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Abstract 
 

The rapid advancements of COTS microprocessors compared to radiation hardened 

microprocessors has attracted the interest of system designers within the aerospace 

sector. COTS microprocessors offer higher performance with lower energy requirements, 

both of which are desired characteristics for microprocessors used in spacecraft. COTS 

microprocessors, however, are much more susceptible to radiation damage therefore their 

SEE and TID responses needs to be evaluated before they can be incorporated into 

spacecraft. This thesis presents the process followed to evaluate said characteristics of a 

COTS Intel Atom E3815 microprocessor mounted on a DE3815TYBE single board PC. 

Evaluation of the SEE response was carried out at NRF iThemba Labs in Cape Town, South 

Africa where the device was irradiated by a proton beam at 55.58 MeV and with varying 

beam currents. The device showed a higher sensitivity to functional interrupts when 

running with the onboard cache on compared to when running with the cache off, as would 

be expected. The cross-sections, respectively, are: 4.5𝑥 10−10 𝑐𝑚2 and 2.8 𝑥 10−10 𝑐𝑚2. 

TID testing on the other hand was carried out at the irradiation chamber of FruitFly Africa 

in Stellenbosch, South Africa. The test device was irradiated by gamma radiation from a 

Cobalt-60 source at a dose rate of 9.7kRad/h and to a total dose of 67.25kRad. Noticeable 

TID degradation, in the form of leakage currents, was observed once a total dose of about 

20kRad was absorbed. The device then completely failed once a total dose of 

approximately 32kRad was absorbed. 

These results suggest that the E3815 microprocessor would not be suitable for long term 

missions that require higher TID survivability. The processor could however be considered 

for short term missions launched into polar or high incline orbits where the dose rate is 

relatively low, and the mission is capable of tolerating functional interrupts.   
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1. Introduction 

With an ever-increasing demand for more computational power and reduced energy 

requirements by the aerospace sector, it is necessary to investigate the viability of solutions 

from different sectors and incorporate them if found to be advantageous. An example of 

this can be seen in the push to incorporate Commercial Off-The-Shelf (COTS) components 

such as microprocessors and Field Programmable Gate Arrays (FPGA) into equipment 

destined for missions in outer space [1].  

This push to incorporate COTS components over specially designed hardware is motivated 

by a number of reasons, one of the main ones being that COTS components tend to cost 

less. This opens up space missions to developing countries and academic institutions that 

may lack the financial means to support entire part design programs [2, 3]. COTS 

components also tend to be more advanced in terms of generation and processing power. 

This is because there is higher demand and more pressure to innovate given the larger 

market. 

Despite having these advantages, COTS components happen to be more susceptible to the 

negative effects brought about by exposure to radiation present in outer space. This is 

because it is not a requirement in their design for them to withstand it. Conversely, 

specially designed hardware will usually be radiation hardened (RH) and for this reason, 

the use of COTS components in space is limited to missions that do not require high 

reliability or long-term use [1].   

With this in mind, information pertaining to the performance of specific COTS devices is of 

great value to a system designer. This is because it will facilitate decision making and lead 

to the design of missions that have higher probabilities of success. To this end, this thesis 

seeks to contribute by adding to the pool of knowledge of the performance of COTS 

microprocessors in high radiation environments. This shall be accomplished by 

characterising the Single Event Effects (SEE) and Total Ionizing Dose (TID)1 effects on an 

Intel Atom E3815 microprocessor. 

A processor from the Intel Atom family was chosen because the family consists of relatively 

cheap microprocessors that are mainly used in industrial computers and embedded 

systems. These processors have low power requirements which are in the range of several 

watts. This is advantageous in use cases such as CubeSats that have limited storage space 

for batteries and solar panels. Additionally, atom processors are capable of carrying out 

computationally complex and extensive tasks (the newest even having 64-bit instruction 

sets) and many of them are available as Systems-on-a-Chip with additional hardware 

included on the same chip as the processor. This allows for a large number of features to 

be packed into a satellite while keeping the internal volume that has been consumed by 

the device at a minimum, which is a desirable characteristic in satellite systems [4]. 

                                                      
1 SEE and TID are defined in Chapter 2 
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Atom processors are also compatible with many standard peripheral devices and 

communication protocols. This means that all it would take to interface such a processor 

with a peripheral device, say, a camera, would be a USB connection. This is advantageous 

since it allows for rapid system design. Despite this, there is limited literature on the 

performance of these processors in high radiation environments, possibly because testing 

has not been able to keep up with the rate of intergenerational improvements. This scarcity 

of literature is the main factor that contributed to the selection of an Intel Atom 

microprocessor for this research. 

As a consequence of the choice of processor, it is important to state that the focus in this 

text will be on bulk substrate devices rather than Silicon on Insulator (SOI) which is known 

to be more resistant to SEEs [5]. This is because Intel manufactures processors on bulk 

substrate and not SOI [6]. 

1.1. Objectives 
In order to achieve the main objective that is characterizing the SEE and TID effects of an 

Intel Atom E3815 microprocessor, a few secondary objectives will have to be completed. 

These are listed below: 

• Literature Review. Before any experiments may be carried out it is necessary for 
there to be a clear understanding of the intricate details of: 

o Research that has already been carried out in order to avoid a repetition of 
the very same work. 

o The operation of microprocessors down to the logic gate level. This will 
prove useful in getting to understand how SEE and TID effects take place. 

o Radiation. This is a broad topic however focus should be given to the 
radiation environment in space. 

o SEE and TID. Building up on the just discussed sub-objectives (above this), a 
better understanding of how SEE and TID effects occur would be crucial. 

• Learning how to program/interface the microprocessor. This will be necessary since 
experiments carried out to characterize SEE and TID effects rely on custom 
programs to run on the device and for the operational state (and current draw) of 
the device to be monitored. 

• Designing the Experiments. The experiments will have to be compatible with the 
facilities and equipment available to carry them out. The custom programs to run 
on the device under test (DUT) will also have to be determined. 

• Carrying out the Experiments and Collecting Data. 

• Analysing and Interpretation of Data. At this stage the data collected will be used to 
characterize the device under test. Plots will also be created that show the 
operating current draw of the device in relation to the absorbed radiation dose (this 
is for TID effects). 
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• Completion of Thesis. Throughout the study period, a thesis detailing the events 
and findings of the study will be compiled. 

1.2. Thesis Outline 

This section provides a brief description of each subsequent chapter of the thesis.  

Chapter 2. Literature Background: This chapter provides an overall view of the conditions 

in which spacecraft operate. A discussion on the general-purpose microprocessor is also 

given and the chapter ends with a description of the various ways in which radiation 

interacts with electronics. 

Chapter 3. Test Setup and Procedure: This chapter provides a detailed description of the 

Intel Atom E3815 processor as well as the board used to run it. The experimental setups 

employed to investigate the SEE and TID characteristics of the processor are also described, 

together with considerations taken into account while designing the experiments. 

Algorithms of the test programs developed as well as photos of the test setups are 

provided. 

Chapter 4. Results: This chapter presents and analyses the data obtained from the 

experiments described in Chapter 3. 

Chapter 5. Discussion and Conclusions: Here, interpretations are provided for the results 

obtained and recommendations are given for future testing. 
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2. Literature Background 

To understand the nature of the effects that radiation has on electronics, it is important to 

have a good understanding of certain fundamental definitions and concepts. These range 

from the operational basics of electronic devices to the characteristics of the space 

environment the devices are expected to be commissioned in.  

This chapter gives an overview of the aforementioned and ends with a discussion on the 

interaction between radiation and electronic devices.  

2.1. Radiation 
Radiation is defined as energy, in the form of waves or particles, travelling in space from a 

given source [7]. Radiation can either be ionizing or non-ionizing. Ionizing radiation consists 

of electromagnetic waves or particles that carry enough energy to knock electrons out of 

their atomic orbitals or break molecular bonds thus creating ions [8]. Non-ionizing radiation 

on the other hand does not carry enough energy to cause ionization. 

Ionizing radiation is of particular interest when it comes to the interaction between 

electronics and radiation since ionization of the electronic components does introduce 

implications to the performance of the device. Ionizing radiation comes in several forms 

which shall now be discussed. 

2.1.1. Different types of Ionizing Radiation 

2.1.1.1. Alpha Particles (α) 
These are helium nuclei consisting of 2 protons and 2 neutrons and carry a net positive 

charge of 2 units. Alpha particles typically have a range of a few centimetres in air and are 

heavily ionizing [9].  These particles may be produced as a by-product of nuclear fusion of 

hydrogen in the sun (and other stars) or by radioactive decay of heavier nuclides such as 

Americium [10]. 

2.1.1.2. Beta Particles (β) 
These consist of electrons and positrons and carry a net negative charge (in the case of 

electrons) or net positive charge (in the case of positrons) of 1. Beta particles have longer 

ranges in air than alpha particles due to the combined effect of their relatively lesser charge 

and relatively higher velocities. They are therefore lightly ionizing [9]. Radioactive decay of 

unstable nuclides is the main source of these particles.  

2.1.1.3. Protons 
Also referred to as hydrogen nuclei, protons carry a net positive charge of 1 and have a 

range of a few centimetres in air [9]. There are no naturally occurring nuclides on earth that 

decompose to give proton radiation. However, in the terrestrial space environment, 

protons may come from cosmic rays and may be found trapped in the magnetic field of the 

earth [9, 11]. Protons are heavily ionizing [3]. 
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2.1.1.4. Neutrons 
Unlike the prior discussed types of radiation, neutrons carry no charge and therefore cause 

ionization indirectly. Such would take place where an atomic nucleus captures a neutron 

and enters an excited state, after which it would de-excite by emitting a gamma ray [9, 3]. 

There are no naturally occurring sources of neutrons on earth, however a method 

employed to obtain them is by combining a nuclide that emits alpha particles with a 

suitable target material [10]. 

2.1.1.5. Electromagnetic Radiation 
In the context of ionizing radiation, these are high frequency, short-wavelength 

electromagnetic waves that are lightly ionizing and have very long ranges in air. They 

consist of X-Rays and Gamma (γ) Rays which are very similar but differ in how they are 

produced [9]. 

X-Rays – These are emitted when an electron shifts from a higher energy level to a lower 

energy level within an atom. The difference in energy between the two energy levels 

dictate the amount of energy emitted which in turn dictates the type of electromagnetic 

radiation that is emitted [12]. If this energy is high enough, the emitted electromagnetic 

wave is an X-Ray. 

Gamma (γ) Rays – These can be produced in a number of ways, for instance, by nuclides 

undergoing radioactive decomposition or when matter and antimatter interact with and 

annihilate each other [13]. Gamma rays may also be produced as a by-product of nuclear 

fusion as is found in the core of the sun [14]. 

