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Abstract

Robots are becoming increasingly complex. This has made manually designing the soft-

ware responsible for controlling these robots (controllers) challenging, leading to the cre-

ation of the field of evolutionary robotics (ER). The ER approach aims to automatically

evolve robot controllers and morphologies by utilising concepts from biological evolution.

ER techniques use evolutionary algorithms (EA) to evolve populations of controllers -

a process that requires the evaluation of a large number of controllers. Performing these

evaluations on a real-world robot is both infeasibly time-consuming and poses the risk of

damage to the robot. Simulators present a solution to the issue by allowing the evaluation

of controllers to take place on a virtual robot.

Traditional methods of controller evolution in simulation encounter two major issues.

Firstly, physics simulators are complex to create and are often very computationally ex-

pensive. Secondly, the reality gap is encountered when controllers are evolved in simulators

that are unable to simulate the real world well enough due to simplifications or small inac-

curacies in the simulation, which together cause controllers in the simulation to be unable

to transfer effectively to reality.

Bootstrapped Neuro-Simulation (BNS) is an ER algorithm that aims to address the

issues inherent with the use of simulators. The algorithm concurrently creates a simulator

and evolves a population of controllers. The process starts with an initially random pop-

ulation of controllers and an untrained simulator neural network (SNN), a type of robot

simulator which utilises artificial neural networks (ANNs) to simulate a robot’s behaviour.

Controllers are then continually selected for evaluation in the real world, and the data

from these real-world evaluations is used to train the controller-evaluation SNN.

BNS is a relatively new algorithm that has not yet been explored in depth. An in-



vestigation was, therefore, conducted into BNS’s ability to evolve closed-loop controllers.

BNS was successful in evolving such controllers, and various adaptations to the algorithm

were investigated for their ability to improve the evolution of closed-loop controllers. In

addition, the factors which had the greatest impact on BNS’s effectiveness were reported

upon.

Damage recovery is an area that has been the focus of a great deal of research. This

is because the progression of the field of robotics means that robots no longer operate

only in the safe environments that they once did. Robots are now put to use in areas as

inaccessible as the surface of Mars, where repairs by a human are impossible.

Various methods of damage recovery have previously been proposed and evaluated, but

none focused on BNS as a method of damage recovery. In this research, it was hypothesised

that BNS’s constantly learning nature would allow it to recover from damage, as it would

continue to use new information about the state of the real robot to evolve new controllers

capable of functioning in the damaged robot.

BNS was found to possess the hypothesised damage recovery ability. The algorithm’s

evaluation was carried out through the evolution of controllers for simple navigation and

light-following tasks for a wheeled robot, as well as a locomotion task for a complex legged

robot.

Various adaptations to the algorithm were then evaluated through extensive parameter

investigations in simulation, showing varying levels of effectiveness. These results were

further confirmed through evaluation of the adaptations and effective parameter values in

real-world evaluations on a real robot. Both a simple and more complex robot morphology

were investigated.
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Chapter 1

Introduction

1.1 Introduction

Evolutionary robotics (ER) is a field that deals with the automatic evolution of the soft-

ware that controls robots (controllers) and their physical forms (morphologies) (Zagal and

Ruiz-Del-Solar, 2007; Bongard, 2013; Hiller and Lipson, 2012). ER applies concepts from

evolutionary computation (EC) to robotics. To evolve these controllers, a population of

candidate individuals is created, each representing a possible controller. The controllers

are then evaluated and those that perform best are given the opportunity to reproduce

with each other to produce a new population of individuals. Over time, the population

improves and converges to fewer, more promising, controllers until a satisfactory controller

is created. These evolutionary methods require the evaluation of many controllers, and

it is infeasible from a time perspective to perform these evaluations on real-world robots

(Zagal and Ruiz-Del-Solar, 2007). Robot controllers are therefore evolved in simulation

before the best evolved controller is transferred to the real robot. This approach has a

number of issues. The reality gap causes controllers to be unable to transfer from sim-

ulation to reality, and the simulators often require a large amount of data gathering or

domain knowledge to construct.

Bootstrapped neuro-simulation (BNS) (Woodford, Pretorius, and du Plessis, 2016) is

a new method of controller and simulator creation, which aims to solve these issues. The

algorithm starts by creating an initially random population and simulator neural network

1
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(SNN). Controllers are then chosen from the population and evaluated in the real world.

The data from these real-world evaluations is then used to improve the simulator so that

the controller population can improve in simulation. This process repeats until a controller

has been created that is able to successfully solve the task at hand. This method has shown

great promise and has been successfully used for the evolution of controllers for several

robot morphologies of varying complexity (Woodford et al., 2016; Woodford, du Plessis,

and Pretorius, 2017).

An ER method such as BNS evolves controllers for a specific real-world robot, but

changes in morphology, motor performance and sensor performance caused by damage

can hinder the performance of the evolved controllers. As the field of robotics progresses,

robots are used for more complex and interesting applications, which often carry a greater

risk of damage. ER-based methods of robot damage recovery are therefore of great inter-

est to the ER community (Papaspyros, Chatzilygeroudis, Vassiliades, and Mouret, 2016;

Cully, Clune, Tarapore, and Mouret, 2015; Chatzilygeroudis, Vassiliades, and Mouret,

2016; Bongard, Zykov, and Lipson, 2006). While many methods of damage recovery have

been developed, the topic of damage recovery for BNS-evolved controllers is completely

unexplored and may offer benefits over existing methods of damage recovery.

Section 1.2 presents the hypothesis guiding this research, followed by a discussion of

the research objectives in Section 1.3. The research methodology is then discussed in

Section 1.4, before the topics of each chapter are briefly explained in Section 1.6.

1.2 Hypothesis

This research hypothesises that:

BNS can be shown to recover from physical damage to a robot and be

augmented with new adaptations to improve this damage recovery.

1.3 Research Objectives

Before any research can be conducted investigating BNS’s damage recovery abilities, it is

important to investigate not only the current state of research on the BNS algorithm, but
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also that of ER and ER damage recovery. The first research objective is therefore:

RO1: Investigate existing ER damage recovery methods.

The simulator built into the BNS algorithm is always learning about its environment.

It is, therefore, very likely that the algorithm has the inherent ability to recover from

damage by simply observing the way the robot functions after damage has occurred. This

possibility should be investigated. This leads to the second research objective:

RO2: Determine BNS’s damage recovery capabilities.

While BNS is likely to possess the ability to recover from damage even before any

changes are made to the algorithm, it is unlikely that its performance represents the best

possible damage recovery. A number of changes to the algorithm could be proposed to

further improve its performance. These changes need to be implemented and their effects

evaluated, leading to the third research objective:

RO3: Propose, implement, and evaluate adaptations to improve BNS’s

damage recovery capabilities.

BNS has never been used to evolve controllers more complex than simple sequences

of commands. While these controllers served as an excellent place to start evaluating the

algorithm, they are not easy to apply in the real world: they are unable to adapt to changes

and simply execute their commands one after another. Such controllers are called open-

loop controllers. Closed-loop controllers, on the other hand, are able to make observations

about the world around them and use those observations to drive their actions. Since

closed-loop controllers are so much more applicable to the real world, they are more likely

to be used and damaged in the real world, which makes their ability to recover from damage

that much more vital. The importance of both the evolution of closed-loop controllers and

their damage recovery leads to research objectives four and five:

RO4: Propose, implement, and evaluate a method of evolving complex

controllers using BNS.

RO5: Propose, implement, and evaluate adaptations for BNS to allow for

damage recovery for complex controllers.
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Finally, once BNS has been shown to recover from damage to both simple and more

complex controllers for a simple robot, the algorithm must be shown to recover from

damage to robots with more complex morphologies. It would not be possible to evaluate

the algorithm on every possible morphology, so only one will be chosen, but the ability of

the algorithm to transfer from a simple to a complex one would indicate that the algorithm

is not limited to only simple robots. The sixth and final research objective is therefore:

RO6: Demonstrate and investigate the transferral of BNS’s damage recovery

to a more complex robot.

1.4 Methodology

Instead of intuition or introspection, the positivistic approach to research aims to gain

knowledge through empirical evidence (Easterbrook, Singer, Storey, and Damian, 2008).

These objective observations ensure that bias on the part of the researcher is kept to a

minimum. This research used a positivistic approach since the research questions were

such that they could be answered through empirical study.

The deductive approach focuses on testing a particular hypothesis or theory. This

approach was thus appropriate for this research as it is focused on testing hypotheses in

order to challenge the theory that BNS can be augmented to enable it to recover from

damage to a robot. An experimental and grounded theory method will be used in the

answering of the research questions. The experimental process followed will be discussed

in Chapter 3, after the theoretical background of the topic is covered in Chapter 2.

1.5 Envisioned Contribution

This research will make both theoretical and practical contributions to the field of ER.

Various adaptations to the BNS algorithm will be proposed. These adaptations will be

based on enhancing aspects of the algorithm in ways that are likely to improve its ability

to recover from damage.

Once proposed, it is important that the adaptations are evaluated so that recommen-

dations can be made for their use. This would not be possible without the implementation
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of a damage system to function in conjunction with existing BNS implementations. The

system will allow for the evaluation of damage recovery without the risks involved with

inflicting real damage on the robot.

In order to obtain statistically significant results, a large number of parameter combi-

nations will need to be assessed. Therefore, the parameter combinations will be evaluated

in simulation before promising configurations are transferred to the real world. Where

simulators exist already, they will be used, but where they do not, new simulators will be

implemented.

1.6 Dissertation Layout

Here, a brief description of each chapter’s contents is given.

Chapter 2 - Literature Review: Topics relevant to the research are investigated, in-

cluding machine learning topics such as evolutionary computation and neural net-

works. Evolutionary robotics is then discussed, as is the use of simulation in the

field. Finally, existing work investigating damage recovery in evolutionary robotics

is discussed.

Chapter 3 - Experimental Methodology: The chapter discusses the logic behind each

step taken in this research, as well as the methodology followed when implementing

and performing the evaluation for each investigation. The chapter also presents the

novel adaptations to be evaluated and describes the content of each of the investi-

gations that comprise this research.

Chapter 4 - Investigation A: The chapter presents the results of the evaluation of

BNS’s damage recovery. It also presents the first results of the performance of BNS

with damage adaptations.

Chapter 5 - Investigation B: The results of investigation B are presented and dis-

cussed. The investigation focuses on the evolution of closed-loop controllers using

BNS, but not damage, thereby laying the groundwork for investigation C.
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Chapter 6 - Investigation C: The results of closed-loop controller damage recovery are

presented in this chapter.

Chapter 7 - Investigation D: The chapter presents the results of damage recovery

evaluation using simple controllers, but for a complex hexapod robot.

Chapter 8 - Conclusions and Future Work: The final chapter draws conclusions from

the investigations and discusses possible future avenues of research.

Appendix A The Mann-Whitney U Test.

Appendix B The conference paper presented at the 2018 11th International Conference

on Computer Science and Information Technology (ICCSIT 2018) and published in

the Journal of Computers (JCP).

Appendix C The paper submitted to the Journal of Robotics and Autonomous Systems.



Chapter 2

Literature Review

2.1 Introduction

Before any investigations can be discussed in detail, it is crucial that an in-depth liter-

ature review be conducted in order to establish the groundwork for this research. This

chapter investigates existing work related to the fields of evolutionary robotics, specifically

regarding simulator development and damage recovery.

Section 2.2 discusses artificial neural networks, including their biological origins, the

construction of the neurons and layers from which the networks are constructed, and

techniques for their training. Section 2.3 presents an in-depth discussion of evolutionary

algorithms (EAs), a sub-field of evolutionary computation (EC). This discussion covers

the various components of an EA, as well as optional additions that can be made to the

algorithm, based on the specific use-case. Section 2.4 demonstrates how these EAs can be

used in the field of robotics to evolve robot controllers.

Sections 2.5 and 2.6 discuss types of simulators used in evolutionary robotics (ER),

their associated drawbacks, and prior research, which has attempted to address these

issues. Simulator neural networks (SNNs), a type of ANN-based robot simulator able to

effectively evolve controllers which bridge the reality gap, are discussed in Section 2.7.

Bootstrapped neuro-simulation (BNS) is a method of concurrent controller and simu-

lator development utilising SNNs, discussed in Section 2.8. BNS is the algorithm which

is to be augmented with damage recovery functionality. Finally, Section 2.9 presents an

7
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in-depth investigation of existing methods of damage recovery, and Section 2.10 concludes

the chapter.

2.2 Artificial Neural Networks

2.2.1 Biological Origins

The brain is a powerful parallel computer able to perform tasks such as pattern recognition,

perception, and motor control much faster than any electronic computer (Engelbrecht,

2007). These abilities are appealing for computer science applications, as are the brain’s

ability to learn, remember and generalise. This has led to research into the algorithmic

modelling of the brain’s systems. These models are known as artificial neural networks

(ANNs).

2.2.2 Artificial Neurons

Biological neural networks are composed of interconnected neurons. Similarly, ANNs are

composed of multiple interconnected artificial neurons (Engelbrecht, 2007). Each of these

artificial neurons has sets of input and output connections, a set of weights associated

with these connections, a constant bias value, and an activation function (Figure 2.1).

g(z)

x1

x2

xn

...

xn+1

y

w1

w2

wn

wn+1

Figure 2.1: Artificial Neuron

To obtain the output of a neuron, the weighted inputs to the neuron must first be cal-

culated. These weighted inputs are the product of each of the neuron’s input connections

x1..xn, and each connection’s associated weight w1..wn. The product of an additional
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input called the bias xn+1, and its weight wn+1, is also computed. The bias is used as a

threshold value. These input values are then aggregated through either summation (equa-

tion (2.1)) or, in some cases, multiplication (equation (2.2)) to obtain the net input (z) to

the neuron (Engelbrecht, 2007).

z =

n+1∑
i=1

xiwi (2.1)

z =
n+1∏
i=1

xwii (2.2)

The net input is passed into the neuron’s activation function, which determines whether

the neuron should fire by converting the input to the neuron into an output signal (Engel-

brecht, 2007). There are many potential activation functions from which to choose. Four

are presented here:

1. Linear function (Figure 2.2a):

g(z) = λz (2.3)

where λ is a parameter determining the slope of the function.

2. Step function (Figure 2.2b):

g(z) =


γ1 if z < θ

γ2 if z ≥ θ
(2.4)

The step function produces one of two values, depending on the value of z relative

to the threshold value, θ. A common use of the step function is to create binary

output, where γ1 = 0 and γ2 = 1.

3. Sigmoid function (Figure 2.2c):

g(z) =
1

1 + e−δz
(2.5)

δ is a parameter controlling the steepness of the function. Usually δ = 1 (Engel-

brecht, 2007).
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4. ReLU function (Figure 2.2d):

g(z) =


λz if z > 0

0 otherwise

(2.6)

As with the linear function, λ is a constant value determining the slope of the

function. Unlike the linear function, the ReLU function produces a value of 0 for

any input values z ≤ 0.

The sigmoid function is a commonly utilised activation function for ANNs. Recently,

the use of rectified linear units has grown in popularity (Maas, Hannun, and Ng, 2013),

due to issues inherent in the use of sigmoidal functions, discussed further in Section 2.2.5.

A single neuron can be used to realise a linearly separable function with no error

(Engelbrecht, 2007). This means that the neuron is able to separate input vectors with

above-and below-threshold responses in an I-dimensional space with an I-dimensional

hyperplane, which forms the boundary between the two vector classes. This is easy to

visualise in two dimensions where this means that the vectors must be able to be separated

by a line, as in Figure 2.3.

2.2.3 Networks of Neurons

The ability to learn complex functions is desirable, but since single neurons are limited to

learning only linearly separable functions, a layered network of neurons must be used (En-

gelbrecht, 2007). These layered networks are known as artificial neural networks (ANNs).

There are various neural network structures (topologies) that have been shown to be use-

ful in solving different problem types. Arguably, the simplest is the feedforward neural

network (FFNN) (Figure 2.4).

Each neuron in layer nl of an FFNN connects to each neuron in the layer nl + 1, with

the outputs of the neurons in layer nl acting as inputs for those in layer nl+1 (Engelbrecht,

2007). Each neuron has a bias value, as when operating as a single neuron; these are not

shown in Figure 2.4, for the sake of readability. While the figure shows a network with

three input neurons, three hidden neurons in one hidden layer, and two output neurons,

an FFNN can have any number of hidden layers, and each layer in the network can have
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z

g(z)
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Figure 2.2: Activation functions

any number of neurons. The individual neurons in a network are not restricted to a single

activation function: a different function can be used for each.

Generally, the input layer of an FFNN uses only linear activation functions (Engel-

brecht, 2007). This is not true for a functional link neural network (FLNN), which expands

the input layer to include a set of functions used to transform the input. This allows for

higher-order combinations of input values.

Simple recurrent neural networks (SRNNs) use the outputs of later layers as inputs for
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x

y

Figure 2.3: Linearly separable points

Input layer Hidden layer Ouput layer

Figure 2.4: An example Feedforward Neural Network

previous layers in the network (Figure 2.5) (Engelbrecht, 2007). There are many ways for

an SRNN to be implemented, with a recurrent connection able to be created between any

neuron and any previous neuron in the network. These networks have been shown to be

Turing complete (Siegelmann and Sontag, 1995).

SRNNs are able to use their recurrent connections to learn temporal properties of

data. A recurrent network architecture, used specifically for this property, is the time-

delay neural network, which accepts input from multiple time periods. A long short-term

memory (LSTM) network (Hochreiter, 1997) is a type of recurrent network that has been

shown to be effective in solving problems where a longer-term memory is required than

that offered by an SRNN.

2.2.4 Data Normalisation

It is important that data be scaled to the active range and domain of the activation

functions in use in an ANN (Engelbrecht, 2007). This improves the performance of the
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Figure 2.5: An example Simple Recurrent Neural Network

ANN by ensuring that changes in input values lead to large changes in output values. The

active range for the sigmoid activation function is [−
√

3,
√

3].

One method of data normalisation is amplitude scaling. It is important to note that the

input and output values for the normalisation function do not correspond with the input

and output values of the ANNs. When normalising data to be used as input for an ANN,

the output of the normalisation function is the input of the ANN. When de-normalising

output data from the neural network, the output data acts as input to the normalisation

function, which is able to perform the de-normalisation. The input high (b1,2) and low

(b1,1) bounds specify the range of values of the input to the normalisation function, while

the output high (b2,2) and low (b2,1) values specify the range of possible output values

from the normalisation function. The normalisation function is:

b2 =
b1 − b1,1
b1,2 − b1,1

(b2,2 − b2,1) + b2,1 (2.7)

where b1 is the unscaled input, and b2 is the scaled output.

2.2.5 Training

A network’s optimal weights for complex problems and network topologies are not simple

to determine. Therefore, methods of determining these values have been developed, al-

lowing the network to learn them automatically. A selection of these methods is discussed

in this section.
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Gradient descent

Gradient descent is a method of training a single artificial neuron (Engelbrecht, 2007). In

order to use the method, an error function must be defined for measuring the accuracy of

the neuron’s output. A commonly used function is the sum of squared errors (SSE), shown

in equation 2.8. ns is the number of input-target vector pairs (patterns) in the training

set and, for a pattern q ∈ (1, ns), tq and oq are the target value and actual output value

of the neuron, respectively.

ε =

ns∑
q=1

(tq − oq)2 (2.8)

Gradient descent aims to find the set of weight values for the neuron that minimises the

error, ε. The algorithm achieves this by calculating the gradient of ε in weight space. The

neuron’s weights are then slowly adjusted, moving them in the direction of ε’s negative

gradient. These adjustments will move the weights towards local optima, where the error

is smaller than the error for nearby values for the weight (Figure 2.6). Each of the neuron’s

weights is adjusted in this way, and the error of the neuron is reduced.

w

ε

Figure 2.6: Gradient descent weight updates

The weights are updated using:

wi(t) = wi(t− 1) + ∆wi(t) (2.9)

∆wi(t) = η(− ∂ε

∂wi
) (2.10)
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∂ε

∂wi
= −2(tq − oq)

∂f

∂zq
xq,iwi (2.11)

where η controls the learning rate, f is the activation function, zq is the net input for

pattern q, and xq,i is the input i corresponding to pattern q (zq =
∑nv+1

i=1 xq,iwi, nv is the

number of inputs to a neuron). The calculation of ∂f
∂zq

requires f to be differentiable and,

therefore, presents an issue for non-differentiable activation functions.

As an example, given the differentiable sigmoid activation function (equation 2.5),

∂f

∂zq
= oq(1− oq) (2.12)

and, therefore
∂ε

∂wi
= −2(tq − oq)oq(1− oq)xq,iwi (2.13)

Backpropagation

Using gradient descent optimisation over an entire network is known as backpropagation

(Engelbrecht, 2007). Backpropagation consists of two phases. In the feedforward pass, the

output of the network is calculated. The backward propagation phase then uses the error

of the output of the network to propagate changes from the output layer of the network

to the input layer. Weights are adjusted proportionally to the derivative of ε with respect

to w.

The backpropagation training process stops once a stopping criterion is reached (En-

gelbrecht, 2007). Common stopping criteria are:

� A maximum number of training cycles (epochs)

� When the network’s error on a validation set is low enough

� When overfitting is observed. Overfitting is when the network begins to memorise

the training set and lose its generalisation ability.

Training networks that utilise gradient-based training methods, of which backpropa-

gation is one, have two major pitfalls. The vanishing gradient problem is encountered in

ANNs with many hidden layers. Gradient-based training methods update a parameter’s

value by understanding how a small change in that value would affect the network’s out-

put. If a change in the parameter causes too small a change in the output, the network
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cannot update the parameter effectively. This is due to the way that specific activation

functions, such as the sigmoid function, compress the input into a small range of output

values; these functions are asymptotic, meaning that there is very little difference between

output values once the input becomes very large or very small. This problem is com-

pounded as the number of layers in the network increases, since each subsequent layer

maps the input region to an even smaller output region. The use of activation functions

such as the rectified linear unit (ReLU) has been shown to solve the vanishing gradient

problem (Maas et al., 2013).

Another problem solved through the use of ReLU over a sigmoid activation function

is that a sigmoid-based network cannot produce an absolute 0 (Maas et al., 2013). It is

possible for the output to be very near to 0, but this is potentially less powerful than an

activation function able to produce a true 0, such as the ReLU function. In classification

applications, the ReLU function may, therefore, improve performance.

Optimal network topology

The topology of a neural network has a significant impact on the network’s ability to

solve a problem (Floreano and Mattisussi, 2008) and its selection is a challenge in the im-

plementation of neural networks (Hunter, Yu, Pukish, Kolbusz, and Wilamowski, 2012).

The topology for a given problem can be based on any number of factors, including em-

pirical observations or previous experiments with similar problems. Approaches such as

Neuro-Evolution of Augmenting Topologies (NEAT) aim to remove some of this guess-

work by evolving not only the weights but also the topology of the network (Stanley and

Miikkulainen, 2002).

Transfer learning

Transfer Learning is a concept based, fundamentally, on the idea of learning to learn (Sinno

Jialin Pan and Yang, 2010). An example is how the training of an object classification

system intended to identify pears may be expedited by beginning with a system already

trained to identify apples. Transfer learning also refers to the ability of a network trained

on one set of data to generalise to an unseen data set.
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Dropout

During training, it is possible to encounter an issue known as over-fitting. The ANN begins

to memorise its training patterns, instead of generalising and finding the underlying link

between inputs and outputs (Engelbrecht, 2007). This can happen when the network is

too complex but given too few training patterns. The high number of adjustable weights

allows the network to learn the individual patterns.

One way of alleviating this issue is known as dropout (Srivastava, Hinton, Krizhevsky,

Sutskever, and Salakhutdinov, 2014). During training, neurons are randomly chosen to

be dropped. When this happens, the neuron’s output is ignored for the feedforward phase,

and its weights are not updated during the backpropagation phase. This causes the code-

pendency of the neurons to decrease since they cannot rely on each other to be present

and must be accurate in the absence of those other neurons.

2.2.6 Applications

ANNs have many real-world applications, from robot control (Pretorius, du Plessis, and

Cilliers, 2010) to data mining (Engelbrecht, 2007). Deep learning is the use of many-

layered neural networks, which has recently become prominent. These large ANNs are

able to perform even more complex tasks, such as speech recognition, visual object recog-

nition, object detection, and natural language processing (Lecun, Bengio, and Hinton,

2015). These ANNs have been pivotal in solving many seemingly insurmountable prob-

lems encountered in artificial intelligence research, and investigation is ongoing to test

their application in increasingly diverse fields.

2.3 Evolutionary Algorithms

2.3.1 Evolutionary Computation

Evolutionary computation (EC) is a sub-field of computational intelligence, well-suited

to finding adequate solutions to both dis- and continuous optimisation problems (Engel-

brecht, 2007). EC makes use of evolutionary algorithms (EAs), inspired by evolution in

nature, which promotes the survival of good genes. This occurs in nature because the indi-
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viduals with good genes express those genes as traits or characteristics that increase their

probability of survival, such as the ability to run faster or camouflage themselves better.

Since these individuals are more likely to survive, they are more likely to reproduce. The

genes that make the individuals fitter are, therefore, likely to be passed on to the following

generation.

2.3.2 Basic Process

EAs are a class of population-based metaheuristics, able to perform a stochastic search

through a solution space to find optimal solutions to a given problem (Engelbrecht, 2007;

Bongard, 2013). The pseudocode for an EA is given in Algorithm 1.

Algorithm 1: The Evolutionary Algorithm

Let generation t = 0

Initialise a population, C(0), of n individuals

while stopping condition(s) not true do

Evaluate the fitness of each individual in C(t)

Create new population C(t+ 1) using selection and reproduction operators

Apply mutation operators to individuals in C(t+ 1)

Advance to the next generation: t = t+ 1

end

The EA begins with the initialisation of a population of randomly generated individ-

uals. These individuals are represented by chromosomes, comprised of genes, encoding

various traits affecting the behaviour of the individual (Section 2.3.3). In order to evalu-

ate the fitness of the individuals in the population, a fitness function (Section 2.3.4) must

be defined.

Once the fitness values have been calculated, a reproduction step occurs, where parents

are chosen using a selection operator (Section 2.3.6) and their genetic material is combined

to create children, in a process called crossover (Section 2.3.7).

Once the reproduction is complete, the new population of individuals undergoes mu-

tation (Section 2.3.8). In this process, the values of an individual’s genes are mutated,

introducing small random changes.
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This process repeats until some stopping condition is satisfied (Section 2.3.9).

2.3.3 Chromosomal Representations

When implementing an EA, potential solutions must be represented as a set of variables

(genes) (Beasley, Bull, and Martin, 1993; Engelbrecht, 2007). These sets of genes are

known as chromosomes. As an example, for a bridge design problem, the genes could

represent the lengths of individual beams supporting the bridge that the algorithm is

required to optimise.

The design of the form of the chromosomes to be used in the EA is critical, as the

efficiency of the algorithm depends greatly on these representations. Generally, EAs rep-

resent the individuals’ chromosomes as vectors of values. Classical genetic algorithms

require that the chromosome representation be Binary-Coded. That is, consisting of only

binary (1 and 0) values. There are, however, a number of advantages to the use of real-

valued chromosomal representations (Herrera, Lozano, and Verdegay, 1998). EAs using

these representations are known as Real-Coded EAs.

The use of real-valued parameters makes it possible to use variables with large or even

unknown domains (Herrera et al., 1998). This is difficult to achieve with binary repre-

sentations since an increase in the size of the domain of the variables leads to decreased

precision.

Real values are also able to exploit the graduality of functions (Herrera et al., 1998).

Graduality refers to the fact that a small change of a variable’s value leads to a small

change in the output. Lastly, the coding and decoding steps that are required with binary

coded EAs are avoided since the form of the chromosome matches that of the search space.

A negative consequence of the use of real-valued representations is that the magnitude

of mutation may need to be specified by an additional mutation magnitude parameter.

