH₂-), 4.26 (d, *J* = 6.9 Hz, 2H, -CH₂-), 3.34 (t, *J* = 6.9 Hz, 2H, -<u>CH₂-NHCO-</u>), 2.23 (dd, *J* = 12.6, 6.9 Hz, 2H, -CH₂-), 2.06 (s, 3H, -CH₃), 1.49 (t, *J* = 6.8 Hz, 3H, -CH₃). ¹³C NMR (75 MHz, D₂O) δ 177.4, 175.7, 165.3, 154.5, 148.8, 148.0, 147.9, 146.8, 139.1, 134.5, 133.2, 132.3, 130.6, 123.8, 122.3, 121.6, 119.7, 110.1, 49.6, 47.2, 35.9, 29.2, 14.0, 13.8. ESI-HRMS *m*/*z* calcd for C₂₆H₂₈N₇O₃ 486.2255 [M+H]⁺, found 486.2257. HPLC Purity: 98 %, *t_R* = 4.3 min.

(*E*)-1-benzyl-N-(2-((2-hydroxyethyl)amino)ethyl)-6-(1-(2-isonicotinoylhydrazono)ethyl)-4oxo-1,4-dihydroquinoline-3-carboxamide, 14

White powder, 270 mg (52%), m.p. 210-212 °C; ¹H

NMR (300 MHz, DMSO) δ 11.19 (s, 1H, -C(=O)NH-N-), 10.08 (s, 1H, -CONH-), 9.08 (s, 1H, Ar-H), 8.63 (d, *J* = 8.0 Hz, 1H, Ar-H), 8.24 (d, *J* = 8.0 Hz, 1H, Ar-H), 7.85–7.5 (m, 5H, Ar-H), 7.44 – 7.10 (m, 5H, Ar-H), 5.82 (s, 2H, -<u>CH₂-Ar</u>), 5.27 (s, 1H, -OH), 3.77 – 3.57 (m, 2H, -CH₂), 3.17 (t, *J* = 6.0 Hz, 2H, -CH₂-), 3.12 – 2.95 (m, 4H, -CH₂- × 2), 2.35 (s, 3H, -CH₃). ¹³C NMR (75 MHz, DMSO) δ 176.3, 165.4, 163.1, 155.3, 150.5, 149.5, 141.8, 139.5, 136.2, 135.0, 131.0,

129.4, 129.0, 128.4, 127.5, 127.0, 125.1, 123.8, 122.4, 118.7, 111.8, 57.9, 56.8, 49.6, 47.1, 35.9, 15.5. ESI-HRMS *m*/*z* calcd for C₂₉H₃₁N₆O₄ 527.2308 [M+H]⁺, found 527.2308. HPLC Purity: 97 %, $t_R = 11.4$ min.

(*E*)-1-(4-bromobenzyl)-N-(2-((2-hydroxyethyl)amino)ethyl)-6-(1-(2isonicotinoylhydrazono)ethyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide, 15

Red powder, 250 mg (47%), m.p. 227-229 °C;

¹H NMR (400 MHz, DMSO) δ 11.20 (s, 1H, -C(=O)NH-N-), 10.08 (s, 1H, -CONH-), 9.12 (s, 1H, Ar-H), 8.81 (d, *J* = 8.6, Hz, 2H, Ar-H), 8.25 (d, *J* = 8.0 Hz, 2H, Ar-H), 7.83 (d, *J* = 7.4 Hz, 1H, Ar-H), 7.57 (d, *J* = 8.0 Hz, 2H, Ar-H), 7.23 (d, *J* = 7.4 Hz, 1H, Ar-H), 5.82 (s, 2H, -<u>CH₂-Ar</u>), 5.28 (s, 1H, -OH), 3.75 – 3.64 (m, 4H, -CH₂- × 2), 3.15 (t, *J* = 5.7 Hz, 2H, -CH₂-), 3.04 (t, *J* = 5.1 Hz, 2H, -CH₂-), 2.49 – 2.38 (m, 3H, -CH₃ overlapping with DMSO-*d*₆). ¹³C NMR (101 MHz, DMSO) δ 176.3, 172.0, 163.6, 151.3, 149.2, 141.5, 140.6, 135.9, 134.9, 132.5, 131.2, 129.5, 127.6, 124.5, 123.6, 122.5, 121.5, 119.2, 112.2, 56.7, 55.6, 49.6, 47.0, 36.3, 15.2. ESI-HRMS *m/z* calcd for C₂₉H₃₀BrN₆O₄ 605.1515 [M+H]⁺, found 605.1514. HPLC Purity: 96 %, *t*_R = 5.0 min.

