
A n Investigation Into T he R eadiness O f
O pen Source Softw are T o B uild A T elco

C loud For V irtualising Netw ork
F unctions

Submitted in fulfilment
of the requirements for the degree of

M a s t e r o f S c ie n c e

at Rhodes University

Tapiwa C. Chindeka

Supervisors: Mosiuoa Tsietsi

Alfredo Terzoli

Grahamstown, South Africa
January 2019

A bstract

Cloud computing offers new mechanisms that change the way networks can be created and
managed. The increased demand for multimedia and Internet of Things (IoT) services
using the Internet Protocol is also fueling the need to look more into a networking ap­
proach that is less reliant on physical hardware components and allows new networks and
network components to be created on-demand. Network Function Virtualisation (NFV)
is a networking paradigm that decouples network functions from the hardware on which
they run on. This offers new approaches to telecommunication providers who are looking
to new ways of improving Quality of Service (QoS) in cost effective ways. Cloud technolo­
gies have given way to more specialised cloud environments such as the telco cloud. The
telco cloud is a cloud environment where telecommunication services are hosted utilising
NFV techniques. As the use of telecommunication standards moves towards 5G, network
services will be provided in a virtualised manner in order to keep up with the demand.

Open source software is a driver for innovation as it is has a collaborative culture to sup­
port it. This research investigates the readiness of open source tools to build a telco cloud
that supports functions such as autoscaling and fault tolerance. Currently available open
source software was explored for the different aspects involved in building a cloud from
the ground up. The ETSI NFV MANO framework is also discussed as it is a widely used
guiding standard for implementing NFV. Guided by the ETSI NFV MANO framework,
open source software was used in an experiment to build a resilient cloud environment
in which a virtualised IP Multimedia Subsystem (vIMS) network was deployed. Through
this experimentation, it is evident that open source tools are mature enough to build the
cloud environment and its ETSI NFV MANO compliant orchestration. However, features
such as autoscaling and fault tolerance are still fairly immature and experimental.

Acknowledgem ents

Firstly, I would like to thank my supervisors Dr. Mosiuoa Tsietsi and Prof. Alfredo
Terzoli for their guidance throughout this journey. Their support has been vital to the
successful completion of this research and is truly appreciated.

Secondly, I would like to thank my parents for the love and support they have shown me.
I would not be here without them and their continued support and encouragement. The
time and effort spent on this work is dedicated to them.

Thirdly, I would like to extend my gratitude to my friends and colleagues who have
helped me with encouraging words, brainstorming and venting sessions. Special thanks
go to Vongai Chindeka, Michael Zvidzayi, Tinashe Magwenzi, Tichaona Zvidzayi, Yonela
Pipile, Nicole Oyetunji, Katherine James, Tracy Jeffery, Valerie Motsumi-Moyo, Ezam
Majokweni, Fr. Gerry O ’Reilly and many others who provided much needed support. I
am grateful for the invaluable inspiration and help.

I would also like to thank the Computer Science staff members for their kindness and
support.

Lastly, I would to thank the Lord who saw me through every high and low and gave me
the strength to persevere.

This work was undertaken in the Distributed Multimedia Centre of Excellence at Rhodes
University, with financial support from Telkom SA and CORIANT. The author acknowl­
edge that opinions, findings and conclusions or recommendations expressed here are those
of the author and that none of the above mentioned sponsors accept liability whatsoever
in this regard.

Contents

1 Introduction 1

1.1 Benefits of N F V .. 1

1.2 The Evolution of Telecommunication S ystem s.. 2

1.3 Research C on text... 2

1.4 Research Question .. 4

1.5 Research Objectives.. 5

1.6 Methodology ... 5

1.7 Document Outline .. 5

2 Literature R eview : C loud C om puting and N etwork Function V irtuali­
sation 7

2.1 ICT Principles for Improved Quality of Service.. 8

2.1.1 High A vailability .. 8

2.1.2 Fault Tolerance... 8

2.2 The C lou d ... 10

2.2.1 Existing Cloud Solutions... 10

2.2.2 Telco C lo u d .. 14

2.3 NFV ... 16

i

2.3.1 The NFV MANO Fram ew ork.. 18

2.3.2 Virtual M achines.. 22

2.3.3 NFV MANO Implementations.. 23

2.4 Summary .. 29

3 Literature R eview : IP M ultim edia Subsystem - IM S 30

3.1 IMS Core network .. 31

3.1.1 Proxy-CSCF... 32

3.1.2 Interrogating-CSCF... 32

3.1.3 H S S .. 32

3.1.4 Subscriber Locator Function... 32

3.1.5 Serving-CSCF.. 33

3.1.6 Communication P ro to co ls .. 33

3.2 IMS Core Implementations ... 33

3.2.1 Open IMS Core ... 33

3.2.2 Kamailio I M S .. 34

3.3 Project C learw ater.. 35

3.4 IMS Performance and Benchm arking.. 38

3.5 IMS Bench SIPp ... 39

3.6 Summary ... 40

CONTENTS___ii

4 Literature R eview : OpenStack 41

4.1 OpenStack- IaaS ... 41

4.2 OpenStack Core Services.. 42

4.2.1 N ov a .. 42

4.2.2 Neutron .. 42

4.2.3 Keystone .. 44

4.2.4 G lan ce... 44

4.2.5 H o r iz o n .. 44

4.2.6 Cinder ... 44

4.2.7 S w ift.. 45

4.2.8 Heat .. 45

4.2.9 Ceilometer ... 47

4.2.10 Telemetry: High-Level System Architecture 50

4.3 OpenStack Strengths and Challenges .. 50

4.4 Summary ... 52

5 Phase 1: Building the Infrastructure As A Service 53

5.1 Server .. 54

5.2 Hypervisor - VMware vSphere (E SX i).. 55

5.3 OpenStack Operating System - IaaS ... 57

5.3.1 C ontroller... 57

5.3.2 Compute .. 59

5.3.3 B lock.. 59

5.3.4 Overview of OpenStack Cloud .. 60

5.4 R ou ter .. 62

5.5 Summary ... 62

CONTENTS__ iii

CONTENTS iv

6 Phase 2: M anagem ent and Orchestration 65

6.1 NFV Orchestrator... 65

6.2 VNF Manager... 67

6.3 VIM Integration - Point of Presence... 67

6.4 Network Service Deployment F iles.. 69

6.4.1 VNF Packages.. 69

6.4.2 Network Service Descriptor ... 75

6.5 Creation of the Network Service Record (N SR).. 77

6.6 S erv ices ... 80

6.6.1 Autoscaling Engine - A S E .. 80

6.6.2 Fault Management System - F M S ... 82

6.7 Summary ... 85

7 Phase 3: M onitoring 87

7.1 Zabbix S erver... 88

7.2 Experiments - Configuring Z abb ix .. 89

7.2.1 Zabbix agent .. 90

7.2.2 Item s.. 91

7.2.3 T riggers.. 93

7.3 Experiments - Running the SIPp Scenarios.. 94

7.4 Experiments - Monitoring with Z a b b ix ... 97

7.5 Summary ... 98

CONTENTS v

8 Phase 4: IM S Virtualisation, A utoscaling and Fault M anagem ent 101

8.1 Initial Experiments with IMS ...101

8.1.1 Simple Open IMS Core Deployment...102

8.1.2 Deploying Project C learw ater.. 102

8.1.3 Deployment using the Heat Orchestrator... 103

8.1.4 Insight from experimental deploym ents.. 106

8.2 IMS and Open B aton ...106

8.2.1 VNF Packages...106

8.2.2 Network Service Descriptor ... 109

8.3 Attempt to Perform Autoscaling..111

8.4 Attempt to Perform Fault Management... 114

8.5 Summary ..114

9 Discussion 116

9.1 VMware ... 116

9.2 pfSense .. 120

9.3 OpenStack ... 120

9.4 Orchestrating IMS ..122

9.4.1 Heat .. 122

9.4.2 C loud ify .. 123

9.4.3 Open Baton ... 123

9.5 Z a b b ix .. 124

9.6 Autoscaling Engine and Fault Management S y ste m ...125

9.7 Summary ..126

CONTENTS vi

10 Conclusion 127

10.1 Achieved Objectives ...127

10.1.1 Building the Infrastructure As A S erv ice .. 127

10.1.2 Management and Orchestration with Open B a to n 128

10.1.3 Monitoring ...128

10.1.4 IMS Virtualisation, Autoscaling and Fault Management....................... 128

10.2 Future W ork... 129

10.3 Summary ..129

List of Figures

1.1 The Evolution of Mobile Telecommunication Standards.................................. 3

2.1 Cloud Computing Layered Architecture. Adapted from [15] 9

2.2 The Relationship between SDN and NFV. Source: [30]................................... 17

2.3 ETSI NFV MANO Architecture. Adapted from [8].. 19

2.4 Open Baton Architecture. Source: [11]... 24

2.5 Zabbix Monitoring Architecture. Adapted from: [40]....................................... 27

2.6 Cloudify Manager Flows. Source: [41]... 28

3.1 IMS Core Network Architecture. Sources [46].. 31

3.2 Open IMS Core Architecture. Source [46]... 34

3.3 Project Clearwater Architecture. Adapted from [49].. 37

3.4 High Level Overview of IMS Bench testing. Adapted from [52]..................... 40

4.1 Conceptual architecture of OpenStack. Source: [9]... 43

4.2 Ceilometer Data Collection. Source [9].. 48

4.3 Telemetry Architecture. Adapted from: [9] .. 50

5.1 Telco Cloud Infrastructure Design O verv iew .. 54

vii

5.2 Type 1 and Type 2 Hypervisor Architecture.. 56

5.3 Networking within V M w a re .. 58

5.4 Architecture of the deployed OpenStack Services... 61

5.5 OpenStack D ash board ... 61

5.6 The Four Interfaces Configured... 62

5.7 WAN Rules... 63

5.8 LAN Rules.. 63

5.9 OPT1 Rules.. 63

5.10 OPT2 Rules.. 64

6.1 The Orchestrator as the Main Decision Point. Adapted from [11]................ 66

6.2 Open Baton Dashboard.. 66

6.3 Communication between the NFVO, Generic VNFM and EMS. Source [11] 68

6.4 Sequence for the creation of a Network Service Record using Open Baton.
Source [11]... 77

6.5 VNF Record States and Transitions. Source [11]... 79

6.6 Fault Management System Workflow. Source [11]... 86

7.1 Deployed Zabbix Architecture... 88

7.2 Snapshot of Zabbix Web Interface.. 89

7.3 Adding the SIPp Server Host for monitoring in Z a b b ix 90

7.4 Adding a Template to the SIPp Server H o s t ... 91

7.5 Adding an Item to a Template.. 92

7.6 Creating a Trigger... 94

LIST OF FIGURES__ viii

7.7 Server Listening for SIP calls... 96

7.8 Client Releasing Calls... 96

7.9 Screenshot of Graph showing CPU utilisation on SIPp server Host.......................97

7.10 Monitoring Graph key showing CPU Utilisation Statistics when CPU was
Overloaded.. 98

7.11 Monitoring Dashboard when Trigger for CPU Utilisation is set off on SIPp
server.. 98

7.12 Monitoring Dashboard when Trigger for CPU Utilisation returns to OK
State on SIPp server.. 99

8.1 Relationship between Open IMS Core and Project Clearwater...........................102

8.2 Screenshot of Clearwater network topology deployed using Heat....................... 105

8.3 Screenshot of Clearwater login interface.. 105

8.4 Screenshot of the VNF Packages uploaded..108

8.5 List of VNFDs and their ID s .. 108

8.6 VNFD Error on Dashboard .. 109

8.7 Architecture or OpenIMSCore-FHoSS-BIND Deployment. Source [11] . . . 111

8.8 List of the ACTIVE NSR... 111

8.9 Topology of IMS deployment in OpenStack.. 112

8.10 Enabling the FMS s e r v ic e ... 115

8.11 Failure to Create the FMS service...115

9.1 The VMware Navigator for Managing Resources... 117

9.2 Host information about the Physical Server..118

9.3 Network Settings in VMware... 119

LIST OF FIGURES___ ix

LIST OF FIGURES x

9.4 Creating a Virtual Machine in VMware.. 119

9.5 pfSense CLI accessed via the VMware Console..120

9.6 pfSense Web Interface... 121

List of Tables

6.1 PoP Registration Parameters. Source [11].. 69

6.2 VNF Descriptor Parameters. Source [11].. 72

6.3 Virtual Deployment Unit (VDU) Parameters. Source [11].............................. 72

6.4 Network Service Descriptor Parameters. Source [11].. 76

6.5 AutoScalePolicy Parameters. Source [11].. 82

6.6 Alarm Parameters for Autoscaling. Source [11]... 83

6.7 Fault Management Policy Parameters. Source [11]... 84

6.8 Fault Management Policy Parameters. Source [11]... 84

xi

Listings

4.1 Sample HOT YAML Template.. 46

6.1 JSON for registering OpenStack P o P .. 68

6.2 JSON for OpenIMSCore P-CSCF V N F D ... 70

6.3 Metadata.yaml file for OpenIMSCore p c s c f .. 73

6.4 Sample Network Service Descriptor (NSD) JSON f i l e 75

6.5 Example of an Autoscaling P o lic y .. 80

6.6 Example of a Fault Management P olicy ... 82

6.7 Adding monitoring parameters to VDU for use in Fault Management Policy 84

6.8 Adding high availability parameter for Switch to Standby............................. 85

8.1 Metadata.yaml for OpenIMSCore VNFs ..107

8.2 IMS NSD JSON F i l e ...109

8.3 Example of an Autoscaling P o lic y ...113

8.4 Error message from ASE logs ...114

xii

Chapter 1

Introduction

Service provision in the telecommunication industry has over the years been based on
using dedicated hardware devices that perform specific functions within the network.
With the nature of telecommunication evolving, there is an increasing demand for diverse
new services with high data demands. This in turn increases CAPEX/OPEX for the
network service provided. The increase in operating costs can not simply be balanced
by increasing subscription fees because competition between TSPs will result in customer
churn [1]. Telecommunication networks need innovative, cost effective way to handle the
dynamic nature of the load while maintaining a good level of quality. One such way of
improving network agility is through the use of the cloud in delivering services. Network
Function Virtualisation (NFV) is a mechanism for improving network flexibility and speed
that is gaining popularity because it shifts the need for dedicated hardware appliances
to using software solutions on commodity hardware. Section 1.1 will look at some of the
motivations for adopting NFV as a long-term networking solution.

1.1 Benefits of N FV

NFV decouples network functions that were traditionally appliance-based so that they
can run on any server through the use of virtualisation. The power of NFV is mostly
in the flexibility it brings, making it easier for service providers to build scalable and
automated network solutions. NFV brings flexibility to network functions, as services can
be created, scaled or removed by bringing up or tearing down network functions without
the need to configure new hardware into the network.

1

1.2. THE EVOLUTION OF TELECOMMUNICATION SYSTEMS 2

1.2 The Evolution of Telecommunication Systems

The mobile and fixed telecommunication industries have also been through several paradigm
shifts as evidenced by the move from first (1G), second generation (2G), third generation
(3G) to fourth (4G) and now fifth generation (5G) networks. The unifying theme behind
this evolution has been a decisive shift towards packet-switched technologies with a strong
focus on IP (Internet Protocol) [2]. The Generation (G) in wireless mobile technology
refers to the changes in data capacity, speed, latency, frequency and the general nature of
the system. Each generation is characterised by its own standards, techniques and new
features that distinguish it from previous generations [3]. Figure 1.1 shows the evolution
of mobile telecommunication. 1G technologies came about in 1980 and was characterised
by the analog transmission of voice signals. 2G came around 1991 and was based on the
global system for mobile communication with a speed of about 64 kbps. It introduced text
messaging in mobile telecommunication. 3G technologies debuted in 2000 and enhanced
mobile data communication by improving transmission speeds (minimum of 200 Kbps)
through the use of packet switching techniques. Other ways it enhanced mobile com­
munication is by offering global roaming Web browsing and multimedia communication
[4] . 4G technology is based on packet switching and completely moves away from circuit
switched standards. Data transfer rates for 4G should be between 100 Mbps and 1Gbps
[5] . It increases data transfer rates and improves handovers across different networks by
making them smoother and drastically reducing data loss. 5G is the upcoming genera­
tion of mobile technologies that promises even faster speeds and improved connectivity
[3, 6, 7]. With the rise of the Internet of Things (IoT) more devices will be linked to
the internet and most of these will require fast and reliable connections. Voice over IP
(VoIP) and multimedia communication continue to increase in popularity as the favoured
means of communicating in both social and business contexts. Users expect improved
user experience regardless of the increase in traffic load in the network. In order to cope
with this load and maintain Quality of Service (QoS), NFV provides the building blocks
of how future networks will be deployed to support the goals of 5G.

1.3 Research Context

While virtualisation in itself is hardly a new concept, until recently telecommunication
operators have lacked a comprehensive guiding framework that outlines the design and
execution of virtualised functions in a consistent way. What was needed was a standard

1.3. RESEARCH CONTEXT 3

. Mainly
voice com­
munication

. Voice

. Text

. Voice

. Text

. Internet
browsing

. Higher
speed

. loT

. Multime­
dia com­

munication

. Improved
speed

. Multi me­
dia com­

munication

. Virtualisa­
tion stand­

ards

Figure 1.1: The Evolution of Mobile Telecommunication Standards.

(or set of standards) that all operators could follow in the interests of standards compli­
ance and interoperability. This role has been fulfilled by the European Telecommunication
Standards Institute (ETSI) which has a long history in developing standards for interop­
erable services in fixed networks [2]. In particular, ETSI has developed a comprehensive
Management and Orchestration (MANO) framework which details the provision of virtual
network functions in a way that is loosely coupled to storage, network and compute re­
sources in public or private cloud installations. The resulting framework potentially gives
operators a solid base to build on when implementing functions such as auto-scaling, pol­
icy management, regulatory compliance, topology management and others [8].

Compute, networking and storage resources are the backbone of any cloud environment
into which virtualised network functions are deployed. While ETSI standards can apply
to operators leasing virtual functions from public clouds, many of them, for security and
operational reasons, will seek to implement their own private clouds. Of all the soft­
ware platforms that are being used for this purpose, OpenStack is the most prevalent
[9]. OpenStack is an open source cloud platform consisting mainly of Nova, Neutron and
Cinder components which provide facilities for compute, networking and storage functions
respectively [9]. OpenStack can manage large pools of such resources spread throughout
an operators datacentre using a single management interface or lightweight RESTful web
services. The flexibility and power of the platform has led to the formation of an open

1.4. RESEARCH QUESTION 4

consortium of practitioners collectively known as the Telco Working Group. The group
seeks to promote the requirements of operators among the general OpenStack commu­
nity through various initiatives, including the contribution of open source extensions and
modifications [10].

While OpenStack provides a suitable integration platform for prototyping a cloud-based
telecommunication system, there are a number of sophisticated platforms that are more
closely aligned with ETSI MANO specifications. Among these, the most mature is Open-
Baton which is a complete, open source ETSI MANO implementation [11]. OpenBaton
implements the full underlying architecture and also supports the creation and deployment
of new application use cases within OpenStack environments. In addition, to communi­
cate the programming model, it provides a small number of example virtual functions
that can be orchestrated, all of which are multimedia services that form part of an IP
Multimedia Subsystem (IMS) service control layer. The suitability of the OpenBaton
platform for a wide range of example use cases is yet to be determined, while the open
source contributions of groups such as the Telco Working Group offers a bare bones al­
ternative.

1.4 Research Question

The main question is the following: “Is it currently possible to build a fully functional
telco cloud, in which to virtualise network functions, via free and open source compo­
nents, deployed and utilized solely based on their documentation or commonly accepted
conventions of installation and use?” This question can be decomposed in a number of
sub-questions:

• What are the essential components of a cloud and particularly a telco cloud?

• What open source components are available which map to the essential components
of a telco cloud?

• What is the level of readiness of these components? Readiness here should be
interpreted as the possibility for a component to be deployed and work robustly
without the need of exploring the actual source code behind the component.

1.5. RESEARCH OBJECTIVES 5

1.5 Research Objectives

The sub-questions in the previous section map naturally to a series of research objectives,
which are the following:

• To determine the essential components of a Telco Cloud,

• To determine the available free and open source components which fulfill the roles
identified in the previous objective,

• To investigate the level of maturity of each component, in the sense specified above.

1.6 Methodology

The research question will be answered through gathering and organizing information, on
one side, and direct experimentation, on the other. The two activities will run mostly
in parallel, re-enforcing each other. Information will be gathered from academic papers,
white papers, standards specifications from bodies such as the European Telecommunica­
tions Standards Institute (ETSI), and documentation on specific components and projects
to be found on the web. The experimentation will structured as the actual construction of
a telco cloud prototype, moving through the various phases that transform a bare metal
infrastructure into a virtualised one. This will be followed by the deployment of an or-
chestrator, the addition of specialized monitoring capabilities and finally the deployment
of virtualised network services, specifically the IP Multimedia Subsystem (IMS), which
remains the foundation of a modern telco network.

1.7 Document Outline

The rest of the thesis is organised as follows:

• C hapter 2 provides the reader with introductory information on the principles and
background of the cloud and Network Function Virtualisation. Some of the existing
cloud solutions are discussed. The concept of a telco cloud is unpacked to the reader
and the ETSI NFV MANO framework is introduced as a guiding standard.

1.7. DOCUMENT OUTLINE 6

• C hapter 3 discusses the IP Multimedia Subsystem (IMS) network which is the
network service intended for virtualisation for this work.

• C hapter 4 introduces the OpenStack cloud operating system which is the the
software chosen to run the infrastructure of the telco cloud. The OpenStack concepts
and services were also discussed to give the reader an overview of the architecture.

• C hapter 5 discusses the first phase of deploying the telco cloud which involved
building the Infrastructure as a Service. The process of how the OpenStack cloud
is built from the physical server up is explained.

• C hapter 6 deals with the incorporation of the management and orchestration sys­
tem. One of the objectives of this research is to build a standard compliant telco
cloud, therefore the ETSI NFV MANO compliant implementation chosen is dis­
cussed.

• C hapter 7 deals with adding monitoring capabilities for monitoring the Virtualised
Network Functions (VNFs) that make up the network service. The choice of monitor
is presented and experiments done to test the interoperabilty of the monitor with
the rest of the infrastructure are detailed.

• C hapter 8 discusses the last phase of experimenting with building the telco cloud.
Different ways of deploying an IMS network on the OpenStack cloud were exper­
imented with and discussed. Details of the attempts to perform autoscaling and
fault management on the VNFs are provided.

• C hapter 9 gives an overall discussion of the implementation process and insights
gathered from the different phases of deployment.

• C hapter 10 concludes the thesis by outlining the conclusions drawn from the work
in relation to the objectives of the research. Possible ideas for future work are also
presented.

Chapter 2

Literature Review: Cloud
Computing and Network Function
Virtualisation

The cloud paradigm has revolutionised computing by offering advantages through re­
duction in operating costs, offering flexible system configuration and on-demand service
provisioning. The shift to the cloud, which has been successful for general computing, is
still growing and is also revolutionising how networks are set up and managed through
cloud virtualisation. Network Function Virtualisation (NFV) is one of the ways in which
cloud virtualisation is changing how networks are built. Network operators have taken
interest in the advantages offered by the cloud and NFV and are slowly migrating to the
Telco Cloud. The Telco Cloud is a cloud environment tailored for telecom applications
and IT services, where network functions are ran as applications on virtual machines [12].
This chapter starts by looking at a few ICT principles that are used for the provision of
high quality services. These principles are also important in cloud and virtualised con­
texts. This is followed by a discussion of the cloud as the basis for the realisation of NFV
and the existing cloud platforms, focusing on the Telco Cloud in particular. Next NFV
concepts are presented and the advantages it offers to network operators discussed. NFV
introduces new relationships between the virtualisation components and as such, network
operators needed a set of guiding standards for managing and orchestrating NFV com­
ponents. The existing standards for managing and orchestrating NFV systems are also
discussed in this section. The final section will provide a summary of the chapter.

7

2.1. ICT PRINCIPLES FOR IMPROVED QUALITY OF SERVICE 8

2.1 ICT Principles for Improved Quality of Service

ICT principles such as high availability and fault tolerance are key elements of providing
high quality services and improved user experience. These concepts are of great interest
as they can also be applied to cloud and virtualised environments.

2.1.1 High Availability

It is important for network operators to be able to connect calls and transfer data in a
timely manner in order to maintain QoS. Network failure, even for a few seconds, can
mean loss in revenue for the provider and a negative reputation among consumers. A big
concern for network operators is what happens when there is a fault in the network: will
the network continue to deliver services or will the services will be unavailable while the
fault gets fixed [13]?

High Availability (HA) systems are configured to ensure operational continuity so that
services are always on. The period in which a service or application is unavailable is
referred to as downtime. High availability aims to prevent downtime by configuring the
system to have access to more resources that work in unison [14]. The minimum bench­
mark for availability is five nines (99.999%). This means that the service downtime in a
period of a year may not exceed 5 minutes [13].

HA alone is not enough because even with an HA of five nines, the network may still not
be resilient. Resilience is a combination of HA and the ability to maintain QoS Service
Level Agreement (SLA). This includes service continuity and the ability to return to its
original state after recovering from a fault, without compromising the QoS [13]. For
example, a system that only has an HA of (99.999%) but no resilience configured will
only have downtime of 5 minutes per year, however, every time it recovers from a fault it
does not return to its original state and therefore degrades the QoS.

2.1.2 Fault Tolerance

Fault tolerance is the ability for a system to continue functioning in the event of a failure.
Failure is when a system cannot perform its intended function due to it being in an invalid

2.1. ICT PRINCIPLES FOR IMPROVED QUALITY OF SERVICE 9

M
an

ag
em

en
t

Se
rv

ic
es

Fa
ul

t T
ol

er
an

ce
 S

er
vi

ce
s

Softw are as a Service (SaaS)

Platform as a Service (PaaS)

Infrastructure as a Service (IaaS)

Physical Hardware

Figure 2.1: Cloud Computing Layered Architecture. Adapted from [15]

state. In order to develop a fault tolerant system, it is important to clearly define what the
correct system behaviour is. This will enable developers and operators to specify what the
characteristics of a failure are and use that knowledge to build a fault tolerant system [15].

Figure 2.1 shows the layered architecture of cloud computing systems. The layers: Soft­
ware as a Service (SaaS), Platform as a Service PaaS) and Infrastructure as a Service
(IaaS) are explained in Section 2.2. Due to the architecture in Figure 2.1, when failure
occurs in any one of the layers, it generally affects the layers above it [15]. For exam­
ple, a failure in the IaaS layer is likely to cause failures in the PaaS and SaaS layers as well.

