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This study initially aimed to investigate the genetic population/stock structuring of Lethrinus nebulosus in the Southwest Indian Ocean
(SWIO) to inform management practices in light of emerging evidence of overharvesting of this species throughout its distribution. Adult
samples were genotyped for 14 nuclear microsatellites and by sequencing fragments of the mtDNA control region and COI gene. A salient fea-
ture of the data was the congruent cyto-nuclear partitioning of samples into two high divergent, reciprocally monophyletic groups. This indi-
cates that despite no a priori evidence, hitherto described L. nebulosus in the SWIO comprises two cryptic species that co-occur among
southern samples. This intermingling indicates that, at least in southern samples, both species are being indiscriminately harvested, which
may severely compromise sustainability. Limited microsatellite differentiation was detected within both species, though there was some evi-
dence of isolation in the Mauritian population. In contrast, mtDNA revealed a pattern consistent with chaotic genetic patchiness, likely pro-
moted by stochastic recruitment, which may necessitate a spatial bet-hedging approach to management to satisfy fishery management and
conservation goals.
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Introduction
Genetic studies have yielded many insights into marine biodiver-

sity, with important findings including the detection of significant

genetic population structuring (Shaw et al., 1999; Knutsen et al.,

2011; McKeown et al., 2015) and adaptation (Hemmer-Hansen

et al., 2007; McKeown et al., 2016, 2017) in systems where high

gene flow would be expected to prevent such differentiation. In

addition to resolving intraspecific population structure, genetic

surveys have revealed substantial cryptic species diversity in the

marine realm (Thorpe et al., 2000; Borsa, 2002). The recognition

of such distinct components is now regarded as fundamental to

sustainable management.

The blue or spangled emperor fish, Lethrinus nebulosus

(Forsskål, 1775), occurs throughout the Indo-west central Pacific

(Fischer and Bianchi, 1984; Grandcourt et al., 2006). Throughout

its distribution, L. nebulosus is harvested by various artisanal, rec-

reation, and commercial fisheries (Fischer and Bianchi, 1984;

Heileman et al., 2015). Although historically a minor component

of some regional fisheries, the species is being exposed to

increased fishing pressure as catches of other species decline
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(Mann, 2000). Many L. nebulosus fisheries are already heavily

exploited, operating above optimal sustainable levels and showing

evidence of both recruitment and growth overfishing (e.g.

Grandcourt et al., 2006). Fishing pressure, coupled with habitat

loss and alteration, is proposed to have led to declines in the bio-

mass and abundance (or the complete absence) of L. nebulosus

from certain areas, as well as declines in yields and catch per unit

effort across its distribution (Heileman et al., 2015). Overfishing

can also affect ecological processes (Hutchinson and Reynolds,

2004) and drive genetic changes that can seriously compromise

adaptability (Iles and Sinclair, 1982), resilience, and productivity

(Ryman et al., 1995).

The initial objective of this research was to describe population

genetic variation of L. nebulosus in the Southwest Indian Ocean

(SWIO), a region described as a biodiversity hotspot (Ridgway

and Sampayo, 2005) and an area wherein fishing pressure on L.

nebulosus is predicted to increase. Specifically, we aimed to test

the null hypothesis of high connectivity throughout the region

and compare patterns of genetic variation to other geographical

regions to investigate if there were any signals of genetic erosion.

However, nuclear and mitochondrial data revealed two highly

divergent genetic groups indicating that, despite no a priori

evidence, hitherto described L. nebulosus in the SWIO actually com-

prise two cryptic species that are being indiscriminately harvested.

Material and methods
Sample collection and DNA extraction
Sampling was coordinated by the SWIO Fisheries Project (van

der Elst et al., 2009). Samples (fin/muscle tissue/gillraker clips

fixed in 95% ethanol) were collected from individuals identified

as L. nebulosus based on morphology between 2011 and 2012,

either on-board commercial fishing vessels or at commercial or

subsistence landing sites across the SWIO (Figure 1). Total

genomic DNA was extracted from samples using a combination

of standard CTAB-chloroform/isoamyl alcohol methods

(Winnepenninckx et al., 1993) alongside Qiagen (Hilden,

Germany) DNeasy Blood and Tissue and Sigma-Aldrich (St

Louis, Missouri) GenElute Mammalian Genomic DNA Miniprep

kits.