2.3.4 Fitness Functions

In natural evolution, individuals with the best characteristics have the highest probability

of surviving and reproducing. EAs require a method of expressing this fitness of the

individuals in the population mathematically (Engelbrecht, 2007; Herrera et al., 1998;
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Beasley et al., 1993); the fitness function maps chromosomal representations to scalar

values.

The fitness function usually provides an absolute measure of an individual’s fitness, but

this is not always necessary. What is important is the ability to compare two individuals

based on their fitness. In situations such as an EA learning to play a game, each individ-

ual’s fitness can be based on their performance when playing against other individuals in

the population. Fitness functions are integral to the function of EAs since they determine

what it means for an individual to be good in the eyes of the EA.

When considering fitness functions, it is important to note that they are quantitative

measures which aim to capture the critical features of what it means for an individ-

ual to be successful. It is easy to overestimate the accuracy with which this measure

represents the underlying qualitative success that is intended (Lehman, Clune, Misevic,

Adami, Beaulieu, Bentley, Bernard, Beslon, Bryson, Chrabaszcz, Cheney, Cully, Don-

cieux, Dyer, Ellefsen, Feldt, Fischer, Forrest, Frénoy, Gagné, Goff, Grabowski, Hodjat,

Hutter, Keller, Knibbe, Krcah, Lenski, Lipson, MacCurdy, Maestre, Miikkulainen, Mitri,

Moriarty, Mouret, Nguyen, Ofria, Parizeau, Parsons, Pennock, Punch, Ray, Schoenauer,

Shulte, Sims, Stanley, Taddei, Tarapore, Thibault, Weimer, Watson, and Yosinksi, 2018).

Evolution often exploits these differences to find solutions which are simpler than real

solutions but satisfy the experimenter’s fitness function well.

An example of such exploitation is shown in Figure 2.7. The EA was tasked with

evolving a robot morphology and controller capable of jumping as high as possible off of

the ground. The experimenters judged the height jumped by the robot as the change in

the height of the initially lowest point of the creature. Instead of jumping, the robot in

the figure learned that it could simply somersault, thrusting its very light lower limb into

the air.

2.3.5 Exploration and Exploitation

An important consideration to be made when using EAs is the balance between exploration

and exploitation (Engelbrecht, 2007; Črepinšek, Liu, and Mernik, 2013). Exploration is

the process of visiting new and unexplored areas of the search space, while exploitation

is the concentration of the search in a specific promising area in an attempt to refine the
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Figure 2.7: Evolution exploiting a flaw in a fitness function (Lehman et al., 2018)

candidate solutions.

A population of individuals that are too similar to each other, and thus are not ad-

equately dispersed through the search space, is said to have low diversity (Engelbrecht,

2007). Such a population is likely to converge prematurely, causing it to become trapped in

local optima. Alternatively, without sufficient exploitation, solutions cannot be adequately

refined.

2.3.6 Selection Operators

Selection operators select the individuals from the population that are to reproduce and

create offspring (Engelbrecht, 2007). This step is responsible for the survival of the fittest

concept that is central to the evolution process.

Each selection operator has a level of selection pressure (Engelbrecht, 2007; Harvey,

Husbands, Cli, Harvey, Husbands, and Cli, 1993). Those with higher pressure are more

likely to select fitter individuals over less fit alternatives. This leads to a more rapid decline

in diversity than an operator with lower selection pressure.

Four examples of selection operators are (Engelbrecht, 2007; Beasley et al., 1993):

� Random selection: This operator selects a random individual from the population.

It has the lowest selection pressure of the operators discussed here since the least

and the most fit individuals have equal likelihood of selection.

� Best selection: Select the best individual from the population. This operator has

the highest selection pressure of the operators discussed here. Convergence with this

operator will be extremely fast.
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� Proportional selection: With this operator, the probability of an individual be-

ing selected is the proportion of that individual’s fitness in the total fitness of the

population:

p(ck) =
f(ck)∑np
i=1 f(ci)

(2.14)

where p(ck) is the probability of individual ck being selected, f(c) is the fitness of c,

and np is the number of individuals in the population. This operator is also known

as roulette wheel selection.

Since selection is directly proportional to fitness, it is possible that fitter individu-

als may dominate too strongly, leading to a rapid decrease in the diversity of the

population.

� Tournament selection: This selection operator selects a random group of nt indi-

viduals, where nt is a parameter to the EA, and nt ≤ np. The best individual from

this random group is then selected. Tournament selection could be said to be a com-

bination of random and best selection. The larger the tournament, the higher the

selection pressure; with a tournament the size of the entire population, tournament

selection is the same as selecting the best individual.

It is not guaranteed that the fittest individual from each population will survive to

the next. Elitism is a process which preserves the fittest individuals by copying them

directly to the new population without mutation. The higher the number of individuals

transferred (elitists), the faster the population will converge (Engelbrecht, 2007).

2.3.7 Crossover

After individuals have been selected for reproduction, their genetic material is combined

to create offspring (Engelbrecht, 2007). Three methods of implementing this crossover,

initially intended for use with EAs using binary-coded chromosomes, however also able to

be used with real-coded chromosomes, are:

� Single-point crossover: A point, corresponding with a specific position in the

chromosomes of both parents, is chosen. Two children can then be created, with the
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children’s chromosomes matching one parent up until the crossover point, and the

other parent afterwards.

� n-point crossover: Instead of a single point being chosen, where the chromosome

of the offspring switches between parents, n points are chosen. At each of these

points, the parent from which the genetic material is taken is swapped.

� Uniform crossover: Uniform crossover gives each gene in the offspring’s chromo-

some an equal probability of being taken from each parent.

There are crossover methods explicitly designed for use with real-coded chromosomes,

such as simulated binary crossover (SBX), which aims to simulate the behaviour of single-

point crossover for real-coded chromosomes (Deb and Agrawal, 1995). Two parents c1 and

c2 are used to produce two offspring c̃1 and c̃2:

c̃1j = 0.5((1 + γj)c1j + (1− γj)c2j) (2.15)

c̃2j = 0.5((1− γj)c1j + (1 + γj)c2j) (2.16)

γj =


(2vj)

1
η+1 if vj ≤ 0.5

( 1
2(1−vj))

1
η+1 otherwise

(2.17)

where j ∈ [0, ng], ng is the number of genes in the individuals’ chromosomes, vj ∼
U(0, 1) and η > 0 is the distribution index. Deb, Pratab, Agarwal, and Meyarivan (2002)

suggested that η = 1.

The chosen crossover operator is repeatedly used, with the selection operator selecting

parents each time, until a new population of individuals has been created.

2.3.8 Mutation

The aim of mutation is to introduce diversity into the population (Engelbrecht, 2007).

This is achieved by probabilistically changing the values of the individuals’ genes by small

amounts. Mutation is applied to each gene of the individual with probability mr. The

probability is usually a small value to ensure that good solutions are not distorted exces-

sively.
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Binary-coded chromosomes are mutated by flipping their genes’ values from 0 to 1 or 1

to 0. Uniform mutation for real-coded chromosomes allows for mutation without a specific

mutation magnitude parameter (Engelbrecht, 2007):

c′i =


ci + Ω(0, xmax − xi) if v < 0.5

ci + Ω(0, xi − xmin) otherwise

(2.18)

where ci is the ith gene of individual c, cmin and cmax are the minimum and maximum

values of the genes, respectively, v ∼ U(0, 1), and Ω(x1, x2) ∼ U(x1, x2).

Another method of mutation allows the magnitude of the mutation to be specified as

a parameter mg to the algorithm. Each mutation operation then mutates the targeted

gene using

c′i = Ω(−mg,mg) + ci (2.19)

or

c′i = Ψ(mg) + ci (2.20)

where Ψ(x) ∼ N(0, x2).

EAs with initially high mutation rates, which become smaller over time, are shown to

have improved convergence, speed, and accuracy over those with constant mutation rates

(Engelbrecht, 2007).

2.3.9 Stopping Conditions

An EA continues the evolutionary cycle until some stopping condition is reached (Engel-

brecht, 2007). Possibly the simplest condition is a limit on the number of evolution cycles

that can occur. Convergence is also a useful criterion in deciding when evolution should

cease (Beasley et al., 1993). A performance measure can be chosen to represent the pop-

ulation’s aggregate fitness. The measure could be one of any number of measures, such as

the fitness of the best, or average, individual. The rate of change of this fitness measure

can then be used to monitor convergence of the population; as convergence increases, the

rate of improvement of the population’s fitness will decrease (Engelbrecht, 2007). Evolu-

tion can thus be stopped when this rate of improvement has slowed to a point where the

best fitness has not improved more than a threshold value e over a number of generations

ng, where e and ng are parameters to the algorithm.
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2.3.10 Multiple Populations

EAs lend themselves to parallelisation, allowing the workload of computing the EA to

be split among multiple processing units (Engelbrecht, 2007; Alba and Tomassini, 2002).

There are a number of methods of implementing this parallelisation, one of which is an

island EA. Island EAs consist of multiple populations, each of which can be computed on

a separate processor. Selection, crossover, and mutation happen within each population,

entirely independently of the others. Periodically, individuals are chosen to migrate among

populations. Island EAs are useful not only for parallelisation; they also increase the

diversity of the EA (Alba and Tomassini, 2002).

A necessary step in the construction of an Island EA is the specification of a migration

policy, which defines (Engelbrecht, 2007; Alba and Tomassini, 2002):

� A communications topology, specifying the connections between islands. These

are the paths along which information can be shared and along which individuals can

migrate. This topology will determine how rapidly good solutions are communicated

to each population. Sparse topologies communicate these solutions more slowly and

thus facilitate the emergence of a more varied set of solutions.

� A migration rate, which determines the frequency of migration among popula-

tions. Ideally migration should occur once each population has converged in order

to prompt a resurgence of exploratory evolution.

� A selection mechanism, which is responsible for deciding which individuals should

migrate. This mechanism can utilise any fitness selection method.

� A replacement strategy, to select the individuals of the destination island to be

replaced by the arriving migrant individuals.

An alternative to a predefined policy is a probabilistic one, such as is used by a dy-

namic model, where migration decisions are made probabilistically (Engelbrecht, 2007).

Migration occurs with a fixed probability; the migrating individual is chosen using tour-

nament selection, migrates to a random island, and is accepted probabilistically based on

its fitness relative to the average fitness of the destination island.
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2.3.11 Neuroevolution

EAs provide an appealing alternative to gradient-based learning methods for the training

of neural networks (Floreano and Mattisussi, 2008; Stanley and Miikkulainen, 2002). The

properties of the network can be encoded in genes and evolved by the EA. This approach

holds advantages over other learning methods since it can be used to evolve many defining

features of a network simultaneously, such as the network’s structure and weights. It also

gives more flexibility with regards to the definition of performance criteria than an error

function.

A simple form of the network encoding takes the form of a weight vector representing

the weights of each connection in the network (Figure 2.8). This specific representation

cannot be used for the evolution of the network’s topology alongside the weights, such as

is done by NEAT; it does not encode for the topology directly.
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Figure 2.8: A FFNN and a feasible corresponding weight vector representation

Neuroevolution utilises crossover to create child networks. Each ANN can be said to

consist of a number of smaller sub-structures (Stanley and Miikkulainen, 2002). Neu-

roevolution assumes that fit individuals are fit because each of the sub-structures making

up their full structure has moderately good fitness. It is also assumed that combining

good sub-structures can create good structures. When these assumptions are not true,

the environment is said to be deceptive.

The competing conventions problem, also known as the permutation problem (Han-
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cock, 1992; Whitley, 1995), is one that can arise in a deceptive environment (Angeline,

Angeline, Saunders, Saunders, Pollack, and Pollack, 1994; Yao and Liu, 1997; Stanley and

Miikkulainen, 2002). In Figure 2.9, the activation functions throughout the hidden layer

are constant, and bias weights are excluded in the interest of readability. Networks 2.9a

and 2.9b are reflections of each other and, given the same input, both networks would pro-

duce the same result. If these networks represent fit individuals in the population and are

chosen to reproduce, a uniform crossover operation could produce network 2.9c. Instead of

achieving the goal of creating a fitter individual through the crossover of genetic material,

a child has been created that contains repeated components and has lost a portion of the

parent’s computational ability.
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Figure 2.9: Reflected neural networks

The NEAT algorithm aims, among other things, to solve the competing conventions

problem by evolving both the topology and weights of the network simultaneously (Stan-

ley and Miikkulainen, 2002). While NEAT can offer advantages over other methods of

neuroevolution, previous research has shown that this is not true in all cases (Pretorius,

du Plessis, and Gonsalves, 2017). A number of other approaches have been developed
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with the aim of addressing the competing conventions problem (Whitley, 1995), but re-

search has found that it does not cause as negative an impact as has often been reported

(Hancock, 1992).

2.4 Evolutionary Robotics

The manual design of mobile, autonomous, and adaptive robots is difficult. Industrial

robots are able to operate autonomously, but they are not adaptive and they cannot

respond to external stimuli; rather, they execute the same sequence of actions repeatedly.

Remote controlled drones are adaptive but not autonomous, as they rely on their human

operator for control (Bongard, 2013).

It is possible to encode the robots’ controllers and morphologies as individuals of

an EA and use concepts from EC to evolve them automatically (Zagal and Ruiz-Del-

Solar, 2007; Bongard, 2013; Hiller and Lipson, 2012). This method also means that few

assumptions need to be made in the robots’ implementation, allowing for the discovery

of robot behaviours and morphologies that may not have been envisioned by the human

designers.

2.4.1 A Brief Background of Evolutionary Robotics

The aim of artificial intelligence is to produce human-like intelligence, where the definition

of intelligence is based on something similar to the Turing test. Evolutionary robotics

(ER), on the other hand, focuses on producing behaviours which appear intelligent to an

observer (Bongard, 2013). In ER, the belief is that intelligence is an emergent property of

the increasingly complex interactions between the robot and its environment, instead of

being something contained in just the robot’s brain. This concept is known as embodied

cognition.

Early ER experiments made interesting discoveries with regard to embodied cognition.

An ER system, when tasked with moving a robot towards specific shapes and away from

others, learned to use both motion and vision to identify shapes, instead of attempting to

classify the shapes before making a decision (Floreano and Mattisussi, 2008). The system

used only a small number of pixels, but also used information about how the values of
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those pixels changed over time. The method of object identification was unintuitive, and

it is unlikely that a human researcher would have chosen to solve the problem in the same

way.

Interestingly, not only does biological evolution inspire ER, but discoveries in ER can

be used to assist research into biological evolution (Bongard, 2013). The outcomes of the

ER process often provide researchers with new ways of thinking about biologically evolved

traits. If an evolved robot expresses similar traits or behaves in a similar manner to a

biological animal, investigation of the process that led to the emergence of that behaviour

in the robot can provide insight into the same behaviours or traits in nature.

This automatic generation of unexpected solutions extends beyond the creation of

controllers. Unexpected robot morphologies can be generated too (Hiller and Lipson,

2012; Lipson, Bongard, Zykov, and Malone, 2006). Research has shown that allowing the

morphology of the robot to evolve alongside the controllers produces significantly better

results, though much of this research has taken place in simulation because of difficulties

involved with the bridging of the reality gap (Section 2.5.2), and the complexity of the

real-world fabrication of robot morphologies for evaluation in the ER process (Bongard,

2013; Cheney, Maccurdy, Clune, and Lipson, 2013).

2.4.2 The Evolutionary Robotics Process

The ER process is related closely to that of EAs. The process is illustrated in Algorithm

2. A population of controllers is created with genes encoding aspects of the individuals

in the population. In the example of neural network-based controllers, the genes can

code for the weights of connections between neurons. These individuals are decoded, and

controllers created. The controllers are then transferred to a robot and evaluated, based

on their ability to complete a given task. Once this evaluation is completed, a fitness

function returns a fitness value for each individual. A selection operator is then applied to

select pairs of parents between which a crossover operation is performed to create the new

population. Finally, the individuals in this new population have small random changes

introduced through the application of a mutation operator.
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Algorithm 2: The basic Evolutionary Robotics Algorithm

Let generation t = 0

Initialise a population, C(0), of n individuals

while stopping condition(s) not true do

Decode each individual in C(t) into a controller in D

Evaluate the fitness of each controller in D by determining how well it

performs the required task

Create new population C(t+ 1) using selection and reproduction operators

Apply mutation operators to individuals in C(t+ 1)

Advance to the next generation: t = t+ 1

end

2.5 Simulators in Evolutionary Robotics

In ER, the evolutionary process requires the evaluation of each individual in every genera-

tion. If these evaluations are performed on a real robot, the process becomes unrealistically

time-consuming (Zagal and Ruiz-Del-Solar, 2007). Real-world evaluations also introduce

the risk of damage to physical robots (Papaspyros et al., 2016). This is especially true

in the case of controllers that perform poorly or cause the robot to perform erratic and

hazardous movements. These may occur early in the evolution process while individuals

are largely random, or later, due to random mutation.

Simulators allow for much faster exploration of the search space (Lund and Miglino,

1996) with no risk of damage to a physical robot (Sofge, Potter, Bugajska, and Schultz,

2003).

2.5.1 Types of Simulators in Evolutionary Robotics

Simulators in ER can be grouped into three broad classes: physics-based, empirical, and

hybrid approaches. Physics-based simulators aim to use mathematical models to describe

the interaction between a robot and its environment. These simulators can be challenging

to develop due to the complex models upon which they are based (Koenig and Howard,

2004).

Empirical approaches use experimentally collected data to construct simulators (Lipson
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et al., 2006). The resulting simulators are able to represent the fuzzy characteristics of the

real world.

Hybrid simulators incorporate aspects of both empirical and physics-based approaches

(Jakobi et al., 1995). An example is the anytime learning approach which uses a physics-

based model, with empirically determined parameter values (Parker, 2000).

2.5.2 The Reality Gap

While simulation in ER yields many benefits, it is not without issues of its own. Due to the

complexity of representing the real world, simplifying assumptions are made in simulators’

development (Brooks, 1992), causing the accuracy of the simulation to decrease. These

inaccuracies mean that a controller that performs well in the simulator may not do so in

the real world.

Controllers evolved in simulation may also learn to exploit the inaccuracies in the

simulation. In this case, the inaccuracies prevent the controller from transferring to reality

at all, since the controller relies on the inaccuracy in order to be effective in the completion

of its task. Lehman et al. (2018) went so far as to describe the use of EC techniques in

simulators as automated bug discovery since the solutions evolved in simulation very often

learn to exploit bugs in the simulation itself. These issues of transference and exploitation

of simulation inaccuracies together form the reality gap.

An example, presented by Koos, Mouret, and Doncieux (2013a) (Figure 2.10) clearly

shows the reality gap. The vertical axis represents the distance travelled by a quadruped

robot, while the horizontal axis represents the number of generations of the EA. As the

population of controllers improves, it increasingly exploits aspects of the simulation which

may not accurately reflect reality. The improvements in simulation actually lead to the

controller performing worse in the real world.

Figure 2.11 shows another example of a robot failing to cross the reality gap. Jakobi

et al. (1995) evolved controllers to move a wheeled robot forwards as fast as possible while

avoiding obstacles. 2.11a shows the path followed by the robot in simulation, while 2.11b

shows its path in the real world.

Figure 2.12 shows the simulated execution of a controller on a creature which has

learned to exploit a bug in the simulation. Each image shows one timestep of the robot’s
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Figure 2.10: The Reality Gap (Koos et al., 2013a)

(a) Robot’s path in simulation (b) Robot’s path in reality

Figure 2.11: A robot’s path in reality and simulation (Jakobi et al., 1995)
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execution as it moves to the right. The simulator’s time steps were large; this allowed the

creature to penetrate the ground between steps, which would not be possible in the real

world. This collision causes the simulator to repel the creature strongly, providing it with

free energy and allowing it to vibrate forwards along the ground (Lehman et al., 2018).

Figure 2.12: Evolution exploiting a bug in the simulator (Lehman et al., 2018)

2.6 Solving The Reality Gap

As an open issue in ER (Sofge et al., 2003), there have been numerous attempts to address

the reality gap. Three of these are discussed in this section.

2.6.1 The Transferability Approach

The transferability approach is focused on discovering controllers that transfer well be-

tween simulation and reality (Koos et al., 2013a). The algorithm solves for two objectives:

fitness and transferability. The fitness calculation is done as in other ER approaches, while

the transferability is estimated by a transferability function, which represents the level of

accuracy with which the simulator mimics reality, for a given action. This function is

usually approximated with a regression algorithm (Koos et al., 2013a).

The fitness and transferability of a controller often seem to be conflicting objectives,

with an increase in one having a negative effect on the other (Koos et al., 2013a). Thus,

a Pareto-based multiobjective optimisation algorithm is used (Deb et al., 2002). These

algorithms are based on the concept of Pareto dominance:

Definition 2.6.1. Pareto dominance: A solution x∗ is said to dominate another solution

x if (1) and (2) hold:

1. The solution x∗ is not worse than x with respect to all objectives.

2. The solution x∗ is strictly better than x with respect to at least one objective.
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All non-dominated solutions in a search space form the Pareto front, which represents

the set of optimal trade-offs for the given problem. In the case of the transferability

approach, they are the solutions which have the best balance between transferability and

fitness.

2.6.2 Real-World Evolution

Floreano and Mondada (1994) evolved a robot controller without a simulator by perform-

ing the evolution process on the physical robot. This approach yields excellent results,

but comes with the issues inherent in real-world testing: it is time-consuming and risks

damage to the robot.

2.6.3 Concurrent Controller and Simulator Development

Instead of treating the training and deployment of a controller as a one-way process,

concurrent methods of controller and simulator development use information gathered

from the deployment of the controller to inform the simulator and the training of new

controllers.

Zagal and Ruiz-Del-Solar (2007) proposed the Back To Reality Algorithm. This algo-

rithm co-evolves both the robot and simulator by first evolving a controller in simulation

and then transferring it to a real robot (Zagal and Ruiz-del Solar, 2005). The controller

is then evolved further on the real robot, and the difference in fitness between the sim-

ulator and real world calculated and used to train the simulator. The optimisation of

the original researchers’ UCHILSIM simulator was done through parameter modification.

This method, while effective, still requires a time-consuming evolution process in the real

world.

Bongard et al. (2006) used a self-modelling system to allow a controller to build up

an internal model of its morphology, discussed further in Section 2.9.2. Self-modelling is

effective in the evolution of transferable robot controllers, but, like many other methods of

ER, requires the very time-consuming construction of a physics simulator before evolution

can take place.

The transferability approach, discussed in Section 2.6.1, is a concurrent method of sim-
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ulator and controller development. Once again, this method requires the time-consuming

construction of a physics simulator. Koos et al. (2013a) suggest the use of both an accurate

and simplified simulator in order to reduce computational complexity further, but this also

implies the implementation of a second physics simulator in addition to a transferability

estimation function.

The anytime learning approach uses a simulator, initially constructed to be as accurate

as possible, to evolve a population of controllers (Parker, 2000). Periodically the best,

worst, and a random individual from this population, are chosen and tested on a real-world

robot. The collected data is then used to evolve a population of model parameters, with

the aim of using them to improve the simulator. An illustration of the process is shown

in Figure 2.13. While this method is effective at updating the simulator to be as close to

the real world as possible, the only parameters able to be modified by the algorithm are

those chosen by the researcher. If there are unanticipated sources of simulator inaccuracy,

they cannot be addressed automatically by this method.

GA

RobotModel

GA modifies
robot controller

Robot performance
modifies model using

anytime learning

GA trains
on model

Figure 2.13: Anytime Learning process (adapted from Parker (2000))

2.7 Simulator Neural Networks

Simulator neural networks (SNNs) are an empirical approach to robot simulation (Preto-

rius, du Plessis, and Cilliers, 2013). SNNs make use of artificial neural networks which

are trained to take sensor information and commands and produce a prediction of the
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change in the robot’s state. An example SNN is shown in Figure 2.14. In this case, the

simulator is designed for a differentially steered Khepera III robot, as used by Woodford

et al. (2016), and consists of three neural networks, each predicting one of the changes in

x, y, and rotation of the robot, respectively.

...

previous left

motor speed

previous right

motor speed

current left

motor speed

current right

motor speed

time

duration

∆x or ∆y or ∆θ

Input layer Hidden layer Ouput layer

Figure 2.14: Simulator Neural Networks for the Khepera III (Woodford et al., 2016)

NNs are typically trained using collected training data. Since the simulator is intended

to simulate a real-world robot, this data comes from the real world, which inevitably

contains large quantities of noise (Jakobi et al., 1995). It is also impossible to sample

every possible combination of parameter values from the real world, such as every possible

motor speed. ANNs address both of these issues.

� ANNs’ high noise tolerance allows them to filter out noise and find the underlying

relationships in real-world data (Basheer and Hajmeer, 2000).

� ANNs’ generalisation ability allows them to approximate the outputs for inputs

that were not presented to the network during training, by finding the relationships

between input and output values (Pretorius et al., 2013).

SNNs can be constructed without prior knowledge of the underlying mathematical

model of the system being simulated (Pretorius et al., 2013), making them an appealing

alternative to physics-based approaches. The process of training is as follows:

1. Training data is obtained by:
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(a) executing random commands on a real-world robot and

(b) recording the change in the robot’s physical state and relevant sensor values.

2. A SNN is trained using the collected data.

3. The SNN is used as a simulator to evolve robot controllers.

4. The controllers are transferred to the real robot for evaluation in the real world.

SNNs have also been shown to perform comparably to physics simulators while offering

computational efficiency that is orders of magnitude better than the physics simulators of

comparable accuracy (Pretorius, du Plessis, and Gonsalves, 2014).

Pretorius, du Plessis, and Cilliers (2009) used SNNs to evolve a robot controller for

a differentially steered robot. The robot was required to navigate from one region of the

testing area through the others, in order, while avoiding the centre forbidden zone. The

process was successful and controllers were evolved that were able to bridge the reality

gap and perform their task in the real world (Figure 2.15a). Individual ANNs simulating

each aspect of the robot that is to be simulated were also shown to be more effective than

single ANNs simulating all aspects of the robot.

Pretorius et al. (2010) showed that multiple SNNs can be used together, specifically

to simulate both the motion of a differentially steered robot and its light sensor readings,

based on its position relative to a light source. These simulators were used to evolve

closed-loop controllers capable of navigating towards and remaining near a light source

(Figure 2.15b). The problem simulated was simple and could arguably have a physics

simulator constructed for it fairly easily, but the use of SNNs reduced the complexity of

simulator construction and was able to automatically take into account intricacies which

would otherwise have required explicit implementation in a physics simulator.

It has been demonstrated that the simulation of more complex systems, such as an

inverted pendulum balancing robot, is possible (Pretorius et al., 2013). SNNs were able to

simulate both the on-board gyroscopic and tilt sensors and were used to evolve controllers

that were able to bridge the reality gap. This finding showed that SNNs are not limited to

the simulation of simple systems, but could potentially be used for the evolution of robot

controllers able to perform complex tasks in the real world.
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SNNs have also been used to simulate the behaviour of much more complex robotic

systems, such as a snake-like robot (Woodford, du Plessis, and Pretorius, 2015). Data

was gathered and an SNN trained, which was used to evolve a controller for the robot

capable of completing a navigation task. The controllers transferred reasonably to the real

world (Figure 2.15c) and proved that the use of SNNs is viable for the evolution of robot

controllers for robot morphologies of much greater complexity. Closed-loop controllers

were also successfully evolved using SNNs, allowing the robot to move towards, and remain

near, a light source, using light sensors on the robot (Figure 2.15b) (Pretorius et al., 2013).

