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Abstract
The completion of the human genome project at the beginning of the 21st century, along with the

rapid advancement of sequencing technologies thereafter, has resulted in exponential growth of

biological data. In genetics, this has given rise to numerous variation databases, created to store

and annotate the ever-expanding dataset of known mutations. Usually, these databases focus on

variation at the sequence level. Few databases focus on the analysis of variation at the 3D level,

that is, mapping, visualizing, and determining the effects of variation in protein structures. Addi-

tionally, theseWeb servers seldom incorporate tools to help analyze these data. Here, we present

the Human Mutation Analysis (HUMA) Web server and database. HUMA integrates sequence,

structure, variation, and disease data into a single, connected database. A user-friendly interface

provides click-baseddata access and visualization,whereas aRESTfulWebAPI provides program-

matic access to the data. Tools have been integrated into HUMA to allow initial analyses to be

carried out on the server. Furthermore, users can upload their private variation datasets, which

are automatically mapped to public data and can be analyzed using the integrated tools. HUMA is

freely accessible at https://huma.rubi.ru.ac.za.
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1 INTRODUCTION

The advent of next-generation sequencing (NGS) technologies has

resulted in the exponential growth of biological sequence data. This

is partially thanks to initiatives, such as the International HapMap

Project (The International Hapmap Consortium 2003) and the 1000

Genomes Project (The 1000Genomes Project Consortium 2015), that

have taken advantage ofNGS technologies to generate comprehensive

datasets of human genetic variation.

The overarching aim of these sequencing projects is to investigate

the link between heredity and disease/phenotypes. This is done by

comparing the genomes of individuals who suffer from a disease with

those of healthy individuals.When successful, these projects can asso-

ciate mutations in a population with disease susceptibility or resis-

tance. This has given rise to the possibility of personalized medicine,

where treatments are tailored to individuals based on the existence (or

lack) of certain mutations.

Unfortunately, African populations are underrepresented in most

genetic datasets. As such, Africa is in danger of falling further behind

in the battle against disease. To address this imbalance, the Human

Heredity and Health in Africa (H3Africa) Initiative was founded (The

H3Africa Consortium 2014). The H3Africa initiative aims to advance

genomic studies on the continent by sequencing thousands of individu-

als across numerous African populations. Additionally, H3Africa hopes

to build research capacity on the continent by training scientists and

building infrastructure.

Projects such as H3Africa, HapMap, and 1000 Genomes result in

enormous genetic variation datasets. Finding ways to store and ana-

lyze these datasets remains one of the great challenges of the 21st

century. To this end, several variation databases have been developed.

The most well-known of these databases is arguably dbSNP (Sherry

et al., 2001), which was created and managed by the National Center

for Biotechnology Information (NCBI). The dbSNP database acts as a

central repository for all known short variation and incorporates data

fromHapMap, 1000Genomes, and user submissions.

The NCBI has also developed various other variation databases

including dbVAR (Lappalainen et al., 2013), which stores struc-

tural variation, dbGaP (Mailman et al., 2007), which is focused

on the relationship between genotype and phenotype, and ClinVar

(Landrum et al., 2014), which stores details on the clinical significance

of variation. Similarly, the European Bioinformatics Institute (EBI)

has developed several variation databases including the European
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Variation Archive, the Database of Genomic Variants archive (Lap-

palainen et al., 2013), and the European Genome-phenome Archive

(Lappalainen et al., 2015). Data are regularly shared between EBI and

NCBI databases.

A joint-venture between the EBI and National Human Genome

Research Institute (NHGRI) resulted in the NHGRI-EBI GWAS Cata-

log (Welter et al., 2014), a manually curated collection of published

genome-wide association studies (GWAS) containing over 36,000

SNPs.

Where the previously mentioned databases are solely focused on

variation, the Ensembl database (Hubbard et al., 2002) provides com-

prehensive coverage of biological data, including genes, transcripts,

proteins, exons, coding sequences (CDS), and phenotypes. Ensembl

maps variation, aggregated from several sources, to these data.

Additionally, a number of locus-specific variation databases have

been developed over the years (Kuntzer, Eggle, Klostermann, &

Burtscher, 2010). These databases focus on variations located in a spe-

cific gene and, as they are usually curated by experts on the particu-

lar gene, often offer a higher degree of quality than general databases

(although this varies greatly from database to database) (Johnston &

Biesecker, 2013). Examples of such databases include the IARC TP53

database (Bouaoun et al., 2016) and BRCA-Share (Béroud et al., 2016),

which cater to TP53 (MIM# 191170) and BRCA (MIM# 113705 and

MIM# 600185) variants, respectively.

Although the above databases (manymore exist) have proven to be

useful repositories for genetic variation, they all focus on the analysis

of variation at the sequence level. Most datasets containing disease-

associated SNPs have been obtained from GWAS or candidate gene

association studies. Although powerful, these statistical experiments

do not provide information on the functional effects of variation and,

as such, do not provide insight into why variants might be damaging.