For genetic analyses, samples obtained from multiple localities

within a country [e.g. Seychelles, (southern) Mozambique, and

South Africa] were pooled within each country. Samples from

Madagascar were obtained from the east, northwest, and

southwest coasts. Owing to the longitudinal range of the island,

those from the east and southwest coast were considered inde-

pendently, while those from the northwest coast were combined

with samples from the Comoros (owing to the small samples sizes

from each of the individual localities) and designated as a

Northern Mozambique Channel regional sample (Figure 1,

Supplementary Table S1).

Control region and cytochrome oxidase I amplification
and analysis
A fragment of the mtDNA Control Region (CR) was amplified by

polymerase chain reaction (PCR) using newly designed species-

specific primers (LCR1F 50-CGGTCTTGTAAACCGGATGT-30

and LCR1R 50-GTCATGGCCCTGAAATAGGA-30). PCRs were

performed in a total volume of 20 ll, containing 4 ll template

DNA, 2 mM MgCl2, 0.5 lM forward primer and 0.5 lM of reverse

primer, 0.2 mM dNTP mix, 1� reaction buffer, and 5 U Taq

polymerase (BIOTAQ). The PCR thermoprofile was 180 s at

95 �C, followed by 45 cycles of 30 s at 95 �C, 45 s annealing at

54 �C and 60 s at 72 �C, with a final extension period of 10 min at

72 �C. PCR products were then purified using EXOSAP-IT and

sequenced in both directions on an Applied Biosystem 3500 plat-

form using the respective PCR primers. Sequences were trimmed

manually, and 421 bp aligned across individuals using BIOEDIT

(Hall, 1999). Additionally to facilitate a more comprehensive

BLAST analysis, a 443 bp region of the barcoding COI gene was

amplified in a subset of individuals representative of CR clades

(described in Results), using universal primers FishF1 and FishR1

(Ward et al., 2005) and similar PCR condition as those for the

CR, with annealing temperature reduced to 55 �C.

Phylogenetic relationships among sequences were assessed

using maximum likelihood (ML) and Bayesian inference (BI)

trees, constructed in MEGA v7.0.21 (Tamura et al., 2013) and

MRBayes v3.2 (Ronquist and Huelsenbeck, 2003), respectively,

using the optimum mutation model (HKYþGþI) inferred by

JMODELtest (Posada, 2008). ML bootstrap (BS) values were cal-

culated using 1000 BS replicates. BI phylogenies were calculated

assuming unknown model parameters, and run over 5 000 000

generations, sampling the Markov chain every 1000 generations,

with the first 15% of trees discarded as burn-in. Median joining

haplotype networks were calculated and constructed in

NETWORK (Bandelt et al., 1999).

Genetic variation was described using number of haplotypes

(H) in addition to indices of haplotype (h) and nucleotide (p)

diversity alongside their variances, all of which were calculated in

Arlequin v3.5.2.2 (Excoffier and Lischer, 2010). Genetic

Figure 1. Sampling localities across the SWIO for L. nebulosus.
Sampling locations are represented by circles and in some cases are
midpoints of several geographically close sampling locations (see
supplementary information for detailed sampling strategies).
S¼ Seychelles, K¼Kenya, TZ¼ Tanzania, C¼Comoros,
NWM¼Northwest Madagascar, WM¼West Madagascar,
MZ¼Mozambique, SA¼ South Africa, EM¼ East Madagascar,
MA¼Mauritius. Owing to small sample sizes C and NWM were
grouped together and classed as NMC (Northern Mozambique
Channel). Pie charts represent the proportion of individuals in each
sampling site that belonging to mtDNA clade A and B.
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differentiation among samples was assessed using global and pair-

wise UST values, implemented in Arlequin with significance tested

after 10 000 permutations.

Microsatellite amplification and analysis
Nuclear genetic variation was assessed at 14 microsatellite loci

developed for L. miniatus (Van Herwerden et al., 2000a, 2000b),

using protocols refined for L. nebulosus by Berry et al. (2012).