(a) Path followed by an open-loop controller

evolved using SNNs (Pretorius et al., 2009)

(b) Path followed by a closed-loop controller

evolved using SNNs (Pretorius et al., 2010)

(c) Path followed by an open-loop con-

troller for a snake robot evolved using SNNs

(Woodford et al., 2015)

Figure 2.15: Paths followed by controllers evolved using SNNs
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2.8 Bootstrapped Neuro-Simulation

There are disadvantages to the traditional approach used for SNN development (Section

2.7). Since it is a one-directional process, the simulator must be developed before the

training of controllers can begin (Woodford et al., 2015). Time may also be wasted while

the simulator learns to simulate behaviours that are not required for the successful evolu-

tion of controllers for a given task. Finally, once the simulator is developed, it is unable

to adapt to changes in the robot’s performance that may occur due to mechanical wear,

damage, or environmental factors.

Woodford et al. (2016), therefore, proposed using the concepts of bidirectional training

and SNNs in conjunction. The resulting approach, called Bootstrapped Neuro-Simulation

(BNS), trains a population of controllers using an initially random SNN. Controllers are

continually chosen from this population to be evaluated in the real world. Data from these

real-world tests are then used to train the SNN, which continues to train the controller

population. A diagram of the training process is shown in Figure 2.16 and shows the

following steps (Woodford et al., 2015):

1. Controllers are selected from the evolving population for real-world evaluation. The

selection of these controllers can be done using any evolutionary algorithm selection

method.

2. The selected controller is evaluated in the real world, independently of the controller

evolution process, which continues in the background.

3. The data from this real-world evaluation is collected and placed in a training buffer

for the SNN.

4. The data in the training buffer is integrated into the training of the SNN.

5. The simulator used for training controllers is periodically updated with a new, more

highly trained simulator and is used to evolve controllers.

6. The process repeats until the stopping conditions are met.

Experiments have confirmed that the BNS is able to generate transferable controllers

for navigation tasks on a differentially steered robot in as few as fifteen real-world eval-
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Standard SNN training process
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Figure 2.16: The BNS process

uations (Figure 2.17a) (Woodford et al., 2016) and locomotion of a snake-like robot in

nineteen real-world evaluations (Figure 2.17b) (Woodford et al., 2017). Simulators trained

using the BNS approach are less generalised than those created using traditional SNN cre-

ation methods, but are able to be trained more rapidly; their use may be situational and

based on the specificity of the controller’s intended task (Woodford et al., 2016).

The controllers evolved using BNS have, thus far, all been open-loop controllers. These

controllers do not take in information about their environment, but rather execute a fixed

set of commands. Previous SNN research has shown that SNNs can be used to evolve

closed-loop controllers able to react to external stimuli (Pretorius et al., 2013), but the

same has not been shown for BNS.

2.9 Damage

Many early robotic systems operated only in safe environments under close human su-

pervision (James G. Bellingham and Kanna Rajan, 2007). Now, as the field of robotics

progresses, robots are able to work in more hostile environments in which it is unsafe or

impossible for humans to work (Sanderson, 2010). Given this fact, it is inevitable that
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(a) Path followed by a differentially steered

robot controller evolved using BNS (Wood-

ford et al., 2016)

(b) Path followed by a snake robot controller

evolved using BNS (Woodford et al., 2017)

Figure 2.17: BNS Results

these robots will become damaged (Verma, Gordon, Simmons, and Thrun, 2004; Sander-

son, 2010). It is vital that robots are able recover from damage, since a non-functioning

or badly functioning robot may have significant adverse financial or scientific effects, or

may negatively affect public opinion of the technology (Verma et al., 2004).

Section 2.9.1 discusses how damage can be detected while Sections 2.9.2 and 2.9.3

discuss algorithms which can be implemented to recover from damage. Finally, Sections

2.9.4 to 2.9.6 discuss three methods of damage recovery based on the intelligent selection

evaluation of candidate controllers in the real world.

2.9.1 Detection and Recovery

Many, but not all, methods of damage recovery require damage to be detected before

recovery can take place. Traditional approaches to damage detection involve the use of

sensors to detect and understand damage (Bongard and Lipson, 2005) to allow the robot to

determine an appropriate response (Papaspyros et al., 2016; Chatzilygeroudis et al., 2016).

This method of fault identification is complex because the search space of possible faults is

large. Identification of faults also necessitates the addition of more fault detection sensors,
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which further increase the complexity of the robot (Sofge et al., 2003) and, therefore, the

probability of damage occurring (Chatzilygeroudis et al., 2016).

Recently, a large amount of research has been conducted investigating methods of au-

tomatic damage recovery using reinforcement learning through trial-and-error approaches.

This approach avoids the diagnostic step of damage recovery entirely (Chatzilygeroudis

et al., 2016; Koos et al., 2013a; Cully et al., 2015; Papaspyros et al., 2016). Many of these

methods are also able to automatically detect damage, since they have predetermined ex-

pectations for the outcome of given actions. When the actual outcome differs significantly

from their expectations, they can assume that damage has occurred.

2.9.2 Continuous Self-Modelling

Proposed by Bongard et al. (2006), continuous self-modelling aims to improve robots’

robustness under uncertainty and allow them to recover from physical damage. Using

this method, the robot infers its morphology through self-directed exploration. Initially, a

random motor command is executed and the data is collected to create fifteen candidate

models in an internal physics simulator. Thereafter, the process is as follows:

1. Search for the motor action that, when executed, causes the most disagreement

among the fifteen internal models.

2. Execute the action while gathering sensor data.

3. Use the gathered data to update the candidate models.

4. Repeat from (1) until the process has been run fifteen times.

The motor action is chosen for the amount of disagreement it causes among models

since this has been found to elicit the most information about the robot (Bongard et al.,

2006). The amount of disagreement between candidate models is also a good indicator of

model error; experiments with the least disagreement are, therefore, determined to be the

most successful. If the robot detects motor values or sensor inputs that do not align with

its internal models, possibly caused by damage to the robot, the same process as was used

to construct the initial model is used to restructure it. This allows the robot to discover

qualitatively different behaviours to compensate for the damage.
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In the initial studies, the candidate models were represented as 3D models in physics

simulators. Implicit representations, such as could be achieved with neural networks,

would likely align more accurately with the way animals understand their morphology,

but have yet to be implemented (Bongard et al., 2006).

In summary, self-modelling is a novel idea that allows robot controllers using this

technique to effectively recover from damage by maintaining an internal model of their

own morphology.

2.9.3 T-Resilience Algorithm

The Transferability-Resilience (T-Resilience) algorithm builds on the concept of a self-

model and adapts it, along with the transferability approach (Section 2.6.1), for damage

recovery (Koos, Cully, and Mouret, 2013b). T-Resilience, like continuous self-modelling,

has an internal self-model and is able to automatically detect damage when sensor readings

differ drastically from its predictions.

Unlike continuous self-modelling, T-Resilience does not update its internal model when

damage is detected; instead, the assumption is made that the old model, while inaccurate,

must simulate the damaged robot at least somewhat (Koos et al., 2013b). A large por-

tion of the robot’s motors should still rotate in the same planes, and the robot’s weight

distribution should be at least similar to the undamaged robot.

The transferability approach acknowledges that simulations are never perfect. The

T-Resilience algorithm applies this concept, simply treating the model of the undamaged

robot as an inaccurate model of the damaged one (Koos et al., 2013b,a). It is assumed that

there are behaviours which still work in the presence of the damage and will thus transfer

well from the inaccurate model to the real world. For example, a six-legged hexapod could

develop a gait that does not utilise one of its legs. If that leg were to become damaged,

the gait would still transfer well from the internal model to the real world.

Pseudocode for the T-Resilience algorithm is shown in Figure 3, where Discovery-

Loop() runs N generations of a multi-objective EA on a population P , maximising the

performance of the solutions as predicted by the self-model, the approximate transferabil-

ity between the self-model and real robot, and a helper-objective, which aims to maintain

diversity in the population.
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Algorithm 3: T-Resilience Algorithm

Initialize a random population P

Initialize an empty training data set D

for i = 0 �Desired number of real-world tests do

Randomly select x from P

Compute the behaviour, b(x), of x

Transfer x to the real robot

Execute x and estimate its real-world fitness value, fr(x)

Calculate the fitness for x from the self model, fs(x)

Calculate the transferability score T (b(x)) = ‖ fs(x)− fr(x) ‖
Record b(x) and T (b(x)) to D

Improve the transferability function using D

DiscoveryLoop()

end

Select the new controller

T-Resilience algorithm is based on the novel idea that even after damage, there are

likely still behaviours able to transfer effectively between the simulator and reality.

2.9.4 Intelligent Trial-and-Error

The Intelligent Trial-and-Error (IT&E) (Cully et al., 2015) algorithm is based on the

concept that animals in nature, after experiencing an injury, attempt to find methods of

locomotion that will minimise pain while allowing them to maintain their mobility. They

use their previous experiences and intuition to intelligently select methods to evaluate,

instead of trying them at random.

IT&E uses a discrete and finite search space called the behaviour space, where each

dimension describes a behavioural characteristic of the robot. A mapping of behaviours in

the space to a performance measure, the behaviour-performance map, is created to act as

the robot’s intuition (Cully et al., 2015). A behaviour-confidence map is also saved, record-

ing the robot’s confidence in its prediction of each behaviour. The behaviour-performance

and-confidence maps are used in conjunction to inform the selection of behaviours for eval-
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uation in the real world. When these real-world evaluations take place, data is gathered

and used to update both spaces, increasing confidence in the prediction and updating the

predicted behaviour. The process ends when the robot predicts that it has found the most

effective behaviour.

Before constructing the behaviour space, the robot’s designers must describe the di-

mensions of the space, as well as a performance measure (Cully et al., 2015). In the

example of a Hexapod robot, behaviours could be placed into a six-dimensional space,

with each dimension representing the amount of time that one of the legs is making con-

tact with the ground. A performance measure could be defined as the distance that the

robot travels in a given time. Once these have been determined, the behaviour space can

be constructed offline, using the MAP-Elites algorithm (Algorithm 4).

The MAP-Elites algorithm computes a total of nt controllers to be added to the

behaviour-performance map. The designers of the algorithm used nt = 40 million. The

algorithm begins by evaluating R random controllers in the simulator and placing them

into the behaviour space. R was chosen to be 400 by the designers. The remaining nt−R
controllers are created through the random mutation of the existing controllers. Whenever

a controller is evaluated, its position in the behaviour space is calculated. If the position

is empty, the controller is placed there. Otherwise, if the position is already occupied, the

old controller is replaced if the new one has higher fitness.

Once the computation of the behaviour-performance map is complete, it is loaded onto

the robot. When damage occurs, the robot uses Bayesian optimisation to select controllers

to test in the real world, balancing exploration (verifying the performance of controllers

with low confidence) and exploitation (verifying the performance of controllers with high

expected performance). When each test concludes, the data gathered is used to update

the confidence by lowering the uncertainty of the prediction and update the performance

of the controller, as well as those of its neighbours in the behaviour space. Controllers with

similar behaviour are assumed to perform similarly. Another controller is then chosen and

evaluated. This process, illustrated in Figure 2.18, repeats until a controller evaluated on

the real robot performs better than 90 per cent of behaviours in the behaviour-performance

map.

IT&E has shown excellent results, allowing robots to recover from damage by rapidly
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Algorithm 4: MAP-Elites Algorithm

Initialize behaviour space B

Initialize controller space C

for i = 1 �R do

c = Random controller

x = BehaviouralDescriptor(c)

f = Fitness(c)

if B[x] = null || B[x] < f then

B[x] = f

C[x] = c

end

end

for i = 1 �(nt - R) do

c = RandomSelect(B)

c′ = RandomVariation(c)

x = BehaviouralDescriptor(c′)

f = Fitness(c′)

if B[x] = null || B[x] < f then

B[x] = f

C[x] = c

end

end

return behaviour-performance map (B and C)



CHAPTER 2. LITERATURE REVIEW 47

Figure 2.18: Behaviour evaluation in IT&E (Cully et al., 2015)

learning new gaits. The method also works on undamaged robots, improving their gaits

to achieve higher performance.

The specific selection of behavioural characteristics to act as dimensions for the be-

haviour space was shown to have little effect on the algorithm’s ability to recover from

damage. This remained true even when the characteristics were chosen entirely randomly

from the list of possible options.

In summary, IT&E established two concepts; the behaviour-performance map, posi-

tions controllers and their behaviours relative to others, and the intelligent selection of

controllers for real-world testing.

2.9.5 Safety-Aware IT&E

A disadvantage of IT&E, identified by Papaspyros et al. (2016), is its lack of safety con-

straints. Without such constraints, the robot is not prevented from attempting potentially

harmful behaviours; since IT&E focuses solely on the reward, it is likely to become dam-

aged in the trial and error process. To this end, Papaspyros et al. proposed Safety-Aware

Intelligent Trial-and-Error (sIT&E) which replaces the Bayesian Optimisation (BO) of

IT&E with a constrained BO procedure.

sIT&E’s behaviour space has one additional dimension for each safety constraint that

should be applied to the process. sIT&E then optimises for the performance of the con-
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troller, while guiding the search through safe areas of the search space.

sIT&E thus showed that additional dimensions can be added to the behaviour space

to allow for guided optimisation based on a greater number of constraints.

2.9.6 Reset-Free Trial-and-Error

Reset-Free Trial-and-Error (RTE) is an RL-based method of damage recovery, inspired by

IT&E (Chatzilygeroudis et al., 2016). Chatzilygeroudis et al. (2016) state that an ideal

trial-and-error damage recovery algorithm should:

� not require reset after each real-world trial,

� scale well for complex robots, and

� explicitly take the environment into account, to prevent additional damage occurring

as a result of the chosen real-world trials.

RTE addresses these issues using the MAP-Elites algorithm to populate a behaviour

space with performance values to create a behaviour-performance map, as in IT&E (Chatzi-

lygeroudis et al., 2016). This maps behaviours to performance, but can also be used to

map actions to outcomes. Once the robot becomes damaged, this mapping is no longer

correct but gives some approximation of the new, correct mapping. The mapping can then

be corrected to reflect the real world. A total of nd Gaussian processes (GPs) are used to

create new predictions, where nd is the number of dimensions in the behaviour space. The

priors for these GPs are the mappings in the now incorrect behaviour-performance map.

Since GPs are probabilistic models, they produce not only predictions but also the

uncertainty associated with each prediction. In RTE, this uncertainty is exploited by a

Monte Carlo Tree Search (MCTS) to choose the next real-world test.

The RTE loop can be put simply as:

1. Select next best action

2. Execute action

3. Update Gaussian process



CHAPTER 2. LITERATURE REVIEW 49

4. Repeat until the task is completed

RTE proposes the use of the behaviour-performance map with Gaussian processes that

correct the incorrect predictions of the map to create new, more accurate predictions.

2.10 Conclusions

In nature, neural networks are found in the brains of animals and facilitate advanced pro-

cessing tasks. Artificial neural networks are networks of artificial neurons, which imitate

these biological neural networks. ANNs are able to learn complex tasks and have many

real-world applications.

Another field of research inspired by nature is the field of evolutionary algorithms.

These algorithms are based on the model of biological evolution and are able to evolve good

solutions to problems, employing the concept of the survival of the fittest. An interesting

application of EAs is in the evolution of ANNs, which presents an alternative to the

traditional, gradient-based methods of ANN training.

Evolutionary robotics draws concepts from EAs and allows for the automatic evolution

of robot controllers and morphologies. The field offers an appealing alternative to the

complex task of manual controller creation, but has drawbacks of its own; the evolution

process requires the real-world evaluation of huge numbers of controllers. It would be

infeasible to attempt to perform these on a real-world robot. Therefore, simulators are

used for the evaluation of controllers in the population. Small differences between the

simulation and the real world may cause the evolution process to create controllers that

perform well in simulation but are unable to transfer to the real world. This problem is

known as the reality gap.

There have been many methods developed, attempting to bridge the reality gap. One

such method is Bootstrapped Neuro-Simulation. BNS uses a simulator neural network,

improving the efficiency and ease of construction of the simulator, but unlike traditional

SNN development, trains the SNN and controller population concurrently. This means

that the time-consuming data-gathering step usually involved with simulator development

is no longer necessary.

As methods of robot development have advanced, the robots’ proposed applications
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have become increasingly complex. Robotic systems are now expected to operate in areas

inaccessible and hazardous for humans, making it impossible for direct human intervention

in the case of damage to the robot. Damage recovery for ER is, therefore, another area

worthy of receiving a great deal of research effort.

Proposed methods of damage recovery have had excellent results, but none have been

applied to BNS. It is likely, however, that the implementation of entirely new damage

recovery functionality is not necessary for BNS; the algorithm is continuously gathering

data from the real world and may, therefore, have the ability to recover from damage

automatically. The recovery process may resemble the existing trial-and-error approaches

as BNS selects promising controllers to evaluate in the real world.



Chapter 3

Experimental Methodology

3.1 Introduction

The literature review conducted in Chapter 2 established the groundwork upon which ER

research, specifically into the use of BNS, can be conducted. While the use of BNS has

shown great promise, the chapter showed that there are many aspects of its use that have

yet to be investigated. One of these areas is damage recovery, the primary focus of this

research.

This chapter discusses the investigations conducted in this research: damage recovery

for simple robots, closed-loop controller evolution, damage recovery for closed-loop con-

trollers, and damage recovery for complex robots. The guiding logic behind the choice of

these investigations is discussed, as well as the approach for each investigation is discussed

broadly and the contributions of this research.

Figure 3.1 shows a breakdown, putting each investigation and its processes in context

within the scope of this research. Items with solid borders are original contributions,

developed as a part of this research, while dashed borders represent items developed as

parts of previous research by other researchers. The meaning of each area of the diagram

is discussed further in its corresponding section, but it is important to understand that the

nodes in Figure 3.1, item 1, define the environments wherein evaluation took place. These

environments are the real world (RW), fake real world 1 (FRW 1), and fake real world

2 (FRW 2). Nodes of the corresponding shapes elsewhere in the diagram indicate the

51
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environments used for the respective experiments. The concept of different environments

is complex, but it is not necessary that it is understood at the outset; it will be discussed

further in Section 3.2.3, once the necessary groundwork has been laid. The remainder of

this chapter describes the individual investigations, as well as their motivation within the

context of the research and ROs.

3.2 Investigation A: Damage recovery for simple robots

This investigation focused on addressing RO2 (determining BNS’s damage-recovery capa-

bilities) and RO3 (proposing and evaluating adaptations to improve the algorithm’s dam-

age recovery) by utilising two systems. The first was a system developed by Woodford

et al. (2016) to execute BNS and evolve open-loop controllers for a differentially-steered

Khepera III robot (Figure 3.1, item 2). The second was a newly implemented system

able to simulate damage on the robot (Figure 3.1, item 3.1). These were used together

to evaluate BNS’s inherent damage recovery abilities as well as to propose and evaluate

adaptations to improve the algorithm’s ability to recover from damage (Fig 3.1, item 3).

3.2.1 Damage

Before RO2 was addressed and BNS’s damage-recovery ability evaluated, a suitable prob-

lem needed to be selected. In a previous investigation, Woodford et al. (2016) implemented

BNS to solve a navigation problem for a differentially-steered Khepera III robot (Figure

3.1, item 2). This system was augmented with functionality for the evaluation of BNS’s

damage recovery.

The system was used to execute the BNS algorithm and evolve controllers capable of

completing the task. The robot was then damaged, and the algorithm’s recovery observed.

The algorithm’s performance over time was expected to be similar to that shown in Figure

3.2, where the controllers’ performance suddenly drops, but then slowly recovers. It was

expected that the final performance would not always be able to reach the pre-damage

levels, since the robot would no longer be functioning at its full potential.

It would have been infeasible to inflict real damage on the physical robot. Doing so

would have meant replacing components on the robot after each experiment in the real



CHAPTER 3. EXPERIMENTAL METHODOLOGY 53

Motion Simulator Sensor Simulator

RW FRW 1

1.1

FRW 2

1
4

Navigation/Hexapod
Problem

Light Follow-
ing ProblemBNS

Open-
loop
BNS

2
Closed-
loop
BNS

5

Damage System 3.1

Damage
Sim

Environmental
Parameters

Damage
Adap-
tations

Adaptations
Parameters

RW Eval

3.4

BNS
Im-

prove-
ment

BNS Parameters

RW Eval

6.2

Damage
Sim

Environmental
Parameters

Damage System7.1

Damage
Adap-
tations

Adaptations
Parameters

RW Eval

3

3.2

3.3

6

6.1

7.2

7.3

7.4

7

Figure 3.1: Research Structure



CHAPTER 3. EXPERIMENTAL METHODOLOGY 54

Time

Performance

the effect
of damage

initial training

recovery

difference
in solution
quality

Figure 3.2: An example of the expected behaviour over time of BNS when recovering from
damage

world. The damage was, therefore, achieved by implementing a damage system (Figure

3.1, item 3.1), which modified commands sent to the robot at the final step before their

transmission, thereby changing the behaviour of the robot without informing the rest of

the system.

The procedure for damage recovery evaluation was as follows:

1. Allow sufficient time for a controller to be evolved, capable of completing the given

task (Figure 3.2, ”initial training”).

2. Simulate damage to the robot, affecting its ability to complete the task (Figure 3.2,

”the effect of damage”).

3. Observe the time taken for the system to recover and the quality of the post-recovery

solution (Figure 3.2, ”recovery and difference in solution quality”).

When inflicting damage on the robot, four parameters controlled how the damage

affected it. These included the time when damage was inflicted, the type of damage

inflicted, the magnitude of the damage, and the problem being solved by the robot. The

effects of these environmental parameters were evaluated to determine how different types

of damage affect the robot (Figure 3.1, item 3.2).

3.2.2 Adaptations

It was hypothesised that the performance of BNS’s damage recovery could be improved

through the implementation of adaptations to the algorithm. The following three issues

were anticipated to be adversely impacting performance:
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� The convergence of the controller population may result in low diversity within the

population. This may cause the algorithm to be unable to effectively search for new

solutions once damage occurs.

� The existing, inaccurate simulator may be trapped in a local minimum and be unable

to effectively adapt to the new state of the robot.

� After damage occurs, the system continues to train using the full set of gathered

training data. This means that the simulator is trained on data which is incorrect

and reflects the performance of the robot in its undamaged state, as opposed to its

new damaged state, thereby misleading the SNN.

Four novel adaptations were proposed to address these issues. The adaptations consti-

tute the main contribution of this research and were created as a part of these investigations

for use with BNS. They were intended to be capable of being used for the evolution of

controllers for different problems and robot morphologies. The evaluation of these adap-

tations (Figure 3.1, item 3.3) allowed RO3 to be addressed. The adaptations are discussed

in the following subsections.

Adaptation 1: Reset the controller population

The population reset adaptation was proposed as an attempt to address the issue of low

population diversity. When damage occurs, the population of controllers is randomly

re-initialised. This causes an increase in diversity which may aid in the search for new

controllers by enabling a higher degree of exploration.

Adaptation 2: Increase the mutation rate and magnitude

In EAs, a high mutation rate facilitates an increased rate of exploration (Engelbrecht,

2007). The same is true for a high mutation magnitude. It was, therefore, hypothesised

that increasing the mutation rate or magnitude after damage has been applied may assist

with the discovery of better solutions by promoting exploration of the search space. The

algorithm was evaluated with mutation rates and magnitudes that increased after damage

was applied, stayed constant, and combinations of the two.
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Adaptation 3: Sliding window training

The sliding window adaptations aimed to address the issue of old training data. When

using a sliding window of size x, the data used to train the SNN consists of the x newest

training patterns, instead of the entire set of data. This approach is based on the concept

of transfer learning since a trained SNN is continuously trained on new data sets. A major

advantage held by this adaptation is that it requires no knowledge of the occurrence of

damage. It can be used from the beginning of the execution of the BNS algorithm, whereas

the others need to be used at the time that damage occurs.

Adaptation 4: Reset the simulator

The difference in a robot’s behaviours before and after damage may be significant enough

that re-initialising the SNN to a random state allows for a better simulator to be trained

more efficiently than otherwise. Alternatively, it is possible that transfer learning may

cause performance to improve if the simulator for the damaged robot is trained by starting

with the existing simulator. It was unclear which of these options would lead to better

results.

The set of training data remains the same before and after the simulator is reset since

this adaptation is focused on the state of the simulator, not the training data. It is possible,

however, for the simulator reset and training window adaptations to interact and together

offer a more significant improvement than can be offered individually.

3.2.3 Parameter Evaluation

BNS allows for the rapid creation of both controllers and simulators, but the mutation and

sliding window adaptations have many possible values for the mutation magnitude, mu-

tation rate, and window size parameters. Additionally, the adaptations had the potential

to interact which each other, and each needed to be evaluated with multiple combinations

of the other parameters. This resulted in the number of configurations being too large for

real-world evaluation to be feasible.

The solution to this problem was to create a fake real world in simulation (Figure 3.1,

item 1.1). In a fake real world, the core of the BNS algorithm is unchanged but, instead
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of gathering training data from a real-world robot, data is gathered from a fake-real-world

robot. This fake-real-world robot was created using a pre-constructed robot simulator

that did not form part of the BNS process. This pre-constructed simulator is called the

static simulator, and the simulator being evolved by BNS is called the dynamic simulator.

The static simulator for the Khepera’s motion was created by Woodford et al. (2016) for

previous research.

The fake real world allowed far more configurations of environment and adaptation

parameter values to be evaluated than would have been possible in the real world (Figure

3.1 items 3.2 and 3.3, respectively). Once promising configurations were found, they were

used for real-world experiments to confirm their ability to transfer to the real world (Figure

3.1, item 3.4).

It is important to note that the implementation of a fake real world and these parameter

evaluations are not a necessary step in the implementation of the algorithm. They were

conducted in these investigations in order to make recommendations with regard to the

use of adaptations and their corresponding parameter values. Individuals using BNS to

evolve controllers will not be required to perform this time-consuming step.

3.2.4 Results Analysis

The results from this investigation can be found in Chapter 4. The ability to perform

experiments in simulation allowed each configuration to be evaluated thirty times. These

results were then used to gain statistically significant insights into the algorithm’s perfor-

mance.

The Mann-Whitney U Test is a nonparametric test with a null hypothesis stating

that two populations are identical, given samples drawn from each population (Wackerly,

Mendenhall, and Scheaffer, 2008). The calculation of the Mann-Whitney U statistic can

be found in Appendix A. This test allows the results of evaluations of different parameter

configurations to be compared to each other. If the difference between the results is

significant, then the change in configuration can be said to have significantly affected the

performance of the algorithm.

Only the performance after damage has occurred is of interest since this research

is focused explicitly on damage recovery. Therefore, observations are created for each
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simulated execution of BNS by calculating the sum of performance values from the real-

world evaluation when damage occurs until the end of the execution:

Oτ =

nr∑
i=nb

fτ (i) τ = 1, 2..30 (3.1)

where Oτ is the observation for the BNS execution τ , nb is the fake-real-world evalua-

tion at which damage occurs, nr is the total number of fake-real-world evaluations carried

out per execution, and fτ (i) is the best controller’s fitness at fake-real-world evaluation i in

execution τ . Since each configuration is used for thirty simulated executions, 30 Oτ values

will be obtained for each configuration. These can then be used to determine whether

each configuration causes the results to be significantly different from another. Compar-

ing only the final performance value of the fake-real-world evaluations would mean that

information about the rate at which the system recovers would be ignored, whereas using

the sum of performance values after damage occurs allows the rate of recovery as well as

the final performance value to be taken into account. This can be seen in Figure 3.3 where

lines a and b show performance recovering to the same final value, but at different rates.