To gain an understanding of the functional effects of coding variation

(i.e., variation that occurs in protein CDS), studies must be conducted

that analyze the effects of these variants on protein structure. This is

important for drug design and discovery.

Unfortunately, databases and Web servers that focus on vari-

ant analysis at the protein structure level are few and far between

(Brown & Tastan Bishop, 2017). One such database, PinSnps (Lu,

Herrera Braga, & Fraternali, 2016), allows users to visualize the loca-

tions of variations in a protein structure. Similarly, LS-SNP/PDB (Ryan,

Diekhans, Lien, Liu, & Karchin, 2009) is a database of annotated

variations, pre-mapped to protein structures. These structure-based

databases are useful, but tend to neglect sequence level data. On

the other hand, sequence level databases, other than the Ensembl

database, do not link particularly well to other types of data, that is,

they focus solely on variation data. In addition, theWeb interfaces pro-

vided for these databases often leave a lot to be desired, offering no

meaningful way of visualizing and interactingwith the underlying data.

It is in this context that we have developed the Human Mutation

Analysis (HUMA) Web server. HUMA was developed as part of the

H3ABioNet project (Mulder et al., 2016), a bioinformatics network

that forms part of the H3Africa Consortium. One of the goals of

H3ABioNet is to build bioinformatics research capacity on the African

content, with the end goal being the ability to store, manage, and

analyze datasets from H3Africa projects within Africa, rather than

sending them abroad.

HUMAaggregates data, including gene and protein sequences, pro-

tein structures, variation, diseases, and literature, from several existing

public databases into a single, connected database. Access to the data

is provided via a user-friendly, Web interface and RESTful Web API.

Although focused around analyzing variation at the protein structure

level, HUMA does not neglect sequence level details, mapping varia-

tion to gene and protein sequences as well as protein structures.

Rather than being a simple database, HUMA aims to provide a plat-

form for analyzing variation. To this end, modern Web technologies

have been used to provide a slick interface and smooth data visualiza-

tion. Additionally, HUMA provides several tools to analyze variation in

protein sequence and structures.

To analyze new data being produced by H3Africa projects (and oth-

ers), HUMA also gives users the ability to upload their own private

datasets. These data are stored separately frompublic data, and can be

shared between users and groups, thereby facilitating collaboration.

Like Ensembl, HUMA incorporates and links multiple different

types of data. However, HUMA differentiates itself with its focus on

variation at the protein level, its incorporation of protein-level analysis

tools, and the ability to upload private datasets.

2 MATERIAL AND METHODS

2.1 Implementation

HUMA makes use of a MySQL relational database. Elasticsearch

(Elastic 2017) was used to provide intelligent and fast searching of the

database. Parser scripts to populate the databasewerewritten in C++
and Python. The HUMAWeb server was developed using the Django

Web framework, and the Bootstrap and Knockout.js JavaScript frame-

works were used to develop the Web interface. Additionally, the PV

andMSA JavaScript plugins were used to further develop our own PV-

MSA plugin, previously used in the PRIMO homology modeling Web

server (Hatherley, Brown, Glenister, & Tastan Bishop, 2016).

2.2 Data sources

HUMA aggregates data from various sources into a single, con-

nected database. Protein data were obtained from UniProt (Apweiler,

2004) and Ensembl. These data include protein identifiers, names

and descriptions, and related literature, as well as features such as

binding sites, secondary structure, and modified residues. Supporting

sequences such as the transcripts, exons, and CDS for proteins were

also obtained from Ensembl. These supporting sequences provided

chromosomal co-ordinates for proteins.

Protein family and domain data were obtained from Pfam (Finn

et al., 2014). These data were linked to proteins and include the Pfam

accession, the family or domain name, and the co-ordinates of the

domain in the protein.

All protein structures were obtained from the Protein Data Bank

(PDB) (Berman et al., 2000). Human PDB files were parsed and the
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relevant details, such as identifiers, the names and UniProt accession

numbers of the chains within the PDB files, and the sequences of the

solved structures, were extracted.

Gene sequences and meta-data were downloaded from Ensembl

and the HUGO Gene Nomenclature Committee (HGNC) (Gray, Yates,

Seal,Wright, &Bruford, 2015). These details include gene names, iden-

tifiers and symbols, as well as the chromosomal co-ordinates for the

gene sequence. Ensembl also provided phenotypes linked to genes. To

improve the “searchability” of the database, gene name and identifier

synonyms and alternatives were obtained fromHGNC.

All human variation in dbSNP was downloaded in Variant Calling

Format (VCF) from the dbSNP FTP site. In addition, variants from the

UniProt humsavar.txt file were also incorporated into the database.

Although variant data from UniProt did not include chromosomal co-

ordinates andmost of the variants overlapped with those from dbSNP,

the humsavar.txt file included data linking variants to diseases.

Disease data were obtained from UniProt, ClinVar (Landrum et al.,

2014), and theOnlineMendelian Inheritance inMan (OMIM) database

(Hamosh, Scott, Amberger, Valle, &McKusick, 2000). UniProt andClin-

Var disease data included links to variation. OMIM data were used

to provide the names of the diseases when ClinVar only provided the

identifiers.