Fragments were sized, alleles were scored, and a genotype matrix

was produced using GeneMapper 5 (Applied Biosystems).

Micro-Checker 2.2.3 (Van Oosterhout et al., 2004) was used to

test for signatures of technical artefacts. The number of alleles

(NA), allelic richness (AR), the absolute number of private alleles

(NP), the percentage of polymorphic loci (P%), and observed (HO)

and expected (HE) heterozygosities were calculated using GenAlex

6.502 (Peakall and Smouse, 2012). Deviations from Hardy–

Weinberg (HW) expectations across loci and samples were assessed

using exact tests in GENEPOP 4.5.1 (Rousset, 2008), and linkage

disequilibrium was examined using exact tests in Arlequin.

Genetic structure was investigated without prior sample defini-

tion, using the model-based Bayesian clustering programme

STRUCTURE V2.3.4 (Pritchard et al., 2000). Data were explored

using combinations of admixture/no admixture models with 500

000 MCMC repetitions and a burn-in of 100 000 iterations.

Twenty replicates were conducted for each number of clusters

(K), and the K value that best fit the dataset was estimated using

the log probability of data [Pr(X/K)] (Pritchard et al., 2000).

Clustering among individuals was also assessed using

Discriminant Analysis of Principal Components (DAPC) imple-

mented in ADEGENET (Jombart et al., 2010). Additionally the

relationship among samples based on allele frequencies was

visualized using factorial correspondence analysis (FCA) in

GENETIX (Belkhir et al., 2004).

To quantify genetic differentiation, pairwise FST values

(Wright, 1951) were calculated in Arlequin, with significance

determined after 10 000 permutations. Hierarchical analysis of

genetic variance (AMOVA; Excoffier et al., 1992) was performed

in ARLEQUIN to quantify, and test significance using 1000 per-

mutations of, variation among groups (FCT) and among samples

within groups (FSC), with groups defined by mtDNA clade. To

further investigate the levels of nuclear differentiation between

members of each mtDNA clade, “leave one out” self-classification

tests were conducted in GENECLASS 2 (Piry et al., 2004).

Results
mtDNA variability, phylogeny, and BLAST results
An edited 421-bp fragment of the CR was aligned across 292 indi-

viduals from 9 samples within the SWIO, producing a total of

234 haplotypes. Phylogenetic reconstruction (Figures 2 and 3)

revealed the presence of two highly divergent clades within the

SWIO, separated by an average of 50.341 nucleotide differences

(SE¼ 6.001). Average sequence divergence between Clade A and

Clade B was 11.96%. Pairwise comparisons between samples

belonging to each clade revealed large and significant UST values

in all comparisons (UST¼ 0.822–0.889; Table 2). Overall haplo-

type diversity among Clade A individuals was 0.998 (60.001) and

Clade B was 0.991 (60.004). Haplotype diversity for each clade

was also high within each sample (Table 1).

Clade A was found across all SWIO samples, while Clade B was

found exclusively in Mozambique and South Africa where it co-

occurred with and was more abundant than Clade A. Using

BLAST, Clade A CR haplotypes reported an 89% sequence simi-

larity to L. nebulosus from New Caledonia (EU983053,

EU983038, EU983064, EU983049, EU983040, EU983084,

EU983075, EU983045, EU983030, EU983024, and EU983011),

whereas clade B bore an 84% sequence similarity with Lethrinus

obsoletus (AP009165) and L. nebulosus from New Caledonia and

Bali (EU983030, EU983060, EU983027, EU983016, EU983090,

EU983074, EU983040, EU983032, EU983020, and EU983051).

The separation of clades was also apparent among the repre-

sentative COI sequences that revealed an average inter-clade

sequence divergence of 5.64% (Supplementary Table S2).