The architecture of a fault tolerant system can include several components such as node
managers and supervisors distributed across multiple nodes in order to maintain desir­
able system performance and reliability when some components of the system fail. Fault
handling is part of creating a fault tolerant system and includes detecting failure of sys­
tem components. The node manager can then attempt to restart the component. The
supervisor can also migrate the functionality of that component to another node [16].

2.2. THE CLOUD 10

2.2 The Cloud

Over the years, there has been an increase in demand for computing resources and this has
led to the growth in popularity of “the cloud” . The advantages offered by the cloud make
it easier to provide better performance through: flexibility in system configuration, re­
duction in operating costs, automated infrastructure optimisation and on-demand service
provisioning [12, 17]. The cloud is an abstraction for software, services and infrastructure
that is provided over the Internet on a pay-per-use basis [18]. These are made available
through modalities such as:

• SaaS (Software as a Service): Popular examples include web mail and streaming
applications such as Google Apps and Netflix. SaaS takes the responsibility of
managing and deploying software from the user and makes it the responsibility of
the service provider. These applications are often offered on a subscription basis.

• PaaS (P latform as a Service): This provides the platform where software is
deployed. It takes care of the underlying servers, networking and operating system
and provides the users with a ready to use environment.

• IaaS (Infrastructure as a Service): This provides storage, networking and com­
puting power which are the backbone of cloud services. IaaS solutions are typically
managed via a dashboard and/or API, though terminal access is also usually avail­
able via SSH connection.

The cloud is also very relevant for networking in telecommunication because network
capacity requirements are becoming more dynamic and the cloud can be used to provide
better performance [12]. It also allows for automated infrastructure optimisation when
dealing with dynamically changing workload [17].

2.2.1 Existing Cloud Solutions

Cloud solutions come in three flavours: public, private and hybrid. A public cloud is a
cloud environment where the tenant does not manage and maintain the hosting of the
cloud solution. Unlike a public cloud, a private cloud is an internal cloud hosted locally
where the maintenance and management is the responsibility of the user. The hybrid
cloud uses a combination of the on-premises, private cloud and the off-premises, third

2.2. THE CLOUD 11

party, public cloud where traffic is able to flow between the clouds [19, 20].

With the increase in popularity of the cloud, users have several cloud solutions to choose
from when wanting to implement a public, private or hybrid cloud. Below is a discussion
of some of the popular cloud solutions.

A m azon W eb Services (A W S)

Amazon Web Services (aws) [21] is a very mature closed source cloud services provider
that offers a range of products including compute, storage, database, Internet of Things,
machine learning, media services and networking and content delivery solutions. Most of
these are provided on a subscription basis with some services available free for a limited
quota or period.

A product that is of great importance to developers, administrators and operators is the
management tools. The tools inside the toolkit include:

• A m azon C loudW atch: Which provides monitoring and management services.
The data makes it easy to get insight on the application behaviour, ways to optimise
resource utilisation and maintain good operational health.

• AW S A u to Scaling: Which monitors applications and automatically scales re­
sources to maintain good performance.

• AW S CloudForm ation: Which makes use of simple text files that work as tem­
plates that model how resources should be provisioned in an automated manner.

• AW S OpsW orks: Which is a service for configuration management of Chef and
Puppet instances. Chef and Puppet are platforms for automating server configura­
tions using code.

• AW S Systems M anager: Which gives a view and control of infrastructure. It
has a user interface that allows the administrators to view operational data from
multiple AWS services, as well as manage resources and applications in a simplified
manner.

2.2. THE CLOUD 12

OpenStack

OpenStack is an open source cloud operating system that provides IaaS for creating public
and private clouds. It provides compute, networking and storage resources which can be
manage using the OpenStack API or a GUI dashboard [9]. Chapter 4 will provide more
details on OpenStack and the services it offers.

G oog le C loud

The Google Cloud Platform (GCP) [22] is made up of physical resources including servers
and hard disk drives, as well as virtual resources such as VMs, all located at the Google
data centres. There are several data centres located in different global regions. Each
region consists of multiple isolated zones. The distribution of resources brings benefits
such as redundancy, which is useful in the event of failure and makes the platform fault
tolerant. Another benefit is reduced latency as resources can be allocated from the closest
zone to the client.

GCP provides a variety of services that can be used to access different underlying resources
on the platform. Services include: a Compute Engine that supports scalability, Cloud
Storage which provides object storage, Persistent Disk for block storage, an App Engine
which is a PaaS for applications, a Kubernetes Engine for containerised applications and
Virtual Private Cloud (VPC) for networking resources. It also has services that help
manage and orchestrate resources and application on the GCP. The services include:
a Cloud Deployment Manager which manages cloud resources using templates and a
Stackdriver that manages and monitors services, applications and infrastructure.

Oracle C loud

Oracle Cloud [23] offers technologies such as platform automation, Artificial Intelligence
(AI), machine learning and blockchain on their platform and infrastructure. The Oracle
Cloud provides solutions in the form of SaaS applications, PaaS on which applications
can be built, deployed and managed and IaaS that works on a subscription basis.

An Oracle Management Cloud suite is available to make monitoring and managing appli­
cations and infrastructure. The Oracle Management Cloud includes services such as:

2.2. THE CLOUD 13

• Infrastructure M onitoring: Monitors the health of the IT infrastructure. Visi­
bility of resources status across all data centres using a single platform means that
administrators are alerted on issues quickly.

• A pplication Perform ance M onitoring: Provides developers with information
needed to fix application issues fast. Developers and operation teams are also able
to identify any bottlenecks before they become they compromise the user experience
and are able to use the on demand scale function.

• Log Analytics : Provides real time monitoring and analysis of log data from
applications and infrastructure. This helps to reduce the average time it takes to
resolve problems.

• Orchestration: Automates tasks through the use of scripts, REST endpoints or
third part automation frameworks. The tasks performed can be at application level
or cloud infrastructure level.

M icrosoft Azure

Microsoft Azure [19] is a closed source cloud computing service that was developed by
Microsoft and officially released in 2010. It allows users to build, deploy and manage ap­
plications and services that are hosted on data centers managed by Microsoft. Solutions
include hybrid cloud applications, IoT, application monitoring and SaaS applications.
These services are available on a subscription basis.

It supports hosting Linux and Windows VMs. A product called Batch allows adminis­
trators to schedule jobs and manage compute resources, while the Virtual Machine Scale
Sets make it easy to scale up the number of VMs in the cloud. Cloud Services is a product
that developers and operators can use to create, host and run highly scalable and highly
available cloud applications. These Cloud Services can be used using .NET or Python.
Management of the cloud can be simplified through automation. An Azure Monitor is
available that gives real-time monitoring data to give administrators a view of how their
applications and resources are behaving. To maintain high availability and performance,
a Traffic Manager is available that can route incoming traffic appropriately.

2.2. THE CLOUD 14

2.2.2 Telco Cloud

The telco cloud leverages cloud computing capabilities such as supporting QoS, high avail­
ability of resources on demand and improved network manageability [12]. It presents the
opportunity to have networks that are less dependent on dedicated hardware, and in turn,
optimise resource utilisation since resources can be provided on demand rather than by
over-provisioning. Virtualisation technologies makes it possible to provide reliable and
carrier-grade performance by having network functions running on standard hardware
[12]. This is a paradigm shift from a static resource deployment to a more dynamic
and on-demand approach which is more flexible and offers improved resource utilisation
[12, 24, 25].

Most network functions have carrier grade requirements such as high availability, QoS,
fault tolerance and fault recovery. Typical telecom networks have geographically separate
primary and secondary sites. Primary sites typically host the main network functions
and the secondary sites are for concentration and distribution [25]. Hence, telcos have
the advantage of having distributed points of presence (PoPs) which can be used to host
small cloud environments that are suited for redundancy support[12].

Elastic Networks, High Availability and Fault Tolerance in the Telco C loud

Having network functions hosted as VMs in the cloud makes it easier to scale network
resources up and down and to reconfigure the network automatically. These networks
that are configured to adjust accordingly in response to dynamic load are often referred
to as elastic or flexible networks due to their dynamic nature.

Multimedia content has grown as the largest form of traffic in mobile networks over
the years and such services require low latency and high bandwidth to maintain the
expected quality of experience (QoE) [25]. This growth in multimedia traffic is the main
contributing factor to load peaks experienced by telco networks. To minimise the effects of
these changes, telco clouds can make use of high resource availability and fault tolerance.
High availability minimises downtime by quickly restoring services in the event of a failure
by making use of shared resources. Fault tolerance often relies on redundancy to make it
easier to switch from one component to another when there is a failure or more components
are required to handle the load.

2.2. THE CLOUD 15

Fifth G eneration Technology - 5G

The emerging fifth generation (5G) technology will be “an agile resilient converged con­
verged fixed/mobile core network based on NFV and SDN technologies and capable of
supporting network functions and applications from different domains” . Key NFV fea­
tures for 5G include [26]:

• N etwork Slicing: which provides network-on-demand to applications and can be
seen as an implementation of Network as a Service (NaaS).

• C loud-native Network Functions: These are network functions implemented
using re-usable components in the cloud rather than monolithic implementations.

• Scalability: Virtual Infrastructure Managers, which will be discussed in greater
detail in Section 2.3, need to be flexible enough to support the level of scalability
and distribution needed by 5G networks.

• Reliability: The requirements for reliability cover fault management, service avail­
ability and the ability to prevent, detect and recover from failure.

Six challenges that 5G is expected to address that are not yet effectively addressed by
previous technologies are: massive device connectivity, higher data rates, low latency,
consistent Quality of Experience, higher capacity and lastly, for all this to be achieved at
a lower cost [27]. A subset of the services that will be provided by 5G includes voice over
IP (VoIP) and generally, multimedia communication over IP, typically hosted in the IP
Multimedia Subsystem (IMS). For simplicity, this thesis focuses specifically on IMS and
not on all the services that 5G aims to cover.

Software Defined N etworking - SDN

Current networks are typically vertically integrated, meaning that the control and data
plane are together. Software Defined Networking (SDN) is a paradigm that changes
vertically integrated nature of networks by separating the control plane from the data
plane. The control logic is separated from the underlying switches and routers, creating
logically centralised network control [28]. SDN aims to efficiently support the dynamic
nature of future network functions while lowering operational costs [29]. The key features
of SDN are [28, 29]:

2.3. NFV 16

• Separation of the control plane and data plane,

• Network programmability,

• A centralised controller that has a view of the network,

• Open interfaces between the control plane and data plane,

• Forwarding decisions are based on flows and not destination-based.

2.3 N FV

As previously mentioned, one of the main advantages of moving to the cloud is being less
reliant on dedicated hardware components and take advantage of virtualisation strate­
gies. Network Function Virtualisation is the implementation of network functions as
software that run on standard hardware servers. This means that the network can be re­
configured and network functions can easily be moved to other locations in the network
without the need to install new hardware equipment into the network [30]. In essence,
NFV entails moving from monolithic proprietary hardware solutions to having software
solutions running on virtual machines hosted on commodity hardware. Network func­
tions are decoupled from compute, storage and network resources through the addition
of a virtualisation layer [31]. The areas that NFV can be applied to include mobile net­
work nodes, NGN signalling (for example IMS), switching, security functions (such as
firewalls and intrusion detectors) and application optimisation (for example CDNs and
load balancers) [30]. Telecommunication providers will essentially be able to implement
the aforementioned network functions as instances of plain software [1].

NFV is a complementary approach to SDN. It offers a different approach to the design,
deployment and management of networking services.Unlike SDN which separates the con­
trol plane from the forwarding plane to central control of the network, NFV optimises the
network services themselves. It is important to note that SDN and NFV are not dependent
on each other but are highly complementary as shown in Figure 2.2 [30, 32, 33].

The benefits of virtualising network functions include [30, 31]:

• The ability to scale network services up/down as required

2.3. NFV 17

Creation of innovative
applications by third parties

Software Defined
Networks:Reduces CAPEX, Space and

power consumption and
Separates the control andreduces the time it takes

data plane therefore enablingto change network
faster innovationtopology

Figure 2.2: The Relationship between SDN and NFV. Source: [30].

• Reducing energy costs by using power management features in standard servers

• Reducing Capital Expenditure (CAPEX) and Operation Expenses (OPEX).

• Infrastructure provides elasticity for capacity expansion

• Optimising network topology and configuration in near real time in response to
traffic and service demand

• Decreasing time to market by simplifying the network service deployment process

• Ability to use a single platform for different applications and users

• Encourages innovation

In order to realise these benefits, some challenges that need to be addressed include [30]:

• VNFs only scale if all the functions can be automated

• Ensuring resilience to hardware and software failures

2.3. NFV 18

• Achieving highly portable virtualised network services that are compatible with
different hardware vendors and hypervisors

• Managing and orchestrating many virtual network applications

It is important to note that network functions can be decoupled from proprietary hard­
ware without the use of virtualisation technology. Network functions can be developed
or purchased and run on standard physical servers. However, this would be at the cost
of losing functionalities offered by NFV which include energy efficiency, the automation
of processes such as deployment, configuration, service provisioning and lifecycle manage­
ment of network functions [1, 12]. In complex networks it may be challenging to migrate
to a fully virtualised environment. For such cases, it may be useful to have a transitional
phase before the fully virtualised implementation as network providers can have hybrid
setups where VNFs co-exist with network functions running on hardware. The efficient
management of physical resources is important as physical servers have finite compute,
memory and storage resources. This is especially important when wanting to have fea­
tures that support dynamism such as automation and scalability [1].

2.3.1 The N F V M A N O Framework

In November 2012, seven of the world's leading telecommunication providers (AT&T,
BT, Deutsche Telekom, Orange, Telecom Italia, Telefonica and Verizon) chose the Eu­
ropean Telecommunications Standards Institute (ETSI) to be the parent group of the
Industry Specification Group (ISG) for NFV [1, 34]. The telecommunication industry
needs standardisation organisations to guarantee interoperability between vendors and to
create a common ground for making decisions on the direction of the industry [35]. The
NFV paradigm brings with it new relationships within the network and it is important
to have a set of guiding standards for the operation, maintenance and provisioning in
the virtualised networking approach. In order to promote the growth of multi-vendor
implementations, achieving interoperability for NFV solutions is a vital goal. The 3rd
Generation Partnership Project (3GPP) standards body is in liaison with ETSI for the
development of globally accepted standards for the management of virtualised network
functions. Figure 2.3 shows the architecture of the ETSI NFV Management and Or­
chestration (MANO) framework. The three key elements in the architecture are: VNFs,
Network Function Virtualisation Infrastructure (NFVI) and NFV MANO. The core com­
ponents of the NFV MANO aspect of the framework as shown in Figure 2.3 are the NFV

2.3. NFV 19

Figure 2.3: ETSI NFV MANO Architecture. Adapted from [8].

Orchestrator (NFVO), VNF Manager (VNFM) and Virtualised Infrastructure Manager
(VIM). These functional blocks of the framework are discussed in a bit more detail below.

O perations Support System /B usiness Support System (O S S /B S S)

The OSS/BSS are operations and business support functions that need to exchange in­
formation with the NFV MANO framework but are not explicitly part of the framework.
These operations are important for the provision of specific network services and operators
have to ensure that they are implemented [8].

Element M anagem ent System (E M S)

The EMS handles the FCAPS 1 management functions for a VNF. These include [8]:

• Configuring the network functions provided by the VNFs,

1A network management framework that uses five levels namely, fault-management (F), configuration
(C), accounting (A), performance (P) and security (S).

2.3. NFV 20

• Handling fault management for network functions,

• Managing VNF security,

• Doing the accounting for VNF usage.

The EMS often works together with the VNFM to fulfill some of the functions.

V irtual N etwork Functions (V N F s)

NF are network components with well-defined functions and interfaces, for example,
DHCP servers, routers, firewalls, etc. A VNF is simply a NF implemented on virtual
infrastructure. Each VNF may be made up of more than one internal component and for
this reason, a VNF can be implemented across multiple virtual machines with each virtual
machine implementing a single component. Naturally, the service experience offered to
users should be the same regardless of using VNFs or NFs running on dedicated hardware

[1].

N F V Infrastructure (N F V I)

NFVI is the union of hardware and software components used to create the environment
in which the VNFs are deployed [31]. These resources are [8]:

• Compute resources such as machines (physical or virtual) with CPU and memory

• Network resources including networks, forwarding rules, subnets, ports, addresses
and connections between and within VNFs.

• Storage resources which includes file-system and block storage

The hardware is made up of the commercial-off-the-shelf (COTS) computing, network and
storage hardware. The software components are the virtual abstractions of the compute,
network and storage resources. These virtual resources are achieved through the use of a
virtualisation layer which makes use of hypervisors [1].

2.3. NFV 21

N F V M anagem ent and Orchestration (N F V M A N O)

The ETSI NFV management and orchestration framework (ETSI NFV MANO) manages
the NFVI and orchestrates resource allocation to VNFs and network services (NSs) [8].
The framework aims to encompass the functions needed to execute VNFs and NSs ef­
fectively and is made up of a Virtualised Infrastructure Manager (VIM), VNF Manager
(VNFM) and NFV Orchestrator (NFVO) [31].

V IM : The VIM orchestrates NFVI compute, networking and storage resources within a
single domain [31]. A VIM may be specialised to handle a specific NFVI resource or it
can simply handle multiple types of NFVI resources. It is also the one that manages the
capacity of the virtual resources available and reports the usage [8].

V N F M : The VNFM is responsible for managing VNFs and their lifecycles. It communi­
cates with the VNF for provisioning, configuration and fault management [31]. Each VNF
may be associated with its own VNFM, however, it is possible to have a single VNFM
managing multiple VNF instances. Some functionalities of the manager include [8]:

• Instantiating the VNFs,

• Updating/upgrading VNF software,

• VNF instance scaling,

• Termination of a VNF instance.

N F V O : The NFVO has two main responsibilities, the first being to orchestrate NFVI
resources across multiple VIMs and the second being the management of the Network
Services being provided. Together with the VNFM, it manages the instantiation of VNFs.
It also validates and authorises requests for NFVI resources from VNFMs. The NFVO
is also responsible for NS instance automation management [8, 31]. Some of the specific
functions that the orchestrator is responsible for are [11]:

• Managing the lifecycle of network services,

• Ensuring that Key Performance Indicators (KPIs) are met,

2.3. NFV 22

• Ensuring end-to-end reliability,

• Ensuring end-to-end fault management,

• Maintaining system consistency during scaling.

2.3.2 Virtual Machines

The components that make up the network functions in a network service are imple­
mented on virtual machines. A virtual machine (VM) is the software implementation of a
computing environment or machine architecture [36]. It is typically a computer image file
that behaves like an actual computer when it is running [37]. Virtual machines have the
advantage of being able to run their operating systems without worrying about any spe­
cific details of the underlying hardware platform [38]. Virtual machines are increasingly
popular as they can fulfill a variety of tasks [36, 37]:

• Each virtual machine is sandboxed from all the other virtual machines on the plat­
form, ensuring that the software inside one virtual machine can not affect the under­
lying environment. This increases fault tolerance, protects the system from intrusion
and isolates it from untrusted code.

• Operating costs are reduced by lessening the number of servers needed through
consolidating different computing environments into virtual ones. The use of virtual
machines is one of the ways in which NFV is able to reduce operating costs.

• Virtual machines are able to fully emulate platforms that are different from the one
they are running on, which expands the variety in the software that a user can run
using the same infrastructure. As a result, NFV is able to run different network
functions on the same infrastructure.

• They are useful as test bed environments due to their isolated nature and ease in
deployment.

All these characteristics of virtual machines is the reason why they are at the core of
NFV.

2.3. NFV 23

2.3.3 N F V M A N O Implementations

There are several NFV MANO aligned implementations available, a few of which will be
discussed in this section. This thesis focuses on free and open source implementations.
As telecommunication technologies tend towards 5G, standardisation and open source
are becoming more complementary as tools to promote faster innovation [39]. Most
implementations offer a partial implementation of the NFV MANO framework by focusing
on specific aspects of the NFV MANO framework.

O pen B aton

Open Baton [11] is an open source project developed by Fraunhofer FOKUS and Tech-
nische Universitat Berlin. It is a customisable NFV MANO-compliant implementation
that is able to orchestrate network services across heterogeneous NFV environments. It
manages a wide variety of VNFs through a generic VNFM and a generic EMS. It is also
possible to integrate with other existing VNFMs using a plug-and-play model which ex­
poses Advanced Message Queueing Protocol (AMQP) and RESTful API. It also provides
SDKs in Java, Python and Go. Some of the main features of Open Baton include:

• It provides autoscaling and fault management by using information provided by the
monitoring system which sits at the NFVI level,

• Support for multi-site NFVI,

• Support for network slicing at infrastructure level by making use of SDN technologies
for the isolation of network services that share the same physical resources.

Figure 2.4 shows the Open Baton architecture which includes components defined in the
ETSI NFV MANO framework. The main components in the Open Baton framework are

[11]:

• N F V O : implemented according to the ETSI MANO specification.

• G eneric V N F M and G eneric E M S : together they manage the lifecycles of
VNFs. The Generic VNFM can manage one or more VNFs and they can be of
the same type or different types. It is an intermediate component the sits between

24

Gfinerc
EMS

Network Services (or slices) Dashboard
User oo s

OPEN BATON

NSE SFCONFVO System System

^EiOblUvlO

JujuGeneric VNF v v MVNFM Monitoring
VNFM adapter Drive' I - ugmadapter

NFVIVNF Managers

vNrv

VIM

NTV fv A \G

vt.r:- VNFC VN FC

VN F-1 VNr L

NS-

Virtualisation layer

Physical layer

Monitoring

fv L I site NFVI

N i-n

Figure 2.4: Open Baton Architecture. Source: [11].

2.3. NFV 25

the NFVO and the VMs on which the VNF software is installed. It integrates with
the Open Baton Element Management System (EMS) which works as an agent in­
side the VMs and executes scripts from a VNF package or VNF descriptor (VNFD).
The VNFM also sits between the NFVO and the EMS. The VNFM sends commands
to the EMS running in the VM and the EMS executes the commands in the VNF
component (VNFC).

• Juju V N F M A dapter: used for deploying Juju charms or Open Baton VNF
packages. The Juju VNFM is not currently fully interoperable with the Generic
VNFM.

• V IM driver: supports different types of VIMs without having to change the or­
chestration logic. OpenStack is the mainly supported VIM driver but others include
Amazon and Docker. VIM drivers are implemented using the Remote Procedure
Call (RPC) mechanism.

• D ocker V N F M and V IM driver: used to instantiate containers on the Docker
Engine.

• M onitoring Plugin: to integrate with Zabbix as a monitoring service. The Zabbix
plugin is an open source project that provides an implementation of two interfaces
of the VIM. The interfaces are VirtualisedResourceFaultManagement and Virtu-
alisedResourcePerformanceManagement, both are based on the ETSI NFV MANO
specification. The consumers (VNFMs, NFVO, AutoScaling Engine, Fault Manage­
ment System) communicate with the Zabbix Plugin using JSON, allowing consumers
to be written in any language. The consumers are independent to the monitoring
system as shown in Figure 2.5. To avoid the need to contact the Zabbix Server
every time a metric is required, values are cached and updated periodically.

• Libraries: these come in Java, Python and Go. They can be used to build your
own VNFM. The openbaton-libs project contains modules that are shared folders
used by the different projects in the Open Baton framework.

• N etw ork Slicing Engine (N S E): to ensure QoS for the NS based on configura­
tions specified in the Descriptors provided by the NFVO. It is implemented in java
and uses the spring.io framework. The NSE uses a plugin mechanism to allow the
necessary drivers to configure QoS. The only supported driver so far is the neutron
driver for configuring QoS in OpenStack.

2.3. NFV 26

• Event Engine: to handle the execution of lifecycle events. Open Baton can be
extended by writing external modules that react to certain events happening in the
system. The event mechanism allows the user to register the endpoint they want
to receive the event on. The currently supported kinds of endpoints are REST and
AMQP.

• A utoscaling Engine: for automatic runtime management of VNF scaling oper­
ations. It provides an NFV-compliant AutoScaling Engine (ASE) implemented in
java and like the NSE, also uses the spring.io framework. The ASE uses a plugin
mechanism to allow usage of the preferred Monitoring System. By default, Open
Baton uses Zabbix as the monitoring system.

• Fault M anagem ent System : for automatic runtime management of faults at
different levels. This is the Open Baton Fault Management System (openbaton-fms)
which is an external component to the NFVO. It communicates with the NFVO via
the Open Baton SDK and RabbitMQ. It handles alarms from the VIM and uses
them to perform actions through the NFVO.

2.3. NFV 27

Figure 2.5: Zabbix Monitoring Architecture. Adapted from: [40].

C loudify

Cloudify [41] is an open source cloud orchestrator designed to manage cloud environ­
ments at an infrastructure and application deployment level. It handles operations such
as automating the deployment, configuration, healing and scaling of applications and NSs
in cloud and stack environments. It can manage different types of cloud environments
including the hybrid cloud. Cloudify has advanced management features such as moni­
toring, auto-scaling, self-healing, multi-tenancy and policy management.

Cloudify makes use of a compute host called the Cloudify Manager and runs the Cloudify
management service. B lueprints which are human-readable YAML configuration files
that describe the cloud, network tools and applications to be deployed. The blueprints are
uploaded on to the Cloudify manager before they can be used to deploy entities. Cloud­
ify also makes use of workflows which are written in Python and define the policies

2.3. NFV 28

Figure 2.6: Cloudify Manager Flows. Source: [41].

for triggering tasks such as automated healing and scaling. It is also possible to define
custom policies that are environment specific. Workflows determine which tasks are to
be executed and when. Where tasks are operations implemented by a plugin or running
arbitrary code. Workflows are deployment-specific and workflows for each deployment
are defined in the blueprint. Communication between Cloudify and external services is
enabled by the use of plugins. For example, if a blueprint defines an OpenStack deploy­
ment, an OpenStack plugin will be required.

The blueprint is processed by a core engine that automates actions to create, connect,
update or scale elements in the cloud environment. It allows multiple clouds, configuration
managers, serverless functions and applications to be connected and managed through a
customisable UI. A generic autom ation engine provides a variety of tools used to
provide services such as applications, databases and network services. Figure 2.6 shows
the interaction between the Cloudify manager and the VMs it manages. In the context
of the ETSI NFV MANO framework, Cloudify fulfills the roles of a VNF manager and
NFVO.