2.3 Database design

HUMA data are split between two separate databases. The public

database stores data that have been aggregated from the various pub-

lic data sources described above. The private database stores data that

should not automatically be shared between users. These data include

user account details, user groups, private datasets, and job results.

2.3.1 Public database

A simplified design of the public section of the HUMA database is

depicted in Figure 1A. The database is designed around four types

of data: proteins (blue); genes (purple); diseases (red); and variants

(orange). Thesedata types are tightly coupled, allowing forquick access

to related data types when the database is searched.

The protein section of the database is focused around the Uniprot-

Proteins table. This table links to additional tables, not depicted in

Figure 1, that store alternate names, synonyms, identifiers, features,

families, domains, and literature related to a given protein. For a given

UniProt protein, there may be several additional sequences stored,

known as isoforms. As such, HUMAallowsmore than one sequence for

any one protein to be stored—hence the need for the UniprotIsoforms

table. Because protein sequences are also obtained from Ensembl, a

separate ProteinSequences table was created to reduce redundancy.

Sequences from both Uniprot and Ensembl are stored in this table. A

hashof the sequence is usedas theprimarykey toensure thatduplicate

sequences fromUniProt and Ensembl are not stored twice. In addition,

the CDS for each protein are stored in the EnsemblProteins table, and

are used together with the protein exons to calculate CDS ranges on

the chromosome (this is discussed further in the Mapping Variants to

Protein Sequences section).

The Genes table also links to additional tables not depicted in

Figure 1. These tables store alternative gene identifiers, symbols and

names. Genes link to proteins in a “many-to-many” relationship, where

one gene may code for more than one protein and one protein may be

produced by more than one gene. This is compounded by the fact that

there are duplicate proteins stored in the UniProt database (and thus

in HUMA). Similarly, the Genes table links to the Variants and Diseases

tables via many-to-many relationships.

As with the Genes table, the Diseases table links directly to the Vari-

ants and UniprotProteins tables via “many-to-many” relationships. The

relationship between variants and proteins differs, however, as the

Variant table links to the ProteinSequences table, rather than directly to

theUniprotProteins table. This is because variants aremapped to a spe-

cific position in a protein sequence.

By closely linking the four data types, this design ensures that there

is quick access from any one of the data types to any other data type.

This proves useful when it comes to loading large pages containing var-

ious different data types, as it allows for efficient database queries.

2.3.2 Private database

To allow users to upload their own variant data, and to ensure that

the data are kept secure, private datasets are stored in a separate

MySQL database (Figure 1B), where they are linked to the Users and

Groups tables (green), which provide themeans for owning and sharing

datasets. Nevertheless, private data are linked to public data such as

genes, diseases, and proteins by storing the identifiers for those data

types in “connector” tables (gray). The identifiers in these tables can be

used to look up the related data in the public database.

Private datasets are also linked to user accounts to ensure that no

unauthorized users can access them. Additional users can be given

access to datasets by sharing the datasets with user-defined groups.

Similarly, HUMA stores the details and results from any tools that

are run via the HUMA Web server. As with datasets, these jobs are

linked to user accounts and can also be shared with user groups.

2.4 Populating the database

The HUMA database has been populated using a semi-automated

pipeline containing amixture ofC++ andPython scripts (Figure 2). The

C++ scripts were written to parse large files that took too long to do

with Python. The compute intensive mapping of variants to proteins

andgenes, described in thenext section,wasalsoperformedusingC++
scripts.

Each block in Figure 2 depicts a script used to populate the

database. Purple blocks depict C++ scripts, whereas green blocks

depict Python scripts. The lines between the scripts depict dependen-

cies, that is, the order in which the scripts must run. All of a script's

dependencies must be satisfied before it can be executed. Red/bold

lines between blocks depict non-automatic dependencies, that is, the

pipeline cannot automatically move to the next stage as some sort of

manual intervention is required.

The gene_parser script parses gene data obtained from Ensembl and

HGNC. These data include gene identifiers, symbols, names, and chro-

mosomal co-ordinates, as well as the gene sequences themselves. As
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F IGURE 1 A: Public database design—a simplified design of the public HUMA database. The database is divided into four sections: proteins
(blue/dark solid), variants (orange/horizontal stripes), diseases (red/waves), and genes (purple/dotted). B: Private database design—private data
are stored in a separate database. Public proteins, genes, and disease are linked to private variants (orange/horizontal stripes) during the mapping
process when the variants are first uploaded. These links are stored in the “connector” tables (gray/light solid). Dataset (white) ownership and
sharing is managed via the account tables (green/checkered)

gene sequences can be relatively long, each sequence is stored as a file

and the path to the file is stored in the database. Data linking genes to

diseases (as well as the diseases themselves) are also inserted by this

script.

The uniprot_parser script extracts relevant data from the SwissProt

and Trembl “.dat” files, as well as a Fasta file containing all human

Uniprot protein sequences, obtained from the Uniprot FTP site. Data

from these files include identifiers, names, sequences, features, and lit-

erature related to the protein.

