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Role of Structural Bioinformatics in
Drug Discovery by Computational SNP Analysis

Analyzing Variation at the Protein Level
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ABSTRACT

With the completion of the human genome project at the beginning of the 21st century, the biological sciences
entered an unprecedented age of data generation, and made its first steps toward an era of personalized
medicine. This abundance of sequence data has led to the proliferation of numerous sequence-based
techniques for associating variation with disease, such as genome-wide association studies and candidate
gene association studies. However, these statistical methods do not provide an understanding of the
functional effects of variation. Structure-based drug discovery and design is increasingly incorporating
structural bioinformatics techniques to model and analyze protein targets, perform large scale virtual
screening to identify hit to lead compounds, and simulate molecular interactions. These techniques are
fast, cost-effective, and complement existing experimental techniques such as high throughput sequencing.
In this paper, we discuss the contributions of structural bioinformatics to drug discovery, focusing
particularly on the analysis of nonsynonymous single nucleotide polymorphisms. We conclude by
suggesting a protocol for future analyses of the structural effects of nonsynonymous single nucleotide
polymorphisms on proteins and protein complexes.
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With the completion of the human genome project in
2003, biological science entered the genomic era. Since
then, the rate of data generation has been increasing at an
unprecedented rate. Improved technologies have given rise
to next-generation sequencing capabilities that are able to
sequence genomes faster and at a fraction of the cost of
technologies that came before. These advances have made
previously unfeasible undertakings, such as the 1000 Ge-
nomes Project [1] and the International HapMap Project
[2], possible.

More recently, the Human Heredity and Health in
Africa (H3Africa) Initiative was founded to facilitate
genomic studies and to build research capacity on the
African continent [3]. As part of this project, thousands of
genomes from various populations around Africa are being
sequenced and massive amounts of new data are being
generated. One of the goals of the project is to identify and
understand single nucleotide polymorphisms (SNPs)
linked to disease. In order to identify SNPs associated with
disease, various sequence-level techniques can be
employed, including genome-wide association studies
(GWAS) and candidate gene association studies (CGAS).
These techniques associate SNPs with diseases by
comparing the genomes/genes of healthy individuals with
those of unhealthy individuals to determine which SNPs
mostly occur in disease-affected patients. SNPs that occur
at a statistically significant higher rate in the unhealthy
individuals are said to be associated with disease.
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Where techniques such as GWAS and CGAS are used
to analyze variation at the DNA level, structural bioinfor-
matics techniques provide a means for the downstream
analysis of variation (i.e., the analysis of variation at the
protein level). These techniques include methods such as
homology modeling, molecular docking, molecular dy-
namics, and residue interaction network (RIN) analysis,
and let researchers form hypotheses on what effects SNPs
have on protein structure, stability, and inter- and intra-
protein interactions. Unfortunately, structural bioinfor-
matics techniques can be extremely computationally
expensive. As such, even the filtered data sets provided by
GWAS and CGAS can be too large. In this paper, we
discuss the importance of structural bioinformatics in SNP
analysis and drug discovery, and provide a suggested
approach for analyzing variation at the protein level.
RETRIEVING AND FILTERING SNPs FOR USE IN
STRUCTURAL STUDIES
There are roughly 100 million validated human variants in
dbSNP build 147 [4]. It is simply not feasible to study each
and every one of these variants in detail. Techniques such as
GWAS and CGAS are applied at the sequence level and
provide a quickmeans of filtering out SNPs that are likely not
important for a disease. Additionally, tools that predict the
effects of SNPs on protein function and stability can be used
to further filter these datasets. This does not mean that the
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TABLE 1. Variation databases

Database Description Link Reference

COSMIC Cancer-associated mutations http://cancer.sanger.ac.uk/cosmic [11]

ClinVar Clinical significance of variation http://www.ncbi.nlm.nih.gov/clinvar/ [8]

dbGaP Database of genotypes and phenotypes http://www.ncbi.nlm.nih.gov/gap/ [7]

dbNSFP Functional predictions and annotations

of nonsynonymous SNPs

https://sites.google.com/site/jpopgen/dbNSFP [96-98]

dbSNP Short variation http://www.ncbi.nlm.nih.gov/projects/SNP/ [5]

dbVAR Structural variation http://www.ncbi.nlm.nih.gov/dbvar/ [6]