2.4. SUMMARY 29

2.4 Summary

The cloud computing paradigm introduced a new approach to how computing and IT
related services could be provided. This led to the emerging telco cloud which is a cloud
environment tailored for telecommunication services that require higher levels of QoS and
QoE as compared to standard cloud services. NFV is the process by which network func­
tions that were implemented directly on dedicated hardware components are decoupled
from the hardware so that they can be implemented as virtual functions on standard hard­
ware. NFV introduces a new approach to networking and in order to provide network
operators with a set of standards for implementing NFV, the ETSI NFV Management and
Orchestration (MANO) framework was developed. The ETSI NFV MANO framework has
three main components namely: NFV orchestrator (NFVO), VNF manager (VNFM) and
the virtualised infrastructure manager (VIM). There are various implementations aligned
with the ETSI MANO framework, this chapter looks at Open Baton and Cloudify. Both
Open Baton and Cloudify are open source resources satisfying the NFVO and VNFM
roles in the ETSI MANO framework.

Chapter 3

Literature Review: IP Multimedia
Subsystem - IMS

Network operators offer a variety of services but over the years, there has been a great
increase in demand for multimedia services. This research focuses on the provisioning
of IP Multimedia Subsystem (IMS) services in a virtualised manner in a Telco Cloud
environment via open source components. Therefore, the IMS network and the different
IMS network implementations are discussed in this chapter.

This research aims to investigate the readiness of open source software to build a Telco
cloud. As such, the IMS core network was chosen as the key technology for investigation
because many operators have implemented IMS in a virtualised manner, making it easier
to focus on implementing the telco cloud platform and not on virtualising the network
services.

IMS is a complex environment designed to enrich communication by providing multimedia
services such as audio, video, image, text and data across different types of networks
[42, 43, 44].

The requirements for IMS as a framework according to [2] are:

• The ability to establish IP multimedia services.

• The ability to negotiate good Quality of Service (QoS).

• The ability to provide support for roaming

30

3.1. IMS CORE NETWORK 31

• The ability to provide support rapid service creation

• The ability to inter-work with the Internet and circuit-switched networks

• The ability to support for operators to impose control over the services delivered to
users

For good usability, operators need to be able to provide users with the best possible QoS.

3.1 IMS Core network

In this work we are interested in, the IMS “core network” and not the full IMS network.
The core IMS network is shown in Figure 3.1, which depicts the minimum set entities
needed to run a core IMS network. The set comprises Call Session Control Functions
(CSCFs) and at least one Home Subscriber Server (HSS). There can be more than one of
each entity for redundancy and scalability [45]. Each entity provides specific functionality
within the network as discussed in more detail below.

Figure 3.1: IMS Core Network Architecture. Sources [46].

3.1. IMS CORE NETWORK 32

3.1.1 Proxy-CSCF

The Proxy-CSCF (P-CSCF) is the first point of contact between the User Equipment
(UE) and IMS network. It acts as the SIP inbound/outbound proxy server and routes
requests and responses appropriately. The P-CSCF verifies the correctness of the SIP
messages it receives. SIP messages are text-based, which makes them fairly large. To
reduce the transmission time, the P-CSCF comes with a compressor/decompressor. SIP
messages are compressed before being transmitted to the rest of the network and are
decompressed at the destination [2, 47].

3.1.2 Interrogating-CSCF

The Interrogating-CSCF (I-CSCF) is at the edge of the administrative domain and finds
the hop that a SIP message needs to make. It has interfaces to the HSS and SLF so that
it can retrieve user information and route the message correctly, often to a Serving-CSCF,
which is described below [47].

3.1.3 HSS

The HSS is a repository for user information. It stores user-related subscription informa­
tion that is required to support multimedia sessions. This information includes location
information, profile information (services that the user is subscribed to) and security
information (for authentication and authorisation) [2, 47].

3.1.4 Subscriber Locator Function

If an IMS network has more than one HSS, an SLF is needed to resolve the HSS that a
user's data is stored in. Each particular user's information is found in one HSS. An SLF
is a simple database used to map user addresses to HSSs. When the SLF is queried with
the user address as input, it returns the HSS that the user’s information is stored [47].

3.2. IMS CORE IMPLEMENTATIONS 33

3.1.5 Serving-CSCF

The Serving-CSCF (S-CSCF) is part of the signalling plane. It acts as a SIP registrar
and performs session control. It maintains the link between a user’s location and their
SIP address of record. It communicates with the HSS for the following reasons [2]:

• Downloading user profile from the HSS

• To inform the HSS that it is the S-CSCF assigned to the user for the duration of
that session.

• Downloading authentication information of a user trying to access the IMS network.

3.1.6 Communication Protocols

The public Internet is prone to delays, packets arriving out of order and packet loss and
the IMS aims to fix that as a carrier grade network should. IMS makes use of SIP as
the session control and signaling protocol between the network entities [2, 42]. The IMS
architecture in Figure 3.1 shows SIP-based reference points and Diameter-based reference
points used for communication between the network entities. The SIP reference points are
Gm and Mw, implemented between the UE and CSCFs. The Diameter reference points
are Cx and Dx and are implemented for communication with the HSS and SLF [47].

3.2 IMS Core Implementations

There are a number of implementations of the IMS core network readily available for
deployment. This section will look at some of the main options.

3.2.1 Open IM S Core

The Open IMS Core project is an open source IMS implementation providing IMS CSCFs
and a lightweight HSS. The Open IMS Core project was started by Fraunhofer FOKUS in
2004 and later taken over by Core Network Dynamics in 2015. The components provided
by the project are shown in Figure 3.2 and are based on open source software such as the

3.2. IMS CORE IMPLEMENTATIONS 34

SIP Express Router (SER) and MySQL. Open IMS Core is not intended for commercial
use but provides an IMS core implementation for IMS application prototyping and IMS
research test beds [46]. The components that come with the Open IMS Core project are
P-CSCF, I-CSCF, S-CSCF and HSS. These are a fairly straight forward match with the
components explained in Section 3.1.

NFV introduces flexibility in the way in which IMS can be deployed. The following section
discusses an implementation of IMS that was developed for the Cloud and virtualised
environments.

Figure 3.2: Open IMS Core Architecture. Source [46].

3.2.2 Kamailio IM S

Kamailio is an open source SIP server that can be used as a SIP load balancer, SIP proxy
server, SIP registrar, SIP application server and SIP redirect server. It is a server that
routes different kinds of SIP packets. Most of its features came from SIP Express Router
(SER) server. It provides Java, Python, Perl, C # and JavaScript programming interfaces
[48].

3.3. PROJECT CLEARWATER 35

The core features of Kamailio include:

• SIP message parser which is implemented as an incremental parser.

• Stateless forwarding

• Configuration file parser and interpreter. The configuration file contains init and
runtime instructions.

• DNS and transport layer management. It has an internal DNS cache for DNS-based
load balancing and failover.

• Memory management since Kamailio is a multi-process application that needs shared
memory. The memory manager creates private and shared memory chunks during
start-up.

• Timer API

• RPC control interface API. Control interfaces allow communication with th Ka-
mailio server for administrative functions.

• A locking system that uses machine specific code to improve speed.

Kamailio provides different functionality that can be accessed by loading different mod­
ules. These include SIP transaction management in the form of stateful processing, con­
figuration file debugger that is interactive, load balancing and stateless replying [48].

Kamailio can be also used to build an IMS network. It has support for the Diameter pro­
tocol which is used in the IMS network. Most importantly, it supports the implementation
of the IMS core servers namely, P-CSCF, I-CSCF and S-CSCF. Configuration files for a
stripped-down version of IMS are available for building an IMS platform using Kamailio.
The implementation setup for Kamailio IMS is very similar to OpenIMSCore. It is made
up of the IMS core servers and an HSS server from the Fraunhofer OpenIMSCore [48].

3.3 Project Clearwater

Project Clearwater is also an open source implementation of the IMS core network devel­
oped by Metaswitch Networks 1. It is designed for deployment in scalable Cloud environ­
ments providing SIP-based video, voice and messaging services. It was designed to provide

1 https://www.metaswitch.com/

https://www.metaswitch.com/

3.3. PROJECT CLEARWATER 36

a telco-grade communication network solution and since it was built for the Cloud, it is
suited for deployment in an NFV environment [49]. Figure 3.3 shows the architecture of
Clearwater. It is structurally different from that of the standard IMS core network but
it fulfills the same purpose. This is evident with a more detailed understanding of what
each node does. Below is an explanation of the functions of each entity [49].

• B ono - acts as a SIP edge proxy and provides a SIP IMS Gm interface to clients. It
provides the entry point into the Clearwater system much like the Proxy-CSCF. It is
horizontally scalable and when there is more than one Bono node, client connections
are load balanced across them. During the registration process, the client is bound
to a specific Bono node unless the connection fails or there is client error.

• Sprout - is a combined SIP registrar and authoritative routing proxy. It fulfills the
roles of both the Interrogating-CSCF and Serving-CSCF. There is a load balancing
mechanism across all the nodes in the Sprout cluster so that there are no long-
lived associations between a client and a specific Sprout node. It uses web services
interfaces to communicate with Homer and Homestead (see below) in order to get
user profiles and authentication data. It also maintains API communication with
the Vellum entity to store registration data and run timers.

• D im e - runs a service called Homestead which is an HSS cache and has a web
service interface to Sprout for access to user profile information and authentication
credentials. If there is an external IMS HSS, it communicates with it over the Cx
interface. In the case where there is no external HSS included, the subscriber data
is stored in the Vellum node.

• Vellum - stores all long-lived state data. It uses a cloud-optimised Cassandra
database to store authentication credentials needed by Homestead. No long lived
state data is stored on the other production nodes, making dynamic scaling easier
and quicker, while also lessening the impact from loss of a node.

• H om er - is an XML Data Management Server (XDMS) that stores MMTel (Mul­
timedia telephony) service settings.

• Ellis - is a sample provisioning portal that provides password management and self
sign-up. It is not part of the core Clearwater deployment but it is meant to make
the system easy to use immediately and also a useful way to test the deployment
once installed.

3.3. PROJECT CLEARWATER 37

Figure 3.3: Project Clearwater Architecture. Adapted from [49].

The architecture of Clearwater follows that of scalable web applications. The interfaces
between front-end SIP components and backend services use RESTful web interfaces.
Project Clearwater is horizontally scalable and uses a stateless load balancer. DNS load
balancing ensures that the cluster can adapt to changes in total load. Connection pooling
and statistical recycling of connections are used so that there is even distribution of load
as nodes are added and removed [49].

Reliability was traditionally achieved in telco platforms by using one-to-one, low-level
data replication. This method does not work well for cloud and virtualised environments.
Hence, Clearwater uses a different approach and achieves reliability by keeping most
components stateless and using reliable and scalable data stores for long-lived state data
[49].

3.4. IMS PERFORMANCE AND BENCHMARKING 38

3.4 IMS Performance and Benchmarking

Baseline testing refers to the process of running tests to get information about the
general performance of the system. Benchm arking on the other hand compares the
performance of the system with regards to some given industry standard. With regards
to an IMS network, the purpose of testing is to measure the performance and behaviour
of a system as the load it has to handle increases. This is often as a result of an increase
in users that need to be served at the same time or changes in the type of load that the
system has to handle. ETSI developed IMS/NGN Performance Benchmark which defines
a performance benchmark specification consisting of three parts [50]:

1. The general Benchmark environment.

2. Providing Benchmark use-cases and subsystem configurations.

3. Defining the benchmark tests in terms of traffic sets and traffic profiles.

A benchmark test comprises of a Test System (TS) which simulates several User Equip­
ments (UEs) and the SUT which reacts to the request coming from the TS. The traffic
profile defines the use case scenarios which are to be executed. A scenarios is an inter­
action sequence occurring between two users. Benchmarking uses Scenario Attempts Per
Second which is the average number of scenarios being initiated by the TS [50].

Several works have looked at the benchmarking the performance of IMS networks and SIP
servers. The performance of SIP servers is can be affected by a number of factors such as
using stateless vs. stateful proxying, UDP vs. TCP and using MD5-based authentication
[51]. The experimental setup in [51] uses three main SIP scenarios: registration, proxying
and redirection. The SIPp load generator was used and the metrics of interest where:
throughput, CPU profiles, success rate and latency. The results show that throughput
for stateless proxying using UDP and no authentication yielded best results.

When benchmarking an IMS system, a pre-registration phase and stir-phase can be defined
which come before the run phase. Where the pre-registration phase is the initial phase
before any users have been registered with the SUT and the stir phase is when the SUT
is initialised by registering users and randomising subscriber data. Lastly, the run phase
is when actual stress tests are done on the SUT using a predefined number of SAPS

3.5. IMS BENCH SIPP 39

and increasing this number at time intervals until the number of Inadequately Handled
Scenarios (IHS) exceeds a set threshold [50]. A benchmark done in [50] using IMS Bench
SIPp to test the performance of an SUT hosting an Open IMS Core network concluded
that the Design Objective Capacity (DOC) of the deployed testbed was 120cps. The IHS
for each scenario was 0.1%. The authors also monitored CPU load and memory load of
the SUT during the benchmark test.

3.5 IMS Bench SIPp

SIPp is an open source traffic generator for the SIP protocol for testing purposes. It
uses user agent scenarios, User Agent Client (UAC) and User Agent Server (UAS), where
the UAC is a peer-to-peer entity that sends SIP requests and the UAS is the entity that
responds to the SIP requests sent by the UAC. The establishment and release of calls is
done using the INVITE and BYE methods. Scenario files describe the call flows. Statis­
tics such as the call rate and round trip delay are displayed dynamically while the tests
are running [52]. Both UDP and TCP traffic are supported as shown in Figure 3.4. SIPp
is a useful benchmarking tool that is able to emulate thousands of user agents making
calls in a SIP system.

Figure 3.4 shows a high level overview of the IMS Bench testing system which consists of a
manager and one or more SIPp load generators that execute various benchmark scenarios.
There can also be one or more optional system monitoring agents that monitor and
report CPU and memory utilisation. The System Under Test (SUT) is the system whose
performance is being tested or benchmarked and is assumed to be working correctly when
the benchmark operation is executed [52]. The manager has the following responsibilities:

• Configuring the SIPp test systems by uploading scenarios and sending configuration
data.

• Executing steps of the benchmark run including, setting the ratios of each scenario
in the scenario mix and setting the rate of scenario attempts as defined by the
benchmark configuration.

• Monitoring the rate of failure so that the benchmark is stopped when the threshold
is exceeded.

3.6. SUMMARY 40

Figure 3.4: High Level Overview of IMS Bench testing. Adapted from [52].

• Logging system resource utilisation (CPU and memory).

The results of the benchmark are saved for future analysis in a csv file. The results from
this csv file can then be used to create plots for analysis and visualising the data.

3.6 Summary

This chapter introduces the IMS network, specifically the IMS core network. IMS is a
complex environment that provides real-time and multimedia services to users. Two open
source implementations of the IMS core network are discussed namely, Open IMS Core
and Project Clearwater. The architectures of the two IMS implementations are explained
and some differences and similarities highlighted. The Open IMS Core implementation is
more mature but on the other hand, the Project Clearwater implementation was designed
for deployment in the cloud. A popular tool for testing the performance of an IMS network
is IMS Bench SIPp. IMS Bench SIPp generates SIP traffic and uses different scenarios
to test the performance of the network. The data gathered from the benchmarking and
testing is saved in a csv file and can be used to generate plots for further analysis.

Chapter 4

Literature Review: OpenStack

This work aims to build a cloud platform through open source components that requires
having access to computing, storage and networking resources. To fulfill this need, one of
the most prominent open source solutions is OpenStack. Because of its centrality, a more
detailed discussion will be presented in this chapter. OpenStack is a set of open source
software tools that can be used to build and manage cloud platforms for both the public
and private cloud. It is a cloud operating system that is managed by the OpenStack
Foundation and controls compute, storage and networking resources. Since it is open
source, one of the benefits is that it has thousands of developers working on it to make it
a secure and robust product [9, 53].

4.1 OpenStack- IaaS

OpenStack is an Infrastructure as a Service (IaaS) platform, meaning that it provides
infrastructure that allows virtual machines to be deployed “on the fly” . This makes
horizontal scaling easier, and if more resources are needed, new instances can be added
[9, 54]. Voice over IP (VoIP) services such as IMS can take advantage of the robust services
offered by OpenStack. OpenStack can therefore be used as the backbone for VoIP/IMS
solutions that are able to efficiently manage resources for dynamically changing workload
demands without compromising quality of service. The ability to scale resources up and
down is a key component for scalable IMS platforms.

41

4.2. OPENSTACK CORE SERVICES 42

4.2 OpenStack Core Services

OpenStack is made up of different projects so that it can meet a variety of needs. The
OpenStack community is also able to add components to fit their needs. However, there
are nine projects that have been identified as the core of OpenStack and these are dis­
tributed as part of the OpenStack system. These projects are discussed further in this
section.

All services get authenticated through the same Identity service. A service is made up of
several processes and at least one of those processes is an API process which facilitates
integration with other services. The processes in each service communicate with each other
using the OpenStack messaging bus [9]. Figure 4.1 shows the conceptual architecture of
how the projects interact with each other.

4.2.1 Nova

Nova is the primary computing engine for OpenStack. Nova is an important component
that hosts and manages OpenStack cloud computing systems and is able to scale hori­
zontally. The compute service interacts with other services in order to be able to launch
instances. It interacts with the Dashboard service, Horizon, for access to the user and
administrative user interface; the Identity service, Keystone, for authentication and the
Image service, Glance, for access to server images [9].

4.2.2 Neutron

Neutron is the OpenStack networking service that provides networking capabilities by
supporting the creation and attachment of interfaces devices. It ensures that components
are communicating efficiently. It interacts closely with the compute service in order to
provide connectivity to instances within OpenStack. The OpenStack architecture is made
more flexible by accommodating various networking equipment through the use of plugins.
The networking service is made up of the following components [9]:

• neutron-server - responsible for routing API requests to the correct plug-in for
action.

43

Boots data processing
instances viaimages in

Sahara

clusters via
Boots database

volumes in

Cinder

ronic

Keystone Ceilometer Horizon
v J

Provides auth Monitor Provides Ul

Registers hadoop

Assigns jobs

Saves data or job
Nova binary in

Provision

OrchestratesFetchs images Stores
images in

instances via Provides images
Registers guest Swiftimages in

ProvidesProvision Backupsvo urres to

Neutron Provides network Backups
connection for databases in

Provision, operation
and management

Provides PXE
network for

Trove Heat

Orchestration

Figure 4.1: Conceptual architecture of OpenStack. Source: [9]

4.2. OPENSTACK CORE SERVICES 44

• OpenStack Networking plug-ins and agents - these make it possible to create
networks and subnets as well as provide IP addresses. The common networking
agents are a plug-in agent, DHCP and layer 3 (L3). Plug-ins and agents are vendor
specific and are also influenced by the technologies deployed in that cloud.

• M essaging Q ueue - mostly used by networking installations to route messages
between agents and the neutron server.

4.2.3 Keystone

Keystone is the identity service providing a central list of the OpenStack cloud users
and the services they have permission to use. Creating a single point for managing
authentication and authorisation for other services and users. It is generally the first
service a user interacts with in order to be authenticated and once authenticated, the
user’s identity is used to allow access to other OpenStack services. For flexibility, Keystone
can integrate with other external user management systems such as LDAP [9].

4.2.4 Glance

Glance is the image service providing copies of operating system images that can be used
when deploying new instances. A REST API allows the user to query virtual machine
image metadata and get an actual image. Server images can be stored in various types of
repositories, an example being the OpenStack Object storage [9].

4.2.5 Horizon

Horizon is the dashboard service for OpenStack, essentially providing the graphical web
based user interface to OpenStack. It enables administrators to have a view of resources
created in the OpenStack cloud [9].

4.2.6 Cinder

Cinder is the block storage service that provides block storage to instances. It is analo­
gous to how data is traditionally accessed from specific locations on the disk drive. The

4.2. OPENSTACK CORE SERVICES 45

Block Storage drivers (NAS/SAN, Ceph, iSCSI, NFS, etc) determine how the storage is
provisioned to instances [9].

4.2.7 Swift

Swift is the object storage project that provides a multi-tenant object storage system
that is highly scalable. The RESTful HTTP API enables it to manage large amounts of
unstructured data at a low cost [9].

4.2.8 Heat

Heat is the OpenStack orchestration service that manages the entire lifecycle of infras­
tructure and applications in the OpenStack cloud. The orchestration engine that is im­
plemented by Heat allows cloud applications to be launched based on text file templates.
The text files are treated as code. It makes use of the AWS CloudFormation template for­
mat through the OpenStack-native REST API as well as the CloudFormation-compatible
Query API [55]. As mentioned in Chapter 1, the AWS CloudFormation uses templates
to model how resources are allocated automatically [21].

H ow Heat works

Heat provides auto-scaling capabilities using event data. The event data is provided by
another service, making Heat work well with Ceilometer as Ceilometer provides the event
data needed by Heat. Heat provides an OpenStack native REST API which provides
compatibility with templates [9].

Heat Orchestration Templates (HOT) provide the infrastructure for a cloud platform in
a text file. Listing 4.1 shows an example of HOT YAML template that can be used to
create a CirrOS VM instance. The infrastructure that can be described in the templates
includes: servers, security groups, volumes and Floating IPs [9]. Heat makes it possible to
have a scaling group as part of the infrastructure resources in a template. Heat facilitates
the auto-scaling service by integrating with Telemetry [55].

4.2. OPENSTACK CORE SERVICES 46

Listing 4.1: Sample HOT YAML Template

h e a t _ t e mp l a t e _ v e r s i o n : 2 0 1 5 -1 0 -1 5
d e s c r i p t i o n : Launch i ns t anc e with CirrOS image using the ‘ ‘ m1. small ‘ ‘

f l a v o r , ‘ ‘ t es tvm—keypair ‘ ‘ key, and one network.

parameters :
key_name :

type : s t r i ng
d e s c r i p t i o n : key to be u s e d .

f l av o r :
type : s t r i ng
d e s c r i p t i o n : f l a v o r to be used .

image :
type : s t r i ng
d e s c r i p t i o n : image to be used .

r e s o u r c e s :
s t a c k _ i ns t anc e1

type : OS : : Nova : : Server
p r o p e r t i e s :

key_name : testvm —keypair
image : c i r r o s
f l a v o r : m1. small
networks :
— network : 5952cae2 —9868—407d—b 9 1 c—53a373408927

H eat A rchitecture

Heat orchestrates cloud systems using an AWS CloudFormation template that describes
cloud applications by executing OpenStack API calls to generate or tear down cloud
applications.Heat is made up of a number of components, namely [9]:

• heat - a CLI which communicates with the heat REST API or the heat-api to
execute AWS CloudFormation APIs.

• heat-api - provides an OpenStack-native REST API that is responsible for pro­
cessing API requests and directing them to the heat-engine over RPC.

4.2. OPENSTACK CORE SERVICES 47

• heat-api-cfn - provides an AWS Query API that is compatible with AWS Cloud­
Formation. It processes AWS Query requests in the same way the heat-api tool
processes API requests.

• heat-api-cloudw atch - an API service which is CloudWatch-like.

• heat-engine - the tool responsible for orchestrating when templates are launched
and provides feedback to the API consumer.

4.2.9 Ceilometer

The Ceilometer service is a data collection service that makes it possible for data to be
normalised across the OpenStack core components, namely: compute, network and stor­
age. Ceilometer is part of a bigger project called Telemetry whose overall aim is to collect
data on resource utilisation (both virtual and physical), store this data for analysis and
to trigger actions in the case where defined criteria are met [56]. Ceilometer is an alias for
the Telemetry Data Collection service which polls metering data from OpenStack services,
collects event and metering data sent from OpenStack services by monitoring notifications
and publishes the data to several targets. [57].

C eilom eter’s Logical A rchitecture

Ceilometer offers two main services, namely the polling agent and the notification agent.
The polling agent is a daemon that polls OpenStack services and creates meters. The
notification agent is a daemon that listens for notifications that are on the message queue,
creates Events and Samples using the notifications and applies pipeline actions [9].

The Ceilometer service comprises of the following components [9]:

• A com pute agent (ceilom eter-agent-com pute) - which runs on each of the
compute nodes and collects statistics on how resources are being utilised.

• A central agent (ceilom eter-agent-central) - which runs on a central man­
agement server and collects resource utilisation statistics for resources that are not
related to compute and instance nodes. In order to scale the service horizontally,
multiple agents can be deployed.

4.2. OPENSTACK CORE SERVICES 48

• A notification agent (ceilom eter-agent-notification) - which runs on the cen­
tral management server(s) and gets messages from the message queues and processes
them to get event and metering data.

• A collector (ceilom eter-collector) - which is an optional service that runs on the
central management server(s) and sends the collected unmodified data to a database
or an external consumer. This service is optional because the notification agent can
be configured to provide the same functions.

G athering the Data

Data is collected using two methods, the notification agent and the polling agent. No­
tification agents is the preferred method for data collection. It takes messages on the
notification bus and creates Ceilometer events and samples. This method is supported
by the ceilometer-agent-notification which monitors the presence of notifications on the
message queue. Polling agents is the least preferred method as it overloads API services.
Polling agents poll API to collect data at regular intervals [9]. Figure 4.2 shows a repre­
sentation on how data is collected in Ceilometer.

Notifications

Polling

Polling agents

Publishing PublishingNotification agents pipeline

| Notification bus

Compute Voum e Network Image Object Storage

API API API

Figure 4.2: Ceilometer Data Collection. Source [9].

4.2. OPENSTACK CORE SERVICES 49

G nocchi - Target for m etering data

Ceilometer has performance issues when it made use of standard databases as back-end
storage. The Gnocchi project addresses these performance issues.It fulfills the need for a
time series database (a database with a list of aggregates1 ordered by time) for the cloud
environment.This is because capturing measurement data in time series format helps to
optimise storage and querying [9]

Gnocchi is an open-source metrics and resources database designed to store metrics at a
large scale while also providing easy access to the metrics and resource information . Its
key features include: an HTTP REST interface, horizontal scaling, multi-tenant, resource
history, structured resources and metric aggregation. Gnocchi can handle a large amount
of aggregate data without compromising performance and in addition offers scalability
and fault tolerance [58].

A odh

Aodh is the Telemetry Alarm service which triggers alarms when the defined rules are
broken by the collected event data [56].

The Telemetry service is made up of the following components [56]:

• A n A P I server (aodh-api) - which runs on management server(s) and provides
access to alarm information that is in the data store.