The dbsnp_parser script parses and inserts all variation from a

dbSNP VCF file into a temporary VariantStore table, where it waits to

bemapped to proteins and genes.

The ensembl_mapper script inserts proteins and exons fromEnsembl

into the database. The exon data include the chromosomal co-

ordinates and the protein data include the CDS. These data are

required whenmapping variants to protein sequences. In addition, the

script maps exons to the relevant protein, and proteins to the relevant

genes (hence gene_parsermust first have completed). The Ensembl pro-

teins are also mapped to Uniprot proteins during this step by adding

the Ensembl protein sequences to the ProteinSequences table, where

they overlap with the Uniprot sequences.

Once the uniprot_parser script has finished executing, the

parse_structures and parse_pfam Python scripts are free to run.

The parse_structures script inserts all human PDB structures into the

database. Each protein chain in a PDB structure has an associated

UniProt accession number, which is used to link protein structures to

their respective UniProt entries.

The parse_pfam script parses data downloaded from the Pfam FTP

site and inserts it into the HUMAdatabase. These data include protein

families and domains.

The map_protein_genes script links UniProt proteins to genes from

Ensembl by parsing the ID mapping file that can be obtained from the

Uniprot FTP site. This file contains mapping between accession num-

bers and various identifiers from other public databases. For proteins

that cannot be mapped via this method, the script attempts to link the

UniProt proteins to Ensembl genes via the EnsemblProteins table.

HUMA calculates CDS ranges on the chromosome by concatenat-

ing exons to generate the coding DNA (cDNA) and finding the posi-

tion at which the CDS starts within the cDNA. Combined with the

chromosomal co-ordinates of the exons, this allows for the chromo-

somal co-ordinates of the CDS ranges to be calculated. Variants can

then be mapped to the CDS based on chromosomal co-ordinates, and,

from there, to the protein sequence. This process is carried out by the

cds_mapper and variant_mapper scripts and is discussed further in the

next section. Before the variant_mapper script is executed, all indices,

primary keys, and foreign keys are manually removed from the table.

This improves performance when inserting data into the table. Once

the data have been inserted, the keys and indices are reintroduced to

improve lookup performance.

The parse_humsavar and parse_clinvar scripts extract data from the

UniProt humsavar.txt file and ClinVar variant_summary.txt file, respec-

tively, to map variants to diseases. These files also add the diseases to

the database as they go (if the disease does not already exist in the

database).
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F IGURE 2 Database populationworkflow. Theworkflow for populating the database. Blocks represent scripts that parse data files and populate
thedatabasewith that data.Dark (purple) blocks represent parserswritten inC++, whereas light (green) blocks representPython scripts. Red/bold
lines represent a part of the workflow that cannot be automated, that is, manual intervention is required

Finally, the map_gene_diseases and map_protein_diseases scripts link

genes and proteins, respectively, directly to diseases based onwhether

any variants in those genes or proteins are linked to the disease (keep-

ing in mind that certain genes are already linked to diseases by the

gene_parser).

2.5 Mapping variants to protein sequences

In the HUMA database, variants are mapped to gene and protein

sequences based on chromosomal co-ordinates. This is a straight for-

ward process for genes, butwhenmapping variants to proteins, the co-

ordinate ranges of the protein's CDS must first be calculated. UniProt

data donot incorporate chromosomal co-ordinates.On theother hand,

co-ordinates of protein exons can be obtained from Ensembl, but

Ensembl proteins do notmap directly to PDB structures. As such, both

UniProt and Ensembl protein data were required to allow variants to

bemapped from the chromosome to protein structures.

The process by which variation is mapped to protein sequences is

depicted in Supp. Figure S1. As mentioned earlier, protein sequences

are obtained from UniProt and Ensembl, and mapped to one another

based on 100% sequence identity. This results in a non-redundant

protein dataset. Exons and CDSs are also obtained from Ensembl.

Exons are concatenated to form the cDNA, and the coding start point

in the cDNA is determined by mapping/aligning the CDS to the cDNA.

The co-ordinate ranges on the chromosome that make up the CDS

can then be calculated based on the chromosome co-ordinates of the

exons that make up the cDNA, and the start point of the CDS in the

cDNA. Variation in VCF format (in our case, fromdbSNP147), can then

be substituted into CDS ranges based on chromosome co-ordinates

and translated to determine the position and amino acid change in the

protein sequence (if any).

2.6 Search

The HUMA Web server provides intelligent and fast search by using

an open-source technology called Elasticsearch. Elasticsearch is a doc-

ument store, which runs as a separate database alongside the HUMA

database. Data from the HUMA database are pre-indexed in the doc-

ument store. As such, when a user performs a search via the Proteins,

Genes, orDisease pages, the query never hits theMySQLdatabase, but

rather the Elasticsearch document store with the indexed data.

Elasticsearch is extremely fast and scalable. This allows HUMA to

search across significantly more data than if it were to query a rela-

tional database, such as MySQL, directly. Elasticsearch is also able to

perform fast, full-text searches that consider spelling mistakes and

typos made by the user. This is also useful when there are different

ways to spell words, for example, hemoglobin versus hemoglobin.