Time

Performance

b

a

Figure 3.3: An example of differing rates of damage recovery

The diversity within the population of individuals was also calculated. Plots of the

population’s diversity over time are included where they are able to enrich the discussion

of the results and provide insight into the cause of a configuration’s effects on algorithm

performance.
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3.3 Investigation B: Closed-loop controller evolution

The evolution of open-loop controllers is a topic that has been researched since the cre-

ation of the BNS algorithm (Woodford et al., 2016, 2017) and continues to be the focus

of a great deal of research. As a result, more is known about best practices for the evo-

lution of open-loop controllers than for closed-loop, which have received no prior research

in the context of BNS. Investigation B focuses on BNS’s ability to evolve such closed-loop

controllers, thereby addressing RO4: the proposal, implementation and evaluation of a

method of evolving closed-loop controllers with BNS. Additionally, since this investiga-

tion was the first to do so, experiments were conducted in order to optimise BNS and

make recommendations for parameter values and adaptations when evolving closed-loop

controllers (Figure 3.1, item 6).

Since the objective of this investigation was not to construct a new problem for BNS

to solve, but instead to evaluate its ability to evolve a closed-loop controller, a classic

light-following ER problem, which has also been solved using a standard SNN (Pretorius

et al., 2013), was chosen. A light source was placed in the middle of the testing area; the

objective was to evolve controllers able to navigate the robot towards the light source by

using sensors on the robot. The fake real world used to execute BNS (Figure 3.1, item

5) was a version of that used in investigation A, modified for the evolution of closed-loop

controllers.

3.3.1 Proposed Adaptations

Given that the evolution of closed-loop controllers with BNS is a topic that has received

no prior attention, a parameter study was carried out, and the effects of four adaptations

to BNS were evaluated (Figure 3.1, item 6.1). The intention was to create a configuration

of BNS optimised specifically for the evolution of closed-loop controllers.

A lack of diversity in the population is a concern when evolving controllers using

BNS. If the population of controllers converges before the simulator is able to achieve

a sufficient level of accuracy, the evolved controllers may become too specialised for the

nascent simulator and be unable to adapt as the simulator is updated. Headless Chicken

mutation, intermittent population reset, and Island EAs were proposed as adaptations to
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address this issue. Similarly, if the simulator can be trained more rapidly, the EA will have

access to a more accurate simulator earlier in the evolution process. Data augmentation

aims to increase the rate at which the simulator improves. These adaptations are discussed

further in this section.

Adaptation B1: Headless Chicken mutation

The Headless Chicken algorithm works during the reproduction stage of the EA (Engel-

brecht, 2007). After the first individual is selected for reproduction there is a probability

of ph that, instead of the second parent also being selected from the population, it is a

randomly generated chromosome. ph is the Headless Chicken probability. This adaptation

serves the same purpose as a mutation operator by introducing random variation into the

population, though in this case the magnitude of the variation is much greater.

Adaptation B2: Intermittent population reset

Using BNS, the execution of controllers on the real-world robot is much slower than the

process of evolving controllers. This means that for every real-world evaluation, several

generations of controller evolution take place which may cause the population to prema-

turely converge to a solution which performs well only in the new simulator. It may,

therefore, be beneficial to reset the population of controllers intermittently, in a process

called intermittent population reset.

However, if the entire population is reset, there is a reduced benefit to BNS’s use

over a standard SNN. This is because immediately after each reset a new population is

being trained on an existing simulator, which closely mirrors the standard method of non-

concurrent controller evolution using SNNs. A number of individuals can be transferred to

the new population, while all others are randomised in order to maintain a small amount

of information from before the reset. This process resembles elitism, where the best

individuals are kept between generations of an EA (Engelbrecht, 2007). These individuals

are, therefore, referred to as Reset-Elitists (REs).
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Adaptation B3: Island EA

Another method of maintaining diversity in the population of an EA is the use of an Island

EA (Engelbrecht, 2007). Instead of a single population, multiple populations each evolve

independently, promoting the discovery of multiple solutions. Individuals are then allowed

to migrate between islands periodically, based on a migration policy.

The migration policy determines:

� how often migration occurs,

� how many individuals migrate,

� how individuals are selected for migration,

� how individuals are selected for replacement in the destination population, and

� between which islands individuals migrate.

Adaptation B4: Data augmentation

Robots such as the Khepera III appear to be symmetrical along at least one axis. It is,

therefore, reasonable to assume that for each training pattern, another can be generated

through the reflection of the original pattern. This process is known as data augmentation.

Using this process to generate additional training patterns may allow the simulator to

improve more rapidly due to the larger set of training patterns. It is also possible, however,

that the assumption of symmetry is false, which may negatively affect performance.

3.3.2 Sensor Simulator

As in investigation A, the number of possible configurations was too high for a parameter

study to be conducted in the real world. The solution was, once again, the use of a

fake real world, allowing a large number of configurations to be evaluated and optimal

configurations found (Figure 3.1, item 6.1). Unlike the previous investigation, not only

the motion of the robot was required to be simulated but also the robot’s sensors’ readings,

so that the simulated robot is able to use the readings to make decisions as it would in
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the real world. This is the approach that was used in previous research by Pretorius et al.

(2013).

The sensor simulator was combined with the motion simulator used in investigation

A to create a new fake real world consisting of two simulators (Figure 3.1, item 4). This

new fake real world allowed the general behaviour of the controllers to be determined and

promising parameter configurations to be used in real-world evaluations (Figure 3.1, item

6.2).

3.3.3 Results Analysis

Once again, the Mann-Whitney U Test was used to obtain significance values for each of

the evaluated parameter configurations. Unlike the other investigations presented here,

where observations were calculated with the sum of performance values after damage had

occurred, in this investigation the values were added from the first real-world evaluation

since damage was not inflicted in this investigation. The simulated results informed the

choice of configurations for evaluation in the real world (Figure 3.1, item 6.2). Additionally,

the population diversity results are once again included where relevant.

This investigation was the only one in this research that did not focus directly on

damage recovery. It was, however, a worthwhile investigation which was able to shed light

on BNS’s application to the evolution of more sophisticated robot controllers. The results

of the investigation can be found in Chapter 5.

3.4 Investigation C: Damage recovery for closed-loop con-

trollers

Once RO4 was addressed, the system was further augmented with a damage system to

allow for the evaluation of damage recovery in order to address RO5: the proposal, im-

plementation, and evaluation of damage recovery adaptations for closed-loop controllers

(Figure 3.1, item 7.1). The same problem as investigation B was solved; therefore, this

investigation’s implementation consisted of only the damage system.
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3.4.1 Damage

In investigation A, the types of damage inflicted on the robot were limited to simple

damage to the robot’s wheels. This was due to the open-loop nature of the controllers;

more complex damage could not have been compensated for and damage to the robot’s

sensors would not have had any effect since they were not used. In this investigation, the

types of damage that the system could recover from were much more varied. The sensors

could be damaged by increasing or decreasing their readings, adding additional noise, or

turning one of them off entirely.

3.4.2 Parameter Evaluation

As in investigation A, environmental parameters are those that control specific aspects

of the damage that is inflicted on the robot, such as the time that damage is inflicted,

the type of damage inflicted, and the magnitude of the damage. A parameter study was

conducted to determine the effects of each of these parameters on BNS’s ability to recover

from damage (Figure 3.1, item 7.2). Additionally, the adaptations and parameters from

investigation B were re-evaluated in order to determine their impact on damage-recovery

performance.

Once the effects of the environment and algorithm parameters were determined, the

standard BNS damage adaptations, as were evaluated in investigation A, were evaluated

for damage to a robot using a closed-loop controller (Figure 3.1, item 7.3). High performing

parameter configurations were then transferred to a real-world robot to confirm their

transferability (Figure 3.1, item 7.4). Statistical observations were obtained using equation

(3.1). These results can be found in Chapter 6.

3.4.3 Results Analysis

As in the previous investigations, equation (3.1) was used to obtain observations regard-

ing the performance of the configurations. These were then compared using the Mann-

Whitney U Test.
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3.5 Investigation D: Damage recovery for complex robots

The next step in the evaluation of BNS’s damage recovery ability was an evaluation on a

robot with a more complex morphology (RO6). The process followed for this investigation

was very similar to that for investigation A and, as such, it shares the same elements of

the diagram as investigation A. Once again, an existing BNS system, created to evolve

hexapod controllers, was used as a starting point. (Figure 3.1, item 2). The system used

BNS to evolve hexapod robot controllers with the goal of moving as far as possible in any

direction.

3.5.1 Damage

A new damage system was implemented and integrated with the Hexapod BNS system

(Figure 3.1, item 2). This damage system was more complex than those used in previous

experiments, due to the number of possible points of failure on a six-legged robot. The

effects of each type of damage on the algorithm’s performance were determined before any

investigations into damage recovery were performed. This process formed a part of the

parameter investigation which evaluated the effects of different environmental parameters,

such as the type of damage (Figure 3.1, item 3.2). The results for this investigation can

be found in Chapter 7.

3.5.2 Parameter Evaluation

The effects of the previously evaluated BNS damage recovery adaptations were evaluated

on the hexapod robot (Figure 3.1, item 3.3). Additionally, two variations on each of these

were evaluated, individually and in combination with the others, due to the increased

complexity of the hexapod robot:

� The Complete Restart adaptation causes the BNS algorithm to restart from a ran-

domly initialised state with a new population of controllers, no training data, and a

new SNN when damage occurs.

� The Training Data Reset adaptation discards all training data when damage occurs.

This adaptation is based on the same concepts as a sliding window, but is at a
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disadvantage since it requires knowledge of the occurrence of damage.

The hexapod robot is very complex. This causes the effects of damage to the robot

to be much more complex than the effects of damage on the Khepera robot, meaning

that the differences in behaviour between the undamaged and damaged robot may be

much bigger than in the case of the Khepera. This, in turn, implies that the pre-damage

training data may be even more detrimental in the case of the hexapod than it was for the

Khepera robot. These two new adaptations aim to address this issue. Ideally, continuing

to evolve controllers from the point when damage occurs using the existing population

would offer an increased rate of recovery. The robot’s complexity means that this may not

be the case. The performance of restarting the algorithm entirely was evaluated since, if it

performed better, there would be no reason to recommend any adaptations; the algorithm

could simply be restarted and allowed to evolve new controllers. A training data reset

serves a similar purpose, and is likely to work for the same reason as the sliding window;

it discards old, invalid training patterns.

Woodford (2018) found that, for complex robots, resetting the dynamic simulator

intermittently throughout the BNS process brought about a significant increase in per-

formance. Therefore, in this investigation, unlike in the previous ones, the simulator is

reset once every twenty real-world evaluations. While these resets are likely to form part

of all BNS implementations for complex robots, it is important to determine their impact

on damage recovery specifically. Therefore, in general, experiments used configurations

where the simulator was reset once every twenty real-world evaluations, but one set of ex-

periments was run without the simulator resets to establish their effects on the algorithm’s

performance.

As in the previous four investigations, a fake real world was constructed by Woodford

(2018) (Figure 3.1, item 1.1). The fake real world used for the hexapod is a different one

to that which was used for investigation A, but they share an element in the diagram as

they were constructed in the same way: from only a motion simulator.

Finally, promising parameter configurations were used in real-world evaluations (Figure

3.1, item 3.4). This once again served to demonstrate the ability of the configurations to

transfer effectively to reality.
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3.6 Conclusion

In this chapter, the four investigations that comprise this research were presented. In-

vestigation A aimed to evaluate BNS’s damage recovery for open-loop controllers evolved

to complete a task on a Khepera III robot. The population reset, mutation rate and

magnitude changes, sliding windows, and simulator reset adaptations were proposed as

improvements to the algorithm. Investigation B aimed to evolve closed-loop controllers to

complete a light-following task; the robot was required to use its light sensors to navigate

towards a light source and remain near it for the duration of its execution. Four new

adaptations to the algorithm were proposed for the evolution of closed-loop controllers

(Headless Chicken mutation, intermittent population resets, Island EAs, and data aug-

mentation). Investigation C then used the implementations created for investigation B to

evaluate damage recovery for closed-loop controllers. Finally, investigation D focused on

damage recovery for complex hexapod robots with open-loop controllers. Two final adap-

tations were proposed for the hexapod due to its increased complexity (complete restart

and training data reset).

The use of a fake real world for parameter evaluations was discussed. The number

of parameter configurations evaluated is too great for them to be carried out in the real

world. The evaluations are therefore performed using a fake real world to gather data when

the real world would usually be used. The presentation and analysis of the results were

also discussed; since each configuration could be evaluated a large number of times, the

Mann-Whitney U test was used with the large amount of data to obtain the significance

of the differences among the performance of different configurations.



Chapter 4

Damage Recovery for Simple

Robots

4.1 Introduction

This chapter presents the results of investigation A: damage recovery for simple robots.

BNS was used to evolve controllers capable of completing a simple navigation task using a

differentially-steered robot. The robot was then damaged, and BNS was shown to possess

the ability to recover from damage automatically, without the need for specialised damage

detection systems. Additionally, adaptations were proposed and evaluated for their ability

to improve this damage recovery further. The evaluations were carried out both in the

fake real world (FRW1), and in the real world on a physical robot. Figure 4.1, item 3

shows the steps followed in conducting the research for this investigation.

Section 4.2 discusses the implementation details for the experiments, Section 4.3 presents

and discusses the results of parameter evaluations in FRW1, Section 4.4 shows the results

of real-world evaluations, and Section 4.5 draws conclusions and makes proposals for po-

tential future work.

4.2 Implementation Details

This section discusses the implementation details of the investigation. The result of this

implementation is represented by item 2 in Figure 4.1. Section 4.2.1 discusses the Khep-

67
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Figure 4.1: Investigation A focus

era III, the robot on which the investigation was carried out. Sections 4.2.2 and 4.2.3

discuss the problems that were solved by the system and the damage inflicted, respec-

tively. Section 4.2.4 then discusses the controllers evolved to solve the problem. Section

4.2.5 discusses the implementation of the EA used by the BNS system. Section 4.2.6 dis-

cusses the environment in which the real-world evaluations were carried out. Section 4.2.7

discusses the implementation of a motion simulator for the Khepera III, while Section

4.2.8 provides details of the parameter evaluation.

4.2.1 Khepera III

The Khepera III robot (Figure 4.2) is used frequently in ER research (Floreano and Mon-

dada, 1994; Koos et al., 2013a; Woodford et al., 2016). The robot is differentially-steered,

meaning that it steers by varying the speeds of its two wheels. It also has an array of

sensors, including ambient light sensors, ultrasonic sensors, and infrared sensors. BNS has

already been used in previous research for the evolution of simulators and controllers for

the robot (Woodford et al., 2016), which allowed this investigation to focus solely on the
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damage recovery performance of the algorithm.

Figure 4.2: The Khepera III Robot (K-team Corporation)

4.2.2 Problems

Two problems were solved by BNS in this investigation. The first problem, the simple

problem, required the robot to move through four objectives, shown in Figure 4.3. The

robot started at position E and had to navigate the objectives in the order A, B, C, D,

A.

E

A

BC

D

Figure 4.3: Problem Layout

The second problem was called the infinity problem because the shape traced by

controllers successful in solving the problem resembles an ∞ symbol. In this case, the

robot also started in position E (Figure 4.3) but had to navigate the objectives in the

order A, B, E, D, C, E, A.

BNS was evaluated on each of these problems with varying levels of damage, different
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types of damage, and different times before damage infliction.

4.2.3 Damage

The system responsible for inflicting damage on the robot is represented by item 3.1 in

Figure 4.1. The system does not inflict physical damage to the robot, but rather simulates

the damage in such a way that other parts of the system are unaware of its interference

and experience the simulated damage as they would real damage.

The damage inflicted in this investigation was in the form of an under-performing

wheel; one of the robot’s wheels was slowed by a chosen percentage. BNS then needed to

adapt to this by, for example, increasing the magnitude of all commands to that wheel.

4.2.4 Controllers

Each controller used in this investigation was represented by a chromosome of variable

length. These chromosomes encoded the properties of the controllers, formed a part of

the EA, and were able to be decoded into a controller. Each chromosome encoded the

controller’s multiple commands, which were made up of three values: the left motor speed,

right motor speed, and duration of the command. The controllers were open-loop and

executed the commands in sequence, from beginning to end.

The fitness of a controller is calculated based on the path followed by the robot during

the execution of the controller. For the given problems, the goal is to minimise both the

total distance travelled and the number of commands, while reaching as many objectives

as possible. At the end of the execution of each command, the squared Euclidean distance

from the robot to the current active objective is summed. An objective is reached when

the robot ends a command within a minimum radius of the objective. When this happens,

the next objective becomes active. After the controller’s execution is complete, the final

sum of these distances to the objectives is added to the product of a penalty value and

the number of unreached objectives. Pseudocode for the calculation of the fitness values

is shown in Algorithm 5.
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Algorithm 5: Fitness calculation

objectives = list of objectives

path = list of positions reached by robot

sum = 0

penalty = 10000

minRadius = 9

activeObjective = 0

for position p in path do

d = distanceToObjective(activeObjective)

if d < minRadius then

activeObjective++

end

sum += d

end

fitness = sum + (totalObjectives - activeObjective) * penalty

return fitness

4.2.5 Evolutionary Algorithm

The EA for this investigation was implemented using single-point crossover. Gene muta-

tion was performed by probabilistically modifying values based on a uniformly distributed

random variable. The magnitude and probability of this mutation was a parameter to

the algorithm. Various values were evaluated as a part of this investigation 4.1. These

choices of values were based on previous research investigating the same basic navigation

problems by Woodford et al. (2016).

In order to measure the change in the diversity of the population over time, a method of

measuring this diversity is required. Before calculating the diversity of the population, the

population’s average individual, c̄, was calculated. This was done by finding the average

value for each gene in the individuals’ chromosomes which was, in turn, done by finding

the mean of all values for the genes. An average individual was then created from this

average chromosome. The diversity of the population, dp, was subsequently calculated

using equation (4.1):
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dp =

np∑
i=1

ng∑
j=1

|cij − c̄j | (4.1)

where cij and c̄j are the jth genes of the ith and average individual respectively, np is the

number of individuals in the population, and ng is the number of genes in each individual.

4.2.6 Testing Area

A ceiling-mounted camera faced down towards the robot which had coloured tracking

markers attached to its top for positional tracking of the robot in a 2.7m×1.8m area on

a skid-resistant white board. The tracking system had been implemented by Woodford

et al. (2015) for previous ER research.

4.2.7 Khepera Motion Simulator

The Khepera motion simulator was implemented for use in prior research by Woodford

et al. (2016). The SNN consists of three ANNs, each simulating either the robot’s change

in x (∆x), y (∆y), or rotation (∆θ). Each ANN has five input neurons (Figure 4.4): the

previous, and new, left and right motor speeds, as well as the duration of the robot’s new

command. They each have twenty hidden neurons, a number determined to be effective

in previous research (Pretorius, 2010).

...

previous left

motor speed

previous right

motor speed

current left

motor speed

current right

motor speed

command

duration

∆x
or ∆y
or ∆θ

Figure 4.4: Khepera Motion SNN (Woodford et al., 2016)
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4.2.8 Parameter Evaluation

The values of the adaptation parameters evaluated in simulation are shown in Table 4.1

(Figure 4.1, item 3.3). Additionally, a number of environment parameter values (Table

4.2) were used during evaluation to evaluate BNS’s performance under differing conditions

(Figure 4.1, item 3.2). These parameters specified the real-world generation at which the

damage was applied, which of the robot’s wheels was slowed, the percentage by which the

robot’s wheel was slowed, and the problem being solved. It was observed that, in general,

the problems were able to be solved with fewer than twenty-five real-world evaluations.

Thus, the real-world evaluations at which damage was applied were all chosen to be greater

than this number. All combinations of these parameters were evaluated; in total, 448

discrete parameter configurations were evaluated.

Table 4.1: Adaptation parameter values

Parameter Values

Sliding window size 300, 150, none

Reset controller population True, False

Reset simulator True, False

Mutation rate 0.1, 0.2

Mutation magnitude 2000, 3500

Table 4.2: Environment parameter values

Parameter Values

RW evaluation at which damage applied 30, 40, 50

Slowed wheel Left, Right

Damage percentage 20%, 50%

Problem Simple, Infinity

Each parameter configuration was used for thirty simulated experiments. For each

of these experiments, the fitness of the fittest individual was saved at each real-world

evaluation, which resulted in 100 fitness values per experiment. The fitness values of all

thirty experiments were then averaged at each real-world experiment to obtain 100 average

fitness values for each configuration. These values represent the average fitness over time

of the fittest individuals from each of the thirty experiments and are the values presented

in this investigation.
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4.2.9 Real World

After the completion of the parameter study, high-performing parameter configurations

were identified. These configurations were used in real-world evaluations and compared

to real-world evaluations without the adaptations. Previous research has shown that

results obtained from BNS in simulation transfer well to the real world (Woodford et al.,

2016, 2017). The goals of the real-world experiments conducted in this investigation are,

therefore, to show that this transferability is maintained when BNS experiences damage

and when the proposed adaptations are implemented in the real world. These evaluations

were performed on the Khepera III robot, and their results are shown in Section 4.4.

4.3 Results and Discussion

In this section, the results of the experiments are presented. First, in Section 4.3.1, the

performance of BNS, in simulation, without changes is shown. Sections 4.3.2 to 4.3.5

show the simulated results of BNS with the adaptations implemented. The vertical and

horizontal axes of the figures in these sections represent the average performance of the

controllers based on the followed path, and the real-world evaluations, respectively. The

specific environmental configurations shown were chosen, as their results were seen as

representative of the performance of the algorithm in general since too many results were

obtained for every configuration to be presented.

4.3.1 No Adaptations

Figures 4.5a, 4.5b, 4.5c, and 4.5d each show the mean performance of thirty BNS evalua-

tions with no adaptations.

In Figure 4.5a, the effect of inflicting damage on the robot at different real-world

evaluations is shown. In this case, damage was inflicted by slowing the left wheel by 20

percent. The damage caused a very clear decrease in performance at 30, 40, and 50 real-

world evaluations in Figures 4.5a and 4.5b. After a short delay, each of the lines begins

to slope upwards with similar gradients, showing that each recovered at a similar rate.

Figure 4.5c shows the effects of the application of different combinations of damage

types on a system solving the basic problem. Damage was applied at thirty real-world
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(a) Simple problem with damage inflicted at

different numbers of real-world evaluations
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(b) Infinity problem with damage inflicted at

different numbers of real-world evaluations
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(c) Simple problem with different damage

types inflicted

� �� �� �� �� �� 	� 
�
�������������������

���

���

���

���

���

���

���

���

��
���

��
�
��

���������������
���������������
����������������
����������������

(d) Infinity problem with different damage

types inflicted

Figure 4.5: Performance over time for BNS recovering from damage while solving different

problems
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evaluations. It is clear that more damage causes a larger negative effect on performance;

slowing the wheels by 50 percent caused the performance to drop significantly more than

20 percent.

Finally, Figure 4.5d shows the effects of an evaluation with the same parameter values

as Figure 4.5c, but for a system solving the infinity problem. The results are similar to

those for the simple problem, with more damage causing a larger drop in performance.

There is variation in each plot even before damage, due to the probabilistic nature

of the BNS process. It is, however, clear from these results that BNS has the ability to

recover from damage even before the implementation of any adaptations.

The diversity of the controller population decreases as more evaluations are run. It

is, therefore, interesting that varying the time when damage was inflicted had minimal

impact on BNS’s rate of damage recovery. This implies that the diversity of the population

and simulator do not play a prominent role in the ability of BNS to recover from damage.

Figures 4.5c and 4.5d show that while the algorithm always recovered, or at least

showed improvement, from all types of damage, it took significantly longer when faced

with specific types of damage. The task of recovering from these damage types likely

presented a more complex problem than others and was thus slower. Damage to the right

wheel was a type of damage from which the system recovered slowly; when damaging the

right wheel on a right-turning path, the robot entered a spiralling behaviour, which was

likely a more complex behaviour from which to recover than the straight line followed by

robots with newly damaged left wheels. This behaviour is demonstrated clearly in the real

world results presented later in this chapter.

These results show that the changes in performance caused by the use of different pa-

rameter configurations are similar in magnitude regardless of the problem type. Therefore,

in the interest of presenting as many useful results as possible, unless explicitly stated, all

further results were obtained in the context of 20 percent damage application to the left

wheel at thirty real-world evaluations.

4.3.2 Controller Population Reset

Figure 4.6 shows the results of resetting the controller population after damage occurs

for four different experiment configurations. This adaptation did not have a significantly
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positive impact on performance. In Figure 4.6a it can be seen that in the case of 20 percent

damage to the left wheel, it caused a significant (p < 0.05) decrease in performance.
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(a) 20% damage inflicted to left wheel
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(b) 20% damage inflicted to right wheel
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(c) 50% damage inflicted to left wheel
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(d) 50% damage inflicted to the right wheel

Figure 4.6: Performance over time with the controller population reset adaptation

The results show that, at best, resetting the controller population caused no change in

the performance of the algorithm and, at worst, caused the performance to worsen. The

reason may be that the locations of solutions to the problem in the search space for the

undamaged robot were near those for the damaged robot. The proximity meant that these

solutions were able to be found effectively through mutation of the existing population,

whereas resetting the population and restarting evolution caused the promising solutions

to be lost.

It is possible that a problem that requires radically different solutions for an undamaged

robot versus a damaged one may benefit from a population reset, but that was not the
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case for the problems investigated here. However, in that case, it would also be expected

that Figure 4.6d would show an improvement with a population reset since it presents the

problem in which damage had the most considerable effect.

Figure 4.7 shows an example of the diversity over time of the population when it is

reset after damage. The population reset does not cause a significant increase in diversity

in the population at the real-world evaluation after damage. Since multiple generations

of controller evolution happen for every real-world evaluation, the population was able

to converge to pre-reset levels of diversity before the next real-world evaluation occurred,

causing there to be no perceptible increase in diversity. This rapid convergence is likely

the same reason that this adaptation was unable to offer any performance benefits.
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Figure 4.7: Population diversity over time with the controller population reset adaptation

4.3.3 Mutation Rate and Magnitude Increase

Neither an increase in the mutation rate nor the magnitude had a significant positive

impact on the ability of BNS to recover from damage. Figure 4.8 shows the results of a

change to each parameter individually (Figures 4.8a and 4.8b), as well as the results of

their interaction when increased simultaneously (Figure 4.8c).

In all evaluated cases, the changes in the parameter values caused small decreases

in overall performance. In the case of changes to the mutation magnitude, the likely
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(a) Performance over time with an increased

mutation rate
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(b) Performance over time with an increased

mutation magnitude
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(c) Performance over time with an increased

mutation rate and magnitude
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(d) Diversity over time for different post-

damage mutation configurations

Figure 4.8: The effects of mutation rate and magnitude modifications on the simple prob-

lem
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reason for this is that the high mutation prevented effective convergence of the population

(Figure 4.8d). Since the population was unable to converge effectively, it was unable to

refine potential good solutions sufficiently.

4.3.4 Sliding Window Training

Adding a sliding window to the data used for training had the largest positive impact of

all evaluated adaptations. A selection of the results of the evaluation of the adaptation

on the simple problem is shown in Figure 4.9. The plots displayed each show the results

of the use of no window, a window of size 150, and a window of size 300. The results

shown are for 20 percent damage to the left wheel (Figure 4.9a), 20 percent damage to

the right wheel (Figure 4.9b), 50 percent damage to the left wheel (Figure 4.9c), and 50

percent damage to the right wheel (Figure 4.9d). The corresponding significance values

are presented in Table 4.3.

Table 4.3: p-values for Figure 4.9

(a) p-values for Figure 4.9a

None 150

150 0.00000

300 0.00001 0.05543

(b) p-values for Figure 4.9b

None 150

150 0.00000

300 0.00000 0.15146

(c) p-values for Figure 4.9c

None 150

150 0.00000

300 0.00530 0.00760

(d) p-values for Figure 4.9d

None 150

150 0.00000

300 0.00000 0.44161

The rate of damage recovery showed a significant (p < 0.01) improvement in all cases

when a sliding window was used. The choice of window size may be problem-dependent;

Figure 4.9a shows a window of size 150 to be significantly better (p < 0.01) than a

window of size 300, while Figure 4.9b shows that there was a non-significant decrease in

performance when the smaller window was used. What is clear, though, is that in all cases

the use of a window caused an improvement regardless of the window’s size.