(E)-1-(4-bromobenzyl)-N-(2-(2-hydroxyethoxy)ethyl)-6-(1-(2-

isonicotinoylhydrazono)ethyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide, 16

White powder, 290 mg (32%), m.p. 203-205 °C; ¹H

NMR (300 MHz, DMSO) δ 11.17 (s, 1H, -C(=O)NH-N-), 10.03 (s, 1H, -CONH-), 9.08 (s, 1H, Ar-H), 8.75 (d, J = 6.4 Hz, 2H, Ar-H), 8.24 (d, J = 8.4 Hz, 1H, Ar-H), 8.01-7.38 (m, 6H, Ar-H), 7.22 (d, J = 6.4 Hz, 2H, Ar-H), 5.79 (s, 2H, -<u>CH₂</u>-Ar), 4.65 (s, 1H, -OH), 3.69 – 3.23 (m, 8H, -CH₂- × 2), 2.36 (s, 3H, -CH₃). ¹³C NMR (75 MHz, DMSO) δ 176.7, 172.6, 164.3, 150.5, 150.0, 149.2, 141.5, 140.0, 135.8, 134.6, 132.2, 129.1, 127.3, 124.5, 123.6, 122.8, 121.4, 118.3, 112.2,

72.6, 69.8, 60.7, 55.9, 39.3, 20.5. ESI-HRMS m/z calcd for C₂₉H₂₉BrN₅O₅ 606.1352 [M+H]⁺, found 606.1349. HPLC Purity: 96 %, $t_R = 4.7$ min.

(*E*)-N-(2-((2-hydroxyethyl)amino)ethyl)-6-(1-(2-isonicotinoylhydrazono)ethyl)-4-oxo-1-(4-(trifluoromethyl)benzyl)-1,4-dihydroquinoline-3-carboxamide, 17

White powder, 300 mg (48%), m.p. 213-215 °C;

¹H NMR (400 MHz, DMSO) δ 11.20 (s, 1H, -C(=O)NH-N-), 10.09 (s, 1H, -CONH-), 9.19 (s, 1H, Ar-H), 8.83-8.25 (m, 5H, Ar-H), 8.24 (d, *J* = 9.1 Hz, 1H, Ar-H), 7.82 (d, *J* = 9.1 Hz, 1H, Ar-H), 7.74 (d, *J* = 7.7 Hz, 2H, Ar-H), 7.46 (d, *J* = 7.6 Hz, 2H, Ar-H), 5.92 (s, 2H, -<u>CH₂-Ar</u>), 5.31 (s, 1H, -OH), 3.70 (t, *J* = 13.9 Hz, 2H, -CH₂-), 3.12 (t, *J* = 12.9 Hz, 4H, -CH₂- × 2), 3.06 (t, *J* = 4.6 Hz, 2H, -CH₂-), 2.45 (s, 3H, -CH₃). ¹³C NMR (101 MHz, DMSO) δ 173.4, 165.3, 164.3, 155.9, 153.8, 150.5, 145.6, 140.7, 136.4, 132.1, 130.2, 128.1, 127.7, 127.5, 127.3, 126.3, 126.1, 125.5, 123.8, 120.9, 116.0, 112.0, 57.0, 51.0, 49.6, 47.1, 35.8, 15.4. ESI-HRMS *m/z* calcd for C₃₀H₃₀F₃N₆O₄ 595.2167 [M+H]⁺, found 595.2169. HPLC Purity: 96 %, *t_R* = 4.9 min.