Elasticsearch produces ranked search results, where a hit is ranked

higher depending onhowclosely itmatches the search term.When cal-

culating a score for a hit, certain data canbeweightedmoreheavily. For

example, when searching for a protein, if the search termusedmatches

to a protein name, it will produce a higher score than if it matches text

within the protein function description, which can be a paragraph long

and contain the names of various other interacting proteins. Weight-

ing such as this have been organized across the various data fields in

the HUMA database in order to produce the best and most relevant

results when a user performs a search. These weightings were chosen

by trail-and-error andwill evolve with time as we gather more data.



BROWN AND TASTANBISHOP 45

F IGURE 3 VAPOR workflow. The VAPOR workflow consists of three stages. First, user input is converted into the various formats required by
the prediction tools. The predictions are then executed and the results aremerged at the last stage

While we have found that our search works well for genes and pro-

teins, our implementation is limitedwhen it comes to disease searches.

The reason for this is that the only disease data stored in the HUMA

database are the disease ID and name, that is, no description or meta-

data around diseases are stored. Ideally, searching for a term such as

“cardiovascular disease”would returndiseases related to theheart, but

this would require that meta-data or tags were available for each dis-

ease, which could then be used to categorize them. That being said, dis-

eases can be searched based on related data (e.g., searching based on a

gene symbol (e.g., HBB) or protein accession (e.g., P68871)will find dis-

eases related to that gene or protein, respectively). Future work that

introducesmore disease data will improve the disease search further.

2.7 Visualization

HUMA is largely focused on the analysis of variation at the protein

level. As such, being able to visualize the location of variants in the

protein structure was deemed important. To do this, two components

were required. Firstly, a molecular visualizer was required to ren-

der the protein structure in 3D. Secondly, and a little less obviously,

an alignment viewer was required. This was due to the fact that the

sequence obtained fromUniProt/Ensembl and the sequence extracted

from thePDBfile does not necessarilymatch. For example, thePDBfile

may be missing residues where the structure could not be solved may

contain mutations that the Uniprot sequence does not.

We have previously developed the PV-MSA plugin for the PRIMO

Web server. The plugin wraps two existing plugins (PV and MSA) into

a single component, and allows structures to be visualized along with

an alignment. Selecting residues in the structure highlights the residue

in the alignment and vice versa. For HUMA, the plugin was extended

to allow the alignment and molecular visualizer to be decoupled, that

is, they can now be placed at separate locations on aWebpage, rather

than being tied together.

2.8 VAPOR

TheVariantAnalysis Portal (VAPOR) is a computationalworkflow, con-

sisting of eight distinct tools, used to predict the effects of variants on

protein function and stability (Figure 3). Of the eight tools, the first and

last tools are simply used to format the inputs and outputs, respec-

tively, of the six variant analysis tools.

The tools selected for VAPOR had tomeet two criteria. Firstly, they

had to be free to use and available for download so that they could be

installed locally on our cluster.

Secondly, they had to accept a protein sequence and amino acid

change (or list of amino acid changes) as input. Tools that only accepted

variations in the form of nucleotide changes and chromosome co-

ordinates were ruled out as they could not be accurately mapped to

the protein sequence supplied to the other tools.

Due to the latter requirement, tools such asFoldX (Guerois,Nielsen,

& Serrano, 2002) and Rosetta, which are commonly used for predict-

ing the effect of mutations on protein stability, but accept a protein

structure as input, were ruled out. In future, Rosetta predictions may

be included in a structural version of VAPOR.

Given the above-mentioned criteria, six tools were selected to

make up the initial VAPOR workflow. The tools are split into two

categories. The first category consists of tools that predict the func-

tional effect of variants on proteins, that is, whether the variant is
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F IGURE 4 Tool integration via JMS. Tools are integrated via the JMS
workflow management system, which provides a RESTful Web API
that allows external servers, such as HUMA, to access it. In the case of
PRIMO, HUMA accesses the PRIMOAPI, which accesses the JMSAPI

damaging/deleterious or tolerated/benign. This category has

PolyPhen-2 (Adzhubei et al., 2010), PROVEAN (Choi, Sims,

Murphy, Miller, & Chan, 2012), PhD-SNP (Capriotti, Calabrese, &

Casadio, 2006), and FATHMM (Shihab et al., 2013).

The second category predicts the effect of mutations on protein

stability. This category is made up of the last two tools, I-Mutant 2.0

(Capriotti, Fariselli, & Casadio, 2005) and MuPRO (Cheng, Randall, &

Baldi, 2006).

Input supplied to VAPOR is used by the six chosen analysis tools,

eachofwhich accepts this input in a slightly different format. Insteadof

requiring the user to enter the data in six different formats, the Format

Converter tool automatically converts the input into the correct format

for each of the tools and passes the converted inputs to the respective

tools. Once the tools have finished running, their outputs are passed to

the final tool, the Consensus Generator, which merges the results into a

single text file.