2.1.2. Units of Measurement  

2.1.2.1. Radioactivity 
The SI Unit of radioactivity is the becquerel (Bq) which is defined as the activity of a quantity 

of a radioactive material in which one nucleus disintegrates per second. A different unit for 

radioactivity that may be used is the curie (Ci) which is defined as the activity in 1g of 

Radium-226 which is equivalent to 3.7 𝑥 1010 disintegrations per second. Therefore 1 Ci = 

3.7 𝑥 1010 Bq.  

2.1.2.2. Energy 
The joule (J) is the SI Unit for energy however when dealing with particles associated with 

radioactivity, the electron volt (eV) is commonly used. An Electron Volt is defined as the 

energy gained by an electron that is accelerated through a potential difference of 1 volt. 

The electron volt can be thought of as a measure of the kinetic energy possessed by a 

particle and 1eV = 1.602 𝑥 10−19J. Additionally, the erg (1 erg = 10−7J) is a unit that may 

be used.  



6 
 

2.1.2.3. Linear Energy Transfer (LET) 
This is defined as the energy deposited by an ionizing particle into the material that it is 

traversing through, per unit length. LET is usually expressed in MeV/cm. LET may also be 

referred to as “Stopping power” [15].  

2.1.2.4. Absorbed Dose 
The gray (Gy) is the SI Unit of energy deposition into a material by radiation and is defined 

such that 1Gy is equal to the absorption of 1J of energy by 1kg of said material. Also, 

commonly used is the rad which is defined such that 1rad is equal to 100 ergs absorbed per 

gram of material. Using this relationship, it can be shown that 100 rad = 1Gy. 

2.1.2.5. Flux 
This is simply defined as the number of particles passing through some defined cross-

sectional area per unit time. This is usually expressed in the units 𝑐𝑚−2𝑠−1. 

2.1.2.6. Fluence 
Defined as the time integrated flux of particles and is expressed in the units 𝑐𝑚−2. 

2.1.3. Sources of Radiation in Terrestrial Space 

The terrestrial space radiation environment consists of particles trapped in the magnetic 

field of the earth as well as cosmic rays. These particles vary in flux and energy at different 

altitudes and inclinations (or latitudes) which in turn dictate the effects that will be 

experienced by orbiting spacecraft.  

2.1.3.1. Cosmic Rays 
Cosmic rays are an ever present low-flux component of the terrestrial space radiation 

environment and are the main component in interplanetary space. They consist of galactic 

cosmic rays (GCR), solar cosmic rays and terrestrial cosmic rays. The composition of galactic 

cosmic rays is approximately 85% protons, 14% alpha particles and 1% heavy nuclei, all of 

which come from outside the solar system [9]. During solar maximum (periods of high solar 

activity), solar wind reduces the flux of galactic cosmic rays and conversely, during solar 

minimum, galactic cosmic rays are at their maximum flux [16]. 

Solar cosmic rays (SCR) on the other hand originate from the sun and have slightly different 

compositions compared to their galactic counterparts. During large solar flares that make 

solar cosmic rays the dominant cosmic rays momentarily (in terms of total flux), SCR heavy 

nuclei flux will still be much smaller than GCR heavy nuclei flux [16]. Terrestrial cosmic rays 

are resultant secondary cosmic rays that arise from the interaction between the 

atmosphere and the prior discussed galactic and solar cosmic rays.  

The magnetic field of the earth offers geomagnetic shielding from cosmic rays by action of 

deflecting incoming charged particles. The energy and momentum of a particle determines 

how much it will penetrate into the magnetic field and this is usually quantified as the 

magnetic rigidity of the particle calculated as:  
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𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑟𝑖𝑔𝑖𝑑𝑖𝑡𝑦 =  

𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒

𝑐ℎ𝑎𝑟𝑔𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒
 Eqn 2.1 

 

Each point in the magnetic field of the earth requires an incoming particle to have a 

minimum value of magnetic rigidity, referred to as “geomagnetic cut off”, for the particle 

to be able to reach [9]. This cut off value tends to increase with reduction in altitude as can 

be seen in Figure 2.1.  

Additionally, the geomagnetic cut off value varies with inclination such that low incline 

orbits have higher geomagnetic cut-offs than high incline orbits. Consequently, 

geomagnetic cut off falls to zero at the edges of the magnetosphere (very high altitude) 

and at the magnetic poles of the earth (maximum inclination). This means that spacecraft 

in earth orbit are protected from cosmic rays, whose highest fluxes are of low energy 

particles, except spacecraft in polar orbits and geostationary orbits [9]. 

It is also important to remember that for high energy particles (>100GeV/nucleon) from 

galactic cosmic rays, both geomagnetic shielding and spacecraft shielding are relatively 

ineffective [16]. Cosmic rays in general contribute more towards Single Event Effects (SEE) 

than Total Ionizing Dose (TID) effects [17], both of which shall be discussed later.  

2.1.3.2. Van Allen Belts 
The magnetic field of the earth traps electrons, protons and some heavy ions that originate 

from solar wind. These particles spiral about the “closed loops” of the magnetic dipole of 

the earth and move back and forth between regions of maximum magnetic field strength. 

The electrons drift west to east while the protons drift east to west [11]. The motion of 

Figure 2.1: Total energy required to penetrate the magnetosphere at different altitudes (measured in earth radii) [11] 
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these particles around the earth form domains which are referred to as the radiation belts 

or Van Allen belts [16] and is illustrated in Figure 2.2. 

 

 

The trapped electrons occupy two zones, namely the inner zone and the outer zone. The 

inner zone extends to an altitude of about 2.4 earth radii from the equator while the outer 

zone extends from an altitude of 2.8 to about 12 earth radii [18]. The region between the 

two zones (2.5 to 2.8 earth radii) is referred to as the slot. The electron density in the slot 

is usually low, however, may increase by a few orders of magnitude during magnetic storms 

[11].   

The electron flux is lower in the inner zone compared to the outer zone and electron 

energies in this zone peak at around 5MeV. Comparatively, the electrons in the outer zone 

have energies that peak at around 7MeV [11].  

Unlike electrons, protons cannot be assigned to inner and outer zones since they have 

energies that decrease monotonically with increase in altitude up to a trapping boundary 

at 3.8 earth radii [11]. Trapped protons may have energies as high as 500MeV with peak 

fluxes for the most energetic particles occurring at relatively low altitudes [16]. This 

variation is opposite to that of trapped electrons where the most energetic electrons are 

found at higher altitudes.  

The South Atlantic Anomaly is also worth mentioning. It is as a result of the offset of earth’s 

magnetic dipole to the axis of rotation by approximately 11o, with a displacement towards 

the western pacific. This causes a dip in the magnetic field which causes the radiation belts 

to reach lower altitudes over the coast of Brazil [3, 11]. The anomaly is responsible for most 

of the radiation absorbed by spacecraft in low earth orbit [11]. Figure 2.3 shows the effects 

of the anomaly where the orbiting spacecraft experiences radiation induced upsets over 

Figure 2.2: Motion of particles trapped by the magnetic field of the earth. [11] 
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the coast of Brazil at lower altitudes and only starts experiencing upsets at different 

longitudes with an increase in altitude. Refer to section 2.3 for a discussion on upsets. 

Cyclic variations in solar activity also have an effect on the fluxes of particles within the 

radiation belts. During periods of maximum solar activity, referred to as solar max, the flux 

of electrons is seen to increase while that of protons is seen to decrease. Conversely, during 

periods of minimum solar activity, the flux of protons is seen to increase while that of 

electrons is seen to decrease [16].  

Two models have been created to provide estimates for the fluxes of each particle at 

different orbits. Namely, they are the AE8 and AP8 models which estimate electron and 

proton fluxes respectively. These models allow for long term averaged predications of 

particle fluxes meaning transient variations have been averaged out [11]. Figure 2.4 

illustrates predictions made by both models at different altitudes in earth radii. Electron 

fluxes are estimated for electrons with energies higher than 1 MeV (right hand side of the 

figure) while proton fluxes have been estimated for protons with energies larger than 10 

MeV (left hand side of the figure).  

Exposure to protons and heavy ions on spacecraft is of concern since these are the main 

cause of single event effects. Both protons and electrons should however be considered 

when it comes to total dose absorbed by spacecraft in orbit [11]. 

Figure 2.3: Effects of the Asymmetry in the Proton Belts on SRAM Upset Rate at Varying Altitudes on CRUX/APEX [29] 
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2.2. The Microprocessor 
A microprocessor is a complex integrated circuit that executes instructions and performs 

various control tasks or calculations in computers and smart devices. The two main types 

of microprocessors are general purpose microprocessors and dedicated microprocessors. 

Dedicated microprocessors perform specific tasks and cannot perform any different types 

of tasks. In this text, focus will mainly be on general purpose microprocessors that can 

perform a multitude of tasks, each different from one another. General purpose 

microprocessors achieve this by operating under the control of software instructions.  

As with microprocessors and the majority of modern integrated circuits, the MOSFET 

(Metal Oxide Semiconductor Field Effect Transistor) forms the fundamental electronic 

component with which these circuits are built [19]. These are advantageous over 

alternative technologies such as BJTs (Bipolar Junction Transistors) mainly because they are 

switched by voltage rather than current and can be shrunk to smaller sizes [20]. The 

combined effects of these lead to smaller sized electronics with lower power requirements. 

The structure and operation of MOSFETs shall now be discussed. 

2.2.1. MOSFET 

 The MOSFET is a 3-terminal voltage-controlled switch. The 3 terminals are namely the 

source, gate and drain. The gate may be a metal layer (older technologies) or a high-

conductivity polycrystalline silicon layer (newer technologies) [20, 21] and is deposited on 

an insulating layer of silicon oxide. In newer technologies, the silicon oxide is replaced by a 

dielectric material that has a higher relative permittivity (i.e. high-k dielectric) [15]. This 

insulating layer in turn separates the gate from the substrate which consists of doped 

silicon. Two regions on either end of and below the insulating oxide are doped with 

Figure 2.4: Trapped Particles in the Earth’s Magnetic Field: Proton & Electron Intensities [29] 
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impurities of opposite charge to the substrate doping. The surfaces of these two regions 

also have conductive material laid thus forming the source and drain terminals. Figure 2.5 

illustrates the physical structure of a MOSFET. 