Analysis with BLAST of representative Clade A COI sequences

reported 99% sequence similarity with voucher L. nebulosus

sequences from Pomene in Mozambique (HQ561492 and

JF493754) and formed a monophyletic cluster alongside L. nebu-

losus sequences from across the Indian Ocean and west Pacific

(Supplementary Figure S1). Similarly, BLAST analysis of Clade B

sequences reported 99% sequence similarity with voucher

sequences of L. nebulosus from South Africa (DQ885022,

DQ885021, DQ885020, and JF493753). BLAST analysis revealed

that both clades were more similar to Lethrinus ornatus than to

each other (Clade A: sequence divergence¼ 5.66%; Clade B:

sequence divergence¼ 3.16%).

Microsatellite variability and congruence with mtDNA
A total of 242 individuals, across 8 samples (southwest

Madagascar not genotyped), were genotyped at 14 microsatellite

loci (Table 1). Microsatellite genotypes revealed clear partitioning

of samples into two groups that aligned directly with clade mem-

bership. For example, the STRUCTURE analysis (Figure 4a) iden-

tified the most probable model to be K¼ 2 (P¼ 1 and 0 for all

other K values tested), wherein members of both clades were sep-

arated with high probability (Q values> 0.8). STRUCTURE anal-

ysis also did not reveal any individuals with intermediate

assignment probabilities that might indicate hybrids or admixed

genotypes. GENECLASS assignment tests also revealed 100% clas-

sification of individuals (165 for Clade A and 77 for Clade B)

according to clade. This nuclear/mtDNA disequilibrium was also

apparent in the FCA plots (Figure 4b), which identified two dis-

tinct clusters of individuals corresponding to Clade A and B

ancestry. Additionally, pairwise comparisons between samples

partitioned according to mtDNA clade revealed high and signifi-

cant FST values in all comparisons (FST¼ 0.084–0.115; Table 2).

AMOVA of microsatellite genotypes partitioned according to

mtDNA clade revealed a significant component of the nuclear

variation (8.84%, FCT¼ 0.088; p< 0.001) present was attributed

to differentiation among the two mtDNA clades with much

lower, but still significant structuring within clades (0.78%

FSC¼ 0.009, p< 0.001).

Within-clade structuring
As both mtDNA clades co-occurred among the Mozambique and

South African samples, these individuals were partitioned by

clade membership for subsequent tests of structure within each

clade. For the microsatellite dataset, no scoring errors attributed

to large allele drop-out or stuttering were detected; however, sev-

eral significant instances of the possible presence of null alleles

(11 of 140 loci by sample comparisons) and linkage disequili-

brium (53 of 1007 loci by loci by sample comparisons) were
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Figure 2. Phylogenetic relationships within SWIO Lethrinus nebulosus clades A and B, using 421bp CR mtDNA. Statistical support for nodes is
given for both ML analyses (bootstrap support) above branches and Bayesian analyses (posterior probabilities) below branches. Lethrinus
obsoletus is used as an outgroup.

Figure 3. Median joining Haplotype network of L. nebulosus based on 421 bp CR mtDNA. Branch lengths are proportional to the number of
differences. The node size is proportional to the haplotype frequency and node colour represents sampling location. Each small white circle
represents a median vector. S¼ Seychelles, K¼ Kenya, TZ¼ Tanzania, NMC¼Northern Mozambique channel, WM¼West Madagascar,
MZ¼Mozambique, SA¼ South Africa, EM¼ East Madagascar, MA¼Mauritius.
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detected. Fifteen of 140 loci by sample comparisons showed sig-

nificant (p< 0.05) deviations from HW expectations. However,

significant deviations from HW equilibrium and linkage disequi-

librium were distributed randomly across loci and samples, and

so all loci were included in subsequent analyses based on a priori

sample definition.

Both clades exhibited some degree of intra-clade structuring

that was more apparent at mtDNA than nuclear loci. Within

Clade B, significant pairwise UST values (Table 2) were observed

between Mozambique and South Africa in the CR dataset

(UST¼ 0.319), but corresponding microsatellite FST values were

not significant (FST¼ 0.006). Within Clade A, significant pairwise

UST values (Table 2) were observed between the most samples

(excluding Seychelles–Tanzania, Seychelles–West Mozambique,

Kenya–Mozambique, Kenya–South Africa, Tanzania–West

Madagascar, Tanzania–Mauritius, West Madagascar–Mauritius,

Mozambique–South Africa, and South Africa–North Mozambique

Channel). However, pairwise comparisons of microsatellite geno-

types identified broad-scale genetic homogeneity with the only sig-

nificant FST values identified in comparisons between Mauritius and

all SWIO samples, excluding east Madagascar and South Africa.