• A n alarm evaluator (aodh-evaluator) - which runs on management server(s)
and determines when alarms go off due to statistics crossing a set threshold over a
period of time.

• A notification listener (aodh-listener) - which runs on a central management
server and determines when alarms should be fired. The alarms are generated ac­
cording to rules defined against events collected by Ceilometer’s notification agents.

• A n alarm notifier (aodh-notifier) - which runs on central management server(s)
and allows alarms to be set based on evaluating the threshold for some samples.

1An aggregate is a data point tuple composed of a time stamp and a value

4.3. OPENSTACK STRENGTHS AND CHALLENGES 50

Figure 4.3: Telemetry Architecture. Adapted from: [9]

4.2.10 Telemetry: High-Level System Architecture

Ceilometer and Aodh work together to collect data across all OpenStack services and use
it to create alarms.

Figure 4.3 shows a logical representation of the interaction between Ceilometer, Gnocchi
and Aodh. Together these services allow for data to be collected from OpenStack services,
for the data to be stored in such a way that it can be easily queried and lastly make it
possible to set alarms based on event data that has been captured by the data collection
service.

4.3 OpenStack Strengths and Challenges

OpenStack is gaining traction as enterprises adopt the open source solution to support
their NFV projects [59]. In their paper, Vogel et al. [60] did a comparative analysis of

4.3. OPENSTACK STRENGTHS AND CHALLENGES 51

private IaaS clouds namely, OpenNebula, CloudStack and OpenStack. Based on their
experiments, they concluded that workloads running on OpenStack were the most stable.
Trilio identified some reasons for the increase in OpenStack adoption to be [61]:

• Tenant-Level Control: Multi-tenancy makes it easier to monitor and maintain
the health of the cloud as an administrator. Internal users are able to manage their
own environment and consume resources according to their needs.

• Flexibility: OpenSatck simplifies virtualisation of network functions using NFV
and provides containerised Compute, Network and Storage on demand. It scales
up with ease and can run large numbers of instances. Administrators can scale up
computing resources when additional capacity is needed and scale down when not
needed.

• Low C ost o f Ownership: It has no expensive software licensing fees and is com­
patible with commodity hardware which reduces management costs.

• Openness and M odularity: OpenStack is an API-driven cloud. Users and ven­
dors build off the same APIs so services are standardised across the platform. The
modular architecture helps to avoid bottlenecks using a plug-n-play setup. This also
provides the opportunity to minimise vendor lock-in. This openness and modularity
makes evolving and expanding a bit more seamless.

• Agility: The self-service portal takes away the need to wait for centralised IT to
get to your ticket in the workflow.

• M ature Com m unity: The OpenStack Foundation is driven by experienced ven­
dors who can offer guidance to avoid some of the challenges other open source
projects have faced before.

The weaknesses of OpenStack are mainly due to its complexity. It requires a lot of testing
in order to get it to work well with other networking protocols in the telco infrastructure
[59].

Users who have adopted OpenStack include Walmart, T-Mobile, AT&T, American Air­
lines and University of Edinburgh [62]. It also has a strong backing of industry sponsors
that support The OpenStack Foundation. This makes OpenStack a big open source
project. It being an open source project gives the flexibility to modify the APIs for better
integration, subsystem usage and the extention of resource orchestration. However, the

4.4. SUMMARY 52

challenge presented by the open source nature of OpenStack is that it is a challenge to
find OpenStack specialists, therefore, potentially increasing deployment time [63].

An increasing trend among Enterprises is the adoption of the hybrid cloud. This has
resulted in many public cloud vendors embracing having their hybrid clouds via Open-
Stack. As a result, many public cloud vendors are enhancing their compatibility with
OpenStack. A potential challenge in using OpenStack for a hybrid cloud solution is that
there is no out-of-the-box APIs for integrating with leading public cloud vendors [63].

4.4 Summary

OpenStack is an open source cloud operating system which can be used to deploy public
and private cloud environments. It provides Infrastructure as a Service (IaaS) that gives
access to compute, networking and storage resources. It allows users to create networks,
instances and run applications easily via a GUI dashboard. The different functions pro­
vided by OpenStack are realised through the integration of various individual services.
The services do not only provide compute, networking and storage resources to OpenStack
instances, but they also include management tools that can be used by administrators
to monitor and orchestrate instances within the OpenStack environment. This makes
OpenStack a robust cloud operating system.

Chapter 5

Phase 1: Building the Infrastructure
As A Service

The previous chapters provide the readers with related information that gives a founda­
tion for the work presented in this thesis.This chapter begins by describing the actual
experimentation around the building of the telco cloud in which to virtualise network
services in order to establish in detail the possibility of doing so exclusively through open
source components.

1. Building the OpenStack Cloud,

2. Adding an Orchestrator,

3. Monitoring,

4. Virtualising IMS and testing Autoscaling and Fault Management Functions

This chapter discusses the first phase of the implementation where the starting point is
the hardware naturally. This is the standard server (or servers) from which the platform
will get its physical resources. Physical resources are the computation power, network
resources and storage capacity that the server hardware will provide to the platform
[64]. In order to get virtual resources from the hardware, a virtualisation layer is needed,
typically in the form of a hypervisor. A cloud operating system is then required to provide
IaaS for the platform. Once the basic cloud infrastructure is established, VM instances
and networks can be deployed on the platform.

53

5.1. SERVER 54

The infrastructure design overview used to build the deployment is given in Figure 5.1.
The physical server hosting the platform is connected to the Rhodes University network
via an ethernet connection. It runs a hypervisor which provides the virtualisation layer
on which the router, IaaS and MANO nodes are hosted. The IaaS nodes are what gives
rise to the VIM component of the NFV MANO implementation and interact with the
NFV MANO node which implements the NFVO and NFVM components.

In the following sections, more light will be shed on both the hardware and software
components chosen for building the cloud environment, why they were chosen and how
these components were configured to work together to produce a fully functional cloud
platform using open source components.

Figure 5.1: Telco Cloud Infrastructure Design Overview

5.1 Server

NFV aims to take network functions from monolithic dedicated hardware appliances so
that they are run as software on standard servers. This allows for easier scalability and

5.2. HYPERVISOR - VMWARE VSPHERE (ESXI) 55

management of the network [1]. This thesis introduces a scalable and reliable cloud
platform for IMS virtualised network functions and to achieve this, a physical server was
needed to provide the underlying infrastructure. NFV reduces the operational cost by
taking away the need to constantly buy new hardware components when changing the
network topology [64]. However, hardware is still an important component that lies at
the foundation of building a cloud and virtual environments. The main difference is that
instead of having different dedicated hardware components running network functions
such as routing and firewall functions, the network will make use of standard servers
instead for all its hardware requirements.

The cloud deployment presented in this thesis makes use of a single physical server with
the following specifications:

• M anufacturer - Supermicro

• M odel - Super Server X11 SSL

• C P U - 4 CPUs x Intel(R) Xeon(R) CPU E3-1220 v5 @ 3.00GHz

• M em ory - 64GB

• Storage - 2TB

5.2 Hypervisor - VMware vSphere (ESXi)

The server provides physical resources needed by the cloud environment. In order to be
able to get IaaS resources from this hardware, a hypervisor is needed so that multiple VM
nodes can be created with their own operating system and software so that they can host
the services that give rise to the cloud environment.

The hypervisor, also known as the Virtual Machine Manager (VMM), is software that
abstracts hardware from the operating system and makes it possible to have multiple op­
erating systems on the same hardware. Hypervisors were developed to allocate resources
from the physical computing resources provided by the server to the virtual machines on
top of it. The abstraction of hardware from the operating system is done using a standard
set of instructions that interface with the physical hardware [38]. There are two types of
hypervisors namely, type 1 and type 2 hypervisors. Figure 5.2 shows the differences in
logical structure between the two types of hypervisors. Type 1 hypervisors are what is

5.2. HYPERVISOR - VMWARE VSPHERE (ESXI) 56

Figure 5.2: Type 1 and Type 2 Hypervisor Architecture.

called ‘bare metal’ hypervisors. They run directly on top of the hardware and are respon­
sible for scheduling and allocating resources to VMs since there is no operating system.
The hypervisor provides device drivers to the VM instances so that they have access to
the underlying hardware. Type 2 hypervisors are known as ‘hosted’ hypervisors and run
as an application in a normal operating system known as the host operating system [65].
A bare metal hypervisor offers better scalability, stability and performance since it has
direct access to hardware resources [66]. For this reason, the implementation design for
this work makes use of a bare metal hypervisor.

VMware offers a bare metal hypervisor solution called VMware ESXi. ESXi is available
for free when using the free vSphere Hypervisor edition but it is also available as part of
a paid vSphere edition [20, 65]. VMware ESXi installs directly onto the physical server
and therefore gives direct access and control of underlying resources. Being a bare metal
hypervisor, ESXi offers better efficiency than a hosted hypervisor because it consolidates
hardware for improved utilization of resources [20]. For this research, VMware vSphere
Hypervisor (ESXi) 6.5 was deployed on the server.

Inside VMware, a virtual switch was configured as shown in Figure 5.3. There is a single
network adapter which connects to the university’s network. There is a management
network which maps the hypervisor to the university’s network and makes it possible to
connect to the hypervisor through a client application from which the hypervisor and
any infrastructure inside it can be managed. The provider network provides floating IP

5.3. OPENSTACK OPERATING SYSTEM - IAAS 57

addresses to VMs. It maps to physical networks that exist in the data center (university
in the context of this work). There are several nodes that are connected to these subnets
and these are explained in more detail in the sections below.

5.3 OpenStack Operating System - IaaS

As seen in the previous chapter, OpenStack is a prominent open source cloud operating
system that provides IaaS for both the private and public cloud environments. OpenStack
offers a number of services that users can take advantage of in implementing an architec­
ture that best suits their needs [9]. OpenStack is a popular choice for cloud deployment
and a lot of products being developed for the cloud are designed to integrate well with
OpenStack [36].

The design of the telco cloud platform presented in this thesis was guided by the ETSI
NFV MANO specification. The specification requires the presence of a Virtual Infras­
tructure Manager (VIM). OpenStack fulfills the role of a VIM and makes it possible for
developers to be able to manage virtual resources and allocate them to the different VMs,
networks and services. So, OpenStack was the VIM of choice due to it being a popular
open source cloud operating system that complies with the MANO specification.

A minimal OpenStack deployment requires at least two nodes (hosts) [9]. One node has
the role of a Controller and the other node is the Compute node. The OpenStack archi­
tecture chosen for this research makes use of more than just the minimal requirements
and makes use of four OpenStack nodes. These nodes make up the building blocks of the
OpenStack deployment and run the services that make the cloud platform functional. The
nodes were launched as VMs inside VMware and can be seen in Figure 5.3. The different
roles of the nodes deployed are explained below, as well as the general requirements for
deploying a simple OpenStack implementation.

5.3.1 Controller

The controller node runs a number of major services namely the Identity service, man­
ages the Compute service, Image service, the Dashboard and it manages the Networking

58

■-■Sphere Standard SwitchView:

N e tw o rk in g

Remove... Properties...Standard Switch: vSw tchO

Virtual Machine Port Group Physics Adapters

public ■-■m ricl 100 Fu

1 virtual machinefs) ■-■mricO 100 Fu

L [>pfSense

VM kem e P i r

Management Network

vmk.O : 146331.132.49

Remove... PropertiesStancard Switch: vSwitchl

Virtual Machine Port Group Physica Adapters

P os_provider Noadapters

□ 5 virtual machinefs)

pfSense

OStackComputel

OStackComputeZ

OStackCortro er

OpenBaton

Virtual Machine Port Group

P os mgmt

□ 6 virtual machinefs)

pfSense

OStackComputel

OStackComputeZ

OStackCortro Her

OStackCinder

OperBaton

Virtual Machine Port Group

P pfSense UVN

□ Z virtual machinefs)

TestirgVM

Figure 5.3: Networking within VMware

5.3. OPENSTACK OPERATING SYSTEM - IAAS 59

and various Networking agents. If the OpenStack architecture deployed includes optional
services such as Block storage, Orchestration, Telemetry services and Object storage, por­
tions of these services are also run by the controller node. Additionally, the controller
runs supporting services such as the message queue, an SQL database and NTP (Network
Time Protocol).

Specification requirements: 1-2 CPUs, 8GB RAM, 100GB Storage and 2 network inter­
faces.

Specifications for deployment: A single Controller node was deployed as a VM named
OStackController in VMware vSphere with 2 vCPUs, 12GB Memory, 100GB Storage and
2 network interfaces.

5.3.2 Compute

Compute nodes runs the hypervisor (KVM hypervisor is the default) that operates in­
stances. There can be more than one Compute node in an OpenStack deployment. It runs
a network service agent so that virtual instances are able to connect to virtual networks
and have access to firewall services through security groups.

Specification requirements:2-4+ CPUs, 8+GB RAM, 100+GB Storage and 2 network in­
terfaces.

Specifications for deployment: Two Compute nodes namely, OStackCompute1 and OS-
tackCompute2, were deployed as VMs in VMware vSphere with each node having 4 vC-
PUs, 12GB Memory, 100GB Storage and 2 network interfaces.

5.3.3 Block

Block node is an optional node and contains disks provisioned for instances by the Block
Storage and Shared File System services. An OpenStack deployment can have more than

5.3. OPENSTACK OPERATING SYSTEM - IAAS 60

one Block node.

Specification requirements: 1-2 CPUs, 4BG RAM, 100+GB Storage and 1 network inter­
face.

Specifications for deployment: A Block node named OStackCinder, was deployed in
VMware vSphere with 2 vCPUs, 8GB Memory, 3 Hard disks (2 with 300GB and 1 with
50GB) and 1 network interface.

OpenStack Ocata was installed following the step-by-step installation and configuration
instructions as provided in the documentation. Ocata is not the latest OpenStack version
of OpenStack currently available but it was the latest fully documented OpenStack imple­
mentation when work on the experimental setup commenced. The CPU, memory, storage
and network interface allocations were decided on based on the hardware requirements in
the documentation, as well as monitoring how CPU and memory resources responded to
instances running on the platform.

5.3.4 Overview of OpenStack Cloud

OpenStack offers a number services that users can take advantage of in their implemen­
tations. The deployment in this thesis only makes use of some of the available services.
Once the major services are up and running, it is possible to install other additional ser­
vices as required. Figure 5.4 shows the basic OpenStack architecture deployed for this
research which is made up of mainly the major services.

The different nodes running in VMware vSphere are what give us a working OpenStack
cloud platform that is accessible via a dashboard that is accessible through a web browser.
A view of the OpenStack dashboard can be seen in Figure 5.5 which shows the number
of instances, vCPU, RAM, Floating IP, Security Groups, Volumes and Volume Storage
resources available. These are just the currently configured limits but administrators can
adjust them as required.

61

Cinder ■Provides vo lu m e s to-

Figure 5.4: Architecture of the deployed OpenStack Services

Project / Compute / Overview

Overview

Figure 5.5: OpenStack Dashboard

5.4. ROUTER 62

5.4 Router

A final key element to get a functional cloud platform is a router. A router is needed to
allow communication within the internal OpenStack network but also between OpenStack
instances and the Internet.

The choice of router for this implementation is the pfSense router. pfSense software is
free and open source that can be tailored to be used as a firewall and router that is man­
aged via a web interface. It is a powerful and flexible firewall solution based on FreeBSD
and has multiple related features which makes it a perfect routing solution for a dynamic
platform [67]. There are 4 network interfaces configured on the router as show in Figure
5.6. The WAN interface is the public IP address that the physical server is connected to.
The LAN network is the one the private IP addresses inside OpenStack belong to. The
OPT1 network is the network to which the nodes that host the OpenStack cloud belong.
The OPT2 network is the one that provides floating IPs to the instances hosted in the
OpenStack cloud. Figures 5.7 to 5.10 show the firewall rules defined to allow communi­
cation between network entities and access to resources needed to manage the platform.

I n t e r f a c e s \ £> ”s ‘U -V ,

i t WAN lO O O baseT < fu ll-d up lex> 1 4 6 . 2 3 1 ,1 2 2 . 1 16

A l a n lO O O baseT u ll-duplex> 1 9 2 .1 6 8 .1 .1

A O P T1 lO O O baseT < f u ll-duplex> 1 0 .0 .0 .1

A G P T 2 lO O O baseT d u l l - d u p le x * 2 0 3 .0 .1 1 3 .1

Figure 5.6: The Four Interfaces Configured.

5.5 Summary

Implementing a cloud environment for virtualised IMS requires building the platform
from bottom up. This means starting from the choice of server that provides physical
resources for the cloud platform and ending with a discussion about virtual machines on
which the VNFs will run. A server with 4 CPUs, 64GB memory and 2TB of storage was

63

Firewall/ Rules/ WAN = lui s ©

Floating WAN LAN 0PT1 0PT2

R ules (D ra g to C h a n g e O rd er)

States Protocol Source Port Destination Port Gateway Queue Schedule Description Actions

□ 0 /0 B IPv4 ICMP
any

* * * * * none i / 0 0 f

□ ✓ 1 / 1 .08 MSB IPv4 TCP * * WAN address 80 (HTTP) * none Default allow to web configurator A ✓ 00 nr

□ ✓ 0 /0 B IPv4 TCP * * 10.0.0.11 80 (HTTP) * none NAT Port Forward Openstack Dashboard ■ £ ✓ 0 0 ®

□ ✓ 0 /0 B IPv4 TCP * * 10.0.0.11 22 (SSH) * none NAT SSH access Controller . £ ✓ 0 0 1 1

□ v ' 0 /0 B IPv4 TCP * * 10.0.0.31 22 (SSH) * none NAT SSH access Computel . £ ✓ 0 0 ®

□ ✓ 0 /0 B IPv4 TCP * * 10.0.0.32 22 (SSH) * none NAT SSH access Compute2 . £ ✓ 0 0 ®

□ v ' 0 /0 B IPv4 TCP * * 10.0.0.41 22 (SSH) * none NAT SSH access Block . £ ✓ 0 0 ®

□ ✓ 0 /0 B IPv4 TCP * * 203.0.113.5 22 (SSH) * none NAT SSH access TestVM . £ ✓ 0 0 ®

□ 0 /0 B IPv4 TCP * * 10.0.0.61 22 (SSH) * none NAT SSH access OpenBaton . £ ✓ 0 0 ®

□ V 0 /0 B IPv4 TCP * * 10.0.0.61 80 (HTTP) * none NAT Port Forward Zabbix Server . £ ✓ 0 0 ®

Figure 5.7: WAN Rules.

Firewall / Rules/ LAN S I M l O

Floating WAN LAN OPT! 0PT2

R u le s (D ra g to C h a n g e O rd e r)

States Protocol Source Port Destination Port Gateway Queue Schedule Description Actions

V 0 /0 B * * * LAN Address 80 * * Anti-Lockout Rule 0

□ V* 0 /0 B IPv4* LAN net * * * * none Default allow LAN to any rule ± ✓ 0 0 ®

[a 0 /0 B IPv6* LAN net * * * * none Default allow LAN IPv6 to any rule ± ✓ 0 0 ®

Figure 5.8: LAN Rules.

Firewall / Rules/ 0PT1 = Uii eh ©

Floating

1 R ules (D ra g to C han ge O rd e r)

States Protocol Source Port Destination Port Gateway Queue Schedule Description Actions

□ ✓ 0 /0 B IPv4 ICMP
any

* * * * * none Allow all ICMP ± ✓ 0 0 ®

a ✓ 0 /0 B IPv6* OPT1 net * * * * none Dfeault allow all ipv6 ± ✓ 0 0 ®

□ 2/1.84 MiB IPv4* OPT1 net * * * * none Dfeault allow all ipv4 ± ✓ 0 0 ®

Figure 5.9: OPT1 Rules.

5.5. SUMMARY 64

Firewall / Rules/ 0PT2 s ta i o

R u le s (D ra g to C h a n g e O rd e r)

States Protocol Source Port Destination Port Gateway Queue Schedule Description Actions

□ ✓ 0 /0 B IPv4 TCP * * 0PT2 net 3000 (HBCI) * none Allow all 3000 £ ^ 1 0 0 ®

□ V 0 /0 B IPv4 TCP * * OPT2 net 5672 * none Allow access to Rabbitmq £ ^ C 0 ®

a 0 /0 B IPv4 TCP * * 0PT2 net 22 (SSH) * none £ ^ G 0 ®

a ✓ 0 /0 B IPv4 TCP * * 0PT2 net 8080 * none £ ^ G 0 ®

a ✓ 0 /0 B IPv6* OPT2 net * * * * none Default allow all ipv6 £ ^ O 0 ®

□ 0 /2 KiB IPv4* 0PT2 net * * * * none Default allow all ipv4 £ ^ B 0 ®

Figure 5.10: OPT2 Rules.

chosen. To get the virtual resources for the cloud, a virtualisation layer is required in
the form of a hypervisor. The VMware vSphere ESXi Hypervisor 6.5 was installed on
to the server. This is an open source Type 1 hypervisor that installs directly onto the
server and gives VMs a more direct access to physical resources from the server. Inside
VMware, several VMs were deployed to host the services needed to create an OpenStack
cloud environment as well as VMs used for testing and orchestrasting the network services.
Getting the VMware hypervisor installed and ready to host VMs was simple and was done
without difficulty.

The work in this thesis is in the spirit of the ETSI NFV MANO specification. This means
that the ETSI NFV MANO specification guided the design process. The specification
highlights three major components that are required in the management and orchestra­
tion of VNFs namely VIM, VNFM and NFVO. OpenStack, the cloud operating system
provides the IaaS and represents the VIM component of the specification. OpenStack
Ocata was installed with the following nodes: a controller node, two compute nodes and
one block node. All these components were easily configured owing to OpenStack is a well
documented tool. A pfSense router was installed on its own VM inside VMware and on
it four network interfaces (WAN, LAN, OPT1 and OPT2) were configured using the easy
to use web interface. Some firewall rules were also defined for each of these networks.

Chapter 6

Phase 2: Management and
Orchestration

Chapter 5 presented the implementation of the OpenStack cloud platform. The second
part of the implementation is the VNF management and orchestration. The orchestrator
is an important part of the implementation as it responsible for the creation of the network
service and managing the network services.

This chapter will focus on the deployment of the Open Baton orchestrator. It will provide
details on how the orchestrator is configured and the different components offered by Open
Baton to give a robust management and orchestration platform.

6.1 N FV Orchestrator

According to the ETSI NFV MANO specification, the orchestrator is the main component
that makes decisions for how services and infrastructure interact. The importance of the
role of an orchestrator as the main decision point can be seen in Figure 6.1. It is the only
component in the architecture with a complete view of the infrastructure resources and
allocates them to the different services based on their requirements. The orchestrator also
maintains the resources of the network services during their life-cycle management [11].

Open Baton was installed and configured on the OpenBaton node inside VMware. The
Open Baton VM was created with 2 CPUs, 8GB memory and 100GB of storage. The

65

6.1. NFV ORCHESTRATOR 66

Figure 6.1: The Orchestrator as the Main Decision Point. Adapted from [11]

NFVO is the main function of Open Baton. It has a modular architecture and achieves
its different functions through a set of modules [11]. Figure 6.2 shows the Open Baton
dashboard through which several actions can be performed. Most of these can also be
done via the CLI, however the dashboard provides a nice visual of the different elements
in the Open Baton environment and their statuses.

Figure 6.2: Open Baton Dashboard.

6.2. VNF MANAGER 67

6.2 VN F Manager

The VNFM is an independent component that is able to communicate with the NFVO
and other components via a message bus or RPC protocols [36]. There are three ways in
which a VNFM can be integrated to work with the Open Baton NFVO.

1. Using the Generic VNFM or the Juju VNFM which are part of the Open Baton
project. This is the simplest and quickest approach that makes it easy to get started
with the VNF package implementation.

2. Using another VNFM that connects to the NFVO using the REST API or AMQP.

3. Building a VNFM using the SDK in Java or Python called vnfm-sdk. Communica­
tion between the NFVO and VNFM (Or-Vnfm) can be done using vnfm-sdk-amqp
or vnfm-sdk-rest depending on whether the user prefers AMQP or REST.

For ease of deployment, the Generic VNFM was chosen for this work. It is a VNFM
implementation that follows the ETSI MANO specification. It is the component that sits
between the NFVO and the VMs on which the VNF software is installed. The VNFM
also communicates with the EMS which is an agent inside the VMs that is responsible for
running VNF scripts. Figure 6.3 shows the communication between the NFVO, Generic
VNFM and EMS. This communication is done using the AMQP protocol over RabbitMQ.
The VNFM is responsible for sending commands to the EMS running on the VM. The
EMS then runs these commands on the VNF component (VNFC) [11].

6.3 V IM Integration - Point of Presence

The VIM was described in more detail in Chapter 2. It is the component in the NFV
MANO framework whose main task is to provide access to the NFVI resources and man­
ages these resources. Open Baton mainly provides the Open Baton NFVO and has imple­
mentations of the Generic VNFM or Juju VNFM. However, it needs access to virtualised
resources from the virtualisation host [36]. This is the role of a VIM, which is an external
component that has to be added to the system.

Open Baton implements VIM drivers for interacting with VIMs. The plugin interfaces are
Remote Procedure Call (RPC) based. The NFVO is installed with four default drivers

6.3. VIM INTEGRATION - POINT OF PRESENCE 68

Figure 6.3: Communication between the NFVO, Generic VNFM and EMS. Source [11]

namely, openstack, amazon, docker and test (for testing a VIM mockup) [11]. Most
deployments of Open Baton typically use OpenStack as their VIM of choice. The Open-
Stack driver uses the OpenStack4J library which provides Java APIs for calling OpenStack
REST APIs and enables the NFVO and VNFM to interoperate with a Point of Presence
(PoP) that is managed by OpenStack. Listing 6.1 shows the JSON file used to register
the OpenStack VIM on the NFVO via the dashboard under Manage PoPs.

Listing 6.1: JSON for registering OpenStack PoP

{
” name” : ” v i m - i n s t a n c e ” ,
” authUr l ” : ” h t t p : / / c o n t r o l l e r : 5 0 0 0 / v 3 / ” ,
” t e n a n t ” : ” c c06e792b8494f c 78db6109f 77356071” ,
” username ” : ” admin” ,
” password ” : ” openbaton” ,
” keyPair ” : ” openbaton—keypair ” ,
” s e c ur i t yGr oups ” : [

” d e f a u l t ”

] ,
” t y p e ” :” o p e n s t a c k ” ,

}
}

Table 6.1 explains the parameters used in the JSON file that is used to register the
PoP. The registration of a PoP completes the requirements of an ETSI MANO compliant

6.4. NETWORK SERVICE DEPLOYMENT FILES 69

system and network services can be deployed on the OpenStack cloud using the Open
Baton NFVO and Generic VNFM.