Database of Genomic

Variants archive (DGVa)

Structural variation http://www.ebi.ac.uk/dgva [6]

European Genome-phenome

Archive (EGA)

Private variation archive https://www.ebi.ac.uk/ega/home [9]

European Variation Archive (EVA) Public variation archive http://www.ebi.ac.uk/eva/ —

Ensembl Comprehensive biological database

including variation

http://www.ensembl.org/ [15]

HGMD Disease-related gene lesions http://www.hgmd.cf.ac.uk/ [99]

HGVD Japanese genetic variation http://www.genome.med.kyoto-u.ac.jp/SnpDB/ [100]

Human Mutation Analysis (HUMA) Comprehensive biological database

including variation

https://huma.rubi.ru.ac.za —

LS-SNP/PDB Nonsynonymous SNPs likely to

affect biological function

http://ls-snp.icm.jhu.edu/ls-snp-pdb/ [18]

National Human Genome Research

Institute-European Bioinformatics

Institute (NHGRI-EBI) catalog

Manually curated database of

published genome-wide

association studies

http://www.ebi.ac.uk/gwas/home [10]

Online Mendelian In Man (OMIM) Human genes and genetic disorders http://www.omim.org/ [13]

PinSnps Protein-protein interaction networks http://fraternalilab.kcl.ac.uk/PinSnps/ [17]

SNPeffect Characterization and annotation of SNPs http://snpeffect.switchlab.org/ [101]

SNPs3D Functional effects of nonsynonymous SNPs http://www.snps3d.org/ [102]

The Cancer Genome Atlas (TCGA) Cancer-associated mutations http://cancergenome.nih.gov/ [12]

Uniprot Protein database including

nonsynonymous SNPs

http://www.uniprot.org/ [14]

VnD Variation and drugs http://vnd.kobic.re.kr/ [51]

SNP, single nucleotide polymorphism.
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remaining SNPs are important, however. Further studies are
required to confirm their importance as well as to under-
stand their role, if any, in the disease. It is at this point that
structural bioinformatics techniques can be employed.
Variation databases
One of the challenges of bioinformatics is storing the
enormous amounts of data being generated by next-
generation sequencing projects. In line with this, various
databases have been developed to store variation identified
via these projects (Table 1). The most well-known of these
databases is probably dbSNP [5], a database created and
managed by the National Center for Biotechnology Infor-
mation as a central repository for all known short variation.
The dbSNP database incorporates data from projects such
as 1000 Genomes and HapMap, as well as many others.

The National Center for Biotechnology Information
also has various other variation databases, including
dbVAR [6], dbGaP [7], and ClinVar [8]. Where dbSNP
focuses on short variation, dbVAR stores structural varia-
tion such as insertions and deletions. On the other hand,
dbGaP and ClinVar are focused on the relationship be-
tween genotype and phenotype and the clinical signifi-
cance of variation, respectively.

The European Bioinformatics Institute (EBI) also hosts
various variation databases including the European Vari-
ation Archive (EVA), the Database of Genomic Variants
archive (DGVa) [6], and the European Genome-phenome
Archive (EGA) [9]. EVA is a public variation archive,
which stores all types of variation. DGVa, on the other
hand, is EBI’s version of dbVAR (i.e., a database for
structural variation). Variation in EVA, DGVa, dbVAR,
and dbSNP is exchanged on a regular basis, meaning that
these databases generally mirror each other. EVA also
stores data from ClinVar, making it a rich source for
variation data.

The EGA stores complete data sets from genomic
studies, allowing users to browse various aspects of the data.
Unlike EVA, EGA is not a public data archive. Data sets are
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stored privately and researchers must be granted access by
the specified Data Access Committee to view the data.

The EBI, along with the National Human Genome
Research Institute, have also produced the National Hu-
man Genome Research InstituteeEBI GWAS Catalog [10],
a high-quality, manually curated collection of published
GWAS. The GWAS Catalog stores SNP and SNP-trait
associations for over 11,000 SNPs and from over 1,700
publications.