 

Figure 2.5: Cross section showing the physical structure of NMOS and PMOS. Image adapted from [19] 

As can be seen in the figure, the charges of the doping impurities determine the type of 

MOSFET. An NMOS (n-type MOSFET) device has p-type substrate and embedded n-type 

doping at the drain and source. The PMOS (p-type MOSFET) is the exact opposite of this 

with a n-type substrate and p-type doping at the drain and source.  

The operating principle of an ideal NMOS is as follows. If a positive voltage is applied at the 

gate, the electric field will pass through the gate oxide and repel the majority carriers (p-

type) of the substrate. Consequently, a negative charge will begin to accumulate at the 

interface between the substrate and the gate oxide. If the applied gate voltage is large 

enough, minority carriers (electrons) will be attracted to the substrate-oxide interface and 

will form an inversion layer. This inversion layer is highlighted in Figure 2.5 by the minus 

sign (-) for NMOS. The voltage at which this inversion layer is formed is referred to as 

Threshold Voltage (VTH).  

At this point, the transistor is said to have been switched on. This is because current will 

flow between the source and drain, via the channel that is the inversion layer, given that a 

potential difference is applied between the two terminals.  In the case of NMOS, the charge 

carriers for this current are electrons and will flow from the source terminal to the drain 

terminal.   

If a negative voltage is applied at the gate, no inversion layer is formed and the source and 

drain terminals remain electrically isolated from each other. At this point the transistor is 

said to have been switched off. The process is identical for PMOS with the only difference 

being that of opposite charges. Therefore, a PMOS device is switched on by negative gate 

voltage and so on.  

The MOSFETS that have been described are referred to as Enhancement mode which 

means that voltage has to be applied to their gates to increase conductivity. Depletion 

mode devices on the other hand have their conductivity decrease with voltage applied to 

their gates. Another way of thinking of the difference between the two is that 
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enhancement mode devices are normally off while depletion mode devices are normally 

on [21]. 

2.2.1.1. FinFET 
The Fin-Field Effect Transistor (FinFET) is a MOSFET with a 3-dimensional, multi-gate 

structure that is different to that of planar MOSFETS i.e. those MOSFETS described in the 

previous section. FinFETs may also be referred to as 3D or Tri-Gate transistors [22, 23].  

 

Figure 2.6: Left – 3D structure of a FinFET. Right - Cross section view of a FinFET [6] 

Referring to Figure 2.6, the FinFET has a vertical channel that extends up from the silicon 

substrate. This channel forms a “fin” that gives the transistor its name and different 

variations of FinFETs may have more than one fin per transistor. Wrapped around the fin, 

on 3 faces, is the gate as well as a dielectric material that prevents direct contact between 

the two. The source and drain of the transistor are on either end of the fin. Trenches of 

oxide are present on the substrate to provide electrical isolation from adjacent transistors 

(i.e. field oxide). These oxide trenches may also be referred to as Shallow Trench Isolation 

(STI) [24]. 

The operation of a FinFET is similar to that of a planar MOSFET with the added advantage 

of having better control of the inversion layer within the channel. This stems from the fact 

that the gate now induces inversion from 3 directions rather than 1. Additional advantages 

that FinFETs have over planar MOSFETS are higher drive currents and lower leakage 

currents which allow for scaling of the transistors beyond 22nm [23, 25]. These, among 

other advantages, have motivated a large-scale shift from planar to 3-dimensional 

technologies within the electronics sector in recent times.  

2.2.2. CMOS 

In CMOS (Complementary Metal Oxide Semiconductor), NMOS and PMOS (either planar or 

FinFET) are combined on the same circuit and each type of transistor is used to represent 

different logic states [19]. For instance, the PMOS transistors may be used to output logic 

1 while NMOS outputs logic 0. NMOS and PMOS therefore work in complement to each 

other in CMOS [19].   
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CMOS is advantageous over purely n-type or purely p-type circuitry for a number of 

reasons, some of which include: Lower power consumption, higher circuit density and the 

ability to combine analog and digital circuitry on the same chip [21].  

 

Figure 2.7: Cross section of NMOS and PMOS fabricated with n-well CMOS technology. Image adapted from [19] 

2.2.3. Combinational and Sequential Circuits 

Combinational circuits are those whose outputs depend solely on the current inputs to the 

circuit. Standard logic gates are combined to form the function of the circuit and a change 

to the input signal(s) will result in an immediate change to the output signal(s) [19]. 

Examples of combinational circuits include adders, multipliers, multiplexers, comparators, 

shifters etc.  

 

Figure 2.8: Combinational Logic 

Sequential circuits, also known as Finite State Machines (FSM), differ from combinational 

circuits in several ways. The output signals of sequential circuits are determined by the 

input signals as well as all previous input signals to the circuit. Contrast this to 

combinational circuits where only the current input signals are relied upon. This means that 

sequential circuits need to remember previous inputs, and this is accomplished by 

implementing memory. This requirement for memory also sets sequential logic apart from 

combinational logic since the building blocks of the latter consist only of standard logic 

gates, while those of the former consist of bistable latches and flip-flops on top of the logic 

gates [26].   
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The structure of a sequential circuit/FSM starts with the state memory. This memory stores 

a bit combination that represents the history of all previous inputs to the circuit up to that 

point in time. This bit combination, at any one instance, is referred to as the state of the 

system [19]. The outputs of the system are determined from the current state by an output 

logic circuit which is a combinational circuit.  Output logic may or may not be dependent 

on the current inputs to the system [19].  

Operations that are to be performed by the FSM are usually assigned to a state. This is such 

that if the FSM is in a particular state, then operations assigned to that state will be carried 

out. The circuitry that determines what state the FSM shall move to next is called Next 

State Logic [19] and like the output logic circuit, it is a combinational circuit. The inputs to 

the next state logic are the current state of the FSM and the current inputs to the system 

[19] thus completing the definition of a sequential circuit since the current and previous 

inputs determine the outputs.  

 

Figure 2.9: Finite State Machine Models 

 

As mentioned earlier, the output logic may or may not be dependent on the current inputs 

to the system. FSMs whose output logic circuits do not depend on the current inputs are 

classified as Moore Finite State Machines while those whose output logic include the 

current inputs are classified as Mealy Finite State Machines [19]. Figure 2.9 summarizes 

what has been discussed about finite state machines so far.  

It is also important to note that changes in states in FSMs are usually triggered by an 

external signal. This may be done asynchronously based on events such as system reset, or 
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synchronously based on a global clock. There is also the option for pulse driven triggering 

where a state change occurs after an event is detected on the rising edge of the clock [26]. 

2.2.4. The General-Purpose Microprocessor  

  

Figure 2.10: Block Diagram of a Microprocessor. Image adapted from [19] 

The general-purpose microprocessor, also referred to as the central processing unit (CPU) 

consists of a control unit and a datapath as illustrated in Figure 2.10. The datapath contains 

all the circuitry required to carry out operations on data and is capable of performing all 

the operations defined in the instruction set of the CPU [19]. This circuitry includes 

functional units such as arithmetic and logic units, registers for temporary storage of data 

currently being operated on, multiplexers and buses that allow for data to be transferred 

to different parts of the datapath etc. Two important registers present in the datapath are 

the Instruction Register and the Program Counter. The Program Counter stores the address 

of the next instruction to be executed by the CPU while the Instruction register stores the 

actual instruction. It should be mentioned that the datapath is mostly composed of 

combinational circuitry [19]. 

The control unit on the other hand is responsible for controlling the datapath by way of 

asserting control signals as specified by an instruction. The control unit is a finite state 

machine and undergoes state changes in response to the clock cycle. Each state is assigned 

an operation in the datapath. Referring to Figure 2.10, the next state logic of the control 

unit has several inputs, namely, control inputs, the current state and the status signal from 

the datapath. The status signal is useful in cases where the next instruction to be executed 

is dependent on the result of the current computation (branch condition). This signal lets 

the control unit determine what state to move to next since it may be asserted or de-

asserted with respect to the result of a branch condition [19].  
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The control unit typically cycles through 3 operations (fetch, decode, execute). This is 

referred to as the instruction cycle. For each of the three steps, the following happens:  

1. Fetch: The control unit places the address stored in the program counter into the 

address bus. The external memory (where the program is stored) then loads data 

from this address into the data bus. This data is then loaded into the instruction 

register and the program counter is incremented. All this is accomplished in a single 

clock cycle [19].   

2. Decode: The control unit reads the contents of the instruction register and jumps 

into the state assigned to carry out the task specified by the instruction. This is also 

accomplished in 1 clock cycle [19].  

3. Execute: Now while in this state, the control unit generates control signals which in 

turn control what parts of the datapath are activated, depending on the task being 

performed. At this stage, the instruction is actually being carried out. Operations 

that require memory reading or writing may take more than a single clock cycle to 

complete which in turn would require additional states for the control unit to move 

to. This means that the execute step may take more than a single clock cycle to 

complete [19].  

To increase processor throughput, pipelining may be implemented. Instruction pipelining 

is the technique in which different steps in the instruction cycle are performed 

simultaneously. For example, while the current instruction is being executed, the next 

instruction is being fetched from external memory. This has the advantage of allowing for 

faster execution of instructions however it does introduce some hazards. One such hazard 

is the data dependency hazard. If an instruction requires data from the preceding 

instruction, but the pipeline is such that the newest instruction is executed before the 

preceding one writes its result to memory, then a dependency hazard will have occurred 

[27]. Another hazard is the control hazard which occurs if a branch statement is reached. 

In this case, any newly fetched instruction may have to be flushed before it can be executed 

because the branch statement may cause the next instruction to be a different one form 

the anticipated [27].  

2.3. Interaction of Radiation and Electronics 
When energetic particles travel through materials, they deposit their energy through a 

number of mechanisms. Primarily, these particles lose energy through ionization and 

atomic displacement of the target material. The characteristics of such interactions are 

described by plots such as that in Figure 2.11. The plot is of the LET of a proton traversing 

through high density polyethylene plotted against the depth of penetration.  
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Figure 2.11: Bragg curve for 205 MeV Protons in High density polyethylene (ρ = 0.97 g/cm3) [28] 

At first, the proton barely deposits any energy due to its velocity being in the relativistic 

range and this can be seen in the plot where the LET is almost flat [15]. This is the case 

because at such velocities, the proton barely has time to interact with the atoms of the 

target material and deposit energy. Additionally, at relativistic velocities, changes in energy 

barely have an effect on velocity [15]. Eventually, the proton begins to slow down and 

almost immediately loses all of its energy because at a lower velocity, it will deposit energy 

at a higher rate. Plots of this type are referred to as Bragg curves and the shape is similar 

even for different ions traversing through silicon in electronics. The peak LET is referred to 

as the Bragg peak [15], after which the proton will reach the end of its travel range. 