Parameters Meaning
name The name of the Point of Presence.
authUrl Keystone APIs endpoint.
tenant The version of the NSD.
username OpenStack username for an account with admin rights.
password The password for the OpenStack account.
keyPair An optional keypair used to access all the VMs.
securityGroups The security group with filtering rules to be applied to instances.
type The type of PoP used.

Table 6.1: PoP Registration Parameters. Source [11].

6.4 Network Service Deployment Files

Creating VNFs on the OpenStack VIM using the Open Baton orchestrator is done through
several scripts and files. Files for some common open source network services are available
on the Open Baton Marketplace. The two resources needed to create a network service
are VNF packages and a Network Service Descriptor (NSD). For simple network services,
the NSD alone can be used to deploy the network.

6.4.1 V N F Packages

A VNF package is either a TAR or CSAR archive with configuration information needed to
create the network service. It defines the parameters that match the resources available in
the PoP as well as the network requirements of the given network service. A VNF package
can also include policies on how the VNF should be managed during runtime. The TAR
format, which is the one used for this thesis, follows the ETSI NFV specification for VNF
packages and descriptors. VNF packages typically include: •

• V N F descriptor (V N F D): contains the information needed by the NFVO to
deploy the VNF.

• M etadata file: contains information for the NFVO to understand the contents of
the package.

• Scripts Folder: contains scripts used for lifecycle management.

6.4. NETWORK SERVICE DEPLOYMENT FILES 70

V N F D

The VNFD is a specification template from the VNF creator that details the virtual
resource requirements of a given VNF. The template is used by the NFV MANO functions
for VNF lifecycle operations including instantiation [68]. In Open Baton it is a JSON file
which can be added directly into the NSD file especially for simpler networks services.
For more complex network services, the the VNFD is referenced by its ID in the NSD.
As suggested by the names, the VNFD contains information about a specific VNF in a
network service and the NSD contains information about the entire network service. An
example of a VNFD can be seen in listing 6.2 which shows the VNFD of the OpenIMSCore
p-cscf component (available from the Open Baton Marketplace).

_________________ Listing 6.2: JSON for OpenIMSCore P-CSCF VNFD_________________

{
” name” :” p c s c f ” ,
” v e nd o r ” :” f o k u s ” ,
” ver s i on ” : ” 5 . 1 . 0 ” ,
” l i f e c y c l e _ e v e n t ” : [

{
” event ” : ” CONFIGURE” ,
” l i f e c y c l e _ e v e n t s ” : [

” b i n d 9 _ r e l a t i o n . j o i n e d . sh”

]
} ,
{

” event ” : ” INSTANTIATE” ,
” l i f e c y c l e _ e v e n t s ” : [

” p c s c f _ i n s t a l l . s h ”

]
} ,
{

” event ” : ” START” ,
” l i f e c y c l e _ e v e n t s ” : [

” p c s c f _ g e n e r a t e _ c o n f i g . s h ” ,
” p c s c f _ s t a r t . sh”

]
}

] ,
” c o n f i g u r a t i o n s ” : {

” name” :” c l i ent —c o n f i g u r a t i o n ” ,
” c o n f i g u r a t i o n P a r a me t e r s ” : [

{

6.4. NETWORK SERVICE DEPLOYMENT FILES 71

” c on f Key ” :” port ” ,
” value ” :” 4060”

} ,
{

” c on f Key ” :” name” ,
” value ” :” p c s c f ”

}
]

} ,
” vdu ” :[

{
” vm_image ” : [] ,
” s c a l e _ i n _ o u t ” :1 ,
” vnfc ” : [

{
” c o n n e c t i o n_ p o i n t ” : [

{
” f l o a t i n g I p ” :” random” ,
” v i r t u a l _ l i n k _ r e f e r e n c e

}
]

}
]

}
] ,
” v i r t u a l _ l i n k ” : [

{
” name ” : ” mgmt”

}
] ,
” dep l oyment _ f l avour ” : [

{
” f l a v o u r _ k e y ” :” m1. s ma l l ”

}
] ,
” t y p e ” :” p c s c f ” ,
” e n d p o i n t ” :” g e n e r i c ”

}

” : ” mgmt”

Table 6.2 shows the main parameters that need to be defined in the VNFD.

6.4. NETWORK SERVICE DEPLOYMENT FILES 72

Parameters Meaning
name The name of the VNF.
vendor The provider of the VNF.
version The version of the VNF.

lifecycle_events

A life_cycle event is made up of an Event and a list of
script names that need to run in that specific Event. The
supported event names are INSTANTIATE, CONFIGURE,
START, TERMINATE and SCALEJN.

configurations A configuration object contains a list of key-value parameters
that can be used in the scripts.

vdu This is the virtual deployment unit. It has its own set of
parameters which are listed in Table 6.3.

virtual-link It is also known as the internal virtual link which points to a
virtual link descriptor in the NSD.

deployment flavour The deployment flavour must correspond to a flavour on the
VIM, OpenStack in this case.

type
A string that states the type of the VNF. It is referenced in
the dependency parameter in the script files.

endpoint Defines the VNFM responsible for the VNF.

Table 6.2: VNF Descriptor Parameters. Source [11].

Parameters Meaning
vmJmage A list of image names or IDs available in the PoP.

vimInstanceName
A list of PoP where the VNF Components of the VDU will
be deployed. In the case where there is more than one, one is
selected at random.

scale_in_out The maximum number of nodes that can be launched within
the VDU at runtime.

vnfc The list of VNF Components to be created when the VDU is
instantiated.

Table 6.3: Virtual Deployment Unit (VDU) Parameters. Source [11].

M etadata Y A M L file

The Metadata file that contains VNF properties stored in simple <key>:<value> pairs.
Listing 6.3 is the corresponding Metadata file for the OpenIMSCore p-cscf component
whose VNFD is shown in listing 6.2.

6.4. NETWORK SERVICE DEPLOYMENT FILES 73

Listing 6.3: Metadata.yaml file for OpenIMSCore pcscf
name: p c s c f
p r o v i d e r : fokus
n f v o _ v e r s i o n : 5 . 1 .0
d e s c r i p t i o n : ” A Proxy-CSCF (P-CSCF) is a SIP proxy that is the
f i r s t point o f c ont ac t for the IMS te r mi na l . It can be l o c a t e d
e i t her in the v i s i t e d network (in f u l l IMS networks) or in the
home network (when the v i s i t e d network is not IMS compl iant y e t) . ”
image :

upload : ” f a l se ”
names :

- openims
l ink : h t t p : / / m a r k e t p l a c e . o p e n b a t o n . o r g : 8 0 8 2 / a p i / v 1 / i m a g e s /

52e2ccc0 —1dce -4663 —894d-28aab49323aa/im g
image — c on f i g :

name : openims
diskForm at : qcow2
contai nerFormat : bare
minCPU : 0
minDisk : 0
minRam : 0
i s P u b l i c : true

vim_types :
- openstack

The following parameters are to be defined in the Metadata file:

• name: The name of the VNF package.

• provider: The provider of the VNF.

• nfvo_version: The version of the NFVO which supports this package. The version
is given in the format X.Y.Z and the X.Y value is what is used to check whether
the VNF package is supported by the NFVO during on-boarding. If the version is
not supported, an error will appear when trying to on-board the package.

• description: A description of the VNF in human readable form.

• image:

— upload: The options are: true, false or check. Where true means that the
defined image must be uploaded on all VIM instances, regardless of whether
an image with that name already exists. False means that the image is assumed

http://marketplace

6.4. NETWORK SERVICE DEPLOYMENT FILES 74

to already exist on the VIM. Check is useful if there might be need to upload
a new image from a link.

— ids: The list of image IDs used to fetch the correct image from the VIM
instance. If no image matching the ID is found, it will check using image
names. If multiple images match, an exception will be thrown because of
ambiguity.

— names: The list of image names used to fetch the correct image from the VIM
instance. The image selection is done in the same way as with the ids. In the
example in listing 6.3, no are defined so the names option was checked instead.

— link: the link points to a URL where an image file is available for upload on
the VIM instance.

• im age-config:

— name: The name of the image to be uploaded. Available either directly in the
VNF package or via a URL link.

— diskFormat: The format of the disk type the image is stored in.

— containerForm at:The format of the container type the image is stored in.

— m inCPU : Minimum number of CPU cores required for using this image.

— minDisk: Minimum amaount of disk space required for using this image.

— m inRam : Minimum amount of RAM required for using this image.

— isPublic: Defines whether the image will be available to all tenants on the
VIM instance.

• vim_types: The list of VIM types supported by the VNF package.

Scripts

The scripts folder contains scripts needed to instantiate, configure and start a VNF on
a VM or container. These scripts are referenced in the lifecycle_events defined in the
VNFD and are executed based on the order of definition. A scripts-link can be used
in the Metadata file to reference a URL link of where the scripts are located. If this
parameter is defined, the scripts folder is ignored because the scripts-link has a higher
priority over the folder.

6.4. NETWORK SERVICE DEPLOYMENT FILES 75

At the time of this research, the scripts folder cannot have subfolders and all scripts are
at the same level within the scripts folder. The script files are either Python scripts or
shell scripts. Depending on the VNF Manager used, there are multiple ways in which
runtime parameters can be passed to the scripts.

6.4.2 Network Service Descriptor

The Network Service Descriptor is a template file that follows the ETSI MANO Specifica­
tion that can be used to launch network services. There are two formats that can be used
for an NSD namely, JSON and TOSCA. The JSON format is the representation specified
by ETSI and therefore the one implemented in this thesis.

Listing 6.4 shows the condensed NSD file for the OpenIMSCore network service. The
NSD is the file that is used to launch the network service and create a Network Service
Record (NSR) on the NFVO. For this reason, the NSD needs to reference all the VNFDs
for all the VNFs in the network service and this is done by adding a list of VNFD IDs in
the vnfd parameter. A network service is the result of different network functions working
together effectively and this implies some dependency between the VNFs in the network.
These dependencies can be defined in the NSD and make a big part of the NSD especially
for complex networks.

Listing 6.4: Sample Network Service Descriptor (NSD) JSON file

{
” name” OpenIMSCore Bind9 FHoSS” ,
” v e nd o r ” :” f o k u s ” ,
” v e r s i o n ” : ” 2 . 0 ” ,
” vnfd ” : [. . .] ,
” v ld ” : [

{
” name ” : ” mgmt”

}
] ,
” vnf_dependency ” : [

{
” s o u r c e ” :{

” name” :” b i nd9”

} ,
” t a r g e t ” : {

name fhoss

6.4. NETWORK SERVICE DEPLOYMENT FILES 76

} ,
” parameters ” : [

” u s e F l o a t i n g I p s F o r E n t r i e s ” ,
” realm ” ,
” mgmt” ,
” mg mt _ f l o a t i ng I p ”

]
} ,

{
” source ” : {

” name ” :” i c s c f ”

} ,
” t a r g e t ” : {

” name” :” s c s c f ”

} ,
” parameters ” : [

” name” ,
” mgmt” ,
” mg mt _ f l o a t i ng I p ”

]
}

]
}

The NSD has several parameters that provide information to the NFVO about the service
being deployed. The parameters are explained in Table 6.4.

Parameters Meaning
name The name of the network service.
vendor The provider of the network service.
version The version of the NSD.

vnfd

The list of VNF Descriptors for all the VNFs that need to be de­
ployed. This can be the JSON representation of the VNFD or sim­
ply the ID of the VNFD. However, if VNF packages are on-boarded
for the NS, there is no need to add the JSON again in the NSD and
its more convenient to use the IDs generated by the NFVO.

vld The list of virtual links referenced in the vld sections of the VNF
Descriptors which are used to define network connectivity.

vnf_dep endency An optional list of dependencies between VNFs.

Table 6.4: Network Service Descriptor Parameters. Source [11].

6.5. CREATION OF THE NETWORK SERVICE RECORD (NSR) 77

6.5 Creation of the Network Service Record (NSR)

Once the NSD is launched, the process shown in Figure 6.4 begins. The sequences of
events shows how messages are sent between the NFVO, Generic VNFM and Generic
EMS to orchestrate the deployment of the NS which creates an NSR. The successful
deployment of the NS is indicated by the NSR getting into an ACTIVE state. The
sequence of interactions is explained further in the steps below that correspond to the
steps shown in Figure 6.4. 1

Figure 6.4: Sequence for the creation of a Network Service Record using Open Baton.
Source [11].

1. The process begins with the NFVO sending an INSTANTIATE message to the
Generic VNFM. The INSTANTIATE message contains information needed to create

6.5. CREATION OF THE NETWORK SERVICE RECORD (NSR) 78

the VNF Record. This information comes in the form of the VNFD and other
parameters.

2. The Generic VNFM then creates the VNF Record.

3. A GrantOperation message is sent to the NFVO. This message is so that the NFVO
checks if there is enough resources to create the VNF Record. If there are enough
resources, a GrantOperation message with an updated VNF Record is sent back to
the VNFM.

4. The VNFM creates an AllocateResource message using the VNF Record and sends
it back to the NFVO.

5. The NFVO creates the VMs in the VIM, OpenStack for this thesis, and sends back
the AllocateResources message to the VNFM. The instantiate method is then called
by the VNFM.

6. The scripts from the VNF package are sent to the EMS and stored directly on the
VM. The execution of the scripts is called by then VNFM as defined in the VNF
Descriptor.

7. Once scripts have successfully been executed, the VNFM sends back the instantiate
method the NFVO.

8. If the VNF has some dependencies, the Modify message is sent from the NFVO to
the VNFM.

9. The VNFM executes scripts in the Configure lifecycle event as defined in the VNF
Descriptor.

10. If there are no errors, the Modify message is sent back to the NFVO.

11. The NFVO then sends the Start message to the VNFM.

12. The VNFM calls the EMS to execute scripts defined in the Start lifecycle event.

13. Lastly, the Start message is sent back to the NFVO if there were no errors.

V N F R ecord and N S R States

Once an NSD is launched, the corresponding NSR is created in a NULL state. Figure 6.5
shows a diagram of the possible VNFR and NSR states which reflect the ETSI NFV states

6.5. CREATION OF THE NETWORK SERVICE RECORD (NSR) 79

[68] and the events resulting in the transition between states. Each VNF also has its own
record referred to as a VNFR. The initial state for all NSR and VNFR is the NULL state.
After the INSTANTIATE method is finished running in the VNFM, the VNFR state
becomes INSTANTIATED. Once all the VNFRs are in the INSTANTIATED state, the
NSR also goes into an INSTANTIATED state. In cases where the VNF is a target of a
dependency, the MODIFY message is sent to the VNFM and eventually comes back to the
NFVO which then sets the VNFR state to INACTIVE. When all the VNFRs are in the
INACTIVE state, the NSR state is also set to INACTIVE. If there is a START message,
it is sent to the VNFM and when it comes back to the NFVO, the state is changed to
ACTIVE by the NFVO. Once all the VNFRs are ACTIVE the NSR also gets into an
ACTIVE state [11]. The ACTIVE state indicates that the deployment was successful and
the NS is now ready for use.

Figure 6.5: VNF Record States and Transitions. Source [11].

If something goes wrong during the deployment of the NS and any of the VNFR end up
in an ERROR state, the NSR will get into an ERROR state. When an NSR is deleted,
the TERMINATE method is called and the NSR gets into a TERMINATED state. The
NFVO then sends a TERMINATE message to all the VNFM. The VNFR state is then

6.6. SERVICES 80

set to TERMINATED on the NFVO and when all the VNFRs are in a TERMINATED
state, it means that the NSR has been completely deleted from the system [11].

6.6 Services

One of the aims of Open Baton is to be an extendable platform where new services can be
added using the Open Baton SDK as a tool for development. Two such services that are
already available are the Autoscaling Engine (ASE) and the Fault Management System
(FMS). Both systems were explored as they introduce the functions that are need to
maintain QoS as well as make the NS more resilient under load or in the event of a fault.

6.6.1 Autoscaling Engine - ASE

The ASE is an external component that integrates with Open Baton to provide autoscal­
ing services. This means that the VNF components that make up a network service can
be scaled up or down based on a set threshold. The ASE works based on AutoScalePolicy
that can be defined in the VNF Descriptor. AutoScalePolicy are defined using several
parameters which are explained in Table 6.5.

Listing 6.5 shows an example of an AutoScalePolicy that can be added in the VNFD. The
AutoScalePolicy defines a scaling-out operation that should happen if the measurements
from the metric are greater than the threshold. In other words, the VNF is to be scaled
out if the CPU utilisation by user processes exceeds 50%.

Listing 6.5: Example of an Autoscaling Policy

a u t o _ s c a l e _ p o l i c y ” : [

{
” name” : ” scale - o u t ” ,
” t h r e s h o l d ” : 100 ,
” c ompar i sonOper ator ” : ” >=” ,
” p e r i o d ” : 30 ,
” coo ld ow n ” : 60 ,
” mode” : ” REACTIVE” ,
” t y p e ” : ’’WEIGHTED” ,
” a larms” : [

6.6. SERVICES 81

{
” m e t r i c ” : ” system . cpu . l oad [percpu , avgl] ” ,
” s t a t i s t i c ” : ” avg” ,
” c ompar i sonOper ator ” : ” > ” ,
” t h r e s h o l d ” : 0 . 7 0 ,
” we i ght ” : 1

}
] ,
” a c t i o n s ” : [

{
” t y p e ” : ” SCALE_OUT” ,
” v a l u e ” : ” 2” ,
” t a r g e t ” : ” < t a r g e t > ”

}
]

}] * •

As explained in Table 6.5, alarms are what trigger the actions defined within an Au-
toScalePolicy. Alarms are defined using their own set of parameters which are explained
in Table 6.6. Actions can be defined using three parameters, namely:

• type - This defines the type of action that should be executed. There are four types
of scaling actions.

— SCALE_OUT - scales out by the given number of instances.

— SCALE_OUT_TO - scales out to a specifc number of instances.

— SCALE_IN - scales in by the given number of instances.

— SCALE_IN_TO - scales in to a specific number of instances.

• value - This is the value associated with the type of action. For example, a
SCALE_OUT requires a value of the number of instances that should be scaled
out. SCALE_OUT_TO requires the number to which instances should be scaled
out.

• target - Target allows other VNFs to be scaled based on conditions of the VNF
under consideration being met. If multiple VNFs have the same type, only one of
the VNFs will execute the scaling action. If no target is defined, the scaling action
is executed on the VNF that the policy is defined on.

6.6. SERVICES 82

Parameters Meaning
name The human-readable name of the AutoScalePolicy.

threshold The percentage of sub alarms that should be fired before
firing the AutoScalePolicy high-alarm.

comparisonOperator

The comparison operator used to check the percentages
of alarms that have been fired. Where a value of 100
would mean that all weighted alarms have to be thrown
before the AutoScalePolicy takes action and value of 50
means only half.

period

The period in which the conditions of the AutoScale-
Policy are checked. For example, a period of 60 means
that the conditions defined in the AutoScalePolicy are
checked every 60 seconds.

cooldown

This is the time period that the VNF has to wait be­
tween scaling actions to ensure that the scaling opera­
tion takes effect first. This means that any other scaling
operations will be rejected during this time.

mode
The way in which the alarms and conditions are recog­
nised in the AutoScalePolicy. This can be REACTIVE,
PROACTIVE and PREDICTIVE.

type
This defines how alarms are handled. Options are
VOTED, WEIGHTED and SIMPLE.

alarms

This is a list of alarms that belong to the same Au­
toScalePolicy. The alarms are affected by the mode and
type of the AutoScalePolicy and this affects the checks
that lead to the triggering of the AutoScalepolicy.

actions
These are the actions that get executed as a result of the
conditions and alarms defined being met. Once the con­
ditions are met, corresponding actions are implemented.

Table 6.5: AutoScalePolicy Parameters. Source [11].

6.6.2 Fault Management System - FM S

The Fault Management System is a rule-based external component that uses alarms from
the VIM to perform switch-to-standby or heal functions. It uses rules called fault man­
agement policies to generate alarms and define how to react to the alarms. The rule that
defines how to react to the alarms is called a Drools rule. As with the AutoScalePolicy,
the Fault Management Policy is also defined in the VNFD, particularly in the VDU. List­
ing 6.6 shows an example of a Fault Management Policy defined to check whether the
P-CSCF server is available by pinging the server every 10 seconds. The parameters used
in the Fault Management Policy are explained in Table 6.7.

6.6. SERVICES 83

Parameters Meaning

metric

This is the metric to be considered when checking conditions
and is made available through the monitoring system. Metric
values include CPU idle time, memory utilisation and network
traffic.

statistic
This defines how the final measurement result should be cal­
culated over the group of instances. The possible values are:
sum, min, max, avg and count.

comparisonOperator
This defines how the final measurement result should be com­
pared against the threshold. The possible values are: >, <,
> = , < = , = and !=.

threshold This defines the value to which the final measurement result
of the given metric is compared.

weight

This defines the weight of an alarm in relation to the rest of
the rest of the alarms defined in the AutoScalePolicy. This
allows for high priority alarms to be given a higher weight
value.

Table 6.6: Alarm Parameters for Autoscaling. Source [11].

Listing 6.6: Example of a Fault Management Policy

” fault . management . p o l i c y ” : [

{
” name” : ” P-CSCF Server not a v a i l a b l e ” ,
” isVNFAlarm” : t r u e ,
” c r i t e r i a ” : [

{
” p a r a me t e r _ r e f ” : ” agent . p i ng” ,
” f u n c t i o n ” : ” nodata (lm) ” ,
” v n f c _ s e l e c t o r ” : ” a t . l e a s t . o n e ” ,
” c o m p a r i s o n . o p e r a t o r ” : ” = ” ,
” t h r e s h o l d ” : ” 1”

}
] ,
” s e v e r i t y ” : ” CRITICAL” ,
” p e r i o d ” : 10

}
]

The criteria has its own set of parameters explained in Table 6.8.

6.6. SERVICES 84

Parameters Meaning

name The human-readable name of the Fault Management
Policy.

isVNFAlarm This is true if the alarm is of type VNF.

criteria The criteria that defines a monitoring parameter and a
threshold beyond which an alarm will get fired.

severity The severity of the alarm.
period How frequently the criteria is checked (in seconds).

Table 6.7: Fault Management Policy Parameters. Source [11].

Parameters Meaning

parameter_ref
This a reference to a monitoring parameter already de­
fined in the VDU. An example of how the monitoring
parameters are added is shown in Listing 6.7.

function The functions that is to be applied to the parameter.

vnfc_selector

This sets whether the criteria is met when all the VNF
components cross the threshold or when there is at least
one that crosses the threshold. The possible values are
either all or atJeasLone.

comparison_operator The comparison operator for the threshold.

threshold The value compared against the value from the param-
eter_ref.

Table 6.8: Fault Management Policy Parameters. Source [11].

Listing 6.7: Adding monitoring parameters to VDU for use in Fault Management Policy

moni t o r i ng_par amet er ” : [
” agent . p i ng ” ,
” system . cpu . l oad [al l , avg5] ” ,
” net . t c p . l i s t e n [80] ” ,
” system . cpu . u t i l [, user] ”

]

Zabbix is the only monitoring system currently supported by Open Baton therefore the
monitoring parameters that can be referred to in a VDU and Fault Management Policy
are the ones defined for the zabbix agent1. A Zabbix server communicates with the Zabbix
agent in order to gather data about the VNF [11, 69]. The function used in the criteria
also needs to be one of the trigger functions1 2 defined by Zabbix. The example in Listing
6.6 uses the nodata() function which checks if no data has been received in the given time

1 Available at: https://www.zabbix.com/documentation/3.0/manual/config/items/itemtypes/zabbix_agent
2Available at: https://www.zabbix.com/documentation/3.0/manual/appendix/triggers/functions

https://www.zabbix.com/documentation/3.0/manual/config/items/itemtypes/zabbix_agent
https://www.zabbix.com/documentation/3.0/manual/appendix/triggers/functions

6.7. SUMMARY 85

period, where a value of 1 means no data has been received and 0 means otherwise. The
Zabbix monitoring system is discussed in more detail in the next chapter.

The FMS follows the workflow shown in Figure 6.6. The NFVO sends a message to
initiate the deployment of the VNF by sending an INSTANTIATE message to the VNFM
followed by the rest of the messages needed to get the VNF started and working. The
VNFM uses the the messages to instantiate, configure and start the VNF. Once the the
VNF is started, the VNFM informs the NFVO, which then sends a message to the FMS if
there is a fault management policy defined in the descriptor. The FMS sends a CREATE
FM message to the OpenStack VIM to create a fault management (FM) job on the VNF,
followed by a CREATE THRESHOLD message to set the threshold. When this threshold
is crossed, an alarm is set off and a message is sent to the FMS so that it uses the FM
policy for that VNF to send the appropriate ACTION message to the NFVO which then
implements the ACTION on the VNF. The possible actions are:

• Heal: A Heal lifecycle event must be included in the VNFD. Scripts in the Heal
lifecycle event will be executed by the VNFM,

• Switch to standby V N F C (stateless): A Switch to Standby action can be
performed if there is a VNFC on standby in the VNF. The service is switched
from the failing VNFC to the VNFC on standby automatically. A high-availability
parameter can be added to the VDU to have a VNFC on standby as shown in Listing
6.8.

Listing 6.8: Adding high availability parameter for Switch to Standby

” h i g h _ a v a i l a b i l i t y ” : {
” r e s i l i e n c y L e v e l ” : ” ACTIVE_STANDBY_STATELESS” ,
” redundancySchem e” : ” 1 :N”

}

6.7 Summary

Open Baton fulfilled the roles on the NFVO as well as the VNFM. Nodes required to
run the OpenStack Cloud and Open Baton were all deployed in VMware ESXi. Open
Baton offers an external service, an Autoscaling Engine (ASE) that provides autoscaling of

6.7. SUMMARY 86

Figure 6.6: Fault Management System Workflow. Source [11].

VNFs. ASE requires the presence of a monitoring system, therefore the Zabbix monitoring
system needed to be installed.Its Installation and use will be described in the next chapter.

Chapter 7

Phase 3: Monitoring

In order to get information to orchestrate and for example, automatically scale the network
services, the Open Baton ASE needs to be able to get information from the VNFs. As
mentioned earlier, Open Baton provides a plugin mechanism that it uses to interface with
monitoring systems. In particular, a readily available monitoring plugin is the Zabbix
plugin which allows Open Baton to use Zabbix as its monitoring system and communicate
with the Zabbix server.