This improvement was likely because once the robot becomes damaged, many previous

training patterns become incorrect and no longer accurately reflect the real-world robot.

The use of a sliding window means that after a short delay the invalid training patterns
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(a) Solving the simple problem with damage

to the left wheel

� �� �� �� �� �� �� 	�
�������������������

���

���

���

���

���

���

���

���

��
���

��
�

��


���
���
���

(b) Solving the simple problem with damage

to the right wheel
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(c) Solving the simple problem with the left

wheel slowed by 50 percent
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(d) Solving the simple problem with the

right wheel slowed by 50 percent

Figure 4.9: Performance over time for different sliding window sizes
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are no longer used. The algorithm is then able to train the simulator exclusively on new,

relevant data. Without a sliding window, the algorithm is required to gather the same

number of new patterns as old patterns before even half of the training data accurately

represents the real world, and the algorithm is able to improve.

Figure 4.9c shows that using a sliding window may cause the rate of training to be

increased even before damage. This is an interesting discovery which means that the BNS

as a whole can be improved through the implementation of this adaptation. A sliding

window should, therefore, be considered for use in all BNS implementations, for both

the improved rate of learning and the significant improvement in damage recovery that it

facilitates. Further investigation should be conducted in this regard; it is out of the scope

of this research on damage recovery.

4.3.5 Simulator Reset

Figure 4.10a shows the results of resetting the simulator after damage is inflicted on the

robot. This adaptation offered no benefit to the rate of improvement over unchanged BNS;

both approaches adapted to the damage at the same rate. The simulator reset also caused

the population of controllers to start to move away from previously discovered solutions,

causing a significantly (p < 0.00001) larger drop in performance than when the simulator

was not reset.

The reason for the drop in performance is clearly shown in Figure 4.11. Each of the

plots shows the accuracy of the simulator’s predictions for change in x position. Figure

4.11a shows the accuracy of the newly initialised SNN, Figure 4.11b shows the accuracy

of the simulator on real-world evaluation before damage occurs, and Figure 4.11c shows

the accuracy of the simulator immediately after damage has occurred. The horizontal axis

represents the actual observed value, while the vertical axis represents the value predicted

by the dynamic BNS simulator. The accuracy of the simulator immediately after damage

occurs is worse than the trained simulator, but it is better than the accuracy achieved by

a new random simulator. Resetting the simulator is, therefore, unlikely to offer improved

performance.

It was hypothesised that resetting the simulator would have a benefit to a recovery

process already using a sliding window (Section 4.3.4). Experimentation showed this not
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to be true. Figure 4.10b shows the results of BNS with a sliding window of size 150,

compared to the results of BNS with a sliding window of size 150 and simulator reset.

There was no significant difference between the performance of each set of experiments;

resetting the simulator had no benefit to the BNS process when a sliding window was

already in use.
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(a) Simulator reset after damage
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(b) Simulator reset and a sliding window

Figure 4.10: Performance over time for the simple problem

4.4 Real-World Results

The real-world results presented here represent the output from item 3.4 in Figure 4.1.

The layout of the objectives for each problem are shown in Figure 4.3. Figures 4.12

and 4.13 show composite images of the robot’s movement around the testing area. The

first shows a robot completing the simple problem, and the second is a robot completing

the infinity problem. The yellow marker is positioned at the front of the robot and is

the direction in which the robot moves. Each image shows the path of the robot before

damage (Pre-Damage), after damage to its left wheel (Post-Damage) and after recovery

(Post-Recovery).

Figure 4.12 shows the robot completing the simple problem by starting in the centre

and moving in a circle around that starting position, thereby moving through the four

objectives, not shown in these images. The robot is then damaged, and its path veers

to the side. In post recovery, the robot once again drives in a circle around its starting
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Intercept = 232.76800
Slope = -1.28848

R² = 0.06238

(a) Initial simulator accuracy
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Intercept = 0.44710
Slope = 0.95217
R² = 0.94212

(b) Trained simulator accuracy
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Intercept = 5.14085
Slope = 1.32037
R² = 0.43364

(c) Simulator accuracy after damage

Figure 4.11: Simulator predicted values vs actual values
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position.

Figure 4.12: A composite image of the Khepera robot completing the simple problem

Figure 4.13 has the order of the robot’s positions labelled as the path followed by

the robot solving the infinity problem loops over itself multiple times. After the robot

completed the task and was damaged, it could no longer turn far enough to the left after

reaching position 4, resulting in the robot driving in a circle from position 4 to 6. Once the

robot had recovered, instead of turning clockwise at the bottom-right of the ∞ shape, it

instead turned counter-clockwise, from positions 3 to 4, before completing the remaining

parts of the shape as before.

Figure 4.13: A composite image of the Khepera robot completing the infinity problem

Figure 4.14 shows the real-world paths followed by controllers evolved by BNS to solve

one of the two problems while recovering from damage. Each plot shows three lines,

representing the pre-damage, post-damage, and post-recovery performance of the robot.

The specific configurations used for the presented real-world results were chosen to
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represent as wide a selection of configurations as possible. The performance of the algo-

rithm without adaptations is shown for damage which was easily resolved by the algorithm

(Figure 4.14a), as well as damage which could not be resolved (Figure 4.14c). Results were

then also shown for an experiment using a sliding window for both the simple problem

(Figure 4.14b) and the infinity problem (Figure 4.14d). The number of real-world evalu-

ations taken for recovery is shown in parentheses along with each plot.

In Figure 4.14a the algorithm solved the simple problem. After damaging the left outer

wheel, the robot no longer turned far enough in the clockwise direction, which caused it to

follow a path to the side. Thirty-two real-world evaluations later, the robot had once again

learned to complete its task by driving slower in order to compensate for the damaged

wheel.

Figure 4.14b shows an experiment using a sliding window of size 150 and solving the

simple problem. The damage to the robot’s left wheel affected the robot in a similar

manner to Figure 4.14a, but it took only ten real-world evaluations to recover from the

damage, due to the window’s positive effects on the rate of improvement.

Damage to the right wheel of the robot creates a more complex problem for BNS to

solve. Figure 4.14c shows the path followed by the robot, with controllers evolved using

unchanged BNS, when it had learned to complete the simple problem. The figure shows

the damaged robot driving in circles due to the slow inner wheel (marked as A). The

robot was unable to recover by the seventy-eighth real-world evaluation and continued

to drive in circles. Experiments in simulation suggest that the robot would eventually

recover the ability to complete the task, but not in a time frame reasonable for real-world

experimentation.

The final real-world experiment, shown in Figure 4.14d, used a sliding window of size

150 and attempted to solve the infinity problem. The robot learned to solve the problem

with an infinity-shaped pre-damage path. Once the damage was inflicted to the robot’s

left wheel, BNS adapted to the damage by preferring counter-clockwise rotation. This

is visible in the post-recovery path where, instead of turning to the right after reaching

objective E (in the centre), the robot turned almost 360° in a counter-clockwise direction

to reach objective D (at the top-right).

This real-world evaluation is clear evidence of BNS’s ability to develop new behaviours
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(a) Paths followed by controllers evolved us-

ing unchanged BNS (32 RW evaluations for

recovery)
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(b) Paths followed by controllers evolved us-

ing BNS with a sliding window size 150 (10

RW evaluations for recovery)
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(c) Paths followed by controllers evolved us-

ing BNS with the right wheel damaged (al-

gorithm did not recover)
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(d) Paths followed by controllers evolved to

solve the infinity problem with a sliding win-

dow size 150 (20 RW evaluations for recov-

ery)

Figure 4.14: Real-world paths followed by evolved controllers

to solve a given problem. The result alleviates concerns that population and simulator

convergence would prevent BNS from discovering new solutions, only allowing it to adapt

existing solutions.
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4.5 Conclusion

The results presented in this chapter have shown BNS capable of recovering from dam-

age to a simple differentially-steered robot without any changes to the algorithm. Four

adaptations to the algorithm were proposed based on their potential to improve BNS’s

performance by focusing on different issues that may arise upon the occurrence of dam-

age. Evaluations were carried out both in a fake real world, which allowed for the rapid

evaluation of many parameter configurations, and in the real world, which allowed the

transferability of the results to be confirmed.

The use of a sliding window of training data caused the largest improvement in per-

formance. Without the adaptation, the algorithm is unable to improve until at least as

many post-damage training patterns have been collected as pre-damage, since - until that

point - the majority of the training data is incorrect as it was obtained from the robot in

its old, undamaged, state. The use of a window means that the old incorrect training data

is discarded much sooner and the simulator is able to improve once again. In one case

the sliding window was able to improve performance even before damage occurred. This

improvement may indicate that the adaptation is useful not only for more than just prob-

lems that require automatic damage recovery, but for any BNS application, as a general

improvement to the algorithm.

Resetting the population of controllers showed no significant improvement to the algo-

rithm in the majority of cases. This result indicates that for the problems presented here,

a lack of diversity in the population does not present an issue for the algorithm.

Neither a post-damage increase in the mutation rate nor the magnitude showed any im-

provement in the algorithm’s damage recovery performance. The algorithm was also eval-

uated with both increasing simultaneously, with no improvement in performance. Since

changing the mutation parameters would have increased the population diversity, this re-

sult corresponds with the population reset result since both adaptations seek to address

a lack of diversity within the population, which was, therefore, likely not an issue for the

given problems.

Finally, resetting the dynamic simulator showed no improvement in performance.

When used without a sliding window, the reset caused a momentary drop in real-world
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performance as the controller population began optimising for the re-initialised simula-

tor. The performance decrease was not as large without a reset since the simulator, while

incorrect, was at least similar to the real world. A sliding window prevented the drop

in performance from being as large, by training the new simulator only on new, correct

training data, but performance did not improve any more than when using only a sliding

window. These results suggest that transfer learning did cause the previously trained

simulator to be a better starting point for training the new simulator.

These results showed that BNS is able to recover well from damage. The logical

next steps in evaluating BNS’s damage recovery is to evaluate it on both more complex

controllers and more complex robot morphologies.



Chapter 5

Closed-loop Controller Evolution

5.1 Introduction

Previous research using BNS has only aimed to evolve open-loop controllers, which are

unable to react to external stimuli (Woodford et al., 2016, 2017). Closed-loop controllers

are able to use information about the robot’s state and environment in order to choose

actions to perform. A closed-loop controller can function in many more environments than

a single open-loop controller can, as it is able to react to changes in its environment.

This chapter presents the first experiments evaluating BNS’s ability to evolve intelli-

gent, closed-loop controllers. The problem solved by BNS in this investigation was the

same as previous research by Pretorius et al. (2013). Controllers were evolved to use their

light sensors to navigate a differentially steered robot towards a light source. They were

then required to remain as close to the light source as possible for the remainder of their

execution. An example of the path followed by a robot exhibiting the desired behaviour

is shown in Figure 5.1. The robot started at the position marked with a red circle and

moved to begin circling the light source, which was placed at the origin of the set of axes,

on the large green circle.

Since the controllers needed to take readings from the robot’s sensors in order to

function, a simulator was developed to simulate these sensor readings. This investigation

was the first instance of multiple distinct SNN simulators being trained concurrently.

Section 5.2 discusses this investigation’s implementation (Figure 5.2, item 5), including

90
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Figure 5.1: The path followed by a robot completing the light-following problem

the implementation of the adaptations to the BNS algorithm for closed-loop controllers.

Section 5.3 presents the results of the experiments in simulation (Figure 6.1, item 6.1).

Section 5.4 presents the results of real-world evaluations, which are represented by item

6.2 in Figure 6.1, and Section 5.5 concludes the chapter.

Motion Simulator Sensor Simulator

RW

FRW 2

4

Closed-
loop
BNS

5

BNS
Im-

prove-
ment

BNS Parameters

RW Eval

6.2

6

6.1

Figure 5.2: Investigation B focus
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5.2 Implementation Details

The Khepera III has a set of built-in ambient light sensors, and non-concurrently-evolved

SNNs have previously been used for the evolution of light-perception controllers for a

similar differentially steered robot (Pretorius et al., 2013). This made the Khepera III an

ideal robot for use in this investigation.

Section 5.2.1 discusses the sensors on the robot and Section 5.2.2 discusses the imple-

mentation of controllers able to use these sensor readings to react intelligently. Section

5.2.3 then discusses the implementation of an EA to evolve controllers. Section 5.2.4

describes the real-world testing environment used for this investigation. Section 5.2.5 dis-

cusses the implementation of a simulator to simulate the robot’s sensor values. The output

of these sections is represented by item 5 in Figure 5.2. Finally, Section 5.2.6 discusses

the values of each parameter evaluated in the parameter study and is represented by item

6.1 in Figure 5.2.

5.2.1 Khepera III Sensors

The robot is equipped with an array of infrared sensors for close-range object detection and

ambient light readings (K-team Corporation). The robot’s nine outward facing infrared

light sensors are positioned around the base of the robot. Six of these sensors are placed

around the front and sides of the robot (Figure 5.3), at -85°, -45°, -10°, 10°, 45°, and 85°

from the centre of the robot (Figure 5.3), and three face the rear. Two additional sensors

face downwards, allowing the robot to detect markings on the ground.

-85°

-45°

-10°10°

45°

85°

Figure 5.3: Khepera forward sensor positions

Figure 5.4 shows the variables used to describe the Khepera’s position relative to a

light source. φ is the angle between the Khepera’s orientation and the vector from the

Khepera to the light source. d is the distance from the Khepera to the light. The ambient
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light sensors return values v, v ∈ [0, 4200], where a smaller value represents more light.

The responses of the front six sensors, based on the robot’s orientation relative to the

light source, are shown in Figure 5.5. The horizontal axis represents the physical robot’s

orientation to the light, while the vertical axis represents the reading of each of the robot’s

forward facing sensors when the robot is at that orientation. In order to obtain the values

in the figure, 18 000 light sensor readings were taken from different angles and positions

and aggregated to produce smooth plots. At each angle φa in the plot for sensor φs, the

moving average of the sensors’ responses is shown. The value is obtained by calculating

the mean of all readings in [φa − 10, φa + 10] for that sensor.

φ

Robot orientation

Robot

d

Light Source

Figure 5.4: Khepera sensor parameters (Pretorius et al., 2013)
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Figure 5.5: The Khepera III’s light sensors’ responses at different angles to the light

While Figure 5.5 is able to show the trends of the Khepera’s sensors’ responses, it is

misleading with regard to the levels of noise in the sensors. Figure 5.6a shows a more

realistic plot of a single reading taken at each angle with the 10° sensor. Around 0°, the
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sensor was entirely unable to gather any useful data, since between -5° and 25° the sensor

returns the same value for the majority of readings.

In previous research by Pretorius et al. (2013), robots using light-sensitive sensors have

made use of only two sensors. This configuration also resembles that of a Braitenberg

Vehicle (Braitenberg, 1986). The Khepera’s additional sensors were, therefore, able to be

used to obtain more reliable readings in a single command, while taking a similar approach

to this previous research. Instead of using each sensor reading individually, the means of

the readings from the forward facing sensors on each side of the robot were used as virtual

sensors. i.e. the -85°, -45°, and -10° together formed the right virtual sensor.

The information from the virtual sensors is more useful than that from two single

sensors because there is no range of angles where the sensor is unable to return useful

readings, as was the case for single sensors. The range of angles where the sensors are able

to detect some level of light is also larger, making each sensor useful for a wider range of

angles (Figure 5.6b).
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(a) Realistic single sensor readings
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(b) Realistic virtual sensor readings

Figure 5.6: Khepera realistic responses

5.2.2 Controllers

Each controller in these investigations used a neural network to choose its next action

based on the light sensor readings. The execution of a controller happened in a command

cycle in which each set of motor values was maintained for 400ms, the light sensors read,

and these readings used to generate a new set of motor values. This cycle was repeated
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100 times for a total controller execution time of 40 seconds.

The length of time taken for the robot to respond to a request for its light sensor

readings is approximately 50ms. The readings were, therefore, requested 75ms before the

end of each command.

The controller network topology is based on the topology used by Pretorius et al.

(2010). The controllers were implemented using a recurrent neural network with two

inputs, and with two outputs used as recurrent inputs. The inputs to the network were

the values of the robot’s left and right sensors. The outputs are the desired motor speeds.

...

Left

Sensor

Right

Sensor
Left Motor Command

Right Motor Command

Figure 5.7: Controller ANN

5.2.3 Evolutionary Algorithm

Individual encoding

The individuals in the population were encoded as weight vectors, representing the weights

of the ANN controllers. Every controller in the population had the same number of neurons

in their hidden layer, which was set by a parameter passed into the BNS algorithm.

The calculation of the population’s diversity, dp, took place using equation (5.1)

dp =

np∑
i=1

ng∑
j=1

(cij − c̄j)2 (5.1)

where np is the number of individuals in the population, ng is the number of genes that

comprise each individual, cij is the jth gene of the ith individual, and c̄j is the jth gene of

the average individual. The average individual is calculated as in investigation A.



CHAPTER 5. CLOSED-LOOP CONTROLLER EVOLUTION 96

Fitness function

When executing a closed-loop controller, its behaviour and performance are likely to vary

based on its starting position, since it may have learned how to complete the task from

some starting areas, but not others. Therefore, in order to obtain an overall measure of

the controller’s performance, the fitness of a controller is based on its average performance

over ten executions, each with a different, random starting position. The performance of

each of these executions is based on the path followed by the robot during the execution,

and a higher fitness is awarded to controllers that cause the robot to move towards, and

remain near, the light.

Early in the process of evolution using BNS, the behaviour of controllers evaluated in

the real world is erratic. This means that the execution of these controllers risks a robot

navigating towards and colliding with the light fitting (Section 5.2.4). In order to reduce

the risk of damage to the robot and the fitting, a system was implemented to automatically

terminate the controller’s execution in the event that the robot moved closer than a safety

boundary to the light. A disadvantage of this approach is that the simulated behaviour of

the robot, and its sensors, very near to the light was unpredictable due to the lack of data

gathered in this area. This problem was addressed by specifying a goal radius around this

safety boundary; controllers were then rewarded for remaining as close to the goal radius

as possible. equation (5.2) describes the fitness function:

fk = −
10∑
i=1

100∑
j=1

1

di
|‖pij‖2 − rg| (5.2)

where the light source is at the origin, di is the robot’s distance from the light at the initial

position of execution i, pij is the jth position in the path followed by the controller in its

ith execution, and rg is the goal radius.

This function improves on that used by Pretorius et al. (2010) by differentiating more

clearly between behaviours, such as circling at a constant distance and moving towards

and then away from the light, both of which evaluate identically in the previous fitness

function.

The theoretical optimal behaviour could be achieved by a controller which began its

execution on the radius rg and then moved in a perfect circle, remaining at a distance of
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rg from the light source. Such a controller would achieve a fitness value of 0.

Reproduction

The selection of individuals for reproduction was performed using tournament selection,

as was the selection of individuals to be evaluated in the real world. The size of the tour-

nament is a parameter to the algorithm. Once individuals are selected for reproduction,

a crossover operation is performed. Three methods of crossover, Single-point, Uniform,

and Simulated Binary Crossover were evaluated, with the choice of the crossover operator

being a parameter for the algorithm.

Parents are repeatedly chosen from the population and combined using the crossover

operator to create the new population. Each individual in the new population then under-

goes mutation, where each of their genes is changed probabilistically, based on a normally

distributed random variable.

5.2.4 Testing Area

A removable light fitting was installed in the centre of the tracking area for this investi-

gation. The testing environment was otherwise identical to that used in Chapter 4.

When the light fitting was in use, its light could not be allowed to illuminate the top

of the tracking markers; the tracking system was calibrated to the specific colours of the

markers, and the light changed the colour of the markers sufficiently that the tracking

system was unable to track them. The markers were, therefore, elevated above the light

fitting by mounting them on a frame attached to the robot (Figure 5.8).

5.2.5 Khepera Sensor Simulator

The construction of SNNs for the simulation of the Khepera’s sensor readings was done

very similarly to that of the SNNs for motion simulation. Given the robot’s orientation to

and distance from the light, the two SNNs are able to predict one of the robot’s left and

right virtual sensor readings.
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Tracking markers

Figure 5.8: The Khepera III Robot with elevated tracking markers

...
d

φ

Left or Right
sensor reading

Figure 5.9: Sensor SNN
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5.2.6 Parameter Evaluation

Parameter evaluation in this investigation was carried out in the fake real world. Static

SNNs were created, using the same methodology as was used by Pretorius et al. (2013),

to act as a fake real world, and used to evaluate parameter combinations.

Static simulator creation

In order to train a static simulator, data was gathered from the real world. Random

commands were sent to the robot, causing the robot to roam the testing area. Every

400ms, the robot’s position and orientation to the light source, as well as its ambient light

sensor readings, were saved. Each of these readings could then be used to create one

training pattern for each of the two sensor SNNs. The data gathering process was allowed

to continue for several hours; a total of 16440 training patterns were created for each SNN.

Resilient backpropagation was then used to train the sensor SNNs for 40000 epochs.

The final accuracy of the left sensor simulator is shown in Figure 5.10. Several network

topologies were evaluated; a network with a single hidden layer containing twenty-five

hidden neurons, each utilising a sigmoid activation function, was found to produce good

results.
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Intercept = 151.05849
Slope = 0.95441
R² = 0.95969

Figure 5.10: The static sensor simulators predicted vs actual sensor values
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Parameters

There are several parameters to the BNS algorithm beyond those relevant to the closed-

loop adaptations, and their ideal values were not apparent for this experiment. The

effect of nine of these parameters on the performance of the algorithm was, therefore, also

evaluated. This parameter evaluation was performed using a fake real world, as described

in Chapter 4. This is represented by item 6.1 in Figure 6.1.

The parameters which were evaluated are:

� The range of values between which the controller’s neural weights are initialised.

� The size of the tournaments used to select individuals for reproduction and real-world

evaluation.

� The number of hidden neurons in the motion and sensor simulators.

� The size of the population of controllers.

� The mutation rate and magnitude.

� The number of neurons in the hidden layer of the neural network controller.

� Whether recurrent connections are used in the neural network controllers.

� The crossover operator used in reproduction.

Default parameter configuration

In order to evaluate different adaptations and configurations, a default BNS configuration

was chosen. Individual parameters in the configuration could then be varied, and the effect

of these changes on the algorithm’s performance evaluated. The possible interaction of

parameters was, therefore, not evaluated in this investigation. The default parameter val-

ues were chosen because they were found to perform well in preliminary experimentation.

These choices were made in order to reduce the adverse effects caused by other parameters

on the parameter being evaluated. The default parameter configuration is given in Table

5.1.
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Table 5.1: Default parameter configuration

Parameter Value

RW Evaluation Limit 100

RW Tournament Size 0.1

Controller Tournament Size 0.1

Population Size 100

Mutation Rate 0.1

Mutation Magnitude 0.05

Controller ANN Hidden Neurons 5

Weight Initialisation Range [-5,5]

Simulator ANN Hidden Neurons 25

Recurrent Controller Network True

Statistical analysis

Every parameter configuration under investigation was evaluated thirty times. For each

of these thirty experiments, statistical observations were obtained using equation (5.3).

Oτ =
100∑
i=1

fτ (i) τ = 1, 2..30 (5.3)

where fτ (i) is the fitness of run τ at real-world evaluation i in the controller’s execution.

A Mann-Whitney U Test can then be performed to test the statistical significance of the

difference between the distributions of the performance values of any two configurations.

Simulator performance presentation

This investigation was the first in which sensor SNNs were trained concurrently, using

BNS. The accuracy of these simulators is, therefore, of interest. The results for simula-

tor performance were obtained by comparing the final dynamic simulator’s output to the

expected values, given the robot’s position and orientation. These values were then com-

pared to assess simulator accuracy; ideally, the dynamic simulator should have learned to

predict values as close to the fake-real-world values as possible.

5.3 Results and Discussion

Each set of results plotted in this section follows the same format as was followed in

investigation A. Each configuration was used for thirty simulated experiments, and the
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mean performance of the fittest individuals at each fake-real-world evaluation was plotted.

The vertical axis represents the fake-real-world fitness, while the horizontal axis represents

the number of real-world evaluations.

Section 5.3.1 presents the dynamic simulator’s accuracy. Sections 5.3.3 to 5.3.12 then

give the results of the evaluation of the other parameters to the BNS algorithm: crossover

operators, data augmentation, weight initialisation ranges, islands, controller ANN topolo-

gies, Headless Chicken mutation, intermittent population resets, tournament sizes, muta-

tion parameters, SNN topologies, and population size.

5.3.1 Simulator Performance

Figure 5.11 shows the performance of the left sensor simulator in the case where no adap-

tations were implemented (Figure 5.11). The left and right sensor simulators perform

comparably; therefore, the accuracy of the left sensor simulator is used as representative

of the accuracy of the sensor SNN as a whole. The expected sensor values are shown along

the horizontal axis, and the values predicted by the dynamic simulator are shown along

the vertical axis. A line of best fit is also included, with its slope and y-intercept values

and the coefficient of determination, R2. The dynamic simulator learned the trend of the

data and was able to predict values very well, given the noise levels of the sensor readings.

The number of data points around the middle of the range values is low because of the

steep gradient of values returned by the sensors, which is visible in Figure 5.5.

5.3.2 Crossover Operators

Figure 5.12 shows the results of the evaluation of multiple crossover operators. SBX offered

a significant performance improvement over the other operators (p < 0.05) (Table 5.2). It

is thus an appropriate choice for this problem and can be recommended for considering

for all BNS applications.

Table 5.2: p-values for Figure 5.12

SBX SinglePoint

SinglePoint 0.00868

Uniform 0.01076 0.43764
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Intercept = -0.00000
Slope = 0.99461
R² = 0.92902

Figure 5.11: Sensor SNN predicted vs actual values with no adaptations
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Figure 5.12: Fitness over time with different crossover operators
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5.3.3 Data Augmentation

Data augmentation (Figure 5.13) had a significant positive impact on performance (p <

0.01), likely due to the more rapid improvement of the simulator allowing for the creation

of more transferable controllers earlier in the evolution process. It is therefore suggested

that, if realistic assumptions can be made with regards to the symmetry of the robot, data

augmentation be used.
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Figure 5.13: Fitness with and without data augmentation

Interestingly, Figure 5.14 shows that the simulator’s predictions were slightly less re-

liable when data augmentation is used; the R2 value is higher, but the slope of the line

is further from the value of 1, a value that is desired since a perfect dynamic simulator

would predict the same values as were observed in the real world, resulting in a slope of

1. This result points to the fact that the assumption of the robot’s symmetry was not

entirely accurate. Such a result may not seem to correspond with the improvement in

performance seen in Figure 5.13, but it is likely that the early improvement caused by

having extra training data caused a substantial improvement in performance, even if this

data was not entirely accurate, since it allowed more transferable controllers to evolve

earlier. These slight inaccuracies may also have resulted in the evolution of more robust

and noise-tolerant controllers.
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Intercept = -0.00000
Slope = 0.95878
R² = 0.96160

(a) With data augmentation

��� ��� ��� ��� ��� ���
����
���
��

���

���

���

���

���

���

	�
�

��
�
��
�


��


Intercept = -0.00000
Slope = 0.99461
R² = 0.92902

(b) Without data augmentation

Figure 5.14: Sensor SNN predicted vs actual values

5.3.4 Weight Initialisation Range

Figure 5.15 shows the performance of BNS with the neural weights of the population of

controllers initialised in different ranges. There was a significant benefit to the use of wider

ranges of values, with a range of [−10; 10] far outperforming [1; 1] (p < 0.00001) (Table

5.3). This result shows the importance of the diversity and distribution of the initial

population throughout the search space; a population initialised with neural weights in a

larger range of values is likely to be more diverse than one with a smaller range.
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Figure 5.15: Fitness over time with different weight initialisation ranges
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Table 5.3: p-values for Figure 5.15

[-1;1] [-2;2] [-5;5]

[-2;2] 0.00403

[-5;5] 0.02416 0.95873

[-10;10] 0.00000 0.04207 0.11882

5.3.5 Island Evolutionary Algorithms

For the evaluation of each Island EA parameter, the other island parameters were held

constant. These values at which the parameters were held are shown in Table 5.4. In each

set of results, the performance of BNS without an Island EA is shown for reference.