Some variation databases focus of variation related to a
disease or groups of diseases. Examples of this include
COSMIC [11] and the Cancer Genome Atlas [12], which
focus on variation related to cancer. Other databases, such as
the Online Mendelian In Man (OMIM) [13] database link
variation to phenotypes. Uniprot [14], a database focused on
proteins, maps nonsynonymous SNPs to these proteins.

One of the most comprehensive biological databases is
hosted by Ensembl [15]. The Ensembl database stores
various biological data including genes, transcripts, pro-
teins, exons, and more. To this data, it links phenotypes
and variation. Ensembl incorporates variation from
numerous sources including dbSNP, ClinVar, COSMIC,
dbGaP, DGVa, EGA, OMIM, and Uniprot. All this data is
stored within a single, relational database and can be
queried using BioMart [16], a powerful tool that provides
simple and uniform access to various data sources.

The previously mentioned databases all focus on the
analysis of SNPs at the sequence level. PinSnps [17] is a
database where variation is mapped to protein structures.
Variation data are collected from various sources including
OMIM and COSMIC. Users of the PinSnps web server are
then able to select their SNPs of interest and visualize them
in the protein structure. PinSnps also links SNPs to protein
interaction networks.

LS-SNP/PDB [18] is another variation database where
SNPs are pre-mapped to protein structures. Aswith PinSnps,
users can query the database for a protein or SNP of interest
and then visualize SNPs in the structure of the protein.

Tools and databases, such as PinSnps and LS-SNP/PDB,
that focus on the structural impacts of variation are, un-
fortunately, few and far between. Additionally, these data-
bases tend to neglect the sequence level data. We have
developed the Human Mutation Analysis (HUMA) web
server and database, which focuses on the analysis of vari-
ation in humans both at the sequence and structural level.
The HUMA database stores genes, proteins, proteins
structures, diseases, and variants. Variation is pre-mapped
to gene and protein sequences based on chromosome co-
ordinates. Variants are also mapped to protein structures
based on alignments between the protein sequences and
sequences extracted from the PDB files for the respective
proteins. Additional information about the protein struc-
tures, such as the ligands that were solved with the structure
and the resolution at which the structure was solved are also
stored. Proteins, genes, and variation are all linked to disease
via data obtained from ClinVar and Uniprot. As part of the
pipeline for mapping variation to protein sequences, HUMA
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also stores the coding sequences, coding DNA, and exons
for proteins. As such, HUMA provides a resource for
querying variation both at the sequence and structural level.
Predicting disease associated/deleterious
mutations
The main challenge of computational SNP analysis at the
sequence level is determining whether a SNP is associated
with, or likely to be associated with, disease. As previously
discussed, GWAS and CGAS are useful techniques for
associating variants with disease. Association via these
techniques is no guarantee that mutation is disease-related,
however. Additionally, these techniques can miss variation
that is important. As such, other methods are still required
to further analyze the effects of variation.

At the protein level, numerous tools have been devel-
oped which predict the impact of nonsynonymous SNPs on
protein function (Table 2). These tools usually fall into 1 of
2 categories. The first category is made up of tools that make
predictions based solely on the sequence of a protein, while
the second is made up of tools that incorporate structural
information when making predictions [19].

Tools such as SIFT [20], PROVEAN [21], and
PANTHER-PSEP [22] fall into the first category. These
tools look at sequence conservation to determine whether
mutations at a particular position will be deleterious. This
is based on the theory that highly conserved regions of a
sequence must be important to protein function. Mutations
in these regions will therefore have detrimental effects.
SIFT and PROVEAN look at the conservation of amino
acids across homologs. While SIFT can predict the effects
of SNPs, PROVEAN has the added advantage of being able
to predict the effects of in-frame insertions and deletions.
PANTHER-PSEP, on the other hand, looks at evolutionary
conservation (i.e., the time since the last mutation occurred
at a particular position in an amino acid sequence).

FATHMM [23] is also a sequence-based SNP analysis
tool. As with the above tools, the FATHMM makes
conservation-based predictions. However, FATHMM also
includes a second, weighted algorithm. This algorithm
essentially allows predictions to be adjusted based on the
tolerance of the region of the protein to mutations.