It is important to note that VAPOR is not a meta-predictor. It does

not use machine learning or any other method to generate a consen-

sus. It simply runs the tools independently andmerges the results into a

convenient table, which can be downloaded by users. This is important

to keep inmind, as simply combining the results of these tools could be

misleading (Vihinen, 2014).

On the other hand, VAPOR still plays an integral role as part of the

HUMAWeb server. It provides a single input interface to execute vari-

ation effect prediction tools against variants in the HUMA database.

Without VAPOR, users would have to download their variant datasets

of interest, browse to the Web servers for each of the tools, submit

the datasets individually to each of the servers, and then download and

collate the results from each of those servers. This requires significant

time andeffort, especially considering certain servers only allowyou to

submit a single variation at a time.

2.9 Integrating tools

Tools are integrated into the HUMA via Job Management System

(JMS) (Brown, Penkler, Musyoka, & Bishop, 2015) (Figure 4). JMS is

a workflow management system and Web-based cluster front-end

that makes its functionality available via a RESTful Web API. VAPOR

is housed as a workflow within our JMS instance. HUMA provides an

interface to this workflow, leveraging the RESTful Web API of JMS

to forward user input to the workflow management system. JMS

manages the execution of the VAPOR workflow on the cluster and, on

completion, returns the results to HUMA.

Similarly, the PRIMOhomologymodeling pipeline is housed in JMS.

However, PRIMOhas been integrated into HUMAby allowing users to

link their HUMA and PRIMO user accounts. User input is forwarded

fromHUMAtoPRIMO,which then runs the homologymodeling job via

JMS. As such, updates to PRIMOwill automatically result in updates to

HUMA. To use PRIMO via the HUMA interface, users must first link

their PRIMO account to their HUMA account.

Protein BLAST has been integrated into HUMA to allow the

database to be searched based on sequence similarity. Unlike VAPOR

and PRIMO, BLAST can return results in real time. As such, there is no

need to execute the job on the cluster via JMS. Instead, the tool is run

directly by the HUMAWeb server and the results are returned imme-

diately.

2.10 Web interface

The HUMAWeb interface has been built as a Single Page Application

(SPA). This means that the entireWebsite is made up of only one page.

The illusion of multiple pages is created by showing and hiding differ-

ent sectionsof thepagewhen links are clicked, searches are conducted,

or jobs submitted. SPAs provide improved performance by decreasing

the bandwidth usage between the client browser and the server. Nor-

mally, when a request is sent to the server, it requires that the entire

page be reloaded. With SPAs, requests are sent using Asynchronous

JavaScript And XML (AJAX), negating the need to reload the page. The

server then responds with only the data that should be displayed on

the page, rather than an entirely new Webpage. JavaScript is used to

arrange the returned data on the page. In our case, a JavaScript frame-

work called Knockout.js is used to bind data to elements on the Web

page, automatically updating the page when new data are received.

This process also allows for a more fluid and pleasing user experience

as loading screens can be displayed while waiting for data from the

server and smooth transitions can be applied when moving between

“virtual pages.”

3 RESULTS AND DISCUSSION

3.1 Accessibility

TheHUMAWebserver is accessible at https://huma.rubi.ru.ac.za. Both

data and tools can be accessed via a user-friendly Web interface

and RESTful Web API. To run tools, upload private datasets, and join

groups, users must first register for a free account. To run PRIMO jobs,

these accountsmustbe linked toanaccounton thePRIMOWebserver.

3.2 Public data

A large amount of data from various sources has been aggregated in

the HUMA database (Table 1). These data can be divided into the four

types or categories discussed previously. Using various methods, each

of these categories has been linked together, so that users can search

https://huma.rubi.ru.ac.za
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TABLE 1 HUMAby the numbers—adepiction of the amount of data
retrieved from each source and stored in the HUMAdatabase

Category: Proteins

Uniprot Proteins 154,527

Isoforms 176,494

Unique protein sequences 156,406

Families and domains 6,256

Ensembl Unique protein sequences 83,414

Unique CDS 101,619

Exons 735,779

Uniprot+ Ensembl Unique protein sequences 157,392

PDB Structures 32,113

Chains 66,383

Unique chains (protein sequences) 5,683

Section: Genes

Ensembl Genes 22,097

HGNC Genes 19,187

Category: Diseases

All sources Diseases 14,224

Category: Variation

dbSNP Variants 152,345,291

Protein variants 14,452,754

Gene variants 74,835,201

Disease variants 71,259

based on a selected category and easily find all the related data aswell.

For example, searching for a variant will also display and link to the

genes and/or proteins that the variant is found in, as well as any dis-

eases that might be associated with it.

Although variants are also mapped to gene sequences, HUMA

mostly focuses on variation at the protein level. Nevertheless, HUMA

can be searched from the angle of any of the four data types described

previously. Previously, HUMA was used to study the effects of varia-

tion on theRenin-Angiotensin System (RAS) (Brown, SheikAmamuddy,

& Tastan Bishop, 2017). To illustrate this functionality, we will now

present a case study of how a user might go about analyzing the dis-

ease, “beta-thalassemia” (MIM# 613985), via the HUMA Web inter-

face.