Table 5.4: Default Island EA values

Parameter Value

Interval 10

Number Islands 2

Number Migrants 1

Figure 5.16a shows that while two and four islands performed significantly (p < 0.05)

better than an implementation without islands, ten islands caused the algorithm to per-

form significantly worse (p < 0.005) (Table 5.5). The likely reasons for these changes can

be seen in Figure 5.16b. Two or four islands caused a small increase in diversity, leading

to the discovery of better solutions and subsequent improved performance. Ten islands,

however, was too many and caused the population to become unable to converge, likely

due to the random replacement of individuals in each population by migrant individuals.

The upper limit on improvements in performance based on the number of islands will not

always be clear. Two is, therefore, a safe number of islands as it offers a significant, though

small, improvement with the lowest risk.

Table 5.5: p-values for Figure 5.16a

No islands 2 4

2 0.01327

4 0.00583 0.56922

10 0.00160 0.00000 0.00000

The frequency of migration (Figure 5.17) needs to be low enough that each island has
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(a) Fitness over time with an Island EA with

different numbers of islands
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(b) Diversity over time with different num-

bers of islands

Figure 5.16: The effects of the number of islands

the opportunity to develop good controllers. When the time between migrations was too

low, there was no significant performance benefit to the use of an Island EA (Table 5.6).

Once this interval was increased to longer than five real-world evaluations, there was a

significant (p < 0.05) positive impact on performance. The risk of choosing a value for

this parameter, which negatively affects performance, is low; no values were found which

negatively affected performance. It is, however, suggested that longer migration intervals

be chosen to allow sufficient time for convergence within each island.
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Figure 5.17: Fitness over time with an Island EA with different migration intervals
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Table 5.6: p-values for Figure 5.17

No islands 1 2 5

1 0.05188

2 0.13345 0.52014

5 0.04060 0.95873 0.62040

10 0.01327 0.59969 0.36322 0.67350

Finally, as with the migration interval, there is little risk of choosing a value for the

number of migrants which negatively affects performance. All evaluated values, except

five, offered significant (p < 0.05) (Table 5.7) improvements.
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Figure 5.18: Fitness over time with various island migration sizes

Table 5.7: p-values for Figure 5.18

No islands 1 2 5

1 0.01327

2 0.00045 0.34783

5 0.05012 0.50114 0.06353

10 0.01123 0.57929 0.54933 0.29727

5.3.6 Controller Network Topology

The performance of a non-recurrent controller was evaluated (Figure 5.19) and found to

perform significantly (p < 0.005) better than a recurrent network with a hidden layer
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of equal size. It may be beneficial to investigate other recurrent topologies, such as an

LSTM (Hochreiter, 1997), for controller implementation for more complex problems, but

for simple navigation tasks, a simpler feedforward controller appears to offer the greatest

performance benefits.
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Figure 5.19: Fitness over time with recurrent and feedforward controllers

When using recurrent neural networks, there was no significant difference between the

performance with different controller network sizes (Figure 5.20).

5.3.7 Headless Chicken

The results of experimentation using the Headless Chicken adaptation (Figure 5.21) show

that the diversity introduced to the population had a significant (p < 0.05), but small,

positive effect when introduced with any probability ∈ (0, 0.25] (Table 5.8). This was

no longer the case when the probability was increased to 0.5, likely because the high

probability of mutation prevented the population from converging reliably, which can be

seen in Figure 5.21b.

Based on the results presented here, it is suggested that Headless Chicken probability

values smaller than 0.1 are used to ensure that the amount of diversity introduced does

not negatively impact the population’s rate of convergence.
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Figure 5.20: Fitness over time with different numbers of hidden neurons in the controller

ANNs
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(a) Fitness over time with various Headless

Chicken probabilities
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(b) Diversity over time with various Headless

Chicken probabilities

Figure 5.21: The effects of various Headless Chicken probabilities
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Table 5.8: p-values for Figure 5.21a

0 0.05 0.1

0.05 0.00610

0.1 0.01765 0.70617

0.25 0.01765 0.63088 0.98231

5.3.8 Intermittent Population Reset

The results of experiments evaluating the effects of different Reset-Elitism and interval

values are shown in Figures 5.22 and 5.23, respectively. For reference, the performance

of BNS without intermittent population reset is also shown. For each of these parameter

evaluations, the other parameter was held at a default value. These default values are

shown in Table 5.9.

Table 5.9: Default intermittent reset values

Parameter Value

Interval 10

Elitism 5

The use of Reset-Elitists had a significant (p < 0.05), but small positive effect on the

final fitness of controllers evolved with BNS (Table 5.10). The adaptation does have a

clear impact on fitness over time; each time the population is reset, the fitness of the best

controller drops and recovers again. This effect is reduced as the number of REs increase

as more good controllers are transferred to the new population.

The performance benefit was greatest with five Reset-Elitists, representing 5 percent

of the population. The magnitude of improvement was small; further research should be

conducted to investigate the use of this adaptation before general guidelines for its use are

suggested.

Table 5.10: p-values for Figure 5.22a

No reset 0 1 5

0 0.16687

1 0.14945 0.90000

5 0.00667 0.00001 0.00001

10 0.05746 0.00009 0.00008 0.34783
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(a) Fitness over time with intermittent pop-

ulation reset and different Reset-Elitism val-

ues
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(b) Diversity over time with intermittent

population reset and different Reset-Elitism

values

Figure 5.22: The effects of different Reset-Elitism values

Similar to the Reset-Elitists parameter, only small ranges of Reset Interval values had

a significant (p < 0.01) (Table 5.11) impact on the performance of the algorithm. In

this case, a Reset Interval of ten real-world evaluations offered the most improvement,

while an interval of one had a visibly negative effect on the initial training process, due

to the population being unable to converge at all (Figure 5.23b). Once again, since the

improvement was so small and the range of values which were beneficial so narrow, further

research should be conducted on the use of this adaptation for specific BNS applications

before guidelines can be proposed.

Table 5.11: p-values for Figure 5.23b

No reset 1 5 10

1 0.10233

5 0.08236 0.91171

10 0.00667 0.42896 0.32553

20 0.59969 0.31119 0.17145 0.02068

5.3.9 Tournament Sizes

Figures 5.24 and 5.25 show the results of experiments with different tournament sizes for

the selection of individuals for reproduction and real-world evaluation, respectively. The
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(a) Fitness over time with intermittent pop-

ulation reset and different reset interval val-

ues
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(b) Diversity over time with intermittent

population reset and different reset interval

values

Figure 5.23: The effects of different reset interval values

tournament sizes are represented as proportions of the total population size.

It was found to be important that the reproduction tournament was small enough to

apply sufficient reproductive pressure to the population in order to promote convergence

of the population. A tournament 50 percent the size of the population failed to do this and

negatively affected the performance of the algorithm. However, the size of the tournament

used to select individuals for real-world evaluation had minimal impact on the performance

of BNS. This was since controllers evaluated in the real world do not directly influence

the evolution process; they serve only to gather training data for the simulators, which

can be achieved through the evaluation of any individual in the population.

Table 5.12: p-values for Figure 5.24

0.05 0.1 0.2

0.1 0.08500

0.2 0.70617 0.05012

0.5 0.00289 0.16238 0.00056

Figure 5.26 shows very clearly that the effect of the size of the real-world tournament

had no significant impact on simulator performance. The accuracy of the dynamic SNN

was comparable, regardless of the chosen real-world tournament size.
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Figure 5.24: Fitness over time with different controller tournament sizes
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Figure 5.25: Fitness over time with different real-world tournament sizes
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Intercept = 0.00000
Slope = 0.99875
R² = 0.92330

(a) Real world tournament size 0.05
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Intercept = -0.00000
Slope = 0.99461
R² = 0.92902

(b) Real world tournament size 0.1
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Intercept = -0.00000
Slope = 0.99719
R² = 0.93651

(c) Real world tournament size 0.2
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Intercept = 0.00000
Slope = 0.99875
R² = 0.93059

(d) Real world tournament size 0.5

Figure 5.26: Simulator predicted vs actual values with different real-world tournament

sizes
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Table 5.13: p-values for Figure 5.25

0.05 0.1 0.2

0.1 0.11199

0.2 0.45530 0.01988

0.5 0.43764 0.42896 0.11536

5.3.10 Mutation

While evaluating the effects of changes to either the mutation rate or magnitude, the other

parameter was held constant. These default values are shown in Table 5.14.

Table 5.14: Default mutation values

Parameter Value

Mutation rate 0.1

Mutation magnitude 0.05

An increase in the mutation magnitude from 0.05 to 0.2, shown in Figure 5.27a, had

a significant (P < 0.05) impact on performance (Table 5.15). This was likely due to the

prolonged increased diversity that this provided, during the later real-world evaluations

(Figure 5.27b). A moderately large mutation magnitude is, therefore, suggested for use

with BNS.
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(a) Fitness over time with different mutation

magnitudes
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(b) Diversity over time with different muta-

tion magnitudes

Figure 5.27: The effects of different mutation magnitudes

A larger mutation rate led to significantly (p < 0.05) improved performance (Table
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Table 5.15: p-values for Figure 5.27a

0.05 0.1

0.1 0.97052

0.2 0.03514 0.01765

5.16). Interestingly, in this case, the base mutation rate appears to have been lower

than was ideal. Increasing the mutation rate increased the rate of convergence of the

population, likely allowing better solutions to be discovered than was possible with the

lower mutation rate. For more complex problems, such high levels of mutation may prevent

sufficient convergence from occurring, with adverse effects on BNS’s performance, though

in general, increased mutation is beneficial for the algorithm’s performance.
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(a) Fitness over time with different mutation

rates
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(b) Diversity over time with different muta-

tion rates

Figure 5.28: The effects of different mutation rates

Table 5.16: p-values for Figure 5.28a

0.05 0.1

0.1 0.34783

0.2 0.02416 0.00205

5.3.11 Simulator Network Topology

Figure 5.29 shows the results of the use of different sizes of hidden layers for the simulators.

There was very little significant difference between the performance of BNS with different
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hidden layer sizes (Table 5.17), though it appears that choosing a larger hidden layer for

the simulators is beneficial. There was no downside, and it would avoid potential issues

that could be encountered where small simulators are unable to accurately simulate the

real world, especially for more complex problems. Such an issue is visible in the early

performance of BNS when using a simulator with five hidden neurons, as it is unable to

capture the complexity of the real world.
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Figure 5.29: Fitness over time with different simulator hidden layer sizes

Table 5.17: p-values for Figure 5.29

5 10 25 50

10 0.28378

25 0.59969 0.07483

50 0.71719 0.11199 0.92344

75 0.42039 0.01911 0.66273 0.34783

The difficulty encountered by SNNs with smaller hidden layers attempting to simulate

complex environments can be seen in Figure 5.30. In Figure 5.30a, the accuracy of the

simulator was far lower than for every other hidden layer size, clearly indicated by the

R2 value. This result reinforces the hypothesis that, while BNS may be able to train

controllers effectively with a slightly under-performing simulator, if simulator accuracy is

desired, it is vital that the SNN be large enough to handle the complexity of the simulation.
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Intercept = 0.00000
Slope = 0.97143
R² = 0.67951

(a) 5 neurons in the hidden layer
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Intercept = 0.00000
Slope = 0.98885
R² = 0.92171

(b) 10 neurons in the hidden layer
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Intercept = -0.00000
Slope = 0.99461
R² = 0.92902

(c) 25 neurons in the hidden layer
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Intercept = 0.00000
Slope = 0.99291
R² = 0.94244

(d) 50 neurons in the hidden layer
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Intercept = -0.00000
Slope = 0.99888
R² = 0.93706

(e) 75 neurons in the hidden layer

Figure 5.30: Sensor SNN predicted vs actual value with different hidden layer sizes
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5.3.12 Population Size

Figure 5.31a shows that, for this problem, the size of the population had little bearing

on the performance of BNS (Table 5.18). The algorithm can, therefore, be implemented

with any population size, though the use of a larger population may be beneficial as the

complexity of problems and size of the solution space increases. As can be expected, small

populations cause diversity within the population to be decreased (Figure 5.31b).
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(a) Fitness over time with different popula-

tion sizes
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(b) Diversity over time with different popu-

lation sizes

Figure 5.31: The effects of various population sizes

Table 5.18: p-values for Figure 5.31a

25 50 100 200

50 0.17613

100 0.25805 0.02324

200 0.40354 0.58945 0.04841

400 0.97052 0.36322 0.16238 0.52014

5.4 Real-World Results

This section presents plots of the paths followed by evolved controllers in the first real-

world experiments using BNS to evolve closed-loop controllers. These results are repre-

sented by item 6.2 in Figure 5.2. The purpose of these results is to validate that the

approaches are able to transfer from the fake real world to the real world. The results in
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this section were obtained using the parameter values shown in Table 5.19.

Table 5.19: Parameters for real-world evaluation

Parameter Value

Population size 100

Mutation rate 0.1

Mutation magnitude 0.05

Controller type Feedforward

Controller ANN hidden neurons 10

Weight initialisation range [-10,10]

Crossover operator SBX

Islands None

Augment data True

Headless Chicken probability 0.25

Intermittent population reset False

Figure 5.32 shows the paths followed by five controllers, evolved using BNS, in the

real world, each starting at the position marked with a circle. It is clear that many

controllers developed a handedness, with several preferring to turn in only one direction.

This behaviour is very similar to that observed by Pretorius et al. (2013).
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Figure 5.32: Real-world paths followed by evolved controllers

One major difference between these and previous results is the time taken for the

behaviour to emerge. Previous experiments required data to be collected in order to build

a simulator before training could begin. In addition to this, the evolutionary process was
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allowed to run in simulation for 2000 generations (Pretorius et al., 2013). BNS not only

developed a simulator without any prior data gathering but, in some cases, was able to

evolve controllers exhibiting the correct, though not perfect, behaviour after only three

real-world evaluations, which takes around three minutes. Figure 5.33 shows the path

followed by such a controller on the fourth real-world evaluation.
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Figure 5.33: Real-world path followed by robot on the fourth real-world evaluation

Figure 5.34 shows composite images of the robot performing its task in the real world,

discovering a solution by the fourth real-world evaluation. Each image shows one real-

world evaluation.

Figure 5.34: Composite images of robot in the real world
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5.5 Conclusion

In this chapter, BNS was shown, for the first time, to be effective in evolving closed-loop

controllers for a light-following robot. This shows that BNS may be effective for use in

evolving more complex controllers. While this is an important step towards proving BNS’s

applicability to complex tasks, the task solved in this investigation was not particularly

complex. It would thus be prudent for further research to be conducted on the evolution

of controllers tasked with solving more complex problems.

In this investigation, diversity within the population of controllers has been shown to

be an important factor for the overall performance of BNS; this is likely because higher

diversity allows a larger area of the search space to be searched for viable solutions. There

are various methods of introducing this diversity. Headless Chicken mutation and large

weight initialisation ranges do this by directly introducing wider ranges of values into the

population, while Island EAs aim to evolve multiple solutions independently. These three

methods were all shown to have positive effects on performance. Intermittent population

resets had a very clear impact on performance over time, but almost none on the final

performance.

The accuracy of the simulator is also central to the performance of the algorithm.

Section 5.3.3 showed that performance is improved when data is augmented to increase

the rate of training data acquisition. Interestingly, the improved performance was not due

to higher overall simulator accuracy; augmentation caused decreased final accuracy. The

improved performance early in the evolution process caused by data augmentation likely

meant that the simulator’s accuracy improved rapidly earlier in the evolution process,

allowing it to evolve more transferable controllers earlier.

The size of the SNN did not have a significant impact on the rate of improvement for

this problem, but a larger SNN is suggested as a safe choice since it allows the simulator

to learn to simulate the real world more accurately. In this case, however, the simulator’s

inaccuracy did not have too great an impact on performance, possibly due to the simplicity

of the problem. The size of the real world tournament also had no significant effect on

performance since real-world evaluations only gather data for the dynamic simulator and

do not affect the evolution process in any other way.
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In most cases, the number of hidden neurons in the controllers did not have a significant

impact on performance; however, the use of recurrent connections was shown to have a

negative impact. The choice of network architecture is likely highly problem dependent,

and an appropriate structure should be chosen for the problem to be solved.

Simulated Binary Crossover was shown to offer far improved performance over both of

the other evaluated methods of crossover. It should be at least considered for use in all

BNS applications.

Finally, the real world results showed for the first time that BNS is able to rapidly

evolve closed-loop controllers that transfer effectively to the real world and bridge the

reality gap, as was done previously using a static SNN. Controllers capable of solving the

problem were able to evolve in only four real-world evaluations. The behaviours exhibited

by the controllers was similar to that seen in previous research by Pretorius et al. (2013);

robots circled the light and often developed a handedness by preferring to turn only in

one direction.



Chapter 6

Damage Recovery for Closed-loop

Controllers

6.1 Introduction

The investigation presented in this chapter followed directly from investigations A (Chap-

ter 4) and B (Chapter 5). Investigation A showed that BNS is able to recover from damage

to the real-world robot for which controllers were being developed, and investigation B

showed that it is possible for BNS to be used to evolve closed-loop controllers. Inves-

tigation C then aimed to evaluate the damage recovery ability of closed-loop controllers

evolved using BNS. Figure 6.1, item 7 shows the steps in evaluating BNS’s damage recovery

ability.

Section 6.2 discusses the types of damage that were evaluated and the adaptations that

were evaluated for their ability to improve BNS’s damage recovery, followed by Section

6.3, which discusses their implementation. Sections 6.4 and 6.5 present the results of

evaluation in simulation and the real world, respectively. Finally, Section 6.6 concludes

the chapter.

6.2 Damage Types and Adaptations

This section discusses the types of damage which were inflicted on the robot, as well as

the adaptations that were evaluated. It is represented by item 7.1 in Figure 6.1. Since

125
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Figure 6.1: Investigation C focus

closed-loop controllers are able to make decisions based on information gathered from the

world around them, the types of damage from which such a controller may be able to

recover are much more varied than the simple damage evaluated in investigation A, where

an open-loop controller was used. It was also possible to inflict damage on the sensors,

which the robot uses to gather data from its environment.

6.2.1 Types of Damage

The types of damage to the robot’s wheels which were evaluated are those where one

wheel:

� is slowed to a percentage of its intended speed,

� stops spinning intermittently,

� is only able to spin at the minimum wheel speed, and

� is only able to spin at the maximum wheel speed,

or where both wheels are slowed to a percentage of their intended speeds.
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The types of damage inflicted on the sensors are sensors which:

� always return the maximum sensor value,

� always return the minimum sensor value,

� intermittently return the minimum sensor value, and

� have more noise than an undamaged sensor.

6.2.2 Adaptations

Four adaptations previously evaluated in investigation A, introduced in Chapter 3, were

evaluated for the evolution of closed-loop controllers (Figure 6.1, item 7.3):

� A sliding window of training data.

� Reset the population of controllers when damage occurs.

� Reset the simulator when damage occurs

� Increase the mutation rate and magnitude when damage occurs.

6.3 Implementation Details

For this investigation, all implementation details not explicitly discussed, and the problem

to be solved, were implemented as in investigation B (Chapter 5). The discussion in this

section focuses solely on the implementation of damage for this investigation.

6.3.1 Damage

Incorrect value damage

For all cases when damage causes motor or sensor values to be incorrect, the values are

changed in software without informing the BNS process. This allows the effects of damage

to be evaluated without inflicting actual damage on the physical robot.
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Intermittent damage

For cases of intermittent damage, once every m motor commands or sensor readings the

value is set to the minimum value, where m is a parameter of the experiment.

Increased sensor noise

When gathering data from the sensors for the construction of a static sensor simulator,

the distribution of noise in the sensors was calculated. This data was then used to double

the amount of noise experienced by the robot’s sensors.

6.3.2 Time of Damage Application

It was observed that, in general, BNS was able to evolve a solution to the problem in fewer

than ten real-world evaluations. Therefore, damage was applied after twenty real-world

evaluations to allow ample time for the discovery of solutions to the problem. This step

is represented by item 7.2 in Figure 6.1.

6.3.3 Parameter Evaluation

Parameters

Parameter configurations in this investigation were evaluated as in investigation A. The

parameters investigated included those for the damage recovery adaptations, as well as

those for the Headless Chicken, intermittent population reset, island, and data augmen-

tation adaptations. The parameters from the previous investigation were evaluated to

establish any impact they may have had on damage recovery for closed-loop controllers.

Default parameter configuration

As with investigation B, a default parameter configuration was chosen and varied in order

to evaluate the effects of the parameter’s performance.

Presentation and analysis

As with investigation B, each parameter configuration was run thirty times and a repre-

sentative statistic calculated using equation (3.1) on page 58.
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Table 6.1: Default parameter configuration

Parameter Value

RW evaluation limit 100

RW tournament size 0.1

Controller tournament size 0.1

Population size 100

Mutation rate 0.1

Mutation magnitude 0.05

Controller ANN hidden neurons 5

Weight initialisation range [-5,5]

Simulator ANN hidden neurons 25

Controller network type Recurrent

6.4 Results and Discussion

In this section, the results of evaluations of BNS’s damage recovery are presented. A large

number of configurations were evaluated and their results aggregated, and a representative

selection of these results presented. Results in this section are presented identically to those

in Chapter 5.

6.4.1 Performance without adaptations

Figure 6.2 shows the performance of BNS without any adaptations, over time, with dam-

age inflicted on the robot’s wheels. Slowing down both of the robot’s wheels had the

smallest impact on performance, which was to be expected since the robot’s symmetry

was maintained. Slowing the robot’s left wheel to either the minimum speed or some pro-

portion of its desired speed had similar effects, though it took longer to recover when the

motor was set to the minimum speed. Setting one of the wheels to the maximum speed

had by far the largest impact of any damage type, likely because controllers evolved to

favour turning counter-clockwise, meaning that the left wheel was required to spin slower.

In cases when the left wheel was forced to the maximum speed, the robot’s handedness and

preference for turning left meant that it was unable to turn towards the light and drove

directly away from it. Finally, intermittent damage caused only a minor initial drop in

performance, but performance degraded over time. This decreasing performance is likely

because the SNNs did not have any recurrent connections and were, therefore, unable to
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simulate temporal damage, such as intermittent damage. As the simulated controllers

were increasingly finely tuned, the intermittent damage had an increasing impact on per-

formance. The negative effects of intermittent damage highlighted the importance of the

selection of an appropriate topology for SNN construction so that all aspects of reality are

able to be simulated.
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Figure 6.2: Performance over time using BNS for recovery from different wheel damage

types

Figure 6.3 shows the performance of BNS over time, with damage inflicted on the

robot’s sensors. BNS was able to recover from each type of damage. The minimum

reading and noisy reading damage types had the most substantial impact on performance.

Max reading damage had a much smaller impact, and intermittent sensor damage even

less so. The final fitness value for the noisy sensor damage was the lowest, likely since

the controller was performing as close to optimally as possible, given the amount of noise

being introduced into the sensor readings.

Figures 6.4a and 6.4b show the effects of a slow left wheel and noisy sensors, respectively

- both without any BNS adaptations implemented and in the real world. Each figure shows

the path followed by the robot after having learned to solve the problem, after damage is

inflicted, and once the system had attempted to recover from damage. In every plot of a

robot’s real-world recovery from damage, the number of real-world evaluations taken for

recovery is given in parentheses.
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Figure 6.3: Performance over time using BNS for recovery from different sensor types

Feed-forward controllers were used for the real-world evaluations presented in this

section since they were found, in investigation B, to offer significant performance benefits

over recurrent controllers. These controllers allowed a clearer comparison to be drawn

between the damage recovery performance of BNS with and without the adaptations

discussed in this investigation, while minimising the influence of the poor selection of

controller topology.

Post-damage during its execution, the robot in Figure 6.4a reached the boundaries of

the testing area. When this occurred, the robot was rotated to a random angle towards

the centre of the testing area and allowed to continue executing, which led to the three

sharp angles visible in the path. The system did recover from the damage, but the post-

recovery path followed by the robot was inefficient; the left wheel of the robot was slowed,

yet the controller continued to prefer clockwise rotation, which required the left wheel to

spin faster than the right. This preference was likely due to a lack of diversity in the

population which rendered it unable to discover new counter-clockwise behaviours.

Noisy sensor damage had a very large impact on the path followed by the robot.

Figure 6.4b shows that the robot drove in a tight circle, unable to move towards the

light immediately after damage was applied. The algorithm was able to recover from this

damage in twenty-three real-world evaluations. The final path did not make the tight
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turns that were made before damage. This may have been because faster turning requires

individual readings to be considered reliable, whereas, with large amounts of noise, more

readings need to be taken before decisions are made in order to increase the confidence in

those decisions.
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(a) Paths followed by a robot experiencing

left wheel damage (16 RW evaluations for

recovery)
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(b) Paths followed by a robot experiencing

noisy sensor damage (23 RW evaluations for

recovery)

Figure 6.4: Paths followed in the real world by robots experiencing different damage types

These results show that BNS has the ability to recover from damage, even before any

adaptations have been made to the algorithm; the same as was found in investigation

A. This inherent damage recovery is a powerful property of the algorithm; while other

methods of ER require the implementation of specific damage detection and recovery

systems, systems evolving robot controllers using BNS have this built in from the start.

6.4.2 Sliding Window

Investigation A showed that the use of a sliding window is beneficial for damage recovery

with BNS. The results in this section show that this held when BNS was used to evolve

closed-loop controllers. It is visible in Figure 6.2 that, of the types of damage evaluated,

the maximum wheel speed damage had the largest impact on performance. Figure 6.5

shows that the use of a window of size 150 or 300 offered a highly significant (p < 0.005)

(Table 6.2) improvement in recovery performance over no window, allowing BNS to recover

almost entirely within ten real-world evaluations.
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Figure 6.5: Performance over time with a wheel spinning the maximum speed and different

sliding window sizes

Table 6.2: p-values for Figure 6.5

None 150

150 0.00027

300 0.00168 0.19073

The ideal size of this window was not obvious. Several sizes were, therefore, evaluated

for each type of damage. Figure 6.6a shows the effect of different window sizes on a robot

which sustained noisy sensor damage. Figure 6.6b shows the effect of different window

sizes on a robot which sustained left wheel damage.

Table 6.3: p-values for Figure 6.6

(a) p-values for Figure 6.6a

None 50 150 300

50 0.48252

150 0.00007 0.00000

300 0.00002 0.00000 0.23399

600 0.00005 0.00000 0.78446 0.52014

(b) p-values for Figure 6.6b

None 50 150 300

50 0.47335

150 0.00025 0.00000

300 0.00275 0.00045 0.84180

600 0.00868 0.00250 0.68432 0.61001

It is clear from these results that there is a lower bound to the size of the sliding

window which is able to provide a benefit to BNS. A window of size 50 allowed BNS to

recover more quickly than it was able to without a window, but caused the algorithm’s
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(a) Noisy sensor readings
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(b) Damage to left wheel

Figure 6.6: Performance over time with different sliding window sizes

overall performance to be significantly (p < 0.005) worse than windows of any larger size.

As the size of the window tends towards the size of the full set of data, the performance

benefits will gradually decrease until the window is the same size as the data set. Since

this fall-off in performance is likely to be more gradual than that which is found when the

window is too small, there is less risk of choosing a window size which is too large, than

one which is too small.

The ideal window size is likely problem-dependent since, in investigation A, a window

of size 150 was found to perform better than 300, whereas the opposite was true in this

case. The range of values which did offer significant improvement was large, however, and

in general, the use of a window improved BNS’s performance.