Machine learning techniques have also been used to
predict the functional effects of variation. PhD-SNP [24]
and Parepro [25] are sequence-based support vector ma-
chine (SVM) methods for predicting the functional effects
of SNPs. SVM methods are popular for handling biological
data due to their ability to work with large data sets and to
handle noise effectively.

PolyPhen-2 [26], Auto-Mute 2.0 [27], and SNAP [28]
incorporate structural information when making pre-
dictions on the functional effects of mutations. As such,
they fall into the second category of SNP analysis tools.
PolyPhen-2 uses 3 structure-based predictive features as
well as 8 sequence-based predictive features to classify
variation. Predictions are made via a naive Bayes classifier.
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TABLE 2. Tools for predicting the functional effects of nonsynonymous SNPs

Tool Description Link Reference

Auto-Mute 2.0 Sequence and structure based http://binf2.gmu.edu/automute/ [27]

FATHMM Sequence based http://fathmm.biocompute.org.uk/ [23]

MAPP Sequence based http://mendel.stanford.edu/SidowLab/

downloads/MAPP/index.html

[103]

Meta-SNP Consensus classifier http://snps.biofold.org/meta-snp/ [30]

MuD Sequence and structure based http://mud.tau.ac.il/ [104]

MutPred Sequence based http://mutpred.mutdb.org/ [105]

PANTHER-PSEP Sequence based http://www.pantherdb.org/tools/

csnpScoreForm.jsp

[22]

Parepro Sequence-based http://www.mobioinfor.cn/parepro/ [25]

PolyPhen-2 Sequence and structure based http://genetics.bwh.harvard.edu/pph2/ [26]

PredictSNP Consensus classifier http://loschmidt.chemi.muni.cz/predictsnp/ [29]

Provean Sequence and structure based http://provean.jcvi.org/index.php [21]

SIFT Sequence-based http://provean.jcvi.org/index.php [20]

SNAP Sequence-based http://www.bio-sof.com/snap [28]

SNPs&GO Sequence and structure based http://snps.biofold.org/snps-and-go/

snps-and-go.html

[106]

Variant Analysis

Portal (VAPOR)

Consensus classifier https://huma.rubi.ru.ac.za/#vapor —
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Similarly, Auto-Mute 2.0 combines structural features with
trained, machine-learning methods. SNAP, on the other
hand, only requires sequence information as input, but
structural and functional annotations help to improve
predictions.

There are various other methods for predicting the
functional effects of SNPs, which have not been discussed
here. None of these methods are perfect, however. As such,
it is a good idea to get a consensus from several different
tools before deciding, which SNPs to select for further
analysis. With this in mind, classifiers such as PredictSNP
[29] and Meta-SNP [30] combine the predictions of
various existing tools to gain a consensus on which SNPs
are deleterious to protein function.

We have developed the Variant Analysis Portal
(VAPOR), which has been incorporated into the HUMA
web server. VAPOR is a workflow that accepts either a
protein sequence or protein structure as input along with a
list of SNPs. From here, it gets predictions from
PROVEAN, PolyPhen-2, PhD-SNP, PANTHER-PSEP, and
FATHMM and merges the results into a single table. Unlike
PredictSNP and Meta-SNP, VAPOR does not generate a
consensus score from these results. It remains as a useful
tool for quickly getting results from multiple SNP analysis
methods, however.
PREDICTING CHANGES IN PROTEIN STABILITY DUE
TO MUTATIONS
Predicting the impact of SNPs on protein stability is
another important area of SNP analysis. Nonsynonymous
SNPs can result in changes of the internal energy of a
protein as well as lead to changes in the structure of the
protein. Calculating the change in Gibbs free energy
between a wild type protein and the mutated form is a
common measure of how much a mutation affects protein
stability [31]. One thing to note when analyzing changes in
protein stability is that increases and decreases in protein
stability do not necessarily correspond to deleterious and
beneficial effects, as increases in protein stability can also
hamper protein function.

Various tools have been developed to predict changes
in protein stability due to nonsynonymous SNPs (Table 3).
The Auto-Mute 2.0 suite discussed earlier includes func-
tionality for predicting stability changes. Additionally,
I-Mutant2.0 [32] and MuPro [33] provide SVM based
methods for predicting changes in stability. Both tools can
be used, either to simply predict the sign of the change in
stability, or to predict the actual size of the change. Both
tools can also incorporate structural information when
making predictions, but MuPro can achieve nearly the
same accuracy when only the primary sequence is
considered, making it a useful option when the tertiary
structure of the protein is unknown.