Discussion
The salient feature of this study was the concordant mtDNA and

nuclear partitioning of samples into two distinct genetic groups.

MtDNA revealed two reciprocally monophyletic clades. Average

sequence divergence between clades (11.96%) far exceeded that

within Clades A (2.95%) and B (1.09%), with this ratio well more

than even conservative barcode gaps (Hebert et al., 2004; Lefebure

et al., 2006). MtDNA data therefore indicate the occurrence of two

highly divergent clades likely representing cryptic species. A com-

mon criticism of mtDNA-based taxonomy is that it represents a

single, maternally inherited, locus (Collins and Cruickshank, 2013).

However, analysis of nuclear microsatellites revealed robust parti-

tioning of members of both clades with no evidence of hybrids,

supporting a high level of bi-parental reproductive isolation.

There was a clear geographical pattern with Clade A found

throughout all SWIO samples while Clade B was restricted to

locations at the southwestern perimeter of the SWIO, where it

co-occurred with Clade A but at a higher frequency (at least in

the samples collected here). This pattern was also concordant

with geo-referenced samples identified through BLAST, where

Clade B sequences clustered with L. nebulosus sequences from the

western coast of South Africa, whereas Clade A sequences showed

greater similarity with samples from across the Indian Ocean and

west Pacific. The co-occurrence of Clades A and B in southern

Mozambique and northeast South Africa indicate a degree of spa-

tial overlap in these clades. Bayesian clustering analysis indicated

that this reflected mechanical mixing that was not accompanied

by introgressive hybridization. This clearly highlights the poten-

tial for indiscriminate harvesting of both species at local levels.

Similarly, another genetic study of SWIO lethrinids (Healey et al.,

in review) identified the co-occurrence of a cryptic species among

samples presumed to be entirely composed of, and being har-

vested as, Lethrinus mahsena. Such species misidentification may

compromise sustainable management by leading to overestima-

tion of stock abundances or inappropriate management measures

based on incorrect biological parameters such as age at maturity

(e.g. Griffiths and Heemstra, 1995). On a wider scale, it also con-

tributes to a fundamental underrepresentation of species richnessT
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and can cause inaccuracies in our understanding of biological, eco-

logical, and evolutionary processes (Garcia-Vazquez et al., 2012).

These data add to the number of genetic studies that have

identified cryptic species among lethrinids (Borsa et al., 2013;

Healey et al. in review), and it has been suggested that the conser-

vative phenotypes of the family may have contributed to such

undetected diversity. In this regard, L. nebulosus is interesting as

it exhibits a highly distinct phenotype relative to other lethrinids

(Carpenter and Allen, 1989); hence, it is frequently referred to as

the “spangled” emperor. Against the background of morphologi-

cal similarity, the finding of two species with a similar, highly dis-

tinct phenotype that are not each other’s closest phylogenetic

Figure 4. Estimates of genetic structure among 242 Lethrinus nebulosus individuals from eight regions in the south western Indian Ocean,
based on genotypes from 14 polymorphic microsatellite loci. (a) STRUCTURE assignment of individuals to each of the two genetic groups
(K¼ 2) identified. Each vertical line represents an individual with shading corresponding to the probability of that individual (or the
proportion of the individual’s genotypic ancestry) belonging to Population A or Population B. (b) Plot of individuals along three factors
identified in the Factorial Correspondence Analyses, identifying two clusters corresponding to groups A and B.

Table 2. Pairwise estimates of genetic differentiation between L. nebulosus samples based on (a) Pairwise hST values based on 421 bp mtDNA
(below the diagonal) and (b) Pairwise FST values based on 14 microsatellite loci (above the diagonal).