It should be noted that a sliding window was not effective for all types of damage

and could not improve performance in situations where it is impossible for the simulator

to simulate the robot accurately, such as with intermittent wheel damage. In the case

of intermittent wheel damage, a sliding window had a very significant (p < 0.00001)

negative impact on performance. Figure 6.7 shows the algorithm attempting to recover

from intermittent damage with and without a sliding window.

BNS’s recovery from every evaluated type of damage, other than intermittent, was

improved through the use of a sliding window. Intermittent damage likely caused an

increased level of noise in the training data. When using a sliding window, this noise

makes up a larger portion of the training data being used to train the simulator.
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Figure 6.7: Performance over time with intermittent damage to the left wheel with a

sliding window of size 300

6.4.3 Population and Simulator Reset

Population Reset

Figure 6.8 shows that resetting the controller population significantly (p < 0.05) improved

BNS’s ability to recover from damage. This was likely due to the increased diversity, as seen

in Figure 6.8c, which caused the EA to explore more of the search space to identify viable

solutions. This was not the case for every experiment, but the worst-case performance of

BNS using a population reset was not significantly different from BNS without the reset,

meaning that this adaptation is unlikely to cause a decrease in performance; at worst it

causes no change.

In cases where damage does not require a large change in controller behaviour, resetting

the population had a momentary negative effect on performance, though this was quickly

rectified (Figure 6.9).

Simulator Reset

Resetting the simulator did not have a significant impact on the damage recovery perfor-

mance of BNS (Figure 6.10). This result matches similar results obtained in investigation

A. It was likely because the trained simulator, which may have converged to a solution,
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(a) Performance over time with noisy sensor

readings
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(b) Performance over time with the left

wheel spinning at the maximum speed
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(c) Diversity over time

Figure 6.8: The effects of resetting the population after damage
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Figure 6.9: Performance over time with intermittent sensor damage and a population reset

after damage

was no less incorrect than a random simulator in cases of extreme damage. Both the

random and trained simulators, therefore, needed to change significantly to be able to

simulate the new state of the real world.

6.4.4 Mutation Changes

Mutation Magnitude

The only significant (p < 0.05) impact found through increasing the mutation magnitude

was a negative one when compared to the default configuration (Figure 6.11a). This was

likely because a too-large increase in the mutation magnitude reduced the rate of conver-

gence of the population enough that it had an adverse effect on performance. Figure 6.11b

shows that the increased mutation magnitude was unable to increase the diversity of the

population, which is likely the reason that the algorithm did not exhibit any improvement.

Table 6.4: p-values for Figure 6.11a

0.05 0.1

0.1 0.12235

0.2 0.47335 0.03917
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Figure 6.10: Performance over time with left wheel damage and a simulator reset after

damage
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(a) Performance over time with a sensor re-
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(b) Diversity results

Figure 6.11: The effects of a mutation magnitude that increases after damage
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Mutation Rate

Increasing the mutation rate (Figure 6.12a) after damage had occurred had no significant

impact on BNS’s damage recovery performance (Table 6.5). This was likely because the

increased rate had no effect on the rate of convergence of the population (Figure 6.12b).
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(a) Performance over time with left wheel

damage
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(b) Diversity over time

Figure 6.12: The effects of a mutation rate that increases after damage

Table 6.5: p-values for Figure 6.12a

0.1 0.15

0.15 0.71719

0.2 0.84180 0.75059

6.4.5 Other parameters

Headless Chicken

The use of a Headless Chicken probability of 0.05 caused a marginal improvement in per-

formance (Figure 6.13a). This result was similar to those found in investigation B, where

only small Headless Chicken probabilities were beneficial. The additional diversity intro-

duced through this adaptation (Figure 6.13b) likely allows a higher degree of exploration,

leading to the faster discovery of better solutions.
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(a) Performance over time with the left

wheel spinning at the maximum speed
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(b) Diversity over time

Figure 6.13: The effects of Headless Chicken mutation on damage recovery

Table 6.6: p-values for Figure 6.13a

0 0.05 0.1 0.25

0.05 0.07978

0.1 0.30418 0.65204

0.25 0.15367 0.59969 0.57929

Intermittent Population Reset

The intermittent reset of the controller population was evaluated and found to offer a non-

significant improvement (Figure 6.14a). The increases in diversity are clearly visible in

Figure 6.14b, but the population rapidly converges to pre-reset levels of diversity between

each reset. In investigation B, this adaptation was found to be particularly volatile, so

there may exist a specific combination of reset parameters that cause an improvement, but

the small benefits exhibited do not warrant the effort required to identify these problem-

dependent values.

Island Evolutionary Algorithms

No significant improvement to damage recovery was found when using Island EAs over a

single population (Fig 6.15a). There was, however, no evidence of Island EAs reducing

BNS’s damage recovery performance. Since the adaptation was found in investigation A

to improve performance for BNS in general, it is recommended that an island is used, even
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(a) Performance over time with noisy sensor

damage
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(b) Diversity over time

Figure 6.14: The effects of intermittent population resets

if it offers no direct advantage in the case of damage to the robot, since the adaptation

marginally increases diversity in the population (Figure 6.15b).
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(a) Performance over time with noisy sensor

damage
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(b) Diversity over time

Figure 6.15: The effects of an Island EA

Data Augmentation

Data augmentation had significant (p < 0.05) adverse effects on BNS’s damage recovery

(Figure 6.16). This was likely because the use of data augmentation is based on the

assumption of the robot’s symmetry. Any damage that disrupts this symmetry makes this
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assumption false.
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(a) Performance with a damaged left wheel
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(b) Performance with the left wheel spinning

at the maximum speed

Figure 6.16: The effects of data augmentation on performance

If data augmentation is used but stopped when damage is detected, a sliding window

should be a requirement (Section 6.4.2) since data augmentation increases the rate of data

acquisition. If augmentation is stopped after damage occurs, and a sliding window is not

used, it would take longer for the simulator to improve again than if augmentation had

been used. This is because if augmentation allowed each pattern to be augmented into k

patterns for t time periods, it would take tk time periods to collect even the same amount

of data once augmentation is disabled.

6.5 Real-World Results

The results presented in this section follow the same format as those in Section 6.4.1;

they show the path followed by the robot before and after damage, as well as its path

after having recovered from damage, with each of these paths starting at the position

marked with a circle. Each plot also includes the number of real-world evaluations taken

for recovery, in parentheses. These results are the output of item 7.4 in Figure 6.1.

The three adaptations which were found to offer benefits were Headless Chicken mu-

tation, a sliding window, and a population reset. Therefore, the real-world experiments

presented in this section used these adaptations, with the parameter values given in Table
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6.7 in addition to those presented in Table 6.1.

Table 6.7: Real-world parameter configuration

Parameter Value

Recurrent controller network False

Headless Chicken probability 0.05

Sliding window size 600

Population reset upon occurrence of damage True

Figure 6.17 consists of three composite images. Each shows one real-world evaluation

of the robot. The evaluations shown are the same as with all other damage plots: the

pre-damage, post-damage, and post-recovery evaluations. In this case, the robot’s left

sensor began to return only the minimum sensor value, and the algorithm was able to

adapt and re-learn the problem in eight real-world evaluations.

Figure 6.17: Composite images of the robot in the real world, recovering from damage (8

RW evaluations for recovery)

The case where the left sensor returned, only the maximum sensor value had extreme

effects on the robot’s path (Figure 6.18a). Immediately after the damage was inflicted,

the robot was only able to drive in circles. The algorithm was able to recover rapidly

from the damage and learn to navigate using only one sensor. The path followed was

not as consistently circular, but is impressive given that, in this case, it took only seven

real-world evaluations for the algorithm to recover.

Figure 6.18b again shows BNS’s ability to recover from damage by discovering new

solutions. One of the robot’s sensors was damaged and returned only the minimum sensor

value. The robot’s path then appeared to avoid light, rather than approach it. Once

recovered, though, the algorithm discovered that, by looping towards the light source, it
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was able to use a single sensor to circle the light successfully.

Figure 6.18c shows a robot which experienced the same type of damage as in Figure

6.4a. In this case, when the robot was damaged it avoided the light and remained far away

from it. Once it was allowed time to recover, it developed a new handedness. Where before

damage it circled the light in a clockwise direction, afterwards it circled counter-clockwise

at a closer distance than before.

Finally, Figure 6.18d shows a robot which experienced the same damage as Figure

6.4b, this time with adaptations implemented. The algorithm took only four real-world

evaluations to recover, rather than twenty-three. The robot once again developed a new

handedness and circled the light in the opposite direction to before.

6.6 Conclusion

In this investigation, BNS was shown to be able to recover from damage automatically

while evolving closed-loop controllers. This recovery is possible due to BNS’s always-

learning nature; it is able to make observations about its environment and the robot, and

adapt based on these observations.

Several adaptations and parameter values were evaluated, but few offered significant

positive effects on BNS’s damage recovery. The use of a sliding window, a population

reset, and a small Headless Chicken probability were the only ones to do so.

As in previous research, a sliding window of training data was shown to be by far the

most effective method of improving damage recovery. The use of a window which was too

small had an adverse effect on performance; it is, therefore, important that the window

be large enough. Several sliding window sizes were evaluated, and it was shown that the

risk involved with the selection of a window that is too large is less than the risk involved

with selecting one that is too small. It was also found that in cases where the simulator

is already unable to simulate the real world, a sliding window may cause performance to

become significantly worse. A sliding window is still recommended, however, since the

cause of this issue is more likely the simulator topology. It is vital that the chosen SNN

topology be appropriate for the aspects of reality that are to be simulated.

In previous research, resetting the population when damage occurred was shown to
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(a) Paths followed by a robot experiencing

maximum sensor damage with adaptations

implemented (7 RW evaluations for recov-

ery)
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(b) Paths followed by a robot experiencing

minimum sensor damage with adaptations

implemented (9 RW evaluations for recov-

ery)
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(c) Paths followed by a robot experiencing

damage to its left wheel with adaptations

implemented (10 RW evaluations for recov-

ery)
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(d) Paths followed by a robot experiencing

noisy sensor damage with adaptations im-

plemented (4 RW evaluations for recovery)

Figure 6.18: Paths followed in the real world by robots experiencing different damage

types

have no effect on the performance of BNS. In the results presented in Section 6.4.3, it

was shown that for specific problems, resetting the population offered a significant perfor-

mance improvement. More substantial improvements were observed in cases of damage

which required very different behaviour from the robot before and after damage; the dis-

covery of new behaviours through exploration of the search space was assisted through
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the increase in diversity offered by resetting the population. Since no configuration was

found where a population reset negatively affected performance, it is an adaptation that

can be recommended for inclusion in a BNS implementation. Resetting the population

when damage occurs does, however, require damage to be detected, so the use of the

adaptation necessitates the implementation of damage detection systems, which increases

the complexity of BNS’s implementation.

The use of a Headless Chicken mutation offered a small improvement. Similar re-

sults were found in investigation B. As the Headless Chicken probability increases, this

improvement was diminished. It is, therefore, suggested that a small Headless Chicken

probability is used with BNS implementations since it assists with the introduction of

additional diversity into the population, allowing for the discovery of new solutions.



Chapter 7

Damage Recovery for Complex

Robots

7.1 Introduction

Investigations A and C have shown that BNS is able to recover from damage not only for

simple robots with simple controllers, but also for those with more complex, closed-loop

controllers. Investigation D, the focus of this chapter, now aims to evaluate BNS’s ability

to recover when damage occurs to a robot of much greater complexity than the simple

differentially steered robot used in previous investigations.

While the robot is more complex that used in investigation A, the procedure followed

to conduct the two investigations is very similar. Figure 7.1, which shows the process

followed for this investigation, is therefore the same as the matching diagram in inves-

tigation A. Item 2 represents the BNS system being evaluated. Item 3.1 represents the

system responsible for simulating damage, and items 3.2 and 3.3 represent the evaluation

of different environmental and adaptation parameters in simulation, respectively. Finally,

Item 3.4 represents the real-world evaluation of the BNS algorithm.

Research on the evolution of controllers for advanced robots has been conducted by

Woodford (2018), and many implementation decisions were based on that research. The

BNS implementation (Figure 7.1, item 2) was developed by Woodford (2018) and aug-

mented with a damage system by the author.

147
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Figure 7.1: Investigation D focus

Section 7.2 discusses the implementation details while Section 7.3 presents the results

of initial experiments, determining the effects of damage on the hexapod. Sections 7.4

and 7.5 discuss the results of damage-recovery experiments in simulation and in the real

world, respectively. Finally, Section 7.6 concludes the chapter.

7.2 Implementation Details

In this investigation, BNS was implemented to evolve controllers for a hexapod robot,

with the objective of moving the hexapod as far in any direction as possible. This section

discusses the implementation that was done in order to conduct this investigation. Re-

search on the evolution of controllers for the hexapod was conducted by Woodford (2018).

The results of that research were used as the starting point for this investigation, and are

discussed further in this section.

Section 7.2.1 discusses the specific hexapod robot which was used, Section 7.2.2 dis-

cusses the types of damage the robot can experience, Section 7.2.3 discusses the testing

area, and Section 7.2.4 discusses the construction of a controller. Sections 7.2.5 and 7.2.6
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discuss the implementation of BNS’s EA and hexapod motion simulator. Lastly, Section

7.2.7 discusses details of the parameter evaluation and the analysis of the results.

7.2.1 PhantomX AX Hexapod

The robot used for this investigation was the PhantomX AX Hexapod Mark II (Figure

7.2). This robot is significantly more complex than the Khepera. The Khepera’s movement

depended only on the speed of its two motors. The hexapod has eighteen independent

servo motors, each with a unique ID (Figure 7.3).

front

1 2

3 4

5 6

Figure 7.2: PhantomX AX Hexapod Mark II, with leg numbers marked

7.2.2 Damage

Damage for this investigation took the form of broken legs on the hexapod. This was

simulated by altering commands to raise the leg to a position where it could not contact

the ground (Figure 7.1, item 3.1). The robot’s legs are numbered in Figure 7.2. The

damage types, and their corresponding broken legs, are shown in Table 7.1; these damage

types represent all possible damage types, when the symmetry of the robot is taken into
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Figure 7.3: Hexapod Servo Configuration

account. Types of damage with more damaged legs are likely to present a greater challenge

and have more adverse effects than those with fewer damaged legs.

Table 7.1: Damage types

Damage Type 0 1 2 3 4 5 6 7

Damaged Legs 1 5 1,2 5,6 1,5 1,4 1,6 1,3,5

Working Legs

Damage Type 8 9 10 11 12 13 14 15

Damaged Legs 1,5,6 1,2,4 1,4,5 1,3,6 1,3,4,5 1,3,5,6 1,4,5,6 1,3,4,6

Working Legs

Figure 7.4 shows the effects of damage on the paths followed by three evolved controllers

(1 - 3), and one hand-designed tripod controller, in the real world robot. The tripod

controller walks with a tripod gait, which always has at least three of the robot’s legs in

contact with the ground. The controllers were each executed on an undamaged robot, and

one with a broken leg (damage type 0), and their paths were observed. Controllers 1 and

the tripod controller experienced the worst decrease in performance, while controller 2

experienced very little change. Controller 3 was unable to move as far, but still exhibited

the same side-to-side swaying motion as it exhibited before damage.

It is clear that a single type of damage can have very varied results, depending on

the type of controller affected by the damage. This means that the performance of the

algorithm and the adaptations are also likely to vary to a greater degree than was observed
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Figure 7.4: The paths followed by different controllers before and after damage

in previous experiments, where the effects of specific damage types on the Khepera robot

were more consistent.

7.2.3 Testing Area

The only data required is the robot’s change position and orientation based on the com-

mands it executes. The same tracking system as in the previous investigations (Section

4.2.6, page 72) was, therefore, able to be used. Figure 7.2 shows the hexapod affixed with

coloured tracking markers.

7.2.4 Controllers

The hexapod robot’s servo motor positions are set by executing a command. Each com-

mand consists of eighteen values which represent the desired position of the robot’s servos.

Investigations B and C used closed-loop controllers on a simple robot. This inves-

tigation no longer used closed-loop controllers, but rather open-loop controllers, as in

investigation A. The goal of the controllers is to cause the robot to move the hexapod as
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far as possible in any direction, by walking, or with another form of legged locomotion.

This objective is the same as was used by Woodford (2018).

Each open-loop hexapod controller consists of eleven hexapod commands. The robot

starts in its default standing stance, with each servo at its half-way position. Each com-

mand is then executed in order. Sufficient time is allowed between the execution of each

command for the servos to reach their desired positions and for the robot to come to rest.

The values to which each servo can be set must be constrained, since the physical

construction of the robot prevents the servos from rotating too far. Mutation of the

controllers is therefore also constrained to within these limits.

7.2.5 Motion Simulator

The SNN used to simulate the hexapod robot has a similar topology to those used to

simulate the Khepera (Figure 7.5). Instead of two previous and current motor speeds,

as was the case with the Khepera, the hexapod simulator takes as input the current and

next positions for each of the hexapod’s eighteen servo motors. There is no time input, as

was the case with the Khepera simulator, since the next command is only executed once

the desired motor position has been reached. The hexapod also had no requirement for a

sensor simulator, since the closed loop controllers utilised for this experiment did not use

any sensors on the robot during the execution.

The most notable change, however, is the number of ANNs used for simulation. In

previous experiments, one ANN was used for the simulation of each of the robot’s changes

in x and y positions, and its rotation. This was because, for the Khepera, investigation

had shown the configuration to offer good results (Pretorius et al., 2013). In the case of

the hexapod the opposite was shown to be true. Therefore, a single network with a hidden

layer containing 200 hidden neurons was used to predict all three of the robot’s change

in x, y, and rotation (Woodford, 2018). Additionally, an ensemble of networks was used,

which allowed an uncertainty value to be determined for each prediction. These values

were then used as a part of the evaluation of controllers in simulation (Section 7.2.6).

The SNN also has an additional dropout layer. This layer is responsible for causing

dropout of the neurons in the previous layer, thereby reducing the risk of overfitting, which

is important, given that the set of training data starts very small at the beginning of the
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BNS execution.
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Figure 7.5: Simulator neural networks for the Hexapod

7.2.6 Evolutionary Algorithm

The EA for this investigation was created in a similar manner to those for the others,

and all choices in terms of operators and parameter values were based on those found

to be effective by Woodford (2018). Tournament selection was used for the selection of

individuals for reproduction, which were then combined using simulated binary crossover

and mutated with a normally distributed random variable.

The controller fitness function was designed to reflect the goal of achieving the maxi-

mum displacement in any direction. The fitness of a hexapod controller is given by:

fh = − V

‖pe − ps‖2
(7.1)

where pe and ps are the robot’s final and initial positions, respectively, and V is the penalty

value. The controller’s penalty is calculated as:

V =

nc∑
i=1

σ2i (7.2)

where nc is the number of commands per controller and σ2i is the variance of the predictions

given by the ensemble of simulators for the ith command. The penalty value serves to



CHAPTER 7. DAMAGE RECOVERY FOR COMPLEX ROBOTS 154

reward controllers that have lower uncertainty. The behaviours of such controllers are

likely to be simulated more accurately and transfer to the real world more effectively

since the networks in the ensemble agree on how the controller will behave. This directs

evolution towards controllers that are able to transfer well, similar to the transferability

approach (Koos et al., 2013a).

As in previous investigations, a method of measuring the population’s diversity was

required. The population’s average individual was calculated as in investigations A, B,

and C, and the diversity of the population, dp, was calculated using equation (7.3):

dp = ln(

np∑
i=1

198∑
j=1

|cij − c̄j |) (7.3)

where np is the number of individuals in the population, each individual has 198 genes

(eleven commands with eighteen servo positions per command), cij is the jth gene of the

ith individual, and c̄j is the jth gene of the average individual. The natural logarithm

is taken to make the results more easily interpretable, since they would otherwise fall

in a very wide range, and differences between populations with low diversity would be

indistinguishable.

7.2.7 Parameter Evaluation

The parameter evaluation in this investigation was carried out as described in Chapter 4. A

default parameter configuration was chosen and each parameter then varied and evaluated

thirty times in the fake real world (Figure 7.1, item 2). The results of the evaluations in

the fake real world were used to determine the overall impact of the parameter on the

algorithm’s performance.

The fake real world for this experiment (Figure 7.1, FRW 1) was implemented by

Woodford (2018). As in previous experiments, the static SNN was constructed as per

the standard method of SNN construction: random commands were executed on the real

world robot. The data from these experiments were then used to train the SNN.
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Parameters

The default parameter configuration for all experiments is presented in Table 7.2. The

adaptation and environment parameters investigated, as well as the values evaluated for

each, are then presented in Tables 7.3 and 7.4.

Table 7.2: Default parameter configuration

Parameter Value

RW tournament size 0.7

Controller tournament size 0.5

Population size 400

Mutation rate 0.1

Mutation magnitude 20

Intermittent simulator reset True

Table 7.3: Adaptation parameter values

Parameter Values

Sliding window size None, 150, 300, 600, 1000

Mutation rate 0.1, 0.15, 0.25

Mutation magnitude 20, 30, 40

Reset controller population True, False

Reset simulator True, False

Complete restart True, False

Training data reset True, False

Table 7.4: Environment parameter values

Parameter Values

RW evaluation at which damage applied 100

Total RW evalautions 200

Damage type 0,1,..,15

Presentation and analysis

When presenting results, instead of fitness values, the square of the displacement of the

fittest controller is shown. This metric is more easily visualised and understood. The

BNS algorithm is run for more real-world evaluations when evolving controllers for the

hexapod, than when evolving controllers for the Khepera; the results are more difficult
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to visualise if all real-world evaluations are shown. The performance is, therefore, shown

from the first real-world evaluation after damage occurs (real-world evaluation 101).

The observations for each configuration for the Mann-Whitney U test were calculated

using:

Oτ =

200∑
i=101

(pe,iτ − ps,iτ )2 τ = 1, 2..30 (7.4)

where pe,iτ is the final location of the robot after the ith real-world evaluation during

the τ th run using the parameter configuration. Likewise, ps,iτ is the starting location for

the ith real-world evaluation during the τ th run. This equation is based on equation (3.1)

and is once again designed to take into account not only the final performance, but also

the rate of recovery of the algorithm.

7.3 Initial Results and Discussion

This section presents the results of evaluation of BNS without any damage adaptations

(Figure 7.1, item 3.2). These evaluations were performed to discover more about the

impact of damage on the hexapod, the impact of the intermittent simulator resets proposed

by Woodford (2018) on damage recovery performance (Section 7.3.1), and BNS’s ability

to recover from damage before damage adaptations were implemented (Section 7.3.2).

7.3.1 Intermittent Simulator Reset

Woodford (2018) found that for more complex robots, intermittently resetting the sim-

ulator brought about a significant improvement in performance. Figure 7.6 shows that

this is also true when considering damage recovery. Resetting the simulator once every

twenty fake-real-world evaluations had an immediate and very significant (p < 0.0005)

positive impact, possibly due to the simulator reset which occurred at the same real-world

evaluation as when damage was inflicted.

These results, along with those found by Woodford (2018) indicate strongly that in-

termittent simulator resets should be implemented for more complex robots. They bring

about improved performance even when damage is not a concern, and allow for improved
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(a) Damage Type 0
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(b) Damage type 5

Figure 7.6: Post-damage performance when the simulator is reset intermittently with

different damage types

recovery when it is. Since BNS continues to function in the same way before and after

damage, it makes sense that the same adaptation that improved performance before dam-

age would do so afterwards. All results in Section 7.3.2 and 7.4 were obtained using BNS

with intermittent simulator resets.

7.3.2 No Adaptations

This section presents the results of BNS attempting to recover from damage in simulation

with no changes made to the algorithm. Figure 7.7 shows these results for each of the

sixteen evaluated damage types, which were obtained by aggregating the results of thirty

fake real world experiments for each damage type, that is, thirty controllers. The evolution

of controllers begins after five real-world evaluations.

At real-world evaluation 100, damage is inflicted. The result of this is clearly visible in

the plots where it causes the performance to decrease suddenly. It is clear from the per-

formance plots that the effects of different damage types have differing severity. Damage

types 0, 1, and 3 have very little effect on the performance of the robot; it continues to

improve without a large decrease in performance.

Damage types 4 and 6 - 15 all perform very poorly, and their performance is far worse

after damage than before; while their performance does improve over time, the post-
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damage performance of the robot in the case of these damage types is too poor for it to

be realistically considered to have recovered. This group of damage types likely represents

those that are severe enough that the robot is unable to recover effectively. The robots

experiencing these damage types do begin to recover very slowly but are not able to attain

levels of performance near to those achieved before damage. Intuitively, this makes sense,

as many of these damage types represent the robot having lost control of three or more of

its legs.

Finally, damage types 5 and 2 fall between the other two groups of damage types. The

damage has a large impact on performance, but the effects are not as severe as for damage

types 6 - 15.
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Figure 7.7: Performance over time when different damage types are applied

Since it would be infeasible to present the results of the evaluation of adaptations on

every type of damage presented here, four types of damage have been chosen for further

evaluation. Damage type 0 was chosen as it is similar to damage inflicted on the robot in

other damage recovery research (Cully et al., 2015) and represents a damage type which

has only a small effect on the robot’s performance. Damage type 14 was chosen since it

is one of the damage types with the largest negative effect on performance, and while the

algorithm is unable to recover to pre-damage levels of performance, it is still of interest

to investigate which adaptations are able to cause larger improvements in performance.

Finally, damage types 2 and 5 were chosen as their performance represents a middle-ground

between the other two damage types.
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Plots of the performance of all four damage types will not necessarily be presented for

each adaptation. Only those that contribute useful information to the presentation of the

results are shown.

Figure 7.8 shows the effects of the four chosen damage types on the hand-designed

tripod controller. It is clear that different damage types have very different effects on the

controller. Damage types 0 and 5 reduced the distance that the robot was able to walk

slightly, but their impact was much smaller than the impact of damage types 2 and 14.

The types of damage that have the most negative impact on the robot’s performance are

likely to be different for other controllers; the paths presented in Figure 7.4 are evidence

of this.
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Figure 7.8: The paths followed by a tripod controller experiencing different damage types

7.3.3 Identified Issues

Two major issues were identified with regard to the effects of damage on the hexapod.

Firstly, each evolved controller utilises its own method of locomotion. Each of these will

depend on different combinations of the robot’s legs. This, in turn, means that damaging a
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specific leg on the robot will have different effects depending on the controller being used.

The effects of different types of damage on a single controller were also found to be very

diverse. These varied effects increase the variance of the algorithm’s performance after

damage, making the analysis of results more challenging than in previous investigations.

Results which may appear significant when considering only the mean performance are

often not, due to their high variance. This is seen in a number of results in Section 7.4.

The second issue is that some damage types cause the robot to be unable to move very

far at all, even after recovering from damage. An example is damage type 14, which leaves

the robot with only two functioning limbs. With so few limbs, the robot’s performance

does improve very slightly, but it is unable to reach levels of performance near those of the

undamaged robot. The goal of the implementation of adaptations is therefore simply to

improve the performance of BNS’s damage recovery from its base rate, since it is unlikely

that the robot can fully recover from every type of damage.

7.4 Adaptation Results and Discussion

In the following sections, the results of experiments using BNS with various configurations

(Figure 7.1, item 3.3: Section 7.2.7) are shown. Section 7.3.2 presents the results with the

default configuration, and sections 7.3.1 to 7.4.5 show the results when using each of the

adaptations.

7.4.1 Mutation Changes

As was found in the previous investigations, increasing the mutation rate after damage

occurred (Figure 7.9) had no significant, positive impact on performance (Table 7.5). It

can be seen in Figure 7.9c, however, that an increased mutation rate does increase the

diversity in the population, though this increase was insufficient to bring about a significant

improvement in performance.