From these interactions, one effect on electronics is displacement damage [9]. When an 

ion traverses through a semiconductor, it may collide with silicon nuclei, thus displacing 

them from the lattice and creating interstitials [9]. Where these nuclei use to occupy will 

now be vacancies. The vast majority of interstitials and vacancies usually recombine 

relatively quickly after irradiation however some do remain as defects. These defects may 

be of concern in bipolar transistor and optoelectronic devices [16]. Displacement damage 

however is not of major concern when it comes to CMOS technologies [16, 18, 29]. 

The other major effects that radiation has on electronics are single event effects (SEEs), 

that happen over a short span of time, and long-term effects that result from accumulated 

dose, also known as Total Ionizing Dose (TID) effects. Both SEE and TID effects arise from 

ionization caused by radiation.  The remainder of this chapter discusses the mechanisms 

that give rise to SEEs and TID effects. With this regard, not much literature is available 

outlining these mechanisms on the FinFET that has only recently seen large scale adoption, 

however knowledge of the same on planar devices is well established.  
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2.3.1. Single Event Effects - SEE 

 

Figure 2.12: Ionization track left behind by a charged particle. Image adapted from [19] 

Single Event Effects is a broad classification for different types of transient responses that 

electronics may have as a result of energetic particles striking sensitive areas. Some of 

these responses may manifest as temporary errors (soft errors) such as bit flips while others 

may take form as destructive events (hard errors) that cause permanent device failure. 

These effects are of major concern in the space community because they may have 

profound consequences on missions. 

2.3.1.1. Single Event Transients - SET 
Figure 2.12 illustrates the basic driving phenomenon that causes SEEs. The figure is of a 

planar MOSFET, however, the process is similar in FinFETs. An energetic particle striking a 

transistor may cause ionization where electron-hole pairs are formed. If this particle is a 

heavy ion, the ionization occurs directly (primarily) as well as indirectly. Indirect ionization 

is where the initial ion collides with other nuclei thus producing recoil ions. These recoil 

ions in turn cause further ionization. If the energetic particle is a proton, the ionization is 

primarily indirect, however, some direct ionization may occur in highly sensitive devices 

[15]. In the case of neutrons, the ionization is entirely indirect.  

The electron hole pairs formed by the ionization cause a current pulse (whose width is in 

the picosecond scale [30]) that may propagate from the struck device to other devices in 

the circuit. This current pulse is referred to as a single event transient (SET). The struck 

device that experiences this SET will then recover by nature of its bias condition [15]. 
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2.3.1.2. Single Event Upset - SEU 
A single event upset (SEU) can be defined as a bitflip error that occurs in sequential logic as 

a result of direct or indirect interaction with charged particles. SEUs are soft errors because 

the affected circuitry will usually recover in the next memory write, set or reset operation.  

One way in which SEUs occur is when an SET occurs in combinational logic and activates 

subsequent logic paths that would otherwise be inactive. Figure 2.13 shows such a 

situation. An SET is induced in the centre NAND gate and is propagated through to the D 

Flip-Flop. If this SET occurs for long enough to be met by the rising edge of the clock, an 

erroneous value may be latched into the Flip-Flop. 

 

Figure 2.13: SEU path in combinational logic 

An SEU may also occur as the result of a transient in the clock tree of the Flip-Flop, provided 

that the inputs to the Flip-Flop have changed within the clock cycle. Additionally, a transient 

in the SET or RESET lines would result in the same [15]. 

In a latch or Static Random Access Memory (SRAM) cell, an SEU may occur in the following 

way. Referring to Figure 2.14, a particle hit on the top inverter may induce an erroneous 

output. While this error propagates to the lower inverter as feedback, the lower inverter 

will be imposing a restorative signal to the top inverter. If the erroneous feedback exceeds 

the restorative signal, the logic state of the memory cell will change and an SEU will have 

occurred [18, 31]. 

 

Figure 2.14: SEU process in SRAM. Image adapted from [19] 

Energetic 

particle 
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Single Event Upsets in Dynamic Random Access Memory (DRAM) occur through a 

completely different mechanism compared to SRAM. Figure 2.15 from [32] describes the 

different stages using single transistor-capacitor models for two DRAM cells. Logic “0” is 

stored in one cell where the potential well is filled with electrons and logic “1” in the other 

cell where the well is empty. Each cell is then struck by an α-particle that leaves behind an 

ionization track. Electrons induced from this ionization are then swept into the potential 

wells while the holes are repelled. For the cell that initially contained a logic “0”, there will 

be no change in the stored value, however, for the cell initially containing the logic “1”, the 

value will have changed to a logic “0”. From this simple model, it can be seen that for DRAM 

cells, only one electrical state is vulnerable to SEUs [31, 32]. 

 

Figure 2.15: Stages of SEU in DRAM. Image adapted from [32] 

2.3.1.3. Multiple Bit Upsets - MBU 
The occurrence of multiple SEUs, within the same clock cycle, and induced by a single 

charged particle is referred to as multiple bit upsets (MBU). These may occur in one of two 

ways. The first is when a particle strike takes place on circuit nodes such as the clock tree 

which in turn would cause multiple sequential blocks to erroneously latch signals. The other 

is when a single charged particle carries with it enough energy to not only cause an SEU on 

the device it strikes, but also to those devices physically close to the struck device.  

2.3.1.4. Single Event Functional Interrupt - SEFI 
Single Event Functional Interrupts arise as a result of the prior discussed responses from 

electronics. They occur when errors brought about by SEUs and MBU propagate through 

the electronic device and alter the operation of the device as a whole. An example may be 

when SEUs occur in the control unit of a microprocessor forcing it to enter an undefined 

state. This way, the operation of the entire device may be disrupted. Devices sometimes 
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recover from SEFIs spontaneously however may require power cycling or system resets to 

restore operability in other instances.   

2.3.1.5. Single Event Latch-up – SEL 
Inherent to bulk CMOS technologies are parasitic vertical and lateral n-p-n and p-n-p BJTs 

[9] (refer to Figure 2.16). These parasitic transistors may form a silicon-controlled rectifier 

structure (p-n-p-n) which is usually biased in the “off” state by design of the CMOS and at 

normal operating conditions [18].  

 

Figure 2.16: Two-transistor model for latch-up in an n-well CMOS structure [33] 

A particle strike may bias this p-n-p-n structure into the “on” state which in turn provides 

a low impedance electrical path between the source and ground (i.e. creates a short-

circuit). Consequently, a high current state is attained that the device can only recover from 

through a power cycle or exercising logic while the supply voltage is reduced [15]. This is 

referred to as a Single Event Latch-up (SEL) and it is potentially destructive if the latch-up 

current is large enough. 

2.3.1.6. Single Event Burnout – SEB 
SEBs are destructive events that occur in power MOSFETS. Their mechanism involves a 

parasitic BJT in the power MOSFET that is triggered into a regenerative forward bias by an 

energetic particle. This results in a destructive high current which causes permanent 

damage [15, 18]. 

2.3.1.7. Single Event Gate Rupture – SEGR 
Like SEB, SEGR is a destructive response by power MOSFETS. It occurs when an energetic 

particle strikes the gate of said device causing it to rapture.  
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With all this mentioned, it should be kept in mind that as more advancements are made in 

the semiconductor industry, and with electronic feature sizes reducing, there are profound 

implications to the vulnerability of newer devices to SEEs. For instance, in planar devices, 

the critical charge (QC), defined as the absolute difference in charge content between HI 

and LO logic states [9], decreases linearly with device size. Conversely, SEU vulnerability 

increases with a decrease in critical charge [9].  

The relationship between SEU vulnerability and critical charge however is not necessarily 

linear, due to factors like device thickness and operational frequency. As newer devices get 

thinner, there is less material for coincident energetic particles to traverse through, which 

in turn means that less energy is deposited into the devices [9]. The increase in operational 

frequencies also means that short SETs that would otherwise be harmless are more likely 

to get latched into memory. 

To further demonstrate the impact that advancements have on SEE vulnerability, Karp et 

al. [24] found that advanced FinFET technologies have a higher SEL sensitivity compared to 

their advanced planar counterparts. Advanced FinFETs were also found to experience lower 

rates of SEUs by [25] and [34] compared to older planar technology nodes. Adding to this, 

scaling and physical structure of the FinFET are both factors that lead to shorter duration 

SET pulses [25, 35]. However, like planar devices, SEU vulnerability is dependent on the 

angle of incidence of the charged particle [36, 37]. 

The vulnerability of a device to SEEs is therefore experimentally determined on a case by 

case basis by plotting the cross section (𝜎) of the device against different particle LET 

values. In the case of protons, their initial energy is used instead of LET [31, 38]. The cross 

section at a given energy is calculated using the formula: 

 
𝜎 =  

𝑛

𝐹𝑡 𝑐𝑜𝑠 𝜃
 Eqn 2.2 

 

Where 𝑛 is the number of SEEs counted, 𝐹 is the flux of the particles, 𝑡 is the time of 

exposure and 𝜃 is the angle of incidence of the particles on the device. 𝜎 is a measure of 

the probability of an incident particle to cause a SEE and is expressed in the units SEEs per 

particle/cm2 or just as cm2. 

In order to determine the dependence of cross section on proton energy, 3 separate 

equations may be used to fit data obtained from tests into a graph similar to Figure 2.17. 

These are Bendel 1-parameter, Bendel 2-parameter and Weibull equations. 



23 
 

 

Figure 2.17: Typical Shape of a Cross Section plot 

2.3.1.7.1 Bendel 1-parameter  

This single parameter equation may be used in cases where measurements were made at 

a single energy level [39]. The equation is given as [40]: 

 𝜎(𝐸) = (24
𝐴⁄ )14[1 −  𝑒−0.18√𝑌]4 Eqn 2.3 

 

Where 

𝑌 = (𝐸 − 𝐴)√18
𝐴⁄  

Here, E is the proton energy in MeV and A is the upset sensitivity parameter, also in MeV. 

The function outputs are in units of 10-12 cm2 [41]. 

2.3.1.7.2 Bendel 2-parameter 

This equation is a modification of the Bendel 1-parameter equation and has been shown to 

better describe device cross sections [42, 43]. There are two parameters: A – the upset 

sensitivity parameter and B (has no explicit physical interpretation).  The equation is given 

as [42]: 

 𝜎(𝐸) = (𝐵
𝐴⁄ )14[1 −  𝑒−0.18√𝑌]4 Eqn 2.4 

 

Where 

𝑌 = (𝐸 − 𝐴)√18
𝐴⁄  

The Bendel 2-paremeter equation generally sees wider use than the Bendel 1-parameter 

equation.  