NeEMO [34] is a machine learning method based on
RINs. It incorporates information from RINs in a nonlinear
neural network to improve prediction accuracy. RINs
provide useful information regarding changes in residue
interactions when a mutation is introduced as they
implicitly incorporate detailed maps of chemical in-
teractions within proteins.

The VAPOR workflow makes use of I-Mutant 2.0 and
MuPro predictions to complement the functional pre-
dictions described in the previous section. Unfortunately,
NeEMO is not available for download and, as such, could
not be included as part of VAPOR. Including stability
GLOBAL HEART, VOL. 12, NO. 2, 2017
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TABLE 3. Tools for predicting changes in stability due to nonsynonymous SNPs

Tool Description Link Reference

Auto-Mute 2.0 Sequence and structure based http://binf2.gmu.edu/automute/ [27]

CUPSAT Structure based http://cupsat.tu-bs.de/ [107]

Eris Structure based http://troll.med.unc.edu/eris/login.php [108]

I-Mutant2.0 Sequence and structure based http://folding.biofold.org/i-mutant/i-mutant2.0.html [32]

MuPro Sequence and structure based http://mupro.proteomics.ics.uci.edu/ [33]

NeEMO Residue interaction networks http://protein.bio.unipd.it/neemo/help.html [34]

PoPMuSiC 2.1 Structure based https://soft.dezyme.com/query/create/pop [109]
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prediction tools in VAPOR, however, adds an additional
dimension to the workflow and differentiates it from
similar tools.

ROLE OF STRUCTURAL BIOINFORMATICS: SNP
ANALYSIS IN DRUG DISCOVERY
Structural bioinformatics is an area of bioinformatics
focused on the structure, movement and interaction of
biological macromolecules in 3-dimensional space. Struc-
tural bioinformatics techniques play an important role in
drug discovery and can be used at every stage of the drug
design process [35-39], where they can be used to com-
plement, and sometimes replace more costly experimental
techniques [40-42]. For example, protein structure pre-
diction software provides alternatives to x-ray crystallog-
raphy and nuclear magnetic resonance techniques, while
virtual screening and molecular dynamics simulations can
complement high throughput screening (HTS).

The use of computational techniques in drug discovery
and design is often referred to as computer-aided drug
design [53]. In this section, we will discuss the uses of
structural bioinformatics as part of computer-aided drug
design, specifically in the context of nonsynonymous SNP
analysis.

Mutations have been associated with drug resistance in
numerous diseases such as influenza, tuberculosis, HIV,
and cancer [43-47]. Similarly, mutations can be linked to
drug sensitivity in patients [48]. This opens the door to
personalized medicines, where knowledge of drug resistant
and drug sensitive SNPs allow treatments to be tailored to
individual patients [49,50]. Understanding structural
changes caused by nonsynonymous SNPs will enable the
design of novel drugs to target these mutations and, thus,
be key in advancing personalized medicine [51].

Protein structure prediction
In the post-genomic era, there is an abundance of available
protein sequences. Unfortunately, solving the structures of
these proteins is a slow and expensive process. As such, the
gap between known protein sequences and solved protein
structures is growing. To illustrate this, as of September
2016, the Protein Data Bank [52] contained a little over
120,000 protein structures, which pales in comparison to
the 65 million sequences available in the Uniprot protein
GLOBAL HEART, VOL. 12, NO. 2, 2017
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sequence database. Having the protein structure available
lets researchers gain insight into the molecular function of
the protein. An understanding of the structural and func-
tional aspects of proteins opens up the door to drug design
and discovery [38,53] and, as such, is of great interest to
chemists as well as biologists. To counter the growing
sequence-structure gap, various computational structure
prediction methods have been developed. These methods
can be categorized into 2 distinct groups, namely,
template-based modeling, and ab initio (or de novo)
techniques.