As with the mutation rate, increasing the mutation magnitude after damage (Figure

7.10) had no significant impact on performance for any type of damage (Table 7.6). Once

again, Figure 7.10c shows that this was the case in spite of an increase in population

diversity.
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(a) Post-damage performance for damage type 0

��� ��� ��� ��� �	� ���
�������������������

	��


��

����

����

����

����

����

��
���

��
�

��

���
����
����

(b) Post-damage performance for damage type 5
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(c) Diversity over time

Figure 7.9: The effects of different mutation rate increases after damage occurs
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(a) Post-damage performance for damage type 0

��� ��� ��� ��� ��� ���
	
���������
��
�����

���

���

����

����

����

�
���
��

�
�

��
��
��

(b) Post-damage performance for damage type 3
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(c) Diversity over time

Figure 7.10: The effects of different mutation magnitude increases after damage occurs
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Table 7.5: p-values for Figure 7.9

(a) p-values for Figure 7.9a

0.1 0.15

0.15 0.36322

0.25 0.52014 0.80727

(b) p-values for Figure 7.9b

0.1 0.15

0.15 0.22823

0.25 0.34783 0.87663

Table 7.6: p-values for Figure 7.10

(a) p-values for Figure 7.10a

20 30

30 0.23985

40 0.87663 0.27719

(b) p-values for Figure 7.10b

20 30

30 0.24581

40 0.14128 0.64142

Finally, increasing both the mutation rate and magnitude together also had no signif-

icant impact on performance. This is, once again, similar to the results of the previous

investigations.

The fact that these adaptations did not improve performance despite the increases in

population diversity indicate that, at least for the hexapod, population diversity was not

as large an issue as anticipated. At the same time, the adaptation did not negatively

affect performance. There is, therefore, no reason not to suggest a marginal increase in

the mutation parameters if damage can be detected; the increases may offer performance

benefits in cases where diversity is more of an issue than was the case in these experiments.

7.4.2 Population Reset

When evolving hexapod controllers, resetting the population (Figure 7.11) was found to

have no significant effect on performance in the majority of cases (Figure 7.11b). In

those cases where the adaptation had an effect, such as Figure 7.11a, performance was

significantly worse (p < 0.05) than without the adaptation. The effect of the adaptation

on population diversity can be seen very clearly in Figure 7.11c.

The apparent contradiction between these and previous results can be explained by the

large difference in complexity between the robots. For simple robots, such as the Khepera,

the evolution of an effective controller occurs much more rapidly than for the hexapod. In

previous investigations only thirty or twenty real-world evaluations were needed to evolve
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(a) Post-damage performance with damage type

5
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(b) Post-damage performance with damage type

14
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(c) Diversity over time

Figure 7.11: The effects of resetting the controller population after damage occurs
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working controllers for investigations A and C, respectively. These low numbers meant

that it was often better to evolve an effective controller from a completely new, random,

population than to attempt to evolve the new controller starting with the population

of controllers which had been evolved for the undamaged robot. This is not the case

for the hexapod robot. The controllers’ eighteen dimensional search space is much more

complex than the Khepera’s two-dimensional one. One hundred real-world evaluations

were required to evolve controllers which could be considered to adequately complete the

task. This is so much longer than was required for the Khepera that, if the damaged robot

operates at all similarly to the undamaged robot, it becomes faster to evolve performant

controllers from the existing population than to start from a new one.

7.4.3 Training Data Reset

The worst-case performance, when resetting the training data after damage occurred,

was not significantly different to the performance without the reset (Figure 7.12a). In

cases of extreme damage, such as damage type 14, the adaptation had a very significant

(p < 0.0005) positive effect on performance.
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(a) Post-damage performance with damage type

5
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(b) Post-damage performance with damage type

14

Figure 7.12: The effects of resetting the training data after damage occurs

This adaptation is able to improve the algorithm’s performance because resetting the

training data means that after damage occurs, the simulator no longer trains on the old
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incorrect training data and is able to adapt to the new state of the robot more rapidly.

The downside to this adaptation’s use is that it requires knowledge of the occurrence

of damage so that the data can be reset. The sliding window adaptation does not have

this requirement, which makes it a more appealing choice if damage detection systems are

not already in place for a given robot.

7.4.4 Complete Restart

As with resetting the training data, the worst case performance when restarting the entire

BNS process was no different than with no adaptations (Figure 7.13a). In other cases, the

adaptation had a significant (p < 0.0005) positive impact on performance. The effects of

the reset on the population’s diversity can be seen in Figure 7.13c. The rate of convergence

after the reset was slower than when resetting only the population. This was likely because

when starting BNS anew, the new simulator changes rapidly, causing sudden changes to

the evaluated fitness of individuals in the population; an individual that was evaluated

as the best in the population may no longer perform well when the simulator is updated.

This causes convergence to be erratic early in the evolution process.

When resetting the entire BNS algorithm, three aspects of the system must be reset:

the simulator, the training data, and the population of controllers. Since the simulator is

already reset once every twenty real-world evaluations (Section 7.3.1), the only difference

between resetting the entire algorithm and resetting the training data is the reset of the

controller population. The results in Section 7.4.2 showed that for complex robots, the

population reset had either no impact at all, or a negative impact. Figure 7.14 shows the

performance with a complete restart and a training data reset. The results are not sig-

nificantly different, once again reiterating that the use of the population reset adaptation,

even in conjunction with other adaptations, does not offer any benefit to the algorithm’s

ability to recover from damage for complex robots.

7.4.5 Sliding Window

Figure 7.15 shows the effects of different window sizes on the algorithm’s damage recovery.

It was found that only in cases of more extreme damage, such as damage type 14, did



CHAPTER 7. DAMAGE RECOVERY FOR COMPLEX ROBOTS 167

��� ��� ��� ��� ��� ���
	
���������
��
�����

���

���

���

���

����

����

����

����

�
���
��

�
�

���	��
��
	��
��

(a) Post-damage performance with damage type

5
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(b) Post-damage performance with damage type

14
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(c) Diversity over time

Figure 7.13: The effects of completely restarting BNS after damage occurs
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Figure 7.14: Post-damage performance when using the complete reset and reset data

adaptations for damage type 2

the windows bring about an improvement in performance, as was the case for the training

data reset. For damage types that are less severe, such as damage type 0, the windows did

not cause any significant improvement. This is likely because in the case of damage type

0, and other mild damage types, the difference in the robot’s behaviour before and after

damage was not large enough to make the older training patterns entirely invalid. The

advantage of a much larger training set consisting of only slightly incorrect training data

outweighed the advantages of ceasing training using those training patterns. For damage

type 14, on the other hand, the drastic change in behaviour meant that the sliding window

assisted the simulator in adapting more rapidly after the damage had occurred.

In many cases, such as with damage type 14 (Figure 7.15b), the performance when

using a window of size 600 or 1000 is not significantly different from no window at all.

This corresponds with the findings of the previous investigations which found that, as the

size of the window increases towards the size of the full set of training data, the benefits

of a window’s use become smaller. The window of size 150 performed significantly worse

than no window in the case of damage type 0, once again highlighting the importance of

a large enough window size. A sliding window of the same size did perform significantly

better than no window in the case of damage type 14, but a moderately large window can

once again be recommended, since the worst case performance for a window of size 300



CHAPTER 7. DAMAGE RECOVERY FOR COMPLEX ROBOTS 169

was not significantly different from no window and at best offered the best improvement

of any window size.
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(a) Post-damage performance for damage type 0
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(b) Post-damage performance for damage type 14

Figure 7.15: The effects of different sliding window sizes

(a) p-values for Figure 7.15a

None 150 300 600

150 0.02068

300 0.92344 0.01765

600 0.98231 0.03917 0.99410

1000 0.09334 0.57929 0.10233 0.12597

(b) p-values for Figure 7.15b

None 150 300 600

150 0.03147

300 0.04676 0.79585

600 0.48252 0.07483 0.11882

1000 0.64142 0.00403 0.00697 0.16687

It was considered that the sliding window’s beneficial performance contributions may

be overshadowed by the use of intermittent simulator resets. Experiments were therefore

conducted to evaluate the impact of a sliding window in the absense of intermittent simu-

lator resets, but the effects of the use of a sliding window were found to be similar whether

or not intermittent simulator resets were used.

7.5 Real-World Results

This section presents the results of BNS executed on the hexapod in the real world (Figure

7.1, item 3.4). Only the paths followed by robots experiencing damage types 0 and 2 are

shown here, since preliminary experiments found that after experiencing more extreme

damage types, the robot is unlikely to recover to move far at all.
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The first figure, Figure 7.16, shows images of the hexapod’s motion in the real world.

Figure 7.16b shows the first real-world evaluation after damage occurred. The robot’s

gait is the same as before damage, which can be seen by comparing the positions of the

robot’s legs in each frame of Figure 7.16a and 7.16b, but the hexapod’s displacement was

much smaller than in Figure 7.16a. BNS was then able to recover and evolved a new

controller, which was adapted to the damage, shown in Figure 7.16c. The new controller

used a new gait which had a greater reliance on the left middle leg, in order to compensate

for the damaged left front leg. This can be seen in the figure as the number of front-to-

back movements of the middle leg, which are responsible for pushing the robot forward,

is increased.

Further results in this section represent a range of possible post-damage levels of per-

formance; one was unable to attain pre-damage levels of performance (Figure 7.17a), one

performed comparably before damage and after recovery (Figure 7.17b), and one per-

formed much better after it had recovered from damage (Figure 7.17c).

Figure 7.17a shows the paths followed by a robot that experienced damage type 0.

After damage was inflicted, the BNS process was completely restarted. In the case of this

experiment, the system was then unable to recover. The best post-damage recovery was

observed thirty-six real-world evaluations after damage occurred. This result highlights

the risk of completely restarting the BNS algorithm: since the variability of BNS’s results

are so high, completely restarting the process may mean that effective controllers are

unable to be evolved for the damaged robot in a reasonable period of time. That being

said, the same variability means that the restarted BNS process may cause far better

controllers to be evolved.

Figure 7.17b shows the paths followed by a robot that experienced damage type 2 while

utilising a sliding window of size 300. The post-damage path of this robot more closely

resembled its pre-damage path than the paths shown in Figure 7.17a. This is because the

population was not reset when damage occurred, but was allowed to adapt to the damage.

The post-damage controller therefore causes the robot to move in the same direction as

the pre-damage controller, and they share a similar side-to-side method of locomotion.

Finally, Figure 7.17c shows the paths of a robot which experienced damage type 0

when the BNS training data set was reset after the damage occurred. As with the sliding
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(a) Pre-damage execution (b) Post-damage execution (c) Post-recovery execution

Figure 7.16: Images captured after each hexapod command, with the robot experiencing

and recovering from damage to one leg (damage type 0).
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window, the pre- and post-damage paths in Figure 7.17c move in the same direction and

have similar locomotion patterns. Unlike previous experiments, the robot was able to

move much further, since it was able to evolve a new solution which did not utilise the

damaged leg.
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(a) Damage type 0 and a complete BNS

restart after damage (36 RW evaluations for

recovery)
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(b) Damage type 2 with a sliding window of

size 300 (28 RW evaluations for recovery)
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(c) Damage type 0 with a training data reset

after damage (46 RW evaluations for recov-

ery)

Figure 7.17: Paths followed by a hexapod robot experiencing various damage types with

different BNS adaptations implemented

These results show clearly that BNS is capable of recovering from damage to the

hexapod robot in the real world. While the variability of the results does mean that in

some cases the robot may be unable to evolve an effective solution, in many others it is
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able not only to recover, but to perform even better than it could before damage.

7.6 Conclusion

In this investigation, BNS’s ability to recover from damage to a robot with a complex

morphology was evaluated. The algorithm was successful in improving its post-damage

performance for sixteen types of damage which ranged from minimal to extreme, though

in the case of the extreme damage, the improvement was insufficient for the robot to

recover fully. The poor performance of the algorithm in cases of more extreme damage

types can be attributed to the fact that when experiencing those damage types, very few

of the robots’ legs still worked. As an example, a robot that only has the use of three of

its six legs is unlikely to be able to reach levels of performance anywhere near those of a

robot with six fully functional legs. The algorithm was, however, found to recover from

the less extreme damage types effectively, both in simulation and in the real world. After

the robot experienced damage, the algorithm developed new gaits with less reliance on

the robot’s damaged limbs, allowing the robot to regain a great deal of its pre-damage

functionality.

Woodford (2018) found that intermittently resetting the dynamic simulator led to an

improvement in controller evolution when using BNS with complex robot morphologies.

The resets were therefore implemented as a part of the default configuration in the inves-

tigation. It was hypothesised, however, that the resets would cause an improvement in

performance both before and after damage. For this reason, evaluations were performed

with and without intermittent simulator resets. These evaluations showed that simulator

resets had the most significant impact of any adaptation evaluated in this investigation.

Changes to the mutation parameters were evaluated again. As in previous investi-

gations, no combination of parameter values for the mutation rate and magnitude was

able to bring about an improvement in performance over the default configuration. If

damage can be detected with relative ease, however, the adaptation can be recommended,

since in certain circumstances, the additional diversity introduced may be beneficial to

the algorithm’s recovery from damage.

Resetting the population was found to have the opposite effect when evolving con-
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trollers for complex robots as it does for simple robots. With a simple robot morphology,

evolving a functional controller is a fast enough process that resetting the population to

a random state allows new solutions to be found more quickly than if the existing popu-

lation is used. For a complex robot, such as the hexapod, the search space has too many

dimensions and is too complex for this to be the case. Choosing not to reset the popula-

tion, therefore, expedites the training process since the existing individuals are likely to

be relatively nearer in the search space to good solutions for the damaged robot than was

the case for the Khepera robot.

Resetting the simulator training data was found to have a significant positive effect

on the algorithm’s performance, as was restarting the entire BNS algorithm from the

beginning. Restarting the algorithm requires resetting three aspects of the system: the

simulator, the training data, and the population. Since the simulator is already reset once

every twenty real-world evaluations, the only difference between the complete restart and

the training data reset is a reset of the population. The training data reset adaptation

and the complete restart adaptation were therefore compared, and their performance was

found not to be significantly different from each other. This reaffirmed that the population

reset did not have a significant positive impact on performance.

The results of the evaluation of the training windows were very similar to those for

a training data reset. This is likely because both adaptations aim to rid the dataset of

incorrect training patterns. A moderately-sized window, such as 300 training patterns,

can once again be recommended since it did not cause a decrease in performance under

any circumstances. A window of size 1000 did, however, cause performance to decrease.

This is likely because as the window grows larger, it takes longer for the old incorrect

training patterns to be discarded. There is potentially also an advantage to having more

training data, even if that data is slightly incorrect, though this advantage lessens as

damage becomes more severe. A window of size 1000 was likely too large to bring the

benefits usually associated with a sliding window of training data, but also prevented the

entire set of data from being used for training, thereby negatively affecting performance

on both fronts.



Chapter 8

Conclusions and Future Work

8.1 Introduction

This research evaluated the ability of the BNS algorithm to recover from damage to the

physical robots for which it had evolved controllers. The outcomes of the research ob-

jectives are discussed in Section 8.2. The contributions of this research are detailed in

Section 8.3, while its limitations are discussed in Section 8.4. Finally, Section 8.5 recom-

mends future avenues of research while Section 8.6 summarises the chapter.

8.2 Overview of Results and Outcomes of Research Objec-

tives

This section discusses how each of the research objectives, which were used to focus this

research, was addressed.

RO1: Investigate existing ER damage-recovery methods

Before research could be conducted to investigate damage recovery for a specific algorithm,

it was important to investigate and review the literature for the underlying evolutionary

robotics concepts, as well as other existing methods of damage recovery. A literature

review was conducted (Chapter 2) to achieve this goal.

The literature review investigated ANNs and EAs, including their use for evolutionary
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robotics. The use of simulators in ER, their implementation, and the reasons for their

use, were discussed. Simulator neural networks and Bootstrapped Neuro-Simulation were

then investigated, as they are the methods upon which this research was based. Finally,

existing methods of damage recovery were reviewed.

RO2: Determine BNS’s damage-recovery capabilities

It was hypothesised that BNS would have some inherent ability to recover from damage,

due to the algorithm’s always-learning nature. The algorithm is continuously gathering

new data about the robot and its environment and is thus able to continue gathering data

after damage occurs, allowing it to learn the new state of the robot and adapt to the

damage.

Investigation A was a preliminary investigation, which showed that this hypothesis

was true. The BNS algorithm was able to evolve controllers for a differentially-steered

robot, capable of completing a simple navigation task. The robot was then damaged, and

the system was able to continue running and recover from the damage.

RO3: Propose, implement, and evaluate adaptations to improve BNS’s

damage-recovery capabilities

BNS had been shown to be able to recover from damage without any changes to the

algorithm. This did not mean that the algorithm was unable to perform better. Four

adaptations were therefore proposed and hypothesised to be capable of improving the

performance of the algorithm:

� The controller population was reset after damage occurred.

� The mutation rate and magnitude were varied after damage occurred.

� A sliding window of training data was used to train the SNN.

� The SNN was reset after damage occurred.

Investigation A included experiments that sought to evaluate these adaptations both in

simulation and reality. The use of a sliding window was found to be the most advantageous
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as, in addition to offering the largest improvement in performance, it does not require the

knowledge of the occurrence of damage, and can simply be applied for the entire BNS

execution.

RO4: Propose, implement, and evaluate a method of evolving complex

controllers using BNS

Prior to this research, BNS had only been used to evolve simple controllers, which were

unable to make decisions based on observations about their environment. Investigation B

addressed this issue by evolving closed-loop, neural-network-based controllers to solve a

light-following problem. The results of the investigation showed that BNS is capable of

evolving such a controller alongside simulators for both its motion and sensors. This BNS

implementation was the first that had simultaneously evolved two entirely independent

simulators.

Several new adaptations to the BNS algorithm were proposed and evaluated since no

such research had been conducted for closed-loop controllers. The investigated adaptations

were alternative crossover operators, data augmentation, alternative weight initialisation

strategies, Island EAs, differing controller ANN topologies, Headless Chicken mutation,

intermittent population resets, differing tournament sizes, and various population sizes. A

parameter study was conducted to investigate both the parameters for these new adapta-

tions and the optimal values of the existing parameters.

The two most important factors were found to be population diversity and simulator

accuracy, with the adaptations that directly affected these two parameters having the

largest overall impact on the algorithm’s performance. Headless Chicken mutation, large

neural weight initialisation ranges, and Island EAs increased diversity, while data augmen-

tation allowed the SNN to improve its accuracy earlier in the evolution process, leading

to the creation of improved controllers.
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RO5: Propose, implement, and evaluate adaptations for BNS to allow

for damage recovery of complex controllers

Upon completion of investigation B, the groundwork had been laid for the investigation of

damage recovery for complex controllers using BNS. In investigation C, experiments were

conducted on the same robot and problem as had been investigated in investigation B,

but the robot was damaged in order to evaluate the algorithm’s damage recovery.

The use of a complex controller meant that, in addition to the simple wheel damage

that had been evaluated in investigation A, it was possible to evaluate the effects of damage

to a robot’s sensors. The types of damage inflicted on the robot’s wheels could also be

made more complex since the controllers were able to adapt in real time to the effects of

the damage.

BNS was found, once again, to perform excellently and recovered from the damage. It

was found, however, that the algorithm is unable to recover from damage that is impossible

for the dynamic simulator to simulate, such as temporal-based damage, which occurs

intermittently. In the case of such damage, the real-world performance of the robot is

unable to improve, causing it to become worse as the simulators become more refined.

In this investigation a sliding window was shown once again to be the most effective

adaptation; it offered significant improvements in performance while not requiring any

knowledge of damage. Adaptations that moderately increased diversity in the population

were also found to improve performance.

RO6: Demonstrate and investigate the transferral of BNS’s damage re-

covery to a more complex robot morphology

Finally, BNS needed to be evaluated on a complex robot morphology. Investigation D

investigated BNS’s ability to recover from damage to a hexapod robot, which has a far

more complex morphology than the Khepera. The latter had been used for all previous

experimentation.

BNS was once again shown to have the ability to recover from damage, though the

increased complexity of the robot meant that recovery was slower than in previous experi-

ments. Unlike in previous investigations, resetting the controller population when damage
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occurred was found to have a negative impact on post-damage performance. This is likely

due to the greater complexity of the hexapod controller search space when compared to

that of the Khepera controllers. Finding candidate solutions for the Khepera problems is

simple enough that resetting the population allows the algorithm to rapidly discover new

solutions, unhindered by biases caused by the pre-damage controllers. This is not the case

for the hexapod, where finding potential solutions is far more challenging. The benefits of

prior information, such as the pre-damage controller population, therefore grow alongside

the complexity of the search space, causing the algorithm to perform better when the

population is not reset.

Intermittent simulator resets were shown to be extremely beneficial for damage recov-

ery with complex robot morphologies. Sliding windows, on the other hand, were found to

offer a less significant performance improvement with complex robots. There are, however,

still benefits to their use in some cases, provided that a large enough window is used.

8.3 Contributions

This research’s theoretical contribution is the recommendation of adaptations and param-

eter configurations that improve the BNS algorithm’s damage-recovery performance (in

the case of investigations A, C, and D) or its performance in general (in investigation B).

Additionally, investigation B (closed-loop controller evolution) was the first instance of

BNS being used to evolve closed-loop controllers.

The controller reset adaptation causes the population of controllers to be reset when

damage is detected, and the mutation rate and magnitude adaptations alter the mutation

parameters once damage is detected. Both of these adaptations aim to increase diversity

in the population to aid the search for new solutions. The simulator reset adaptation aims

to prevent the pre-damage simulator from negatively impacting the training of the simu-

lator after damage by resetting the SNN to a random state. Finally, the sliding window

adaptation, which consistently showed the most promising improvement in performance,

restricted the SNN’s training data to only the newest training patterns, thereby allowing

the system to forget the old, irrelevant training data and focus only on the new accurate

data when damage occurs.
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In order to conduct the investigations to evaluate the adaptations, an existing BNS

implementation was used as a starting point and adapted specifically for the evaluation

of damage recovery. For each of investigations A, C, and D, the existing systems were

augmented with damage systems that were able to inflict simulated damage on the robot,

affecting the robot in the same way that real damage would without the additional costs

that would be involved with inflicting real damage on the robot.

The algorithm and adaptations were evaluated both in simulation and in the real

world. This allowed for confirmation that the conclusions drawn in simulation do transfer

to reality. The simulated evaluation of the algorithm made use of a fake real world. This

fake real world was constructed from existing motion SNNs and a new sensor SNN, which

was a contribution of this research. The sensor SNN was trained using real-world data

and allowed the behaviour of the Khepera robot’s sensors to be simulated for investigation

C (closed-loop controller evolution). The fake real world allowed for the evaluation of far

more parameter combinations than would have been possible had all testing been done in

the real world.

8.4 Limitations

Recovery from damage is not guaranteed in all situations, even when using the newly

proposed adaptations. In each investigation, situations were found where the severity of

the damage was great enough that the robot was unable to recover to a level of performance

anywhere near its pre-damage performance. That is not to say that the algorithm could not

improve performance after damage occurred, but that it could only do so to a reasonable

level.

A number of the adaptations require knowledge of the occurrence of damage, such

as the controller population reset, which was found to perform well in investigation D. In

order to be implemented in real-world applications, systems would need to be implemented

in order to detect damage and trigger these adaptations.

The types of damage evaluated in these investigations were chosen to provide a wide

range of situations from which the algorithm needed to recover. While many types of

damage were evaluated in this research, in real-world applications, there would be far
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more possible types of damage that could occur. The assumption is that the conclusions

drawn in these investigations will also apply to the unknown damage types.

8.5 Recommendations for Future Research

The adaptations proposed in this research focused solely on recovery from damage and

not any methods of damage detection. Since many of the adaptations require damage

detection to work in the real world, future research should focus on methods of damage

detection using BNS.

The same uncertainty calculations that are used with the ensemble of dynamic SNNs

could be used to detect damage. When a robot becomes damaged, and the SNNs begin

training on training patterns from the damaged robot, the SNNs will start to produce

predictions which are more diverse than before. The level of disagreement among SNNs

in the ensemble could therefore be monitored and used to detect damage to the robot

without implementing specific damage detection systems on the physical robot.

While it would require changes to the fundamental BNS algorithm, combinations of

BNS and other trial-and-error methods of damage recovery discussed in Chapter 2 may

be beneficial. These new algorithms could serve to improve the rate of damage recovery

further by refining BNS’s ability to identify potential solutions when recovering from

damage.

8.6 Summary

Damage recovery is an important area of research in the field of evolutionary robotics

because as robots’ applications become more complex, so does their risk of damage. This

damage may happen in environments that make it impossible for humans to intervene and

repair the robots. As such, robots that are able to adapt to the damage and continue

functioning without assistance hold an advantage over those that cannot.

In this research, BNS was shown to recover when damage was inflicted on a differentially-

steered robot controlled by an open-loop controller. Novel adaptations to the algorithm

were then proposed in the interest of improving this damage recovery. The adaptations
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were based on hypotheses about factors of the algorithm which could have negatively im-

pacted performance. A sliding window of training data was found to be the most effective.

BNS was then used to evolve closed-loop controllers by training two simulator neural

networks simultaneously. Since no previous research had been conducted investigating

BNS’s ability to evolve closed-loop controllers, additional adaptations to the algorithms

were proposed and found to be successful in improving BNS’s performance.

Evaluations were then carried out to investigate BNS’s ability to recover from damage

when using closed-loop controllers. Once again, the algorithm was shown to be able to

recover before the implementation of any adaptations. The sliding window adaptation was

also shown to offer the largest improvement over the base performance of the algorithm.

In the final investigation, BNS’s ability to recover from damage to a more complex

robot morphology was investigated. Controllers were evolved for hexapod locomotion.

The robot then had different combinations of its legs damaged and BNS’s recovery was

evaluated. BNS was shown to have the ability to recover, but the recovery was slower

than that seen in previous investigations due to the increased complexity of the hexapod

robot. Adaptations were once again evaluated; intermittently resetting the simulator, a

method proposed for use with complex robots, and a sliding window, were found to offer

significant improvements to the algorithm’s performance.
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Appendix A

Mann-Whitney U Test Statistic

The Mann-Whitney U Test Statistic is calculated as:

U = n1n2 +
n1(n1 + 1)

2
−W (A.1)

where ni is the number of observations in sample i and W is the rank sum for sample 1.

The rank sum is the sum of the ranks of all observations from sample 1, in the ordered list

of all observations, where the rank of an observation is its position in the ordered list. For

example, given two samples of observations, x1..x4 and y1..y4, with the following values:

25 26 27 28 29 30 31 32

x1 x2 x3 y1 y2 x4 y3 y4

W =
4∑
i=1

rank(xi) = 1 + 2 + 3 + 6 = 12 (A.2)

The rejection region for the two-tailed test is U ≤ U0 or U ≥ n1n2 − U0 where U0 is

the value such that P (U ≤ U0) = α where α is the probability of a Type I error.
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Appendix B

Publications

B.1 ICCSIT 2018 & JCP

A damage system was implemented for a simple differentially steered robot evolved using

Bootstrapped Neuro-Simulation. BNS was shown to possess damage recovery capabilities.

Additional enhancements to the method were proposed, and parameters to these methods

evaluated.

This study was presented at the 11th International Conference on Computer Science

and Information Technology and published in the Journal of Computers (JCP).

B.2 Robotics and Autonomous Systems

A closed-loop controller evolution system was implemented for BNS. The transferability

of controllers evolved using this system was demonstrated and thereafter a damage sys-

tem implemented. This damage system allowed for the evaluation of BNS and its ability

to recover from damage to a robot using a closed-loop controller. Adaptations and im-

provements to BNS were proposed for both closed-loop controller evolution and damage

recovery. The paper was submitted to the journal of Robotics and Autonomous Systems.
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