Threshold  

Saturation  
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2.3.1.7.3 Weibull Equation 

This equation is mainly used to fit cross sections from tests using heavy ions. However, for 

some devices, it has been shown to provide better fits than both the Bendel 1 and 2-

parameter equations while using protons [39, 44]. The form of the equation is as follows: 

 
𝜎(𝐸) = 𝐴[1 −  𝑒−(

𝐸− 𝐸0
𝑊

)
𝑠

] 
Eqn 2.5 

 

Where A is the saturated cross section, E is the proton energy in MeV, E0 is the threshold 

energy in MeV, W is the width of the rising portion of the graph and s is a dimensionless 

exponent that determines the shape of the graph (refer to Figure 2.17) [39, 44].  

Since there are 4 variables in the Weibull equation, measurements need to be taken at no 

less than 4 different energy levels, preferably close to the threshold [39].  

2.3.2. Dose Rate Effects 

This encompasses a number of responses by electronic devices (upsets, latch-up, burnouts) 

[18] caused by exposure to a pulse of high amplitude ionizing radiation [31]. This radiation 

is usually in the form of X-rays or γ-rays that may result from the detonation of nuclear 

weaponry [9]. Unlike SEEs that are localised events, dose rate effects occur on the entire 

integrated circuit at once since they are a result of photocurrents that have been induced 

in the transistors by the radiation.   

If the dose-rate is high enough, rail span collapse may be experienced. This is where the 

induced photocurrents cause a large voltage drop across the power supply and power 

distribution rails. This voltage drop in turn affects entire portions of the circuit inevitably 

leading to signal and/or data loss [45].  

2.3.3. Total Ionizing Dose Effects 

TID effects in CMOS arise from accumulated ionizing charge in electronics that leads to a 

degradation in performance of said devices. These effects are the dominant response 

electronics have to radiation [18] since ionizing dose will be absorbed by the device 

regardless of whether or not the radiation is capable of inducing SEEs.   

The nature of the degradation, and to what degree, is reliant on a number of factors which 

include the dose rate, type of ionizing radiation, applied electrical field to the device, device 

geometry and physical structure among others [31]. The tolerance of a device to TID 

degradation will usually give an indication of the expected service life in space applications.  

2.3.3.1. TID Effects at the Transistor Level 
Models that explains the processes behind TID degradation on planar MOSFETs involve 

radiation induced charge getting trapped in the gate oxide of the transistors, effectively 

altering the threshold voltage (∆VTH). Modern commercial CMOS technology however has 

very thin gate oxides (in the range of several nm and not necessarily SiO2) and this has had 

the effect of diminishing ∆VTH to negligible levels [15]. Even with this leading to ∆VTH 
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becoming a lesser concern, models developed to explain TID effects that still took ∆VTH 

into consideration are useful because they still apply to field oxide isolation [15] or STI 

structures. It should also be noted that the TID response of bulk FinFETs is similar to that 

of planar bulk MOSFETS [46, 47]. The aforementioned models shall now be described. 

In the first process shown in Figure 2.18, when ionizing radiation traverses through the gate 

oxide of a MOS transistor, it leaves behind a track of electron-hole pairs. Many of these 

recombine within the time scale of a picosecond, however a fraction of them do not. This 

is because some electrons, which are many times more mobile than holes, are swept 

towards the gate due to the applied positive bias. The holes left behind that failed to 

recombine create a net positive charge that causes a negative shift in threshold voltage in 

both PMOS and NMOS devices. This charge build-up however is less severe in PMOS. The 

type of the incident ionizing radiation as well as the applied bias influence the percentage 

of electrons that will initially recombine with holes [15, 18]. 

 

Figure 2.18: Physical processes responsible for the radiation response of a MOS transistor 

The second process that takes place over a much larger time scale than the first involves 

the transport of the generated holes towards the Si/SiO2 interface. This may occur in 

response to the electric field resultant from the applied bias [18]. The duration of this 

process is affected by temperature, thickness of the gate oxide and the magnitude of the 

electric field. At temperatures greater than 140K, hole transport is strongly temperature 

activated but below 140K it is not [15].  

The third process occurs close to the Si/SiO2 interface. A fraction of the holes that were 

getting transported across the SiO2 may fall into hole trapping sites here. The exact fraction 

is strongly influenced by the electric field and temperature. A hole trapping site can be 
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described as a dangling bond in SiO2 devoid of an oxygen atom. [15] describes this as a 

weak Si-Si bond where each Si atom is back bonded to 3 Oxygen atoms. These trapping 

sites are induced by radiation and others may have been introduced during manufacture 

[31]. The holes that got trapped may remain trapped for anywhere between hours and 

years, however, they do undergo gradual annealing.  

The final process involves the build-up of radiation induced interface traps within the 

Si/SiO2 interface. The occupancy of these amphoteric traps is determined by the electric 

field resultant from the applied bias and this has the consequence of introducing ∆VTH that 

is reliant on the bias voltage [15]. Other than changes in the threshold voltage, other effects 

that charge trapping may have on the performance of a MOSFET are as follows: 

Switching speeds – Given that the occupancy of radiation induced interface traps is 

strongly influenced by the electric field, a sweeping gate voltage will cause the traps to “fill 

up” or “empty”. This phenomenon inevitably raises or lowers the amount of electrical 

charge required to bring the transistor into strong inversion. The negative effect of this 

manifests itself in the form of a reduction of switching speed of the transistor. This happens 

if the net charge of the interface traps makes it such that larger voltage swings are required 

to switch the device on and off [31].  

Carrier mobility – To explain this, let us take the example of an NMOS device that has 

interface traps with a net negative charge. When the transistor is switched on, electrons 

travelling from the source to drain will experience coulomb scattering due to the repulsive 

negative charge of the interface traps. Effectively, this leads to an increase in “channel on 

resistance” [31]. 

Leakage Currents – Isolation structures may accumulate substantial amounts of charge 

that may lead to low resistance electrical paths forming. Parasitic leakage current may then 

use these paths to pass between neighbouring transistors or between source and drain of 

a single transistor.  Figure 2.19 illustrates this for a 3-fin FinFET.  

 

Figure 2.19: Parasitic leakage currents in a 3-fin FinFET [47] 

2.3.3.2. TID Effects at the IC Level 
Without needing mention, the top level TID response of a complex integrated circuit is 

governed by the underlying transistor level responses. For instance, TID induced transistor 
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source to drain leakage currents will lead to an increase in standby current of the IC. This is 

because the standby current of an IC is correlated to the OFF current of the transistors it is 

constituted of [31].  

Adding on to this, an IC may experience Transistor-transistor Logic (TTL) compatibility 

issues. This may arise from TID induced changes in both carrier mobility and threshold 

voltage parameters at the transistor level. The combined effects of these on the I-V 

characteristics of the transistor may have a profound effect on signal propagation timing 

and levels [31]. Other IC level TID effects that arise directly from the transistor level are 

functionality implications, internal timing issues, changes in operating voltages and 

frequencies among others [31]. 

Worth mentioning, Zhang et al. [48] found that for 14-/16nm FinFET Flip-Flops, TID dose at 

first seemed to increase the SEE cross section but with further increase in dose, the cross 

section decreased. The doses at which the cross-section decreases were observed seemed 

to depend on the supply voltage and Flip-Flop design. Bacchini et al. [49] also reported on 

a significant decrease in retention time for data in DRAM as a consequence of absorbed 

dose. 

 

Table 2.1 is presented to bring this chapter to a close. It highlights the different types of 

effects that different sources of radiation in space may have on electronics.  

 

 
 

Effects 

Sources 

Van Allen Belts Solar 
Flares 

Cosmic 
Rays 

Electrons Protons Protons Ions 

TID x x x   

          

SET   x x x 

SEU   x x x 

SEL   x x x 

SEB   x x x 

SEGR   x x x 

Displacement 
Damage 

x x x   

Table 2.1: Summary of radiation sources and their effects on electronics. Adapted from [50] 
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3. Test Setup and Procedure 

This chapter gives a brief overview of some considerations that should be made before 

testing the SEE and TID characteristics of a microprocessor. Further on, a description is 

given for the microprocessor that was tested as well as the test software and test setup 

used. 

3.1. Testing Considerations 

3.1.1. SEE Testing 

3.1.1.1. Testing methods  
In the past, there were several approaches taken to testing older, simpler processors. Most 

of these involved using custom hardware and dedicated machine instructions that gave 

good visibility into the state of the processor at any given time during irradiation [38].   

An example of these earlier approaches would be one where an external controller or 

computer would monitor the output pins of the processor under test. The DUT would 

execute a test program while the controller compared the DUT outputs with known values. 

The controller would then log and report any erroneous outputs detected. Alternatively, 

the controller would compare the DUT outputs to the outputs of a “golden chip”, which 

was an identical processor executing the same program but not undergoing irradiation. The 

controller would then log and report any discrepancies in outputs between the two devices 

[38]. 

Another approach that was used was a single self-testing computer. The DUT would be 

installed as part of a full computer configuration. The DUT would then run test programs 

and compare the results to known values. If errors were detected, they would be reported 

by the DUT through connected peripherals [38].  

Modern microprocessors on the other hand are very complex devices that operate at very 

high frequencies, have pin counts numbering in the thousands and require multiple 

supporting electronics just to function. This inevitably adds high complexity to the task of 

designing custom hardware and software (including operating systems) for testing 

purposes. For these reasons, tests carried out on newer processors typically use the single 

self-testing computer approach or testing the processors on development boards supplied 

by the respective manufacturer [38]. 

3.1.1.2. Operating System  
The choice of operating system (OS) plays a major role since the complexity and operational 

characteristics of the OS may heavily influence test results, sometimes even interfering 

with data acquisition. This latter point can be seen with Howard et al.  [51] where they 

were testing Intel Pentium III and AMD K7 microprocessors. They experienced such a high 

OS crash rate that limited how much SEU data they could collect.   
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Generally, the more complex the OS is, the higher likelihood that it would crash during 

testing [38]. This is problematic since it is difficult to distinguish a crash caused by an error 

in the OS or by an error occurring in a critical location of the DUT [38].  It is therefore 

recommended that tests on microprocessors be carried out using primitive operating 

systems unless more complex operating systems are intended to be used for the mission 

[38]. 

Another implication is brought about by the use of pre-emptive operating systems. A pre-

emptive OS is one which allows for tasks to be interrupted during their execution. During 

an interrupt, the processor typically switches context to service the cause of the interrupt. 