Ab initio modeling attempts to construct a model of a
protein based solely on its amino acid sequence. This is a
computationally intensive task that, despite ever increasing
computational power, is currently only practical for small
systems [54]. Additionally, according to the latest CASP
results [55], ab initio methods have yet to catch up to
template-based modeling techniques in terms of accuracy.

Template-based modeling is currently the most reliable
method for protein structure prediction, producing decent
quality models for roughly two-thirds of proteins with
unsolved structures [55-57]. Template-based modeling can
be divided into homology modeling and protein threading
techniques.

Homology modeling is a structure prediction tech-
nique that relies on the observation that the structural
conformation of a protein is more conserved than its amino
acid sequence. As such, solved protein structures can be
used as templates for predicting the tertiary structure of a
target sequence, provided the sequence identity between
the target and template sequences is high enough (roughly
>30%) [38,58].

Protein threading is similar to homology modeling in
that it uses the structures of previously solved proteins to
predict the structure of a target sequence. Where homology
modeling uses the structures of homologous proteins as
templates, however, threading uses the structures of
proteins, which are predicted to have the same folds.
Threading is useful when there are no homologous
proteins available that have solved structures [59].

Protein structure prediction can be used to introduce
SNPs into a structure and determine the effects that these
SNPs might have on the protein’s function and stability.
Once modeled, the wild type structure can be compared to
the mutant structure in several ways. For example, the
155
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RINs of the structures can be compared to see if intro-
ducing SNPs influences intra-protein communication. The
structures can also be compared to see if new bonds have
been introduced or existing bonds have been broken. In
addition, the models can be further analyzed using
molecular docking and molecular dynamics simulations, 2
important techniques for drug discovery.

Homology modeling has been used in various stages of
drug discovery including the study of protein function and
mechanisms [60], analysis of the effects of mutations in
binding sites of receptor proteins [61], identification of
druggable pockets [62], and various virtual screening
studies [63-66].

Molecular docking and virtual screening
Molecular docking is a technique for predicting the bound
conformations of a protein-ligand complex, and is used in
structure-based drug design to study biomolecular in-
teractions [67]. Docking is fast enough to allow libraries
containing thousands of compounds to be docked against a
receptor protein in a process called virtual screening. Virtual
screening is used to scan a compound library for potential
drug candidates [68-70]. As compounds are docked against
the receptor, a score is calculated to determine the binding
affinity of each compound to the receptor. Compounds with
the highest binding affinity scores are selected for further
study. Binding affinity scores are not infallible, and rankings
based on these scores are, therefore, not necessarily reliable.
Nevertheless, these binding affinity scores can distinguish
likely fromunlikely compounds, and can be used as potential
hit compounds in the drug design process [68].

Molecular docking can also be used to assess the
impact of SNPs on drug response. Mutations in the binding
sites of receptor proteins can affect the binding affinity of
drugs. This can lead to drug resistance or drug suscepti-
bility. Molecular docking can be used in conjunction with
protein structure prediction to predict the effect these
mutations will have on drug response [61].

Virtual screening has become a routine procedure in
drug discovery and can be used as a cheaper alternative to
HTS [71]. Having access to a comprehensive compound
library is an important part of virtual screening. As such,
numerous compound libraries have been made available
via online databases and portals such as ZINC [72],
ChemSpider [73], the Traditional Chinese Medicine (TCM)
Database@Taiwan [74], and SANCDB [75].

Molecular dynamics simulations
Protein structure prediction and molecular docking pro-
vide a snapshot in time of a protein structure and protein-
ligand complex, respectively. Molecular dynamics, on the
other hand, simulates the movements and trajectories of all
the atoms in these structures over a period time. It can be
used to check if a protein structure remains stable after the
introduction of 1 or more SNPs. Similarly, it can be used to
determine the stability of protein-ligand complexes after
docking [76]. While molecular docking predicts how well
a compound docks to a receptor, molecular dynamics can
predict how stably bound the compound is and whether it
will stay bound over a specified period.

Molecular dynamics results are usually analyzed via
plots of their root mean square deviation (RMSD) and root
mean square fluctuation. There first measurement, RMSD,
measures the average movement in the structure’s back-
bone over the course of the simulation. If, by the end of the
simulation, it appears that the plot of the RMSD has leveled
out, it can be assumed that the structure has stabilized.