Zabbix is an open-source distributed monitoring solution for monitoring networks and
applications, developed by Alexei Vladishev and is now developed and supported by
Zabbix SIA [69, 70]. Zabbix can monitor different kinds of network devices including
virtual machines, which is convenient for more complex network architectures. It uses
a client-server model through the use of a Zabbix agent that runs on the host being
monitored and gathers data to send to the Zabbix server. The Zabbix server is the central
process of the monitoring system and interacts with Zabbix agents and proxies and sends
the necessary notifications to subscribers. Communication between the Zabbix agent
and Zabbix server supports encryption starting from Zabbix version 3. Configuration
parameters and statistics can be accessed and configured via a web-based frontend for
convenience [70].

This chapter will give details of how the Zabbix monitoring system was deployed and
configured to work with the Open Baton deployment. It will also give insight into some
initial experimentation done with monitoring the performance of VNFs running a simple
network service.

87

7.1. ZABBIX SERVER 88

7.1 Zabbix Server

Before the Zabbix plugin can be installed, a Zabbix server needs to already be installed
and running. The two versions of the Zabbix server supported are Version 2.2 and Version
3.0. Zabbix server 3.0.22 was installed following instructions in [71]. Even though the
Zabbix server may be installed on a server separate from the NFVO, it can simply be
installed on the same server. Of course, when installing the Zabbix server on the same
node as the NFVO, it is important that the machine used is powerful as both systems
are heavy consumers of memory and CPU resources [71]. The Zabbix server used for
this work was installed on the same server as the NFVO and did not cause performance
problems because the server used is powerful enough to run both systems. Figure 7.1
shows the architecture of the deployed Zabbix system inside Open Baton.

Figure 7.1: Deployed Zabbix Architecture.

Once the Zabbix server was installed and running, the Zabbix plugin could be installed
on the same server as it is supposed to be installed on the server with the NFVO. From the
Open Baton node, the Zabbix server web console is then available at http://localhost/zabbix
and a snapshot of the dashboard can be seen in Figure 7.2. From the snapshot it can

http://localhost/zabbix

7.2. EXPERIMENTS - CONFIGURING ZABBIX 89

In ve n to ry R eports C onfiguration Admin'rst ? ^I z a b b i x K E H I ration Q, Q share

1________________________ ▲ _____
Dashboard O vervew Web Latest data Triggers Events Graphs Screens Maps Discovery IT services

Dashboard □

F a v o u r ite g ra p h s S ta tu s o f Z a b b ix

No graphs added. Parameter Value Details

Graphs Zabbix server is running Yes 203.0.113.163:10051

Number o f hosts (enabied/disabled/tem plates) 41 2 / 1 / 3 8
F a v o u r ite s c re e n s • A

Number o f items [enabled/d isab ied/not supported) 7B 7 8 / 0 / 0
Mo screens added.

Number o f triggers (enabled/d'rsabled [problem/okD 36 3 4 / 2 [0 / 3 4]

Screens Slide shows
Number o f users (online) 2 1

F a v o u r ite m a p s Required server performance, new values per second 0.95

No maps added. Updated: 15:57:52

Maps
S ys te m s ta tu s

Host group Disaster High Average Warning Infoirmation Not classified

Discovered hosts 0 0 0 0 0 0

Linux servers 0 0 0 0 0 0

Virtual machines 0 0 0 0 0 0

Figure 7.2: Snapshot of Zabbix Web Interface

be seen that the Zabix server is up and running and its monitoring is available via port
10051. The snapshot also shows the number of hosts being monitored divided into the
ones that are enabled, disabled and templates (entities that can be applied to hosts).
Several configurations can be made through this Web Console including adding hosts to
be monitored and adding triggers to get notified of events that are of interest.

7.2 Experiments - Configuring Zabbix

To become familiar with monitoring VNFs using Zabbix, a simpler network service was
deployed. The IMS core network has a number of functional components, making it a
more complex network service. The SIPp network service available from the Open Baton
Marketplace was deployed for this purpose. The SIPp network service is simple and is
created using just the NSD and does not require any separate VNF packages. There are
two options for deploying the SIPp NS, one uses only private IPs and the other uses both
private IPs and floating IPs. The NSD using floating IPs was chosen for this experiment.
The network is made up of two VNFs namely, the SIPp server and the SIPp client. SIPp
is a SIP performance tester. It is used to test the SIP protocol using basic SipStone user

7.2. EXPERIMENTS - CONFIGURING ZABBIX 90

agent scenarios namely, UAC and UAS. The user agents establish and release calls using
the INVITE and BYE request methods [72]. In the deployed SIPp NS, the SIPp client
VNF represents the UAC and the SIPp server VNF represents the UAS.

7.2.1 Zabbix agent

When a network service is deployed using Open Baton and the Zabbix monitoring plugin
is configured, a Zabbix agent is automatically installed on each VNF. The Zabbix agent
monitors local applications and resources on the monitoring target it is deployed on.
Once an agent is created and configured on the host, it still has to be registered with the
server and this can be done via the dashboard. A host can simply be added by going to
Configuration ^ Hosts ^ Create host. Figure 7.3 shows a snapshot of the configurations
for adding the SIPp server.

M onitoring Inve n to ry R eports C onfiguration A dm in is tra tionZ A B B IX
Host groups Templates Hosts Maintenance Actions Discovery IT services

Hosts

□ share

All hosts / sipp-server-1475638 Enabled
Web scenarios

ZBX SNMP JMX I PM I Applications to Items 39 Triggers ib Graphs 7 Discovery ru le s 2

Host Templates IPMI Macros Host inventory Encryption

Host name sipp-server-1475638

Visible name

Groups In groups

New group

A gent interfaces IP address

Add

O ther groups

Discovered hosts Hypetviso rs
Linux servers Templates
V idua! machines Zabbix servers

— 1

DNS name Connect to Port

203.0.113.142 j sipp-server-1475638 | DN5 10050

Default

o

Figure 7.3: Adding the SIPp Server Host for monitoring in Zabbix

The Host name and DNS name are set to the name assigned to the SIPp server host
in OpenStack. The host can be associated with certain host groups. Groups are used
to logically group hosts and these groups are used when assigning access rights to hosts

7.2. EXPERIMENTS - CONFIGURING ZABBIX 91

in different host groups [69]. The groups that were assigned to the SIPp server are:
Discovered hosts, Linux servers and Virtual Machines. This is because it fits into all
three categories. The IP address was set to the floating IP address that was attached to
the host in OpenStack. The DNS name could have been omitted since the Connect to
option is set to IP. Zabbix agents connect to the Zabbix server using Port 10050. The
Template tab allows users to link Templates with a host. A template is a set of entities
that can be applied to hosts. These include triggers, graphs and items which will be
discussed further in following sections. There are several templates available to choose
from but the template that was linked on the SIPp server host as shown in Figure 7.4 is
the Template App Zabbix Agent. At this point the host can be added and saved. Both
Figure 7.3 and 7.4 show that the status for the host is Enabled meaning that monitoring
is enabled for that host. The ZBX option is in green which means that the host can be
monitored using the Zabbix agent only, SNMP and the other options are unavailable for
that host.

Figure 7.4: Adding a Template to the SIPp Server Host

7.2.2 Items

Items define the metric data that is to be received from a host [69]. Items can be created
directly on hosts but a more efficient approach is to create Items inside a Template.
Available Templates can be found under the Templates tab. Selecting Template App
Zabbix Agent will display all the Items inside the Template as well as the option to create
a new Item.

7.2. EXPERIMENTS - CONFIGURING ZABBIX 92

One of the important metrics when checking the performance of a server under load is the
CPU utilisation. If CPU resources are getting overloaded, the server is under-performing.
For this reason, this initial experiment focused on looking at CPU utilisation data. An
Item with the configurations shown in Figure 7.5 was added to Template App Zabbix
Agent. The Name is simply the name displayed for this Item and is set to CPU utilization.
The Type is set to Zabbix agent, which means that communication with the Zabbix agent
will be used to collect data. The Key has to be one of the pre-defined keys that come
with the Zabbix agent is set as the Type parameter. It is a technical representation
of the name of the piece of information that is to be gathered. The Key parameter
was set to system.cpu.util[,user] meaning that information about CPU utilisation by user
applications was to be collected. The Key definition for CPU utilisation is system.cpu.util[
<cpu>, <type>, <mode>] The cpu parameter is the CPU number and defaults to all,
the type is the specific CPU consumer for which data is to be collected. Possible values
are user, idle, nice, interrupt, system, iowait, steal, softirq, guest, guest_nice. User is the
parameter used to collect information of CPU utilisation by the applications running on
the host. The possible values for mode are avg1 (default), avg5 and avg15 which say get
the average over a given time period in minutes. The Item configured in this experiment
gives CPU utilisation information for all CPUs, for the type user and using one minute
averages.

Figure 7.5: Adding an Item to a Template

7.2. EXPERIMENTS - CONFIGURING ZABBIX 93

7.2.3 Triggers

Items are very useful as they make it possible to receive data on a specific metric. However,
this is the only thing they do: they collect data and do not do any evaluation. To add
the ability to automatically evaluate incoming data, Triggers can be defined based on
the Items. A Trigger gives an expression used to define a threshold for acceptable data
values for when the host is in an OK state. When the incoming data exceeds the set
threshold, the Trigger goes off and get into a PROBLEM state. If the data goes back to
more acceptable values, the Trigger goes back to an OK state [69].

A Trigger was defined as per the configurations shown in Figure 7.6. The Name of the
Trigger was set to ‘ CPU overload on {HOSTNAME}’ and this is the name that will
represent the Trigger inside Zabbix. Zabbix supports the use of variables referred to as
Macros. The syntax for Macros is {M ACRO}, which resolves to a valid value within the
context of that deployment of Zabbix [69]. In this case, {HOSTNAME} will resolve to
the name of the specific host being monitored. The syntax for Trigger expressions can
simply be expressed as:

{<server > :<key >.<function >(<parameter >) } < operator ><constant >

Where,

• server is the host or Template the Trigger is for.

• key is the key for the Item whose data is to be analysed.

• function is used to refer to specific values from the collected data. Possible values
include avg() for an average of the values, last() for the last value and sum() for a
sum of the values.

• param eter provides a parameter value because most of the numeric functions ac­
cept a parameter. For example, avg(300) gives the average of all values within 300
seconds.

• operator is mainly standard mathematical operators, such as: *, / , + , -, < and >.

• constant is the value against which the operator evaluates the data from the agent

{<server > :<key >.<function >(<parameter >)} .

7.3. EXPERIMENTS - RUNNING THE SIPP SCENARIOS 94

Triggers
All tem plates / Template App Zabbix A gen t AppLications i Item s-: Triggers -r Graphs Screens Discovery rules Web scenarios

Trigger Dependencies

Name | CPU overtoad on {HOSTNAME}

Expression

E xpressionconstrLctq f

Multiple PROBLEM events generation

Description | CPU utifeatron by the user app lication has gone over 50%

URL

Severity j Not classified | Information Warning | Average High Disaster

Enabled Q

Clone | | Delete | | Cancel

Figure 7.6: Creating a Trigger.

As mentioned earlier, Templates are in essence sets of entities such as Items and Triggers.
The expression used for this experiment creates a Trigger for Template App Zabbix Agent.
This means that all hosts linked to this template will inherit this Trigger. An advantage
of doing this is that the Trigger can be created once and automatically applied to all new
hosts that use this Template. The Expression parameter uses the Item key to refer to the
Item the Trigger is for, in this case, system.cpu.util[,user]. The function used is last(),
meaning that only the last value is being looked at. The ‘greater than’ operator is used
with a somewhat arbitrary constant of 50. The Severity of the trigger can be classified as
(in order of severity): Not classified, Information, Warning, Average, High and Disaster.
In this case it was set to a severity of High.

7.3 Experiments - Running the SIPp Scenarios

In order to monitor the SIPp server, call scenarios need to be sent to it from the SIPp
client that has traffic to handle. The client emulates a number of users calling the server.
The SIPp executable has some basic scenarios embedded and ready for execution. The

7.3. EXPERIMENTS - RUNNING THE SIPP SCENARIOS 95

most common scenarios are simply named uas and uac. The server listens for request
messages from the client and the server scenario, uas, was run using the command:

screen -d -m -S server sipp -sn uas

The client sends requests to the server and the client scenario, uac, was running using the
command:

screen -d -m -S client sipp -sn uac 192.168.100.26:5061 -d 10 -r 100 -rp 1000 -rateJncrease
10 -fd 10 -rate_max 1000 -traceJogs

The client scenario have several parameters added to it to control the behaviour of the
traffic sent to the server. The server is available at the private IP address of 192.168.100.26
and the server is listening on port 5061. The other configurations are explained below
[73]:

• -d Sets the length of the ’pause’ that represents the length of the call (in millisec­
onds). The default value is 0.

• -r Sets the call rate (in calls per seconds).

• -rp Specifies the rate period (in milliseconds) for a given call rate. The default value
is 1 second. If for example, the call rate is set to 10 and the rate period set to 3000,
i.e -r 10 -rp 3000, it means 10 calls every 3 seconds.

• -rate_increase Specifies the rate increase every -fd seconds, allowing for load to be
increased for different logging periods.

• -fd Sets the statistics dump log report frequency (in seconds). The default value
is 60. If for example, the rate increase is set to 15 and the frequency set to 20, i.e
-rateJncrease 15 -fd 20, it means that calls must be increase by 15 every 20 seconds.

• -rate_m ax If the rateJncrease is set, rate_max sets the maximum rate after which
it should quit.

• -traceJogs Allows logs to be traced and saved in <scenario file name>_<pid> Jogs.log.

Screenshots of the scenario screens can be seen in Figure 7.7 and 7.8.

96

Figure 7.7: Server Listening for SIP calls.

ubuntu@sipp-client-4341547: □ X

Call-rate(length} Fort
170.0(10 ms)/l.000s 5060

-- Scenario Screen -------- [1-3]: Change Screen -■
Total-time Total-calls Remote-host

72.43 s 3504 192.168.100.26:5060(UDP)

173 new calls daring 1.003 s period
2 calls (liirdt 510)
0 Running, 4335 Parsed, 431 Woken rp
0 dead call msg (discarded)
3 open sockets

1 rr.s scheduler resolution
Peak was 13 calls, after 63 s

0 out-of-call msg (discarded)

INVITE ---------- >
100 <---------------
130 <----------
133 <----------
200 <---------- E-RTD1
A C K ---------- >

Pause [lOir.s]
B Y E ---------- >
200 <------------------

Messages Retrans Timeout u
3504 0 0
0 0 0 0
3504 0 0 0
0 0 0 0
3504 0 0 0
3504 0
3504 0
3502 0 0
3502 0 0 0

Unexpected-Msg

[+|-|*|/]: Adjust rate ---- [q]: Soft exit ---- [p]: Pause traffic

Figure 7.8: Client Releasing Calls.

7.4. EXPERIMENTS - MONITORING WITH ZABBIX 97

7.4 Experiments - Monitoring with Zabbix

In Section 7.2 the SIPp server was registered as a host in the Zabbix server and from
that point, the SIPp server was being monitored by Zabbix. Under the Monitoring tab
in Zabbix, there is an option to view information in a graph format. Figure 7.9 shows a
screenshot of a graph showing the CPU utilisation trend as traffic is going through the
SIPp server.

Figure 7.9: Screenshot of Graph showing CPU utilisation on SIPp server Host.

Figure 7.10 shows a key for the graph and some statistics for when the CPU utilisation
had gone over the threshold. It can be seen that the last value (which is our value of
interest) for CPU utilisation at this point was 55.51 which is over the threshold of 50.
This means that we expect the trigger that we set to go off and go into a ‘PROBLEM’
status. Figure 7.11 shows a screenshot of the monitoring dashboard. On it, it can be
seen that there is an issue with the SIPp server. The issue flagged by the dashboard
corresponds with the Trigger configured and the message shown is “CPU overload on
sipp-server-1475638” . The graph in Figure 7.9 shows that the CPU utilisation goes down
when the maximum call rate is reached as expected. As mentioned in Section 7.2.3, the
Trigger should automatically go back into an ‘OK’ state once the values are back within
an acceptable range. Figure 7.12 shows this expected behaviour and it can be seen that
the dashboard nolonger flagged any issues once CPU utilisation was within an acceptable
range.

7.5. SUMMARY 98

last min avg max
□ C PU idle time [avg] 52.21 % 0 % 47.35 % 95.05 %
■ C PU utilization [avg] 55.51 1.4 32 .77 73.17
1 C PU system time [avg] 2 1 .6 9 % 3.18 % 12.15 % 2 1.69 %
□ C PU iow aittim e [avg) 0 % 0 % 0 .0 0 7 3 2 3 % 0.23 %
1 C PU n ice time [avg] 0 % 0 % 3.97 % 8 3.86 %
■ C PU interrupt time [avg] 0 .02 % 0 % 0 .0 0 9 1 0 5 % 0.09 %
□ C PU softirq time [avg] 3.8 % 0.1 % 3.82 % 10.87 %
□ C PU steal tim e [avg) 0 % 0 % 0 % 0 %

Figure 7.10: Monitoring Graph key showing CPU Utilisation Statistics when CPU was
Overloaded.

Host status

Host group Without problems With problems Total

Discovered hosts 0 1 1

Linux servers 0 1 1

Virtual machines 0 1 1

Updated: 07:19:54

Last 20 issues

Host Issue Last change Age Info Ack Actions

sipp-server- CPU overload on sipp-server- I 2018-12-20 7m
1475638.... M 7 5 6 3 8 07:12:02 52s

1 of 1 issue is shown Updated: 07:19:54

Figure 7.11: Monitoring Dashboard when Trigger for CPU Utilisation is set off on SIPp
server.

7.5 Summary

In order to perform scaling and fault management, the Open Baton Autoscaling Engine
and Fault Management Systems need to receive statistics on how the different VNFs are
consuming resources such as CPU, memory and storage. If these resources are under­
provisioned, it will result in the VNF nodes under-performing. This creates the need
to incorporate a monitoring system to the deployment. Open Baton provides a plugin
mechanism for interfacing with a monitoring system. Currently, the available monitor­
ing plugin is the Zabbix plugin through which Open Baton interfaces with the Zabbix
monitoring system.

7.5. SUMMARY 99

Host status • •• A

Host group Without problems With problems Total

Discovered hosts 1 0 1

Linux servers 1 0 1

Virtual machines 1 0 1

Updated: 07:44:35

Last 20 issues

Host Issue Last change Age Info Ack Actions

No data found.

0 of 0 issues are shown Updated: 07:44:35

Figure 7.12: Monitoring Dashboard when Trigger for CPU Utilisation returns to OK State
on SIPp server.

This chapter looked at how Zabbix monitoring system was incorporated into Open Baton
and some experimentation that was done to familiarise with the monitoring system. The
Zabbix server was installed on the same server as Open Baton, for simplicity. The Zabbix
server can be accessed via a web console and this can be used to configure and view
different elements inside the Zabbix environment. Zabbix uses a client-server model and
client end is in the form of a Zabbix agent. If a network service is deployed using the
Open Baton NFVO, the Zabbix agents are installed when the VNF nodes are created.
Meaning that the VNFs are ready to be registered with the server. This can simply be
done by configuring a new host host via the Zabbix web interface after-which the VNF
node can be monitored.

Zabbix uses elements called Items that allow data to be collected from a host. This is
done by using a Key which is one of several pre-defined keys for collecting a specific metric
of data. An Item can be created for a specific host or it can be created for a Template. A
Template is a grouping of several Items and other elements that need to be applied across
multiple hosts. This simplifies the process as it takes away the need to create Items on
each host individually. Furthermore, in order to set thresholds for an acceptable range
of values for a particular Item, a Trigger has be created using the Item Key and other

7.5. SUMMARY 100

parameters to create an Expression. The Expression is then used to check whether the
host is in an ‘OK’ or ‘PROBLEM’ status.

For simple experimentation, the SIPp network service was launched using Open Baton and
deployed the SIPp server and SIPp client VNFs inside the OpenStack cloud. The SIPp
server was registered as a host for monitoring in Zabbix and linked to a Template named
Template App Zabbix Agent. An Item to get data on CPU utilisation was added to the
Template. Lastly, a Trigger was created to flag if the CPU utilisation has gone beyond the
acceptable range. When increasing traffic was received from the SIPp client, the Zabbix
dashboard flags that there is a host with problems and shows the name of the SIPp server
and what the issue is. It was also shown that eventually when the load decreases, the
Trigger automatically goes back to an ‘OK’ state when data values normalise.

Chapter 8

Phase 4: IMS Virtualisation,
Autoscaling and Fault Management

Chapter 3 introduced two open source implementations of the IMS core network namely,
Open IMS Core and Project Clearwater. The Open IMS core network is simple in its
architecture and makes use of the least number of VNF components. Project Clearwater
is more complex as it includes a few more VNF components than the standard IMS core
network.

A mapping of the components of Open IMS core and Project Clearwater is shown in
Figure 8.1. Open IMS Core is made up strictly of the standard IMS network functions
and is a more mature implementation. Project Clearwater is made up of the standard
IMS core functions but also includes other additional features such as HSS cache, XDMS
and a user provisioning portal.

8.1 Initial Experiments with IMS

There are several options available for deploying an IMS network. A simple and basic de­
ployment can have all the different core functions on a single instance. Other deployments
have an instance for each network function. Each node can be installed and configured
individually, in an ’’hands on” fashion. A faster approach is to use scripts to deploy
the network using an orchestrator. All theses different approaches were utilised in our
experiments.

101

8.1. INITIAL EXPERIMENTS WITH IMS 102

ELLIS

HOMER

SPROUT

BONO VELLUMl-CSCF

HSSP-CSCF

S-CSCF

DIME

Figure 8.1: Relationship between Open IMS Core and Project Clearwater.

8.1.1 Simple Open IM S Core Deployment

A basic Open IMS Core network was installed as a single instance in OpenStack. This
gave a quick and easy way to get familiar with the IMS core network. The main advantage
of deploying the IMS network this way is that it is simple. However, a very big disadvan­
tage is that it does not support network flexibility and network function scalability. In
order to automatically scale the network appropriately, the network functions need to be
implemented on separate instances so that auto-scaling can be based on the behaviour of
each individual network function.

8.1.2 Deploying Project Clearwater

Clearwater can be installed in various ways, the simplest being the all-in-one image that
can be used to install all the Project Clearwater functions onto a single node. The
installation is done using an image with AMI (Amazon Machine Image), Amazon EC2
or an OVF (Open Virtualization Format) image for VMware and VirtualBox. This is
similar to the installation of Open IMS Core on one node and therefore has the same

8.1. INITIAL EXPERIMENTS WITH IMS 103

limitation of not being scalable and having limited performance. However, it is also great
for familiarising with the Clearwater network.

Another alternative is using the Chef orchestrator. Chef is an open source orchestra-
tor that defines a system’s infrastructure as code and continuously evaluates the system
against a desired state and tries to correct any shift from this state [74]. This is cur­
rently only supported on Amazon EC2 and requires the DNS to be handled by Amazon’s
Route53. This option allows the deployment of a larger scale network that can be scaled.
However, it is not supported for the OpenStack environment in which the network is to
be deployed.

Clearwater can also be installed manually by using Debian packages to hand-configure
each VNF instance. This is the recommended option for an environment that does not
support Chef or if the DNS is not Amazon’s Route53. For this option, all the virtual
machines, DNS entries and firewalls are manually configured. This deployment proved
not to be easy nor simple. As stated, the Clearwater network is more complex than the
Open IMS Core network because of all extra unconventional functional parts. As a result,
it is very easy to run into problems during the configuration of the nodes, making it a
challenge to get a functional IMS network service.

8.1.3 Deployment using the Heat Orchestrator

Using an orchestrator to create a network service is a more efficient approach as most
of the configurations are done automatically and the chances of misconfiguring compo­
nents are lower. Additionally, this tends to be faster as the orchestrator can handle the
installation and configuration of multiple VNFs simultaneously. This is very important
in NFV because one of the aims of NFV is to simplify network service deployment and
management.

OpenStack provides an Orchestration service called Heat. The Heat orchestration engine
was introduced in Chapter 4 and is used to launch cloud applications based on templates.
The templates are text files containing the network description and are executed to create
the defined network by creating the necessary VMs [55]. Heat templates can be used to
create simple networks with VMs that do not host any VNFs when they are deployed, an
example of such is shown in Chapter 4.

Metaswitch provides Heat templates for deploying Clearwater in OpenStack [75]. The
templates handle different elements of the deployment:

8.1. INITIAL EXPERIMENTS WITH IMS 104

• clearwater.yam l - the top-level template

• bono.yam l - configures the Clearwater bono node

• dim e.yam l - configures the Clearwater dime node

• ellis.yaml - configures the Clearwater ellis node

• hom er.yam l - configures Clearwater homer node

• sprout.yam l - configures the Clearwater sprout node

• vellum .yam l configures the Clearwater vellum node

• dns.yam l - configures the DNS server exposing dynamic DNS using DNSSEC (Do­
main Name System Security Extensions)

• network.yam l - configures the network for Clearwater to use

• security-groups.yam l - configures security groups needed by Clearwater. Security
groups are firewall rules to open certain ports for communication.

The Clearwater network was created by running:

openstack stack create clearwater -f clearwater.yaml -e cw-environment.yaml

where cw-environment.yaml contains the parameters needed by the top-level template
to configure all the network components. The parameters are based on the service re­
quirements and resources available in the OpenStack environment. The resulting network
topology is shown in Figure 8.2. The nodes created have the minimum requirements of 1
vCPU, 2GB RAM and are running Ubuntu 14.04.

Figure 8.2 shows a provider network to which subnets connect to get access to the Internet.
There are two routers each connected to a subnet, namely clearwater-private-management
and the clearwater-private signalling. The private management subnet is responsible for
management services such as SNMP, SSH and provisioning. The private signalling subnet
is responsible for signalling services such as SIP, HTTP and Diameter communication.
Each node has separate virtual network interfaces that connect to each subnet, with the
exception of the Ellis node which is only part of the private management subnet because
it is only used for provisioning.

Once the Clearwater network is running, numbers can be allocated via the ellis web URL.
Figure 8.3 shows the Clearwater login page available using the ellis URL.