This context switch involves the processor pushing the values that were stored in its 

internal registers to special registers and memory. The processor will then populate its 

internal registers with new values that are required to service the interrupt and proceed to 

execute the interrupt service routine. Upon completion, the processor will switch context 

back to the task it was initially executing and rewrite the initial values to its internal 

registers once more. This is problematic if testing using the single self-testing computer 

approach because the “visibility” of the state of registers is limited to only when the test 

program is being executed. If an error occurs during an interrupt service routine, it will be 

missed.  

 

Figure 3.1: Processor Context Switching as handled by a pre-emptive OS. Task 1, which checks for upsets, is initially 
executing. An interrupt causes a context switch to Task 2 (the interrupt service routine). If an upset occurs during this 
service routine, it will be missed by Task 1. 

To combat this, a real time operating system (these allow for deterministic task scheduling) 

could be used with the test program set to run as a high priority interrupt. This would 

minimize the probability of the test program getting interrupted and the processor 

registers having their values rewritten outside the control of the test program (i.e. the test 

program would run as Task 2 in Figure 3.1). This option however tends to be costly either 

financially or effort-wise due to complexity of implementation. In the financial sense, real 

time operating systems are typically intended for industrial and corporate use and are thus 
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priced accordingly. Conversely, free alternatives require a significant amount of system 

knowledge and time to implement. An example can be given of the RT Linux microkernel 

that once installed, will run the entire Linux kernel as a pre-emptive task (thus allowing 

different tasks to be run deterministically). To implement it, one has to first compile it then 

mount it beneath the Linux kernel [52], which in itself requires a significant amount of 

technical know-how.  

Another possible solution would be to completely disable the pre-emption of the OS. This 

however does introduce problems such the system being unresponsive to user inputs 

(which are usually handled as interrupts) or the test program not even executing when 

required due to some other processes introducing indefinite holds to the task queue [53]. 

For these reasons, it would be best to only use this option for processors whose internal 

states can be monitored by external devices during testing.   

3.1.1.3. On-Board Cache  
In most modern microprocessors, a significant portion of the die is dedicated to on-board 

cache memory (SRAM) [38]. Additionally, the total number of bits in cache is much higher 

than the number of registers in the processor. This means that when the processor is 

running and using the cache heavily, there is a higher probability of an SEU occurring in 

cache [38]  and causing a system crash. This results in a higher device cross section [2, 51] 

compared to when the device is running without using cache memory. 

It is therefore common practise to disable the on-board cache to allow for sufficient system 

up-time during testing. This also extends to devices on missions. 

3.1.2. TID Testing  

A consideration to be made for TID testing is whether to test while the processor is biased 

or unbiased. Results obtained from biased tests are more indicative of what the device will 

experience on mission since it is mostly going to be biased while in space [39].  

Care should also be taken that the dose rate chosen for irradiation of the device is not 

between the hole trapping dominated and interface trap dominated response of the 

device. This prevents unrealistically high dose survivability figures from being obtained 

[15]. Other than this special case, the dose rate at which the test is carried out does not 

really matter. At the onset of testing, variations in results may be seen for devices tested 

at different dose rates (due to time dependence) however if the devices are given enough 

time to anneal, they will show similar performance and give similar test results provided 

that they have absorbed similar amounts of total dose [18, 31]. 
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3.2. Device Tested 

3.2.1. E3815 System-on-a-Chip 

As mentioned earlier in Chapter 1, the device that this research focuses on is the Intel Atom 

E3815 microprocessor which comes packaged as part of a System-on-a-Chip (SoC). This SoC 

also includes integrated graphics, an integrated memory controller and an integrated 

platform controller hub [54]. The E3815 is a 64-bit processor with a feature size of 22nm 

and has 1 core that only supports 1 thread [55]. Additionally, it comes with 512 kB of L2 

cache and runs at a base frequency of 1.46 GHz [55]. More specification details can be 

found in Appendix 1: Intel Atom E3815 Specifications . 

Figure 3.2 is an illustration of the general architecture of a x64 Intel processor such as the 

E3815. x64 processors use the 64-bit instruction set architecture which is an extension of 

the previously used 32-bit x86 instruction set architecture [56] . There are 3 main register 

banks, namely the General-Purpose Registers (GPR), Floating Point Registers on which the 

MultiMedia eXtensions (MMX) registers [57] are overlaid and finally the XMM registers.  

The General-Purpose Register bank consists of 16 registers that are each 64 bits wide. 

These registers are mainly used to store arguments that are passed to functions, store 

return values of functions and as temporary registers. Additionally, RBP (refer to Figure 3.2) 

is used to keep track of the base of the current stack frame and RSP is used as the stack 

pointer that points to the top of the stack [58].  Specific uses of each GPR are listed in Table 

3.1. 

The 8 floating point registers (FPR0-FPR7), together with status and control registers not 

shown in Figure 3.2 constitute the Floating-Point Unit (FPU). Each floating-point register is 

80 bits wide. Overlaid on the FPU are the 8 MMX registers that are each 64 bits wide [56].  
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Figure 3.2: General x64 Architecture [56] 

The FPU, as the name suggests, is used to carry out operations on floating point numbers. 

Unlike the GPRs, each FPU register is not individually addressable, instead, the entire FPU 

can only be accessed as a stack. FPR0 (see Figure 3.2) acts as the top of the stack and 

floating-point operations can only be performed on it and another register in the FPU 

(including itself) but not between any other 2 FPU registers [59]. The MMX registers are 

implemented to reduce the time that certain multimedia operations take to process, 

effectively increasing performance and speed [57]. They bring with them Single-Instruction, 

Multiple-Data (SIMD) instructions which allow for operations to be carried out on multiple 

integers simultaneously [60]. Since MMX and the FPU share the same hardware, MMX tasks 

cannot run while the FPU is in use and vice versa.  

The XMM register bank consists of 16 registers that are each 128 bits wide. They are used 

by Streaming SIMD Extensions (SSE) instructions. SSE instructions are an extension of SIMD 

[60]. XMM registers can be used for the same operations as MMX and have additional 
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capabilities thanks to SSE instructions. This results in XMM seeing more common use than 

MMX in newer software. Each MMX and XMM register can be individually addressed. 

Register 
Name 

Use(s) 

 
RAX 

Temporary register 

With variable arguments passes information about the number of vector 
registers used 

1st return register 

RBX Callee-saved register 

RCX Used to pass 4th integer argument to functions 

RDX Used to pass 3rd argument to functions 

2nd return register 

RBP Callee-saved register 

Optionally used as frame pointer 

RSI Used to pass 2nd argument to functions 

RDI Used to pass 1st argument to functions 

RSP Stack pointer 

R8 Used to pass 5th argument to functions 

R9 Used to pass 6th argument to functions 

R10 Temporary register used for passing a function’s static chain pointer 

R11 Temporary register 

R12  
Callee-saved registers R13 

R14 

R15 Callee-saved register 

Optionally used as Global Offsets Table (GOT) base pointer 
Table 3.1: General Purpose Register Usage. Table adapted from [61] 

Other registers include control registers, virtualization registers, RIP (64-bit wide 

instruction pointer register), memory management registers, RFLAGS (stores flags used to 

keep track of some branch operations and control the processor), status registers and 

performance registers [56] among others. What has been presented here is by no means 

exhaustive of all the registers present in a x64 processor.  

3.2.2. Intel NUC DE3815TYBE  

Due to the complexity of the E3815 microprocessor, it was decided that the device would 

be tested on a commercially available single board industrial PC rather than on a custom 

designed board. This avoided the task of designing a compatible board and a custom 

operating system. To this end, the Intel NUC DE3815TYBE was selected. This board came 

with the E3815 SoC package already soldered on in a ball grid array configuration. 

Figure 3.3 shows photos of the top side and bottom side of the board and Figure 3.4 is a 

block diagram of the major functional parts of the board.  
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Figure 3.3: Photos of the Intel NUC DE3815TYBE. Left -Top of the board with heatsink removed to expose the E3815 SoC 
(highlighted by red circle), Right -Bottom of the board with a 4 GB SO-DIMM RAM module installed 

  

Figure 3.4: Block Diagram of the major functional parts of the DE3815TYBE [54] 
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As can be seen in the block diagram, the board is essentially an entire computer. It comes 

with 4 GB embedded eMMC memory and has USB, Ethernet and HDMI display ports that 

can be used to connect standard peripheral devices. The board can operate on DC input of 

12V to 19V with a maximum current rating of 3A [54].  

Additional hardware used includes 4 GB of non-ECC SO-DIMM memory (RAM) running at 

1066 MHz (because the board did not support ECC RAM) and a 120 GB Solid State Drive 

(SSD) connected to the board via the SATA port. This SSD is where the operating system 

was installed.  

As for software, the following was used: 

• BIOS version: TYBYT20H.86A.0009.2017.0224.1346 

• OS installed: Lubuntu 18:10 Desktop 64-bit 

The Lubuntu operating system is a light weight build of the more popular Ubuntu operating 

system. Both are Linux distributions, however, Lubuntu was chosen because it is less 

demanding on the hardware, which is a preferable characteristic for SEE testing of 

microprocessors as discussed earlier.  

3.3. Test Setup  

3.3.1. SEE Test 

SEE testing was carried out at the Neutron Therapy Vault of the NRF iThemba Labs in Cape 

Town, South Africa. The separated sector cyclotron at the facility is capable of accelerating 

proton beams to a maximum kinetic energy of 200MeV [62]. Testing was carried out in 

open air at a single beam energy of 55.58 MeV.  

Referring to Figure 3.5 and Figure 3.6 , the board is mounted on an XY Table that was 

developed by Space Commercial Services (SCS). The XY Table, operated remotely, allows 

for vertical and horizontal positioning of the DUT with respect to the proton beam. The 

table also allows for the angle of incidence of the proton beam on the DUT to be varied, 

though, this feature was not utilized, and all tests were carried out with the DUT 

perpendicular to the proton beam. Additionally, a cooling fan was mounted on the table to 

blow air across the processor to keep it cool during testing. This is because the heatsink 

that came mounted on the processor was removed in order to expose the die to the proton 

beam unhindered.  

The board received power from a 12V DC power supply unit. A shunt resistor and a relay 

were both connected in series with the board. The shunt resistor formed part of the current 

measurement instrumentation while the relay was used for remotely power cycling the 

board if necessary. A National Instruments CompactDAQ – 9184 Chassis (cDAQ-9184) with 

two modules installed also formed part of the setup. Of the two installed modules, one was 

the NI 9205 that is a voltage measurement device and the other was the NI 9403 that is a 

digital general-purpose input-output device. The NI 9205 was connected (in the Non-

Referenced Single Ended configuration [63]) to measure the voltage drop across the shunt 
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resistor. The current draw of the board would then be determined from obtained voltage 

readings. The NI 9403 on the other hand was connected to the control pins of the relay. 