Where RMSD measures the global movement of the
protein, root mean square fluctuation, measures local
movement (i.e., how much individual residues fluctuate
over the course of the simulation). Spikes in this plot
indicate residues that move a lot over the course of the
simulation, while low values indicate residues that remain
relatively fixed throughout.

Molecular docking simulations are often used in
combination with homology modeling and virtual
screening [76,77]. In terms of computational SNP analysis,
molecular dynamics can be used to determine whether
introducing a SNP will destabilize a protein or perhaps
cause the protein to move or fold in a different way [78].
Inter- and intra-protein interactions
Inter- and intra-protein interactions play important roles in
protein folding as well as in the stability and function of
proteins and protein complexes. Due to protein folding,
residues that are far apart in a protein’s sequence can be right
next to one another in 3-dimensional space. Interactions
between these residues help the protein to adopt the correct
structural conformation [79]. As such, disruptions to these
interactions (e.g., residue substitutions) could cause insta-
bility and loss of protein function. It is, therefore, useful to
understand, which residues are important in the structure
and function of a protein. This can be done by analyzing the
types of bonds (e.g., hydrogen bonds, disulfide bonds) that
occur between residues.

RINs provide another means of analyzing protein struc-
tures. RINshave been analyzedusing a branchofmathematics
knownas graph theory. In aRIN, each residue in theprotein is
a node in the network. An edge (or connection) between 2
nodes exists if there is an interaction between the 2 residues
that they represent [80]. In RINs, interactions between resi-
dues exist if the residues are within a user-defined cutoff
(usually around 6.5 to 7.5 Å) of each other [81].

Various network measures have been used to analyze
RINs. Previously, the change in the average shortest path to
each residue (DL) and the change in betweenness centrality
of each residue (DBC) has been used to perform alanine
scanning, where each residue is mutated to alanine to see
its effect on the overall network [82].

The shortest path (L) between 2 nodes is the minimum
number of edges that must be traversed to travel from one
node to another. The average shortest path to a residue is
GLOBAL HEART, VOL. 12, NO. 2, 2017
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calculated by summing the shortest path between a given
residue and all other residues in the structure and dividing
the result by Ne1, where N is the number of residues in
the structure. The result of this calculation is the average
accessibility of the given residue from any other residue in
the structure (i.e., selecting any other residue at random,
what are the average number of edges that will need to be
traversed to reach the given residue). When comparing a
wild type protein to a mutant, DL can be calculated for
each residue by subtracting the average shortest path to
each residue in the mutant from the average shortest path
to each respective residue in the wild type. The result de-
scribes whether the residue is more or less accessible in the
mutated structure [82].

The betweenness centrality (BC) of a given node is a
measurement of how often a shortest path between 2 nodes
passes through the given node. As such, it measures the
importance of the given node to efficient navigation of the
network. A high BC means that the node occupies a central
position in the network. When using this measure to
perform an alanine scan, DBC for a residue is calculated by
getting the difference between the BC for a residue in the
mutant and wild type [82].

Network analysis techniques such as those describe
above can be applied to both experimental and predicted
PDB structures. In addition, network analysis can be car-
ried out over the trajectory of a molecular dynamics
GLOBAL HEART, VOL. 12, NO. 2, 2017
June 2017: 151-161
simulation to monitor how the network changes over time
[83]. Although L and BC have previously only been used to
perform alanine scanning, we propose that these same
techniques could be applied to SNP analysis.
PROTOCOL FOR ANALYZING SNPs USING
STRUCTURAL BIOINFORMATICS
Structural bioinformatics is an important part of the drug
discovery process. As discussed in previous sections, it can
contribute to every stage of the drug design process. Here
we propose a protocol for determining the effects of non-
synonymous SNPs on protein structure, function, and
stability using structural bioinformatics techniques (Fig. 1).

The first requirement of any type of analysis is data. In
our case, the required data to perform the analysis is the
protein sequence and structure and the nonsynonymous
SNPs that occur in the protein. As previously discussed,
there are various public databases available that provide
access to variation data (Table 1). For our purposes, the
most useful of these databases are arguably Ensembl and
HUMA. Both databases allow the user to search for their
protein of interest and make both the sequence and all the
known variation in that sequence available for download.
Mutation data from these databases is linked to pheno-
types, where possible. If there are experimentally deter-
mined structures available for the protein, these structures
157
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are also linked to. As such, Ensembl and HUMA provide
convenient locations to access all of our required data.