(*E*)-1-(2,4-dichlorobenzyl)-6-(1-(2-isonicotinoylhydrazono)ethyl)-N-(2-methoxyethyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide, 18

Grey powder, 286 mg (56%), m.p. 220-222 °C; ¹H

NMR (400 MHz, DMSO) δ 11.26 (s, 1H, -C(=O)NH-N-), 10.05 (s, 1H, -CONH), 9.10 (s, 1H, Ar-H), 8.79- 8.36 (m, 4H, Ar-H), 8.26 (s, 1H, Ar-H), 7.72-7.21 (m, 4H, Ar-H), 7.17 (s, 1H, Ar-H), 5.82 (s, 2H, -<u>CH₂-Ar</u>), 3.50 (s, 3H, -OCH₃), 3.35-3.01 (m, 4H, -CH₂- × 2), 2.34 (s, 3H, -CH₃). ¹³C NMR (101 MHz, DMSO) δ 176.3, 166.0, 164.3, 155.6, 151.6, 146.9, 138.6, 135.3, 133.9, 131.9, 131.5, 130.8, 129.4, 128.8, 127.5, 126.1, 124.8, 122.0, 118.8, 115.0, 111.7, 71.2, 59.3, 58.5, 38.8, 15.2. ESI-HRMS *m*/*z* calcd for C₂₈H₂₆Cl₂N₅O₄ 566.1253 [M+H]⁺, found 566.1255. HPLC Purity: 96 %, *t_R* = 13.8 min.

1.2 In vitro cytotoxicity assay

HeLa cells seeded in 96-well plates were incubated with 20 μ M test compounds for 24 hours and cell viability assessed using a resazurin fluorescence assay as previously described.⁴¹

1.3 *In vitro* antimycobacterial assay

The minimum inhibitory concentration (MIC) was determined using the standard broth micro dilution method, where a 10 mL culture of Mycobacterium tuberculosis pMSp12::GFP.⁴² was grown to an absorbance (OD600) of 0.6 - 0.7. The medium used was Middlebrook 7H9 supplemented with 0.03% casitone, 0.4% glucose, and 0.05% tyloxapol.⁴³ Cultures grown in this medium are diluted 1:500, prior to inoculation of the MIC assay. The compounds to be tested were reconstituted to a concentration of 10 mM in DMSO. Two-fold serial dilutions of the test compound were prepared across a 96-well micro titre plate, after which, 50 µL of the diluted M. tuberculosis cultures was added to each well in the serial dilution. The plate layout was a modification of the method previously described.⁴⁴ Assay controls used were a minimum growth control (Rifampicin at $2 \times MIC$), and a maximum growth control (5% DMSO). The micro titre plates were sealed in a secondary container and incubated at 37 °C with 5% CO₂ and humidification. Relative fluorescence (excitation 485 nM; emission 520 nM) was measured using a plate reader (FLUOstar OPTIMA, BMG LABTECH), at day 7 and day 14. The raw fluorescence data were archived and analysed using the CDD Vault from Collaborative Drug Discovery, in which, data were normalised to the minimum and maximum inhibition controls to generate a dose response curve (% inhibition), using the Levenberg-Marquardt damped least method, from which the MIC₉₀ was calculated squares (Burlingame, CA www.collaborativedrug.com). The lowest concentration of drug that inhibited growth of more than 90 % of the mycobacterial population was considered to be the MIC_{90} .

1.4 Kinetic solubility determination using nephelometry

The solubility assay was performed (H3-D, University of Cape Town) using a miniaturised shake flask method.⁴⁵ 10 mM stock solutions of each of the test compounds were used to prepare calibration standards (10-220 μ M) in DMSO, and to spike (1:50) duplicate aqueous samples of phosphate buffered saline (pH 6.5). The DMSO was dried off using a GeneVac (MiVac, 90 min, 37 °C). After shaking (20 hours, 25 °C), the solutions were filtered and analysed by means of HPLC-DAD (Agilent 1200 Rapid Resolution HPLC with a diode array detector). Best fit

calibration curves were constructed using the calibration standards, which were used to determine the aqueous samples' solubility.