Figure 3.9 provides a schematic of this layout. 

 

Figure 3.5: SEE Setup in the Neutron Therapy Vault at NRF iThemba Labs 

 

Figure 3.6: SEE Setup in the Neutron Therapy Vault at NRF iThemba Labs (different angle) 
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Figure 3.7: Closeup photo of the board mounted on the XY Table 

 

Figure 3.8: Support Electronics (behind lead blocks). Network switch not shown. 

A barrier consisting of interlocking blocks of lead was used to shield the support electronics 

from any scattered protons and/or secondary radiation produced during the test. Inclusive 

of these electronics was the SATA SSD boot drive of the board in which the OS was installed. 

By design, the test software would record any errors detected during testing to the drive 

(the single self-testing computer approach described in section 3.1.1.1 was used).  

The board, as well as the cDAQ and control circuitry for the XY table were all connected to 

a network switch via Ethernet cables. This network switch was also connected to other 

network switches in the facility that subsequently reached the control room.  
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Figure 3.9: Wiring Diagram for SEE Setup (SSD Boot Drive not shown) 

 

 

Figure 3.10: Network Device map in control room for SEE Setup 

In the control room was a windows laptop running a LabVIEW Virtual Instrument (VI) that 

communicated to the cDAQ through the network. From this machine, the current draw of 

the board was monitored and manual power cycling. Additionally, there was a DE3815TYBE 

cDAQ 

9184 

N
I 9

40
3

 

N
I 9

20
5

 

Switch 

12V 
PSU 

XY drives 

DUT On/Off  

+5V Vcc (relay logic) 
Ground 

GND +12V 

+12V 

GND 

Relay 

XY Table 

DUT (no heatsink) 

To control room 

Ethernet Cable 

V+ 

GND 

AI Sense 

Shunt Resistor 

DC Power Plug 

Cooling fan 

Ethernet 

Cable 

 Network Switch 

From neutron therapy vault 

Windows Laptop 

Graph & Log current 

Switch DUT on/off 
Ethernet Cable 

Ethernet Cable 

Ethernet Cables 

To dosimetry 
equipment, XY table 

control etc. 

Linux Machine 

Controls DUT      

Logs DUT Outputs 



39 
 

NUC board running the same version of Lubuntu as the test board. This board was used to 

control the test-board via a Secure Shell (SSH) terminal through the network as well as 

displaying the outputs of the test software on a screen. Dosimetry and control of the XY 

table were also done through the network.  

3.3.1.1. Data Acquisition  
As discussed, the NI 9205 module installed on the cDAQ-9184 was used for the current 

measurements while the NI 9403 was used to control the relay that power cycled the test 

board on user command. Figure 3.11 and Figure 3.12 are from the LabVIEW VI created to 

accomplish these tasks. 

The centre of the front panel of the VI is dominated by a waveform chart that would display 

current measurements in real time while running (100 samples taken at 1kHz every 200ms). 

The plotted value would be the quotient of the voltage measured across the shunt resistor 

and the resistance of the shunt resistor (0.005Ω). Additionally, all measured values would 

be appended to a log file if the user chose to do so. The VI also has indicator LEDs to show 

if the DUT is currently receiving power and whether or not measurements are being written 

to file. Finally, there were counters that the user could manually increment to keep track 

of the number of SEFI or SEL encountered. 

 

Figure 3.11: Front panel of the LabVIEW VI used in SEE testing 

As for the DUT and the test software it was running, data was recorded in a number of 

ways. The first, mentioned earlier, was by the test software logging errors to a file on the 

boot drive. The second was in the control room. The Linux machine used to control the DUT 

via SSH would display the same outputs from the test software on the on-screen terminal. 

These outputs would be recorded locally by screen capture software. The screen recordings 
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would serve as backups in case the boot drive failed. Also, a manually handwritten log of 

events was kept for events like program crashes and SEFI that the DUT could not record. 

 

 

Figure 3.12: LabVIEW code for the VI used in SEE testing 
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3.3.1.2. Test Software 
If knowledge of the fundamental response of registers to radiation is known, it is possible 

to predict the expected behaviour of different types of applications running on a particular 

device [38]. With this in mind and given that different types of registers may have different 

sensitivities to upsets [38], several test programs were developed, each focusing on testing 

a specific bank of registers. The register banks tested were the GPRs, MMX and XMM (refer 

to Figure 3.2). The 64-bit wide MMX bank was chosen over the 80-bit wide FPU since each 

MMX register is individually addressable, while the FPU is only accessible through the top 

of the stack (FPR0) [59]. This means that any FPU operations carried out during testing 

would consistently rewrite the values in the FPU registers, potentially correcting any errors 

caused by radiation before they were detected. It was expected that a sensitivity of MMX 

registers alone would be indicative of the performance to expect from applications that are 

FPU intensive and/or MMX intensive since MMX and FPU share the same physical register 

space. 

Additional programs used that utilized the Arithmetic and Logic Unit (ALU) of the processor 

included a generic CPU workload benchmark (Sysbench) installed from the Ubuntu 

repository and a “math test” that was written to carry out the following calculation and 

compare it with the known result: 

 cos(sin (sin (√2(sin(cos(sin(cos(16032001𝑒𝜋)))))))) Eqn 3.1 

 

Any correlation between the results obtained from the “math test” program and the 

sensitivity of the MMX registers was also to be investigated. 

Finally, a Linux kernel module was written to allow for enabling or disabling of the on-board 

cache in runtime. These programs were meant to run in scenarios where the on-board 

cache was disabled, as well as scenarios where it was enabled. Results obtained from both 

scenarios would then be compared to determine the influence that the on-board cache had 

on the device sensitivity.  

Ideally, one would want to test most, if not all of the processor circuitry. However, factoring 

in the complexity of the device, manpower available to create test software and beam time 

available, this would not be feasible. Therefore, the test programs mentioned would test 

circuitry that was understood to be of relatively high importance, among other reasons, 

such as, addressability and feasibility (for instance modifying the control registers would 

interfere with the self-testing capabilities of the device therefore control register testing 

was excluded). 

The test programs were written using a combination of the C programming language and 

extended inline assembly calls (i.e. assembly code embedded in the C code). The “volatile” 

modifier was used whenever making an inline assembly call so as to instruct the compiler 

not to optimize the code [64], potentially changing how it behaves. The algorithms 

implemented share similarities with those presented in the papers [38, 51, 65] but also 

differ in a number of ways. They shall now be described.  
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Figure 3.13: General steps taken by the main function of the developed test programs 
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Figure 3.13 shows the form of the main function of each test program created. When 

initiated, the program would prompt the user to input the beam characteristics and 

number of test-runs to perform. The program would then proceed to append a log file 

stored in the SSD with a new heading indicating the beam parameters.   

Within the program, a test run is defined as the successful execution of the appropriate 

test function. For example, if the function for testing the GPRs is called and it executes to 

completion, a single test run will have elapsed. Through each test run, the run count and 

details of what the test function returned are printed to terminal. This is important since it 

allows the operator to easily recognize a system hang (and other anomalous behaviour) as 

well as providing a redundant log of events. 

Each test function returned a value to indicate whether or not an error had been detected, 

and in the case of the GPR test function, the type of error would also be specified (e.g. 

whether it was an upset or a write fail). On top of this, each test function would create an 

error report that would both be written to the log file as well as displayed on terminal. For 

instance, the GPR test error report, intermediately stored in program memory (RAM), 

consisted of the following: 

• Location of the register where the error was detected 

• The value stored in the register used as the baseline for comparisons 

• 3 copies of the value stored in the register that is being reported 

The decision to output 3 copies of the erroneous value to RAM was a soft implementation 

of triple modular redundancy. This way, during analysis of the results, it would be easier to 

determine whether the reported value was the actual value stored in the reported register, 

or an erroneous value due to an upset occurring in RAM. The “true” value would be the 

majority voted one.  

3.3.1.2.1 GPR Test Function (Pseudocode)  

Refer to Figure 3.2 on page 32 for register names. Registers shall be prefixed by a % in the 

pseudocode: 

1. RESET the upset-detected flag and failed-to-write flag in RAM 

2. WRITE 0xf0f0f0f0f0f0f0f0 to %rax from RAM //This is the baseline register 

3. WRITE [NumberOfScanCycles] to %rbx 

4. COPY %rax to %rcx 

5. IF %rax not equal to %rcx //If the value failed to write 

6.           COPY %rax to %rcx 

7.           IF %rax not equal to %rcx 

8.                     COPY %rax to %rcx 

9.                     IF %rax not equal to %rcx 

10.                               GENERATE error report.  

11.                               SET failed-to-write flag in RAM 

12.                               PRINT report to terminal 

13.                               APPEND report to logfile 

14.                               RETURN to main with write-fail signal 
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15.                     END IF 

16.           END IF 

17. END IF 

18. REPEAT step 4 - 17 for each subsequent GPR in place of %rcx excluding %rbp & %rsp 

19. BEGIN LOOP to scan registers for changes. Counter in %rbx, decrementing 

20.            IF %rax not equal to %rcx 

21.                      GENERATE error report 

22.                      SET upset-detected flag in RAM 

23.                      PRINT report to terminal 

24.                      APPEND report to logfile 

25.                      RETURN to main with upset-detected signal 

26.            END IF 

27.            REPEAT step 20-26 for each subsequent GPR in place of %rcx excluding %rbp           ………. 

……… & %rsp 

28. END LOOP 

29. PRINT “no error detected” to terminal 

30. RETURN to main with no-error signal 

The source code for the GPR test program can be found in Appendix 2: “GPR Test Source 

Code”. The registers RBP and RSP are excluded from the test since modifications to them 

by the program result in the program crashing with a segmentation fault. The RAX register 

is used to store the baseline value of 0xf0f0f0f0f0f0f0f0 and for comparisons with 

subsequent registers. The baseline value was chosen since it fills the entire 64-bit wide 

register with an even alternating pattern of 1111 and 0000 in binary. This would be useful 

in investigating upset asymmetry (i.e. 1 → 0 upsets versus 0 → 1 upsets). 

In tests with the cache on, the value written to RBX was 150,000,000 and with cache off, 

the number was 3,000,000. These numbers represent how many times the entire register 

bank would be scanned for errors and were chosen such that each test run (defined in the 

flowchart) would take about 5s to execute. Reason for this was to ensure a roughly 

predictable update rate on the terminal which made it easier for the operator to spot 

anomalies such as system hangs. Keep in mind that with cache off, the system operates 

sluggishly and without this being done, the user could improperly assume that the system 

had hanged. 