Given that this case study is focused on a disease, we will start our

analysis on the disease search page on the HUMA Website. Searching

for the term, “beta-thalassemia,” yields a table with 100 results. The

most relevant result is the “BETA-THALASSEMIA” entry from OMIM.

A unique feature of HUMA search results is that, along with the dis-

eases returned by the search term, HUMA also returns figures depict-

ing how many much data in other categories are associated with the

disease. For example, in the results table, we can see that the OMIM

entry forBETA-THALASSEMIAhasonegene, 65variants, and four pro-

teins associatedwith it. Selecting this entry takes theuser to thedisease

detail page. This page shows further details about the disease entry, as

well as specific details about which genes, proteins, and variants have

been associated with the disease.

From the disease detail page for BETA-THALASSEMIA, we can see

that beta-thalassemia has been linked to the hemoglobin subunit

beta (HBB) (MIM# 141900) gene. Clicking on the gene symbol in the

“Genes” block on this page takes the user to the gene detail page for

HBB. Like the disease details page, this page has more detailed infor-

mation about the gene, including related proteins, diseases, and vari-

ants, as well as the gene sequence and the positions of variants in the

sequence.

On the gene detail page, the “Proteins” block displays all the protein

sequences that that are coded by HBB. From the dropdown box, users

can select the different proteins, which, in this case, are all hemoglobin

beta protein sequences. Reviewed sequences are sorted to the top of

the dropdown box. The first sequence, P68871, has the most informa-

tion associated with it and, as such, is a good option to select to con-

tinue with the analysis.

With P68871 selected in the dropdown, clicking on the accession

number in the “Proteins” block will direct the user to the protein details

page forP68871 (Figure5). As is the theme inHUMA, theprotein details

page also contains details about related genes, diseases, and variants.

However, as HUMA has a focus on analysis at the protein level, this

page incorporates a large amount of additional data, including protein

structures, supporting sequences, such as the cDNA, CDS, and exons,

as well as literature linked to the protein. Users can visualize the pro-

tein structures, select variants and see them mapped to the proteins

sequence and structure, and highlight the locations of features such as

binding sites, secondary structure, and modified residues in the struc-

ture.

The “Analysis” block on the protein detail page displays the protein

sequence aligned to the sequence of the structure that is being dis-

played in the box. Alongside the structure, in the “Variants” tab, is a

table containing all variations that have been mapped to the protein.

In Figure 5, the filter button above the table has been used to filter

to show only non-synonymous variations that are linked to disease.

From there, selecting the number in the “Associated Diseases” column

(or hovering over it), displays which disease has been linked to that

variation. All variations linked to beta-thalassemia have been selected.

Selecting these variations highlights them in green in the protein struc-

ture. In the alignment at the top of the “Analysis” block, the variation is

substituted into the sequence and the position in the alignment is out-

lined in red.

The “Analysis” block also contains several more tabs in addition to

the “Variants” tab. The Features tab lists the features obtained from

UniProt such as binding sites, modified residues, secondary structure,

and chains. Similarly to selecting a variant, selecting a featurewill high-

light the location of the feature in the alignment and protein structure.

The Pfam tab lists the protein domains and families obtained from

the Pfam database. As with features and variations, selecting an entry

here will highlight its position in the structure and sequence.

The Structures tab allows the user to select different PDB structures

that may have mapped to the Uniprot sequence. Selecting a different

structurewill replace the structureon the rightwith thenewly selected

structure and update the alignment at the top of the page.

Lastly, the VAPOR and PRIMO tabs are only visible when a user is

logged in. Here, users can find the results of any VAPOR or PRIMO
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F IGURE 5 Protein detail page. Detailed result page for P68871. Selected variants are highlighted in the protein structure and outlined in the
alignment. Only the “Analysis” block is visible in this screenshot

jobs that they have previously run and that are linked to the protein

in question. The VAPOR and PRIMO buttons located underneath the

sequence alignment let users submit a sequence with selected varia-

tions, if applicable, to the VAPOR and PRIMO tools, respectively. Jobs

submitted in this fashionwill be linked to the protein andwill be acces-

sible from these tabs.

Other than the “Analysis” block, the protein result page includes a

“Genes” block, “Diseases” block, “Sequences” block, and “References”

block, which show genes that code the protein, diseases associated

with the protein, supporting sequences, and related literature, respec-

tively.

3.3 Tools

HUMA has two main tools built into it. The first of these is the VAPOR

workflow. Continuing with our beta-thalassemia example, the next

step would be to analyze the P68871 variants that were previously

selected. As mentioned previously, the VAPOR button, located below

and to the right of the alignment, lets the user run a VAPOR job using

the modified sequence as input. Clicking the button redirects to and

automatically populates the VAPOR submission pagewith the P68871

protein sequence and the selected variants. Clicking the “Submit” but-

tonwill then run theVAPOR job on the server before taking the user to

the results page where they can monitor the progress of the job. Once

complete, the VAPOR output will be displayed in the form of a table on

the results page (Figure 6).