Clade A Clade B

Seychelles Kenya Tanzania NMC W. Madagascar Mozambique
South
Africa E. Madagascar Mauritius Mozambique

South
Africa

Clade A Seychelles – 0.000 0.000 0.001 0.000 0.028 0.000 0.013 0.085 0.090
Kenya 0.461 – 0.000 0.008 0.015 0.005 0.000 0.012 0.107 0.109
Tanzania 0.007 0.437 – 0.009 0.012 0.012 0.004 0.023 0.100 0.103
NMC 0.350 0.214 0.317 – 0.019 0.042 0.011 0.022 0.092 0.104
W. Madagascar 0.008 0.413 0.012 0.253 –
Mozambique 0.442 0.029 0.415 0.108 0.371 – 0.038 0.013 0.031 0.102 0.109
South Africa 0.511 0.010 0.479 0.150 0.425 0.071 – 0.023 0.017 0.102 0.115
E. Madagascar 0.099 0.302 0.081 0.157 0.067 0.247 0.310 – 0.009 0.084 0.090
Mauritius 0.019 0.419 0.003 0.272 0.010 0.375 0.434 0.070 – 0.096 0.101

Clade B Mozambique 0.852 0.822 0.846 0.843 0.839 0.837 0.889 0.847 0.827 – 0.006
South Africa 0.868 0.853 0.865 0.870 0.865 0.867 0.885 0.871 0.853 0.319 –

Statistical significance is indicated in bold.
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relative points to a mosaic of adaptive and plastic convergent

effects.

For both species, microsatellites revealed limited evidence of

structuring. Such broad-scale homogeneity is compatible with

microsatellite patterns reported by Berry et al. (2012) for L. nebu-

losus in Australian waters. There was however some evidence of

nuclear differentiation of Mauritian samples. Similar signals of

isolation of Mauritian populations have been reported in other

SWIO taxa, and have been attributed to a combination of

large geographic distances from other coasts (>1000 km) and a

barrier effect due to the landmass of Madagascar (e.g. Muths

et al., 2011, 2015).

In contrast to the nuclear diversity, mtDNA revealed a pattern

of chaotic genetic patchiness, common among marine species

(e.g. Selkoe et al., 2006). This difference between marker types

may reflect the greater susceptibility of mtDNA to genetic drift.

In line with this, genetic patchiness has been variously attributed

to episodic drift effects due to large variances in individual repro-

ductive success (sweepstake recruitment) and/or larval cohesion.

Sweepstakes recruitment has been reported for a number of

highly fecund taxa and may generate genetic differentiation

despite gene flow when recruitment is variable (McKeown et al.,

2017). Even in the absence of genetically isolated source popula-

tions, as might be the case here, larval cohesion (Selkoe et al.,

2006) may enhance and be effectively indistinguishable from

sweepstake effects (Turner et al., 2007). Berry et al. (2012),

through analysis of age-segregated samples, empirically demon-

strated the occurrence of larval cohesion in L. nebulosus and

described how such cohesion and associated genetic differ-

entiation were eroded by dispersal of sexually mature adults. As

the samples analysed here are presumed to comprise multiple

adults, the detection of such differentiation may indicate that

samples are being harvested prior to sexual maturity, a practice

likely to compromise sustainability. Similarly, patchiness among

mixed adult samples must be considered a conservative reflection

of any underlying recruitment variability (McKeown et al., 2017).

This study has important implications for management and

conservation of lethrinids in the SWIO. First, the resolution of two

cryptic species within L. nebulosus highlights the inaccuracy of

baseline biodiversity data for this group/region. In addition, the

co-occurrence of both species within the southern samples suggests

that both species are likely being indiscriminately harvested in this

region. Such misidentification within fishery landings or stock

assessments can severely compromise stock sustainability (Taylor

et al., 2012; McKeown et al., 2015). Finally, stochastic recruitment

suggested to underpin the observed genetic patchiness may

decrease resilience of local stocks to fishing and increase unpredict-

ability in recovery (Kuparinen et al., 2014), and will necessitate a

tailoring of the spatial scale of management (spatial bet hedging)

according to biological and physical drivers of such recruitment

variability. In addition, the detection of such patchiness may indi-

cate that current fishing practises need to be amended to preclude

harvesting of individuals that have not reached maturity.

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.
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