If no protein structures are available, or if there are
important missing residues in available structures, the
structure of the protein must be modeled. Fortunately,
various online structure prediction pipelines exist.
Commonly used tools include HHPred [84], SWISS-
MODEL [85], I-TASSER [86], and Phyre2 [87]. We have
also developed PRIMO (PRotein Interactive MOdeling)
[88], an interactive homology modeling platform that as-
sists users through the modeling process.

As structural bioinformatics techniques tend to be
computationally intensive, it is not possible to analyze
every SNP in the protein in detail using these methods. As
such, the SNP data set must be filtered before we move on
to more computationally expensive techniques. Tools that
predict the effects of SNPs on function (Table 2) and sta-
bility (Table 3) can be used to quickly analyze large SNP
data sets. The results of this analysis, although not infal-
lible, can be used to filter the data set to contain only SNPs
that are likely to negatively affect function or stability. As a
general rule of thumb, at least 4 or 5 of these tools should
be run to gain a consensus as to the effect of the SNP.

To complement this analysis, the SNPs should be
checked for known disease-associations in literature.
Ensembl and HUMA link diseases to SNPs and, as such,
provide useful resources for this purpose.

If a structure is available for the protein, or once the
structure of the protein has been modeled, it may be useful
to check, which residues in the structure are interacting.
Interacting residues are likely to be important for protein
function and stability and, as such, SNPs occurring at these
locations may be important. Thus, protein inter- and intra-
actions can be used to further filter the SNP data set.
Various tools have been developed to calculate these in-
teractions by determining the bonds, such as hydrogen
bonds and disulfide bonds, that form between residues.
These include web servers such as PIC [89], COCOMAPS
[90], InterProSurf [91], PDBParam [92], and PDBSum [93].

Once the SNP data set has been filtered to a low
enough level (dependent on available computational re-
sources), the SNPs can be introduced into the protein
structure via homology modeling. A model should be
produced for every SNP (i.e., if there are 20 SNPs in the
data set, 20 models should be produced, each containing
one of the SNPs). Combinations of SNPs can also be
modeled into the structure if, for example, it is known that
the SNPs co-occur.

If the goal of the research is to determine whether
SNPs will affect the binding affinity of a drug, it is at this
point that molecular docking runs should be performed,
both on the wild type structure and the mutants. Analyzing
changes in the binding affinity of the drug between the
wild type and the mutants will give an idea of whether
drug responses may be affected in the mutants.

To improve the reliability of the docking results, or to
analyze the stability of the wild type and protein models,
molecular dynamics simulations should be run. Currently,
the most popular molecular dynamics software available
are arguably GROMACS [94] and NAMD [95]. These
simulations will give insight into whether the docked drug
will remain bound to the mutant proteins over a period of
time. If the protein has been destabilized, this may not be
the case. A destabilized protein may also have impaired
function, which could indicate the involvement of the
respective SNP in a disease phenotype.

RIN analysis can be performed after modeling or
docking to determine how these methods have affected the
network. Previous methods have minimized the protein
structure before performing network analysis [82]. Another
interesting option is to perform network analysis over the
trajectory of the molecular dynamics simulation [83].

To predict whether a given SNP is associated with a
disease, the networks of mutant models containing SNPs
that are associated with the disease in literature (or in
Ensembl and HUMA) can be compared with the network
of the mutant model containing the given SNP. Similar
changes in the network may indicate similar effects on
protein function and stability.

SUMMARY
Structural bioinformatics techniques such as protein
structure prediction, molecular docking, and molecular
dynamics provide low cost alternatives to experimental
techniques such as x-ray crystallography, nuclear magnetic
resonance, and HTS. In this paper, we have discussed the
use of these techniques in drug discovery, with a focus on
the analysis of nonsynonymous SNPs. Mutations, such as
SNPs, contribute to differences in drug response between
individuals. Gaining further understanding of the reasons
behind these differences will gives us insight into how we
can take advantage of them and, thereby, usher in the age
of personalized medicine.
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