To further analyze mutations that have been predicted to be harm-

ful by VAPOR, these mutations can be selected in the results table

and modeled into the structure of the protein sequence by clicking on

the PRIMObutton (Figure 6). Like before, this automatically populates

the PRIMO submission page with the relevant data—in this case, the

mutated protein sequence aswell as a useful job name and description.

Both PRIMO and VAPOR have been integrated into the HUMA

interface in two separate places (in addition to the actual submission

pages). As shown in the case study, PRIMOandVAPORhave been inte-

grated into the “Analysis” block on the protein detail page. Similarly,

these tools have been integrated into the “Protein View” section of the

dataset detail page, which will be discussed in the next section.

3.4 Private datasets

Registered users can upload their own datasets to HUMA via the

datasets page. Uploads are accepted in VCF format and automatically

mapped to gene and protein sequences using the process described in

the Materials and Methods section above. In addition, dataset variants

are compared to variants in the public database. If a dataset variant
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F IGURE 6 VAPOR results page. Results are split into two tables, the first of which contains functional predictions and the second of which con-
tains stability predictions. From here, specificmutations can be selected andmodeled into the protein structure using PRIMO

matches a public variant that has been associatedwith the disease, the

dataset variant is also associated with that disease.

Once mapping is completed, users can view the results by selecting

the relevant dataset. This will direct the user to the dataset detail page.

This page contains three different views. The “Variants View” simply

displays all variants in the dataset.

The “Genes View” displays the genes that variants in the dataset

were mapped to. Selecting a gene will display all the variants from the

dataset that mapped to that gene, along with the position in the gene

sequence that the variant occurs at.

Similarly, the “Proteins View” displays the proteins that variants

in the dataset were mapped to. Selecting a protein displays an anal-

ysis block where users can visualize variants in the protein structure

and substitute variants into the protein sequence. PRIMO and VAPOR

have been integrated here to allow users to analyze unique variants.

As with the previous views, the “Diseases View” displays the dis-

eases associated with variants in the dataset. Selecting a disease will

display all variants that weremapped to that disease.

Additional variants canbeuploaded to thedataset via the “Uploads”

tab. Similarly, variants can be removed from datasets by deleting indi-

vidual variants via the “Variants View” or deleting genes, proteins, or

diseases via their respective views.

3.5 Filtering and downloading data

On all pages containing lists of variants, the lists can be filtered and the

resulting variant datasets can be downloaded. Filters depend on the

page data type. For example, on the protein result page, variants can be

filtered based on their residue position, amino acid change, or whether

they are associated with any diseases. On the genes result page, vari-

ants can be filtered based on the nucleotide position in the gene or the

allele change.

Variants can also be downloaded in several different formats. These

formats include identifiers, VCF, and one- and three-letter codes (e.g.,

A7V or Ala7Val).

3.6 Collaboration

To facilitate collaboration and the sharing of data, HUMA allows users

to create groups. Once a user has created a group, they may invite

other users to join their groups. Users will only be added to the group

when they accept the invitation.

Groups provide several collaborative features. The most impor-

tant of these features is the ability to share datasets. Additionally, the

results from VAPOR and PRIMO jobs can also be shared with groups.
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Any users in the group will then have permission to view, analyze, and

download this shared data.

Groups also provide a shared forum, where datasets and jobs can

be discussed. Providing a means to discuss group-related topics on

HUMA, rather than via e-mail, for example, means that these discus-

sions remain easily accessible and do not get lost in the long term.

4 CONCLUSIONS

The HUMA Web server has been developed as part of H3ABioNet

to provide a repository for variation data generated by H3Africa

sequencing projects. HUMA aggregates data form various public

sources into a single, connected database, and uses this data to enrich

user-uploaded, private datasets. In addition, HUMA provides tools to

visualize variation in protein structures, predict the effect of varia-

tion on protein function and stability, and model variation into protein

structures. As such, HUMA is more than a simple database, but rather

a platform for the analysis of genetic variation in humans.

In this paper, we have discussed the utility of HUMA. Users can

either use the platform to analyze existing public data, or upload their

own, private datasets. The VAPOR workflow incorporates six distinct

prediction tools to determine the effects of variants on protein func-

tion and stability. From there, PRIMO can be used tomodel interesting

variants into the protein structure.

HUMA's focus on variant analysis at the protein structure level, as

well as the ability to allow users to upload their own datasets, dis-

tinguishes it from existing databases. Additionally, HUMA provides a

modern, fast, and user-friendly Web interface, as well as a powerful

and comprehensive RESTful Web API. This combination of data, tools,

and modern Web technologies makes HUMA a unique platform for

structural bioinformaticians and biologists, as well as geneticists.

Future work on HUMA will focus on incorporating additional data

into the public database, including protein interaction networks, path-

ways, and existing drugs that target proteins. In addition, new ways of

analyzing these data will be built into the Web server, such as a struc-

tural version of VAPOR, network analysis, principle component analy-

sis, andmolecular docking.
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