1.5 In vitro metabolic stability using human, rat and mouse liver microsomes

All protocols for in vitro metabolic studies were done in collaboration with Drug Discovery and Development Centre (H-3D), University of Cape Town. Animal studies were conducted in accordance to guidelines and policies as stipulated in the UCT Research Ethics Code for Use of Animals in Research and Teaching after review and approval of the experimental protocol by the UCT Senate Animal Ethics Committee (Protocol FHS-AEC 013/032). Metabolic stability was performed (H-3D, University of Cape Town) in duplicate in a 96-well micro titre plate. The test compounds (1 μ M) were incubated individually in mouse, rat and pooled human liver microsomes (0.4 mg/mL) at 37 °C for predetermined time points, in the presence and absence of the co-factor NADPH (1 mM). Reactions were quenched by adding 300 μ L of ice cold acetonitrile containing internal standard (carbamazepine, 0.0236 μ g/mL). Test compounds in the supernatant were analysed by means of LC-MS/MS (Agilent Rapid Resolution HPLC, AB SCIEX 4000 QTRAP MS). Metabolite searches were not conducted during the metabolic stability assay.⁴⁶ The scaling factors were used to calculate clearance and hepatic extraction.⁴⁷

2. In vitro anti-TB assay

UKN1_ConcentrationResponseCurve

• Unknown1 (Unknown1: %InhibEdit vs Concentration) Weighting: Fixed

Curve Fit Results 🔺

		D	+	A - D			
Curve Ht : 4-Parameter	<i>y</i> =			$1 + \left(\frac{x}{C}\right)^B$			

	Parameter	Estimated Value	Std. Error	Confidence Interval	
Unknown1 $R^2 = 0.885$	А	-96.61			
EC50 = 0.232	в	40.81	2.28e+7	[-5.57e+7, 5.57e+7]	
	с	0.232	8.39e+8	[-2.05e+9, 2.05e+9]	
	D	87.82	1.03e-8	[87.82, 87.82]	

Figure 1S: Data reported for CALCULATED MIC90 7D 7H9 GLU CAS Tx

3. ¹H NMR spectra of synthesized compound

Compound 17

4. ¹³C NMR and ¹³C DEPT135 spectra of synthesized compounds

Compound 8

Compound 9

Compound 10

Compound 11

Compound 13

Compound 14

Compound 15

Compound 16

Compound 17

Compound 18

5. Mass spectrometry spectra for synthesized compounds

Elements	Usea:																			~
Mass	Calc. Mass	mDa	PPM	DBE	Formula	i-FIT	I-FIT Norm	Fit Conf 4	% (: H	I N	0	CI							^
408.1923	408.1923	0.0	0.0	12.5	C23 H26 N3 O4	330.1	0.000	99.99												
	408.1883	4.0	9.8	8.5	C18 H26 N5 O6	339.8	9.749	0.01	1	8 2	6 5	6								
	408.1964	-4.1	-10.0	16.5	C28 H26 N O2	340.5	10.450	0.00	2	8 2	6 1	2								
	408.1942	-1.9	-4.7	-0.5	C11 H30 N5 O11	342.0	11.983	0.00	1	1 3	0 5	11								
	408.1955	-3.2	-7.8	12.5	C23 H27 N5 CI	356.5	26.418	0.00	2	3 2	75		1							
	408.1942	-1.9	-4.7	7.5	C22 H31 N O4 C	356.6	26.526	0.00	2	2 3	1 1	4	1							
	408.1901	2.2	5.4	3.5	C17 H31 N3 O6 CI	356.7	26.662	0.00	1	7 3	1 3	6	1							_
	408.1933	-1.0	-2.4	3.5	C17 H32 N5 O2 Cl2	357.9	27.800	0.00	1	7 3	2 5	2	2							
	408.1920	0.3	0.7	-1.5	C16 H36 N O6 Cl2	358.0	27.930	0.00	1	6 3	6 1	6	2							~
MS_Direct_	180529_10 27	(0.135)	Cm (26	(28)								>	408.	1923					1: TC	OF MS ES+ 5.30e+005
0 223.1	082 239.129	250	1332	28	0.6667 305.271	1 31	3.1388 341	.2466	364.16	67	390	.1812	400	409.1951 410.1974	430.1739	448.2253	476.1801	488.132	21 503.274	44
220	230 240	200	200	210 1	200 200 300 3	520	330 3	40 300	300	310	300 3	30	400	410 420	430 440	400 400	470 400	400 0	00 510	020
or Help, pres	ss 1+1								_	_										1

Compound 8

Compound 11

Compound 15

Compound 17

Compound 18

6. HPLC chromatograms of synthesized compounds

Compound 8

Compound 9

Compound 12

Compound 15

Compound 18