8.1. INITIAL EXPERIMENTS WITH IMS 105

1 d im e -0 openstackrhodeS sC o j

c le a rw a te M tfIv a te -m a n a g e m e n t

[e a ^va te r-p r iv a t ^ S k ^ a lin<

d e a rw a fe r-p ri va te - m a nag em e n t

j n s .o p e n s ta ck .rh o d e s . . I '

jsprout-O.openstack.rhodes cc n

1 bono-0 openstack rhodes con

j homer-O.openstack rhodes con

cl ea rwater-private-s i g na 11 ng

provider

Figure 8.2: Screenshot of Clearwater network topology deployed using Heat.

Figure 8.3: Screenshot of Clearwater login interface.

8.2. IMS AND OPEN BATON 106

8.1.4 Insight from experimental deployments

These experiments were done mainly to become familiar with both implementations of
the IMS network. Open IMS core and Clearwater are both reasonably simple networks
with Clearwater being the more complex of the two. The different approaches available for
deploying the networks present different limitations and advantages. Deploying a network
service using an orchestrator is more efficient and is generally the preferred option.

8.2 IMS and Open Baton

Section 8.1 gave some insight on experiments that were done to explore the different
ways in which the IMS network can be installed. Creating the network service using an
orchestrator proved to be the better approach. An orchestrator simplifies the configuration
process by using scripts to encapsulate the installation of the network service and does
not require manual configuration. As seen above, the orchestrator chosen is Open Baton.
Open Baton has a Market Place which is a public space that provides useful components
such as Network Service Descriptors (NSDs), VNFs, images and drivers for both the Open
IMS Core and Clearwater network services.

The Open IMS Core network was chosen for its simplicity and maturity. The Open
IMS Core Network Service Record is made up of five VNF components: icscf, pcscf, scscf,
bind9 and fhoss. These are the standard CSCFs, FHoSS which is the HSS implementation
and a bind9 DNS server. Whereas, the Clearwater network service is made up of the six
Clearwater NFs as well as the bind9 DNS server and FHoSS server NFs.

8.2.1 V N F Packages

As mentioned in Chapter 6, the VNF packages are tar files containing a Metadata.yaml
file, vnfd.json and a folder containing scripts needed to configure the VNFs. The five
packages for the VNF components need to be correctly configured to align with the
resources in the OpenStack environment. The Metadata file is similar for all the VNF
packages, the only difference being the name and description which are based on the
VNF. This is because the configuration information in the Metadata file describes the
VNF environment which is the same for all the VNFs in this NS.

8.2. IMS AND OPEN BATON 107

The provider of this VNF is Fokus and the target nfvo_version is 5.1.0. The upload
option was set to “false” because an appropriate image is already available in the Open-
Stack VIM with the name openims. The openims image is an Ubuntu 14.04 image which
is a requirement for this implementation of Open IMS Core VNFs. The vim_types con­
figuration is set to openstack as this is the only VIM type implemented for this thesis.

Listing 8.1: Metadata.yaml for OpenIMSCore VNFs
name: VNF-name
d e s c r i p t i o n : ” The d e s c r i p t i o n o f the VNF”
p r o v i d e r : fokus
s h a r e d : true
n f v o _ v e r s i o n : 5 . 1 .0
image :

upload : ” f a l se ”
names :

- openims
image—c o n f i g :

name : openims
d i s k Fo r mat : qcow2
contai nerFormat : bare
minCPU: 0
minDisk : 0
minRam : 0
i s P u b l i c : true

vim_types :
— openstack

The vnfd files are unique for each VNF because these contain information specific for
configuring each particular VNF. However all five VNFs are attached to the mgmt virtual
network and the deployment_flavour is ml.small which has 1 vCPU, 2GB RAM and
10GB disk. Finally, the scripts folder in each VNF package contains the scripts needed
to instantiate, configure, and start the VNF [11].

After the VNF packages were correctly configured, they were compressed into tar files that
were uploaded onto the Open Baton dashboard, as shown in Figure 8.4. The list of VNF
packages includes both the Open IMS Core packages as well as the SIPp packages for the
SIPp NS deployed for the Zabbix monitoring experiments. Once these were successfully
uploaded, VNFD IDs were automatically assigned and ready for use in the NSD. A list
of the VNFD IDs is shown in Figure 8.5 which is a screenshot from the OpenBaton CLI
which was used instead of the web interface as it was getting an error as shown in Figure
8.6.

108

Figure 8.4: Screenshot of the VNF Packages uploaded.

+-- - - -

1 id 1 name 1 vendor 1 version 1

1 2829d032-171b-4871-8c31-10ad56e401ad 1 sipp-client 1 FOKUS 1 1.0 1
+-— —

1 3d2438al-6957-432a-97bb-5blb6abc7b8d 1 pcscf 1 f okrjs 1 5.1.0 1
+-— —

1 4bSfbe63-4acQ-46c7-a25f-bQfbcf65d2eS 1 binds 1 f okrjs 1 5.1.0 1
+-— —

1 5793a6dl-6f50-4526-966b-e8c756db85c8 1 icscf 1 f okrjs 1 5.1.0 1
+-— —

1 SS6e5e36-f6a5-41dS-a64c-2S6S56d6f5fc 1 scscf 1 f okrjs 1 5.1.0 1
+-— —

1 c2ec5c29-a68f-4flO-aO3a-F805365a4ec7 1 sipp-server 1 FOKUS 1 1.0 1
+-— —

1 Fa0fb223-a079-455e-8278-d98452b20a8f 1 fhoss 1 f okrjs 1 5.1.0 1
+-— —

Figure 8.5: List of VNFDs and their IDs

8.2. IMS AND OPEN BATON 109

Figure 8.6: VNFD Error on Dashboard

8.2.2 Network Service Descriptor

The NSD template file is the main JSON file used by the NFVO to deploy a network
service. For this reason, it references the VNF Descriptors for all the VNFs for that
particular network service. In this case, the NSD uses the five VNFD IDs that belong to
the IMS NS listed in Figure 8.5.

The NSD name is OpenIMSCore Bind9 FHoSS and the main sections that need to be de­
fined are the vnfd section which has the VNFD IDs, the vld section which is the Virtual
Link defined in the VNFD for network connectivity and finally the vnf dependency sec­
tion which lists all the dependencies between VNFs. There are several VNF dependencies
between the VNFs because a functional IMS network service requires efficient messaging
between the VNFs .

______________________ Listing 8.2: IMS NSD JSON File_________
{

" name” : ’’ OpenIMSCore Bind9 FHoSS” ,
” vendor ” : ” f ok us ” ,
” v e r s i o n ” : ” 2 . 0 ” ,
” vn f d ” : [

{ ” i d ” : ” 3d2438a1 -6 9 5 7 -4 3 2 a -9 7 b b -5 b 1 b 6 a b c7 b 8 d ” } ,
{ ” i d ” : ” 4b9fbe63 -4ac0 - 4 6 c 7 - a 2 5 f - b 0 f b c f 6 5 d 2 e 9 ” } ,
{ ” i d ” : ” 5793a6d1 -6 f5 0 -4 5 2 6 -9 6 6 b -e8 c7 5 6 d b 8 5 c8 ” } ,
{ ” i d ” : ” 996e5e36- f6a5 - 4 1 d 9 - a 6 4 c - 2 9 6 9 5 6 d 6 f 5 f c ” } ,
{ ” i d ” : ” fa0fb223 -a079 -4 5 5 e -8 2 7 8 -d98452b20a8f” }

] ,

8.2. IMS AND OPEN BATON 110

” v l d ” : [

{
” name” : ” mgmt”

}
] ,
” vnf _dependency” : [

{
” s o u r c e ” : {

” name” : ” b i nd9”

} ,
” t a r g e t ” : {

” name” : ” f h o s s ”

} ,
” parameters ” : [

” u s e F l o a t i n g I p s F o r E n t r i e s ” ,
” realm” ,
” mgmt” ,
” mg mt _ f l o a t i ng I p ”

]
} ,

{
” s o u r c e ” : {

” name” : ” i c s c f ”

} ,
” t a r g e t ” : {

” name” : ” s c s c f ”

} ,
” parameters ” : [

” name” ,
” mgmt” ,
” mg mt _ f l o a t i ng I p ”

]
}

]
}

Once the NSD is uploaded, it needs to be launched to start the deployment of the network
service. The successful deployment of the network service is confirmed by the Network
Service Record (NSR) getting into an ACTIVE state as shown in Figure 8.8. Figure
8.7 shows the logical architecture of the deployment while Figure 8.9 shows the network

8.3. ATTEMPT TO PERFORM AUTOSCALING 111

Scscf FHoSS

Pcscf Bind9 Icscf

Figure 8.7: Architecture or OpenIMSCore-FHoSS-BIND Deployment. Source [11]

topology as deployed on OpenStack .

Figure 8.8: List of the ACTIVE NSR.

8.3 Attempt to Perform Autoscaling

VNF autoscaling is a useful tool for maintaining a good QoS level. It is used to ensure
that as the load experienced by the VNF increases and threatens to compromise the QoS

8.3. ATTEMPT TO PERFORM AUTOSCALING 112

Figure 8.9: Topology of IMS deployment in OpenStack.

and user experience, the VNF will be scaled out based on a pre-defined scaling policy.
The AutoScaling Engine was introduced in Chapter 6 and some concepts and policies on
which it works were explained. One such concept is that the metrics that can be defined
in the AutoScale Policy are based on the monitoring system used. In Chapter 7 some
experiments were done on the Zabbix monitoring system using the SIPp NS. The VNF
VMs were automatically registered as hosts on the Zabbix monitoring system after the NS
was deployed. An Item and Trigger were added to test if the metrics were being monitored
by checking if the Zabbix web interface reports when the VNF hosts are in a PROBLEM
state. The results of the experimentation gave confirmation that the monitoring system
was able to monitor the hosts and that the was defined correctly. The metric used was
system.cpu.util[,user] and the threshold that was set based on observing the SIPp server
as messages were received from the SIPp client. When CPU utilisation by user systems
exceeded 50%, calls were no longer being handled efficiently and therefore the threshold
was set at 50%.

The AutoScale Policy in Listing 8.3 was added to the P-CSCF VNFD. All the messages
sent to the IMS network first go through the proxy and it is therefore the one likely
to experience the most load. Hence, the P-CSCF was chosen as the first target for
autoscaling. The alarm set in the Autoscaling Policy uses the same metric as the one

8.3. ATTEMPT TO PERFORM AUTOSCALING 113

experimented with on the Zabbix monitor.

Listing 8.3: Example of an Autoscaling Policy

a u t o _ s c a l e _ p o l i c y ” : [

{
” name” : ” scale - o u t ” ,
” t h r e s h o l d ” : 100 ,
” c ompar i sonOper ator ” : ”>= ” ,
” p e r i o d ” : 30 ,
” c oo l down” : 60 ,
” mode” : ” REACTIVE” ,
” t y p e ” : ’’WEIGHTED” ,
” a larms” : [

{
” m e t r i c ” : ” system . cpu . u t i l [, user] ” ,
” s t a t i s t i c ” : ” avg” ,
” c ompar i sonOper ator ” : ” > ” ,
” t h r e s h o l d ” : 5 0 ,
” we i ght ” : 1

}
] ,
” a c t i o n s ” : [

{
” t y p e ” : ” SCALEOUT” ,
” v a l u e ” : ” 1”

}
]

}]

In order to test if the AutoScaling Engine was operating as expected, the logs were checked
for the AutoScaling Engine and they indicated that there was an exception because the
Autoscaling Engine was not receiving the data in the format it expected, giving the error
below:

8.4. ATTEMPT TO PERFORM FAULT MANAGEMENT 114

Listing 8.4: Error message from ASE logs
2019-01 - 2 3 1 8 :4 9 :0 0 .3 9 8 INFO 3969 ------[Th readPoo lTaskS ched u ler -10]
o . o . a . core . d e t e c t i o n . Detec t ionEngine :
Get monito r ing plugin with f o l l o w i n g param eters : 20 3 .0 .1 1 3 .1 8 3
2019-01 - 2 3 1 8 :4 9 :0 0 .3 9 9 ERROR 3969 ------[Th readPoo lTaskS ched u ler -10]
o . o . a. core . d e t e c t i o n . task . Detect i onTask :
Except ion occured while g e t t in g measurements - >
Expected a com . g oog le . gson . JsonArray but was com . g oog le . gson . JsonObject ,
Trying again next time . . .

8.4 Attempt to Perform Fault Management

As with autoscaling, fault management is important for maintaining QoS. Autoscaling is a
proactive approach to maintaining QoS because it anticipates behaviour that might result
in the need for more resources before the VNF starts misbehaving. Fault management
is the reactive approach that defines the actions that needs to be taken when the VNF
malfunctions and something goes wrong and within Open Baton this can be fixed with a
HEAL or SWITCH TO STANDBY action.

However, installing the service proved not to be a simple process. The FM system can be
installed via a Debian package or from source code. Both options as per the documentation
were unsuccessful. When a service is installed, it needs to be enabled by downloading a
service key via the dashboard as shown in Figure 8.10. This way of adding a service via the
dashboard fails as shown in Figure 8.11. If the service is installed using debian packages,
the service key needs to be directly added into the configuration file. The source code
approach worked for the AutoScaling Engine but did not work for the Fault Management
System. As a result, no further experimentation could be done with fault management
on the network.

8.5 Summary

The final phase of the implementation was discussed in this chapter. With the rest of
the infrastructure in place, the IMS network service could now be deployed on the cloud.
Some experiments were done to explore the different ways in which the IMS network
can be deployed and to see which of those proves to be the most efficient. Using an

8.5. SUMMARY 115

Figure 8.10: Enabling the FMS service

Figure 8.11: Failure to Create the FMS service

orchestrator proved to be the most efficient and the final deployment was made using the
Open Baton orchestrator. Attempts to perform autoscaling and fault management on the
network services were unsuccessful. The insight from all the experiments done will be
presented in the next chapter.

Chapter 9

Discussion

The aim of this research was to investigate the readiness of open source tools to build a
telco cloud platform. The telecommunication industry is constantly evolving and is a field
with great innovation potential. Open source tools encourage innovation and various open
source tools are currently available that can be used to build a telco cloud environment.
This research looks into some of these tools and investigates the maturity and how easy
to use these tools are. This investigation is done from the perspective of an administrator
who has experience in building systems using different tools while following the provided
documentation. The aim of this work was not to study the source code and fix components
that were not working as expected or poorly documented. The following sections discuss
the readiness of the tools used in attempting to build the telco cloud.

9.1 VMware

VMware was the first software that was installed onto the server. Being a bare metal
hypervisor, it was installed directly onto the server. Once VMware is installed and run­
ning, it is easy to use and everything is done via the web interface. It provides a simple
environment in which the physical host, networking, storage and VMs can be managed
by using the navigator, shown in Figure 9.1, to access the different components. Infor­
mation about the physical server can be seen by going to the Host option. There all the
information about the hardware, vmware configurations, system information and Perfor­
mance graphs of the CPU and memory is made available as shown in Figure 9.2. Such
information is often useful for system administrators who are managing the system and
need such information readily and easily available.

116

9.1. VMWARE 117

Figure 9.1: The VMware Navigator for Managing Resources.

Figure 9.3 shows the network settings that can be managed from the Networking option
in the navigator and in this case shows the Port groups (subnets) that the VMs can be
attached to. The Storage option is similarly simple and from it the datastores, adapters
and storage devices can be managed.

The main reason for setting up the VMware hypervisor is to be able to create VMs that
can provide infrastructure for the cloud. As such, the VMware environment has to be
stable and reliable as the VMs created host the software that runs the cloud and if there
are problems at the infrastructure, the cloud will also be unstable. The process of creating
a VM is made up of 5 steps as shown in Figure 9.4. It’s a very simple process that involves
choosing the the operating system, selecting a datastore in which the configuration and
disk files will be stored, customising virtual hardware settings and the last step is simply
reviewing the configurations before finalising the deployment.

VMware proved to be simple and stable software to use and all this can be done with­
out needing to look deeply into how the hypervisor works. Proficiency in configuring a
networking is the main skill required.

|l| mapu044-1O.rn.ac.;za

mapu044-10.ru.ac.za
Version: 6.5.0 (Build 4887370)
Slate: Normal (not connected to any vCenter Server)
Uptime: 10.92 days

USED: 745 MHz

MEMORY

USED: 47.04 GB

STORAGE

CAPACITY: 12 GHz

FREE: 16.91 GB
‘I 74%

CAPACITY': 63.95 GB

FREE: 1.22 TB
j 39%

USED: 78B.41 GB CAPACITY: 1.99 TE

▼ Hardware

Manufacturer

Model

► a cpu

111 Memory

Virtual flash

- a Networking

Hostname

IP addresses

DNS servers

Default gateway

IPv6 enabled

Host adapters

- o Storage

Physical adapters

Datastores

Supermicro

Super Server

4 CPUs x Irtel(R) Xeon{R) CPU E3-1220 v5 @ 3.00GHz

63.95 GB

0 B used, 0 B capacity

mapu044-10.ru.ac.za

1. vmkO: 146.231.121.144

1. 146.231.129.102,2.146.231.129.98

146.231.120.1

No

2

Networks Name VMs
osjmgmt 6

os_provider 5

pfSense_LAN 2

public 1

Name Type Capacity Free
g datastore_ISO VMFS5 9.75 GB 3.16 GB

9 datastore_STORE VMFS5 401.25 GB 400.3 GB

3 datastore_VM VMFS5 699.75 GB 33.55 GB

3 datastorel VMFS5 924 GB 809.34 GB

» Configuration

Image profile ESXi-6.5.0-20170104001 -standard (VMware, Inc.)

vSphere HA state Not configured

► vMotion Not supported

■ Performance summary last hour

100

g 803CL
u 60

| 40

co
° 20

Consumed host CPU # Consumed host memory...

07:51 07:56 08:21
Time

08:46 08:51

▼ System Information

Date/time on host Monday, January 28, 2019,06:51:45 UTC

Install date Thursday, August 17, 2017,12:24:14 UTC

Asset tag Unknown

Service tag Unknown

BIOS version 2.0a

BIOS release date Thursday. March 09, 2017,02:00:00 +0200

60

50
o
o

40
iz
3
Cl

o

30
3

20 1
10

o
CD

0

Figure 9.2: Host information about the Physical Server.

00

119

Figure 9.3: Network Settings in VMware.

Figure 9.4: Creating a Virtual Machine in VMware.

9.2. PFSENSE 120

9.2 pfSense

pfSense software was installed on a VM inside VMware. Once installed, several config­
uration settings could be done on the console interface inside VMware, shown in Figure
9.5. A public IP address was set, through which the web interface could be accessed.
Various network settings for use by the OpenStack cloud infrastructure and the nodes
on the OpenStack cloud were made using via the web interface. The dashboard for the
pfSense router is shown in Figure 9.6. It gives an overview of the system information
and the network interfaces currently configured on the router. Additional settings can
be made by navigating through the different configuration options. For example, several
firewall rules were set as shown in Chapter 5. It was easy to install, configure and get
started with without needing to understand any of the source code.

ID pfSense 'jEj Actions

e) Logout (SSH only) 9) pfTop
i) fiss ign Interfaces 19) Filter Logs
2) Set interface(s) IP address 11) Restart webConfigurator
3) Beset uebConfigurator password 12) PHP shell + pfSense tools
4) Reset to factory defaults 13) Update froM console
5) Reboot systei-i 14) Enable Secure Shell (sshd)
6) Halt syster-i 15) Restore recent configuration
7) Ping host 16) Restart PHP-FPM
8) Shell

Enter an option:
Message froM sys logd@lsllpdBll-2B at Jan 17 B8:B1:46 ...
sllpd011-20 php-fpii[298]: /index.php: Successful login for user ’adnin’ fron: 14
6.231.88.21
Message f roM sys logd@lsllpdBll-2B at Jan 25 2B:54:12 ...
sllpdBll-2B plip-fpM[377181 : /index.plip: Successful login for user ’adnin’ fron:
146.231.8.127
Message fron sps logd@lsllpdBll-2B at Jan 28 05:58:59 ...
sllpdBll-2B php-fpM[359B81: /index.php: Successful login for user ’adnin’ froM:
146.231.88.21

Figure 9.5: pfSense CLI accessed via the VMware Console.

9.3 OpenStack

OpenStack is a widely used open source cloud operating system and is therefore fast
developing. When this research commenced, OpenStack Ocata was the latest version as
of February 2017 and when it concluded, OpenStack Rocky was the latest version as of

9.3. OPENSTACK 121

9 9 S e n 6 System ’ Interfaces » Firewall -- Services - VPN - Status » Diagnostics - Gold -* Help
COMMUNITY EDITION

Status / Dashboard + ©

1 In terfaces / e o 1

iJlWAN ♦ lOOObaseT <full-duplex> 146.231.122,116

i l l LAN * lOOObaseT <full-duplex> 192.168.1.1

iljO P T l * lOOObaseT <fullkluplex> 10.0.0.1

i l l OPT2 * lOOObaseT <full-duplex> 203.0.113.1

1 S y s te m In fo rm a tio n / s o 1
Name s11pd011-20.ict.ru.ac.za

System pfSense
Serial: 99a3adbd-1a3e-11e9-b498-b827ebb6188b
Netgate Device ID: 6d48bb001240d083b613

BIOS Vendor: Phoenix Technologies LTD
Version: 6.00
Release Date: 04/05/2016

Version 2.3.4-RELEASE-p1 (amd64)
built on Fri Jul 14 14:52:43 CDT 2017
FreeBSD 10.3-RELEASE-p19

U n a b le to c h e c k f o r u p d a te s

Platform pfSense

CPU Type Intel(R) Xeon(R) CPU E3-1220 v5 @ 3.00GHz

Uptime 10 Days 22 Hours 54 Minutes 47 Seconds

Current date/time Mon Jan 28 6:54:01 -02 2019

DNS server(s) * 127.0.0.1
* 146.231.129 97
* 146.231.129.102

Last config change Mon Jan 711:16:20-02 2019

State table size
0% (8/303000) Show states

MBUF Usage I
1% (1776/189336)

Load average 0.06, 0.04, 0.00

CPU usage
0%

Figure 9.6: pfSense Web Interface.

the end of August 2018. Even with its fast growth, an OpenStack cloud is fairly simple
to build due to its rigorous documentation which tries to minimise ambiguity.

OpenStack is a complex system and the installation requires several different elements to
be installed and configured. Chapter 4 discussed OpenStack in greater detail and gave
an idea of the different elements that make up an OpenStack installation. At the infras­
tructure level, OpenStack requires several nodes that perform different tasks in making
the cloud functional. VMs were created inside VMware to be the controller, compute and
block storage nodes that OpenStack requires. The features provided by the OpenStack
cloud are available through services installed on these nodes. This means that there is a
lot of dependency between the nodes, as parts of the services can be configured on different
nodes. Additionally, some services rely on the other services running correctly. Despite
OpenStack being a complex operating system, the installation process was fairly simple
due to the documentation being thorough and clear. As mentioned earlier, OpenStack
is constantly going through development and there is a lot of innovation going towards

9.4. ORCHESTRATING IMS 122

the operating system. This is fueled by it having a fast growing open source community
as it is a popular choice for deploying private and public clouds. Currently it has over
96368 community members, 666 supporting companies, is deployed in 187 countries and
has over 20 million lines of code [9]. As a result, new versions of OpenStack are fre­
quently being released. This could easily start causing problems in terms of compatibility
between services, also, other software that has been developed to work with OpenStack
might require older versions of OpenStack. This problem is eliminated because the full
installations are documented based on the version and the documentation covers how to
install and configure all the services for that particular version.

9.4 Orchestrating IMS

There are several orchestrators available that already have templates available that can be
used to deploy either the Project Clearwater or Open IMS Core network on an OpenStack
cloud.

9.4.1 Heat

Heat was the first orchestrator experimented with. It is the native orchestrator for Open-
Stack that can installed as an additional service for the cloud. Heat, like most orchestra-
tors, uses templates (HOT - Heat Orchestration Templates) to create networks and other
virtual appliances. It is easy to use and some examples of how to create templates are
provided in the documentation making it easier to create new templates.

Some HOT templates for launching the deployment of the Project Clearwater IMS network
were downloaded from [75] and experimented with. The templates were easy to use and all
that had to be done was to make sure that the parameters in the main template correspond
to the names of resources in the OpenStack cloud. The network in this case was more
complex as it involved multiple instances and each instance belongs to both the signaling
and management network which was a way to separate service traffic from management
traffic. Despite the network being more complex in topology as well as having to install
software for each network function, Heat is able to get the network deployed in a short
time.

Heat proved to be an easy to install, easy to use, reliable orchestrator for launching new
instances, networks and even able to deploy network services using templates. However,

9.4. ORCHESTRATING IMS 123

this research wanted to create a telco cloud and therefore needs to follow NFV standards.
The NFV MANO specification developed by ETSI is a framework that is being used to
standardise how NFV is used in telecommunication. The specification gives a structure
that the management and orchestration of VNFs and NSs must follow. Even though Heat
is able to deploy the network service, it is however not compliant with the ETSI NFV
MANO specification.

9.4.2 Cloudify

Cloudify, which was introduced in Chapter 2, mainly makes use of a Cloudify Manager to
run the management service. The management service is responsible for performing the
management and orchestration tasks such as automating the deployment, configuration
and scaling of the NSs.

The challenge however was understanding the documentation and how it integrates with
OpenStack to manage the resources inside OpenStack. The documentation in [76] pro­
vides templates and instruction for deploying Clearwater IMS using Cloudify. It says
that the Cloudify manager could run as an instance inside OpenStack using a cloudify-
manager image. This however did not make sense architecturally as the Cloudify manager
is supposed to orchestrate instances inside the OpenStack cloud when it is an instance
in OpenStack itself. This does not align with the ETSI MANO specification. The ar­
chitecture of how Cloudify works was not very clear based on the documentation and
attempting the installation did not prove very successful.

9.4.3 Open Baton

Open Baton was the preferred option and it is an ETSI compliant orchestrator that also
offers a generic VNFM, therefore completing the three functions required in the NFV
MANO architecture. Open Baton has a Market Place on which templates for deploying
the Open IMS Core and Project Clearwater networks are made available. The Open
Baton NFVO and generic VNFM were installed without much difficulty. Open Baton has
a modular approach to make the platform easy to extend by adding services. Currently
available is the autoscaling and fault management services. Both provide very important
functions to a telco cloud environment and enable the system to provide quality services
and minimise downtime.Both these services require that the VNFs be monitored in order

9.5. ZABBIX 124

for the system to know whether everything is running at an acceptable level. Open Baton
has a Zabbix plugin to interoperate with the Zabbix monitoring system. The plugin was
installed as per the documentation and configured to work with the NFVO.

To test if the orchestrator was working, some simpler network services were deployed
namely the Iperf and SIPp NSs. These were quick and easy to launch and run on the
OpenStack cloud. All this was done via the Open Baton web interface which gives a
useful view of the elements available as shown previously in Figure 6.2. The sequence of
events of how the VNFs and the resulting NS are created is provided in the documentation
making it easier to understand the workflow between the components. Open Baton defines
states that a VNFR can be in and these correspond to the ETSI NFV states as defined
in [68]. The Open Baton NFVO and generic VNFM proved to be mature and able to
orchestrate the deployment of network services as well as able to tear down the network
if the command is given to delete the NSR.

9.5 Zabbix

Zabbix is the monitoring system that Open Baton currently supports, therefore, it was the
default monitoring system chosen for the deployment. Zabbix uses a client-server model
and therefore required that a Zabbix server be installed. The documentation states that
the server can run on the same node as Open Baton and for simplicity, the Zabbix server
was installed on the same node as Open Baton. Open Baton provides instructions for
installing and configuring the Zabbix server [71]. When VNFs are created, a Zabbix agent
is automatically installed on the VNF and this Zabbix agent makes up the client with
which the Zabbix server interacts with. Open Baton offers a helper script that is run on
the Zabbix server to automatically register all VNFs deployed using Open Baton.

Experiments done in Chapter 7 showed that Zabbix is able to monitor the VNFs success­
fully using metrics which can be set by the administrator. Zabbix also provides a web
interface that gives the system administrator a visual overview of the system as well as
graphical representations of the performance of the VNF instances. The zabbix monitor
is able to send notifications when a threshold has been crossed for one of the metrics
and get into a PROBLEM state but once the system is working as expected, the state is
changed back to OK. The Zabbix web interface and documentation [69] made it very easy
to use the monitoring system and therefore proved to be a mature and reliable network
monitor.

9.6. AUTOSCALING ENGINE AND FAULT MANAGEMENT SYSTEM 125

9.6 Autoscaling Engine and Fault Management Sys­

tem

One of the advantage of using a cloud environment and particularly a telco cloud, is that
it supports services such as autoscaling and fault management. Open Baton allows users
to extend their platform by adding such services via the Open Baton SDK. There are
some services already available on Open Baton, including an Autoscaling Engine and a
Fault Management System.

According to the Open Baton documentation [11], services can be enabled by the admin­
istrator via the dashboard. Once a service has been saved on the dashboard, a service
token should be generated, however this gave an error message. There is often more
than one way of installing the services and so, the Autoscaling Engine was successfully
installed using the source code installation. Based on the Open Baton documentation
and experiments done using Zabbix, the Autoscaling Policies that go in the VNFD files
were fairly simple to compile. Attempts to monitor the VNFs were unsuccessful due the
engine not receiving the correct data format it was expecting. Not much is said in the
documentation to explain the format in which the data should be, furthermore it was not
simple to debug how the data is sent from the Zabbix server to the Zabbix plugin and
finally to the Autoscaling engine.

The Fault Management System could also be installed in multiple ways, including a source
code installation. The source code installation worked for the Autoscaling Engine but was
unsuccessful for the Fault Management System. The expectation would have been that
the two services can be installed in the same way for consistency. Failure to install the
Fault Management System meant that no experiments could be done to test the service.

Despite not being able to perform both the autoscaling and fault management functions,
it was evident from the documentation that there are two ways of getting notifications
from the Zabbix server. One way uses a createThreshold method inside the source code
and a script file that sends information received from the Zabbix server to the Zabbix
plugin. The second way uses a MonitoringPluginCaller configured in the source code files.
The documentation does say that the Fault Management System uses the createThresh-
old method, the same was initially assumed for the Autoscaling Engine for consistency.
However, a scan of the source code showed that it uses the MonitoringPluginCaller.

The work done trying to use these services as a system administrator shows that this
level of the implementation is still very immature. More work is yet to be done on the

9.7. SUMMARY 126

documentation and implementation of the services.

9.7 Summary

This chapter reviewed and discussed the various open source software used in this work to
build an experimental telco cloud. The software used in building the basic cloud platform
was VMware, pfSense and OpenStack. The aim was to get insight on the readiness of the
open source software to build a telco cloud from the perspective of a system administrator.
All three software tools were easy to use and well documented making the task of building
the cloud doable without much difficulty. The ETSI compliant orchestrator added to the
system is the Open Baton NFVO as well as the Generic VNFM. In order to be able to
monitor VNFs, a network monitor is needed and since Open Baton already has a plugin
for the Zabbix monitor, Zabbix was the natural choice of monitor. The Open Baton
NFVO, Generic VNFM and Zabbix monitor were all installed on the same server and
with ease, also proving to be mature software. When the cloud and orchestration was in
place, features such as autoscaling and fault management were to be added. These are
the services that add resilience to the platform. Autoscaling and fault management were
the services chosen for this deployment as they are already available as part the Open
Baton services. Unfortunately, the software for these services proved to be immature and
not very well documented.

Chapter 10

Conclusion

This research sought to investigate the readiness of open source tools to build a cloud
environment that is tailored for telecommunication services. This was achieved through
studying literature and some of the readilily available tools and using the insight aquired
to experiment with implementing such a cloud.

This chapter summarises the work presented in this thesis focusing mainly on the four
phases under which the telco cloud implementation was done as discussed in chapters 5,
6, 7 and 8. An analysis of the work done will be used to draw a conclusion on the main
findings of the research and lastly, some suggestions will be given for future work.

10.1 Achieved Objectives

The primary outcome of this research was to give insight into the readiness of open
source tools to build a telco cloud. In this section, the objectives outlined in section 1.5
are revisited by analysing the different phases of the implementation.

10.1.1 Building the Infrastructure As A Service

The infrastructure for the deployment was made up of a single physical server and as
such, the starting point was installing a hypervisor in the form of VMware. Several nodes
were created inside VMware to host the software that was to run the cloud. One of these
nodes ran pfSense software and performed the functions of a router and firewall system.

127

10.1. ACHIEVED OBJECTIVES 128

The other nodes ran OpenStack software as OpenStack is the cloud operating system that
was chosen as the IaaS solution for the platform.

VMware, pfSense and OpenStack are all mature, open source software. From the view
of a system administrator installing and configuring a cloud platform using the available
documentation as a guide, it can be concluded that there are mature, well documented
open source software for building IaaS.

10.1.2 Management and Orchestration with Open Baton

The second phase involved adding the next two components required to complete an
ETSI NFV MANO compliant system. Open Baton proved to be a good choice that
offers both the orchestrator and manager functions. The orchestrator and manager were
both installed easily on the same node, following the Open Baton documentation and
experiments done with deploying basic network services proved that the orchestrator is a
able to successfully launch the network services. The NFVO and VNFM functions of Open
Baton worked without difficulty and can therefore be regarded as mature implementations
of those components.

10.1.3 Monitoring

The third phase was adding the system to monitor the VNF instances. Since Open Baton
already integrates with the Zabbix monitoring system, it became the default choice of
network monitor. A Zabbix server was installed and made accessible via a web interface
where various configurations could be made following the Open Baton and Zabbix docu­
mentation. Zabbix also proved to be a mature monitor that is well documented, easy to
install and easy to use.

10.1.4 IM S Virtualisation, Autoscaling and Fault Management

There are several ways available of installing the IMS network but using templates via an
orchestrastor proved to be the most efficient. The Open IMS core network was deployed
using templates via Open Baton. However, attempts to perform autoscaling and fault
management on the network services were unsuccessful. The autoscaling engine was
installed but was unable to receive correct monitoring data from the Zabbix plugin on

10.2. FUTURE WORK 129

Open Baton. Some debugging was done to try and pin point where the problem was.
This proved to not be an easy task as the autoscaling engine is not very well documented.
There is no clear documentation detailing how the autoscaling engine receives data and
what format the data is expected in. The implementation was done from the perspective
of a system administrator and therefore the source code was not debugged as thoroughly
as a developer would.

Installing the fault management system was unsuccessful too. There were different ways
to install the fault management system but none was successful.

From this, it can be concluded that the top-level services that complete the requirements
for a telco cloud such as autoscaling and fault management are not yet mature. There
is on going work to develop and improve these services as the demand for the increases,
however they are yet to be available as mature and well documented services.

10.2 Future Work

The nature of this work could be described as taking a snapshot of a moving target.
Looking a year or two ahead, it is almost certain that an investigation into the maturity
of open source software for building a telco cloud would produce a different conclusion. For
example, as more work and research is done for autoscaling, fault management and other
such services, more mature and well documented implementations will become available
and their integration and use should be studied.

This work was guided by the ETSI NFV MANO framework and looked specifically at
Open Baton. There are other open source ETSI compliant orchestrators available that
can be used in place of Open Baton to carry out a similar investigation.

The experimental system presented in this work is fully capable of hosting other network
services besides the ones discussed in this work. It would be interesting to deploy and
study such services.

10.3 Summary

This thesis has detailed the process undertaken to investigate the readiness of open source
software to build a telco cloud on which VNFs can be implemented. The investigation

10.3. SUMMARY 130

focused on a subset of the existing open source software. The software was used to carry
out an experiment to test the maturity of the software tools by using the to build a telco
cloud, assuming the role of a system administrator. The thesis concludes that open source
tools for building and orchestrating the cloud are generally mature and well documented
but the top level services, such as autoscaling and fault management, are yet to reach
maturity and be easily deployable.

References

[1] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. DeTurck, and R. Boutaba,
“Network function virtualization: State-of-the-art and research challenges,” IEEE
Communications Surveys and Tutorials, vol. 18, no. 1, pp. 236-262, 2016.

[2] G. Camarillo and M.-A. Garca-Martn, The 3G IP Multimedia Subsystem (IMS):
Merging the Internet and the Cellular Worlds, 3rd ed. John Wiley & Sons, 2011,
2011.

[3] L. J. Vora, “Evolution of mobile generation technology: 1g to 5g and review of upcom­
ing wireless technology 5g,” International Journal of Modern Trends in Engineering
and Research, vol. 2, no. 10, pp. 281-290, 2015.

[4] J. Yu, “From 3g to 4g: technology evolution and path dynamics in china’s mobile
telecommunication sector,” Technology Analysis & Strategic Management, vol. 23,
no. 10, pp. 1079-1093, 2011.

[5] D. Bonderud, “Internet speed test: 3g, 4g, lte, and wifi who wins?” https://www.
bandwidthplace.com/internet-speed-test- 3g- 4g-lte- and- wifi- who- wins- article/, Feb
2014, (Accessed on 01/31/2019).

[6] M. I. Baba, N. Nafees, I. Manzoor, K. A. Naik, and S. Ahmed, “Evolution of mobile
wireless communication systems from 1g to 5g : A comparative analysis,” Interna­
tional Journal of Scientific Research in Computer Science, Engineering and Infor­
mation Technology, vol. 4, no. 1, pp. 1-8, 2018.

[7] M. Fizza and M. A. Shah, “5g technology: An overview of applications, prospects,
challenges and beyond,” in Proceedings of the IOARP International Conference on
Communication and Networks (ICCN 2015), 2015.

[8] ETSI, “Nfv-man 001 (v1.1.1) network functions virtualisation (nfv); management and
orchestration,” Network Functions Virtualisation (NFV) ETSI Industry Specification
Group (ISG), Technical Report, 12 2014.

131

https://www

REFERENCES 132

[9] OpenStack. Open source software for creating private and public clouds. OpenStack.
[Online]. Available: https://www.openstack.org/

[10] OpenStack Telco Working Group. Mission statement and scope. [Online]. Available:
https://wiki.openstack.org/wiki/TelcoWorkingGroup

[11] Fraunhofer FOKUS. Open baton: An extensible and customizable nfv mano-
compliant framework. [Online]. Available: https://openbaton.github.io/

[12] J. Soares, C. Gonalves, B. Parreira, P. Tavares, J. Carapinha, J. P. Barraca, R. L.
Aguiar, and S. Sargento, “Toward a telco cloud environment for service functions,”
IEEE Communications Magazine, vol. 53, no. 2, pp. 98-106, Feb 2015.

[13] Cobham Wireless and Stratus Technologies, “Ensuring high-availability and re­
siliency for nfv,” Whitepaper, 2016.

[14] S. N. Abbot, J. A. Goodwin, M. B. Muttur, and T. H. Smith, “Predictively
managing failover in high availability systems,” U.S. Patent US9 229 843B2, Jan. 5,
2016. [Online]. Available: https://patentimages.storage.googleapis.com/35/33/69/
6c041c7f491336/US9229843.pdf

[15] R. Jhawar and V. Piuri, “Chapter 9 - fault tolerance and resilience in cloud
computing environments,” in Computer and Information Security Handbook (Third
Edition), third edition ed., J. R. Vacca, Ed. Boston: Morgan Kaufmann, 2017,
pp. 165 - 181. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/B9780128038437000090

[16] S. Lightner and F. Weckesser, “Fault tolerant architecture for distributed computing
systems,” U.S. Patent US9 201744B2, Dec. 1, 2015. [Online]. Available: https:
//patentimages.storage.googleapis.com/5a/9d/11/5d4f1fc3e76f8a/US9201744.pdf

[17] M. Garca-Valls, T. Cucinotta, and C. Lu, “Challenges in real-time virtualization and
predictable cloud computing,” Journal of Systems Architecture, vol. 60, no. 9, pp.
726-740, Oct 2014.

[18] T. Erl, Z. Mahmood, and R. Puttini, Cloud Computing: Concepts, Technology and
Architecture. Prentice Hall, 2013.

[19] Microsoft. Microsoft azure: Your vision. your cloud. Microsoft. [Online]. Available:
https://azure.microsoft.com/en- us/

[20] VMware Inc. Vmware. [Online]. Available: https://www.vmware.com/

https://www.openstack.org/
https://wiki.openstack.org/wiki/TelcoWorkingGroup
https://openbaton.github.io/
https://patentimages.storage.googleapis.com/35/33/69/
http://www.sciencedirect.com/science/article/
https://azure.microsoft.com/en-
https://www.vmware.com/

REFERENCES 133

[21] Amazon Web Services Inc. aws. Amazon Web Services. [Online]. Available:
https://aws.amazon.com/

[22] Google. Google cloud: Make your move here. Google. [Online]. Available:
https://cloud.google.com/

[23] Oracle. Oracle cloud: Complete, integrated cloud. Oracle. [Online]. Available:
https://cloud.oracle.com/

[24] G. Carella, M. Corici, P. Crosta, P. Comi, T. M. Bohnert, A. A. Corici, D. Vingarzan,
and T. Magedanz, “Cloudified ip multimedia subsystem (ims) for network function
virtualization (nfv)-based architectures,” Computers and Communication (ISCC),
2014 IEEE Symposium, pp. 1-6, 2014.

[25] T. D. Quoc, H. Perkuhn, D. Catrein, U. Naumann, and T. Anwar,
“Optimization and evaluation of a multimedia streaming service on hybrid
telco cloud,” International Journal on Cloud Computing: Services and
Architecture (IJCCSA), vol. 1, no. 2, p. 20 S., Aug 2011. [Online]. Available:
https://arxiv.org/ftp/arxiv/papers/1109/1109.1583.pdf

[26] ETSI NFV Industry Specification Group, “Network function virtualisation (nfv) -
network operator perspectives on nfv priorities for 5g,” Technical Report, Feb. 2017.
[Online]. Available: https://portal.etsi.org/NFV/NFV_White_Paper_5G.pdf

[27] A. Gupta and R. Jha, “A survey of 5g network: Architecture and emerging technolo­
gies,” Access, IEEE, vol. 3, pp. 1206-1232, 08 2015.

[28] D. Kreutz, F. M. V. Ramos, P. E. Verssimo, C. E. Rothenberg, S. Azodolmolky, and
S. Uhlig, “Software-defined networking: A comprehensive survey,” Proceedings of the
IEEE, vol. 103, no. 1, pp. 14-76, Jan 2015.

[29] S. Sezer, S. Scott-Hayward, P. K. Chouhan, B. Fraser, D. Lake, J. Finnegan,
N. Viljoen, M. Miller, and N. Rao, “Are we ready for sdn? implementation challenges
for software-defined networks,” IEEE Communications Magazine, vol. 51, no. 7, pp.
36-43, July 2013.

[30] ETSI NFV Industry Specification Group, “Network functions virtualisation -
introductory white paper,” Technical Report, Oct. 2012, published October 22-24,
2012 at the ” SDN and OpenFlow World Congress” , Darmstadt-Germany. [Online].
Available: http://portal.etsi.org/NFV/NFV_White_Paper.pdf

https://aws.amazon.com/
https://cloud.google.com/
https://cloud.oracle.com/
https://arxiv.org/ftp/arxiv/papers/1109/1109.1583.pdf
https://portal.etsi.org/NFV/NFV_White_Paper_5G.pdf
http://portal.etsi.org/NFV/NFV_White_Paper.pdf

REFERENCES 134

[31] ETSI NFV Industry Specification Group, “Network functions virtualisation
- network operator perspectives on industry progress - white paper 3,”
Technical Report, Oct. 2014, published October 14-17, 2014 at the ” SDN
and OpenFlow World Congress” , Dusseldorf-Germany. [Online]. Available:
https://portal.etsi.org/Portals/0/TBpages/NFV/Docs/NFV_White_Paper3.pdf

[32] SDxCentral. Nfv. [Online]. Available: https://www.sdxcentral.com/nfv/?c_action=
num_ball

[33] B. Yi, X. Wang, K. Li, S. Das, and M. Huang, “A comprehensive survey of network
function virtualization,” Computer Networks, vol. 133, 03 2018.

[34] ETSI ISG NFV. Nfv. ETSI. [Online]. Available: https://www.etsi.org/
technologies-clusters/technologies/nfv

[35] X. P. Costa, A. Festag, H.-J. Kolbe, J. Quittek, S. Schmid, M. Stiemerling, J. Swetina,
and H. van der Veen, “Latest trends in telecommunication standards,” Computer
Communication Review, vol. 43, pp. 64-71, 2013.

[36] M. Cilloni, “Design and implementation of an etsi network function virtualization-
compliant container orchestrator,” M. Eng. thesis, University of Bologna, Bologna,
Italy, Mar. 2017. [Online]. Available: http://amslaurea.unibo.it/13373/

[37] Microsoft Azure. What is a virtual machine? [Online]. Available: https:
//azure.microsoft.com/en-us/overview/what-is-a-virtual-machine/

[38] A. Blenk, A. Basta, M. Reisslein, and W. Kellerer, “Survey on network virtualization
hypervisors for software defined networking,” IEEE Communications Surveys and
Tutorials, vol. 18, no. 1, pp. 655-685, 2016.

[39] K. Katsalis, N. Nikaein, and A. Edmonds, “Multi-domain orchestration for nfv: Chal­
lenges and research directions,” in 2016 15th International Conference on Ubiquitous
Computing and Communications and 2016 International Symposium on Cyberspace
and Security (IUCC-CSS), Dec 2016, pp. 189-195.

[40] Open Baton. Open baton zabbix plugin. [Online]. Available: https://github.com/
openbaton/zabbix-plugin

[41] Cloudify. Cloudify: Cloud native transformation at the speed of business. Cloudify.
[Online]. Available: https://cloudify.co

https://portal.etsi.org/Portals/0/TBpages/NFV/Docs/NFV_White_Paper3.pdf
https://www.sdxcentral.com/nfv/?c_action=
https://www.etsi.org/
http://amslaurea.unibo.it/13373/
https://github.com/
https://cloudify.co

REFERENCES 135

[42] T. Nozoe, M. Noguchi, M. Sakuma, and M. Isawa, “Live migration of virtualized
carrier grade sip server,” International Journal of Communication Networks and
Information Security (IJCNIS), vol. 8, no. 2, pp. 57-63, Aug 2016.

[43] M. Tsietsi, A. Terzoli, and G. Wells, “Mobicents as s service creation and deployment
environment for the open ims core,” Southern Africa Telecommunication Networks
and Applications Conference (SATNAC), 2009.

[44] TelecomABC. Ims. [Online]. Available: http://www.telecomabc.com/i/ims.html

[45] P. Janert, C. Kelley, and T. Williams, Gnuplot in Action - Understanding data with
graphs, 1st ed., N. Miller, T. Cirtin, and B. Berg, Eds. Manning Publications Co.,
2010.

[46] Core Network Dynamics. Opensourceimscore by cnd. [Online]. Available: http:
/ / www.openimscore.com/

[47] M. Poikselk and G. Mayer, The IMS: IP Multimedia Concepts and Services, 3rd ed.
John Wiley & Sons, 2013, 2013.

[48] Kamailio. Kamailio - the open source sip server. [Online]. Available: https:
/ / www.kamailio.org/w/

[49] Clearwater. Welcome to project clearwater - ims in the cloud. [Online]. Available:
http://www.projectclearwater.org

[50] D. Thifien, J. Miguel, E. Carlin, and R. Herpertz, “Evaluating the performance of
an ims/ngn deployment,” in GI Jahrestagung, 2009.

[51] E. M. Nahum, J. Tracey, and C. P.Wright, “Evaluating sip server performance,”
SIGMETRICS’07, pp. 349-350, Jun. 2007.

[52] D. Verbeiren, P. Lecluse, and X. Simonart. (2014, 04) Ims bench sipp. [Online].
Available: http://sipp.sourceforge.net

[53] opensource.com. What is openstack. [Online]. Available: https://opensource.com/
resources/what-is-openstack

[54] O. Sefraoui, M. Aissaoui, and M. Eleuldj, “Openstack: Toward an open-source solu­
tion for cloud computing,” International Journal of Computer Applications (0975 -
8887), 2012.

[55] OpenStack. Heat. [Online]. Available: https://wiki.openstack.org/wiki/Heat

http://www.telecomabc.com/i/ims.html
http://www.openimscore.com/
http://www.kamailio.org/w/
http://www.projectclearwater.org
http://sipp.sourceforge.net
https://opensource.com/
https://wiki.openstack.org/wiki/Heat

REFERENCES 136

[56] OpenStack. Telemetry. [Online]. Available: https://wiki.openstack.org/wiki/
Telemetry

[57] OpenStack. (2017, Nov.) Ceilometer’s documentation. OpenStack. [Online].
Available: https://docs.openstack.org/ceilometer/latest/

[58] The Gnocchi Developers. (2017) Gnocchi - metric as a service. [Online]. Available:
http://gnocchi.xyz/

[59] SDxCentral. ebrief: The pros and cons of openstack. (Accessed on 02/10/2019).
[Online]. Available: https://www.sdxcentral.com/resources/sponsored/ebriefs/
pros-cons-openstack-2018-02/

[60] A. Vogel, D. Griebler, C. A. F. Maron, C. Schepke, and L. G. Fernandes, “Pri­
vate iaas clouds: A comparative analysis of opennebula, cloudstack and openstack,”
2016 24th Euromicro International Conference on Parallel, Distributed, and Network-
Based Processing (PDP), 02 2016.

[61] Trilio Content Team. Why openstack is taking off in the enterprise. (Accessed on
02/10/2019). [Online]. Available: https://www.trilio.io/resources/why-openstack/

[62] OpenStack. The world runsonopenstack. (Accessed on 02/10/2019). [Online].
Available: https://www.openstack.org/user-stories/

[63] Mark Shiozaki. The top 3 openstack benefits and challenges. (Accessed on
02/10/2019). [Online]. Available: https://www.stratoscale.com/blog/openstack/
the-top-3-openstack-benefits-and-challenges/

[64] L. Nobach, O. Hohlfeld, and D. Hausheer, “New kid on the block: network functions
visualization: from big boxes to carrier clouds,” in CCRV, 2018.

[65] A. Desai, R. Oza, P. Sharma, and B. Patel, “Hypervisor: A survey on concepts and
taxonomy,” International Journal of Innovative Technology and Exploring Engineer­
ing (IJITEE), vol. 2, no. 3, pp. 222-225, Feb. 2013.

[66] E. Siebert. Understanding hosted and bare-metal virtualization hypervisor
types. [Online]. Available: https://searchservervirtualization.techtarget.com/tip/
Understanding-hosted-and-bare-metal-virtualization-hypervisor-types

[67] pfSense. pfsense: Open source security. [Online]. Available: https://www.pfsense.
org/

https://wiki.openstack.org/wiki/
https://docs.openstack.org/ceilometer/latest/
http://gnocchi.xyz/
https://www.sdxcentral.com/resources/sponsored/ebriefs/
https://www.trilio.io/resources/why-openstack/
https://www.openstack.org/user-stories/
https://www.stratoscale.com/blog/openstack/
https://searchservervirtualization.techtarget.com/tip/
https://www.pfsense

REFERENCES 137

[68] ETSI, “Etsi gs nfv-swa 001 v1.1.1 (2014-12) network functions virtualisation (nfv);
virtual network functions architecture,” Network Functions Virtualisation (NFV)
ETSI Industry Specification Group (ISG), Technical Report, 12 2014.

[69] Zabbix. Zabbix doucumentation. [Online]. Available: https://www.zabbix.com/
documentation/3.0/start

[70] Open Baton. How to install and configure zabbix to se­
curely monitor remote servers on ubuntu 16.04. [On­
line]. Available: https://www.digitalocean.com/community/tutorials/
how-to-install-and-configure-zabbix-to-securely-monitor-remote-servers-on-ubuntu-16-04

[71] OpenBaton. Zabbix server 3.0 installation and configuration.
[Online]. Available: https://openbaton-docs.readthedocs.io/en/develop/
zabbix- server- configuration- 3.0/

[72] Voip-info.org. Sipp. [Online]. Available: https://www.voip-info.org/sipp/

[73] SIPp community. Performance testing with sipp sipp 3.5 documentation. (Accessed
on 12/11/2018). [Online]. Available: https://sipp-wip.readthedocs.io/en/latest/
perftest.html

[74] Chef. Open source chef - ensure configurations are applied consistently in every
environment, at any scale, with infrastructure automation. [Online]. Available:
https://www.chef.io/chef/

[75] Metaswitch. Openstack heat templates for clearwater deployments. [Online].
Available: https://github.com/Metaswitch/clearwater-heat

[76] Orange-OpenSource. Cloudify clearwater get starting installation. [Online].
Available: https://github.com/Orange-OpenSource/opnfv-cloudify-clearwater

https://www.zabbix.com/
https://www.digitalocean.com/community/tutorials/
https://openbaton-docs.readthedocs.io/en/develop/
https://www.voip-info.org/sipp/
https://sipp-wip.readthedocs.io/en/latest/
https://www.chef.io/chef/
https://github.com/Metaswitch/clearwater-heat
https://github.com/Orange-OpenSource/opnfv-cloudify-clearwater