In the register initialization phase of the function, if a register fails to have the correct value 

written to it on the first attempt, a second attempt will be made. If the second attempt 

fails, a third will be made. If this still fails, an error report will be generated. If the same 

register fails the same way for subsequent test runs, it would be indicative of a stuck bit(s), 

in which case the program would be modified to exclude this register from the test. This is 

because the sequential order of execution will result in error reports being dominated by 

that one failed register, especially if it is one of the first registers to be initialized. 
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3.3.1.2.2 MMX Test Function (Pseudocode) 

The source code for the MMX test program can be found in Appendix 3: “MMX Test Source 

Code”. The pseudocode for the function follows: 

1. WRITE [NumberOfScanCycles] to %rdx 

2. WRITE 0xf0f0f0f0f0f0f0f0 to %r8, %r9 and %r10 from RAM //These are the baselines 

3. WRITE 0xf0f0f0f0f0f0f0f0 to %mm0 from RAM  

4. COPY %mm0 to %mm1 - %mm7 

5. BEGIN LOOP to scan registers for changes. Counter in %rdx, decrementing 

6.           COPY %mm0 to %rax, %rbx and %rcx 

7.           IF (%r8 not equal to %rax) AND (%r9 not equal to %rbx) AND (%r10 not equal to %rcx) 

8.                     GENERATE Error report 

9.                     PRINT report to terminal 

10.                     APPEND report to logfile 

11.                     RETURN to main with error-detected signal 

12.           ELSE 

13.                     Repeat step 6 – 12 for each subsequent MMX register in place of %mm0 

14.           END IF 

15. END LOOP 

16. PRINT “no error detected” to terminal 

17. RETURN to main with no-error signal 

There are no compare opcodes/instructions that operate on MMX that also allow for 

branching statements like in GPRs. For this reason, if any decision is to be made depending 

on the contents of a given MMX register, the value in the MMX register must first be copied 

to a GPR. The comparison and branch instructions are then executed using this GPR.  

In the MMX test function, 3 GPRs (R8, R9 and R10) store 3 copies of the baseline value.  

Another 3 GPRs (RAX, RBX and RCX) are used as temporary storage to hold 3 copies of the 

value within the MMX register currently undergoing inspection. An error in the MMX 

register is deemed to have occurred if the values of all three of the following register pairs 

differ from each other: RAX and R8, RBX and R9, RCX and R10, in which case an error report 

is generated.  The report in this case returns the value in the current MMX register and the 

value in the three GPRs used as temporary storage, as well as the location of the MMX 

register. 

The use of 3 GPR pairs in the comparison rather than 1 reduces the probability of a false 

positive error report in case an upset occurs in a GPR. All 3 pairs are guaranteed to 

mismatch if the value copied from the MMX register is different from the baseline, 

however, the same cannot be assumed if a mismatch is caused by upsets in only a few of 

the GPRs. 

There, however, still is a possibility for false positives to occur if the GPRs are experiencing 

a high enough upset rate. For these cases, false positives would have to be distinguished 

from real MMX upsets during the analysis of the error reports obtained from testing.  
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Finally, for similar reasons as those given in the GPR test function, the number of scan cycles 

with cache on was 150,000,000 and 1,000,000 with cache off. 

3.3.1.2.3 XMM Test Function (Pseudocode) 

Source code for this can be found in Appendix 4: “XMM Test Source Code”. The XMM 

registers, like the MMX registers, do not have any compare instructions that allow for 

branching/decisions. Consequently, the same approach used in the MMX test function will 

be used for XMM. Also, since XMM registers are 128-bits wide, double the number of GPRs 

will be required to store the contents of a single XMM register. The “L” and “H” suffixes are 

used to specify the lower 64-bits and the higher 64-bits of the specified XMM register 

(respectively) in the pseudocode that follows: 

1. WRITE 0xf0f0f0f0f0f0f0f0 to %rax, %rbx and %rcx from RAM //These are the baselines 

2. WRITE [NumberOfScanCycles] to %rdx 

3. WRITE 0xf0f0f0f0f0f0f0f0 to %xmm0L from RAM  

4. WRITE 0xf0f0f0f0f0f0f0f0 to %xmm0H from RAM  

5. COPY %xmm0 to %xmm1- %xmm14      //Notice we haven’t included %xmm15 

6. BEGIN LOOP to scan registers for changes. Counter in %rdx, decrementing 

7.           COPY %xmm0L to %r10, %r11 and %r12 

8.           COPY %xmm0H to %xmm15L       //xmm15 is used as swapping space 

9.           COPY %xmm15L to %r13, %r14 and %r15 

10.           IF (%rax not equal to %r10) AND (%rbx not equal to %r11) AND (%rcx not equal to %r12) 

11.                     GENERATE Error report 

12.                     PRINT report to terminal 

13.                     APPEND report to logfile 

14.                     RETURN to main with error-detected signal 

15.           ELSE IF (%rax not equal to %r13) AND (%rbx not equal to %r14) AND (%rcx not equal to 

………%r15) 

16.                     GENERATE Error report 

17.                     PRINT report to terminal 

18.                     APPEND report to logfile 

19.                     RETURN to main with error-detected signal 

20.           END IF 

21.           END IF 

22.           Repeat step 7 – 21 for each subsequent XMM register in place of %xmm0 excluding 

………%xmm15 

23. END LOOP 

24. PRINT “no error detected” to terminal 

25. RETURN to main with no-error signal 

The register XMM15 was used differently in the function compared to XMM0-XMM14. This 

is because XMM registers can only copy the lower 64-bits to a GPR but not the higher 64-

bits. XMM15 (or rather XMM15L) was therefore used as a swapping register that would 

keep getting overwritten by the higher 64-bits of the register currently being inspected. 

This way, the number of rewrites occurring on XMM0 - XMM14 are minimized.  
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Error reports generated by this function would include all 128-bits of the XMM register that 

is being reported, the contents of the temporary registers (R10, R11, R12 for the lower 64-

bits and R13, R14, R15 for the higher 64-bits) and the location of the register being 

reported. With cache on, the number of scan cycles was 150,000,000 and with cache off it 

was 35,000.  

3.3.1.2.4 Math Test Function (Pseudocode) 

Source code for this can be found in Appendix 5: “Math Test Source Code”. Pseudocode 

follows: 

1. CALCULATE equation result 

2. IF result is correct 

3.       PRINT to terminal “ok” 

4. ELSE 

5.       PRINT to terminal “Mismatch” 

6.       APPEND to logfile “Mismatch” 

7. END IF 

This was the simplest function implementation to check for errors in the ALU. The error 

report would simply be a count of the number of incorrect/unsuccessful calculations. 

3.3.1.2.5 Sysbench Benchmark 

This is a simple benchmark tool that benchmarks the processor by validating prime 

numbers. At the end of a run it prints to terminal the performance of the processor. 

The terminal command entered to run the benchmark is as follows:  

sysbench --test=cpu --cpu-max-prime=20000 run 

3.3.1.2.6 Cache Disable/Enable Kernel Module  

Disabling the processor cache would be achieved by setting bits 29 and 30 of the control 

register (cr0) to 1 [66]. Since modification of the control registers of the processor is only 

allowed to be done at user level 0, a Linux kernel module had to be created.  

The source code, that uses the same procedure as [67], can be found in Appendix 6: “Cache 

Disable/Enable Kernel Module” and the Makefile in Appendix 7: “Makefile for Cache 

Disable/Enable Kernel Module”. Once compiled, all one had to do to disable the cache was 

insert the module into the kernel (as root) using the “insmod” command. To re-enable the 

cache, the module would have to be unloaded using the “rmmod” command. 

3.3.1.3. Testing Procedure 
The first thing to do was to measure and verify the beam spot size and uniformity. This was 

done by Mr. Arno Barnard of Stellenbosch University (a collaborator) together with 

members of iThemba staff.  All the while, the board was in the beam shadow cast by the 

collimators. 

On completion, the beam was shut off and the XY table was commanded to move the DUT 

into position. The operator on the controller Linux machine then initiated the execution of 

test programs on the DUT. Beam at 2nA current was then switched on and as the DUT was 
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undergoing irradiation, the terminal outputs as well as the current draw were monitored 

on screen. 

If a test program completed without detecting a significant number of errors, it would be 

re-invoked as quickly as possible and made to execute for a longer period of time. If a large 

current spike was noted or the system hanged or rebooted, the beam would be switched 

off and the board power cycled and given enough time to resume program execution 

before the beam was switched on again. This was to minimize accumulation of fluence 

without results. This procedure was repeated for beam currents of 5nA, 15nA, 20nA and 

momentarily for 30nA, though this latter case was preceded by irradiation of a different 

device while the DUT was in the beam shadow once more.  

All testing was done with the DUT operating at stock frequency since the BIOS did not allow 

for modification of the CPU multiplier.  

3.3.2. TID Test 

TID testing was carried out at FruitFly Africa in Stellenbosch, South Africa. The facility 

utilizes a cylindrical cobalt-60 gamma radiation source to sterilize fruit fly male pupae 

before releasing them back to the wild. This is done for population control of the 

international quarantine pest [68].    

Typically, when in use, containers that contain the pupae are placed on the motorized 

turntable highlighted in Figure 3.14. When switched on, this turntable rotates about the 

centre cylinder that is oriented vertically. It is within this vertical cylinder that the cobalt-

60 source is mechanically raised from or lowered to its underground storage location. 

Control of the movement of the source is done remotely from outside the irradiation 

chamber.  

The gamma radiation emanating from the source follows the inverse square law, which 

means that the rate of dose delivered by the radiation to a target varies inversely with the 

square of the distance between the target and the cobalt-60 source.  
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Figure 3.14: Irradiation chamber at FruitFly – Stellenbosch. In this photo, the Cobalt-60 source is still underground 

 

Figure 3.15: TID test setup in the irradiation chamber at FruitFly 
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Figure 3.16: TID test setup in the irradiation chamber at FruitFly (different angle showing support electronics) 

The setup used for TID testing is shown in Figure 3.15 and Figure 3.16. The new board 

undergoing testing (not the same one used for SEE testing) was mounted on a fixture trolley 

that was placed beyond the turntable. This trolley is adjustable such that it allowed for the 

distance between the board and the cobalt-60 source to be varied, effectively allowing for 

the dose rate to be chosen. It was desired for the DUT to receive a total dose of at least 100 

kRad (many missions have been required to survive this dose [29]). This as well as the time 

available to carry out the test meant that the required dose rate was approximately 10 

kRad/h. Utilizing a spreadsheet provided by a collaborator [69], it was determined that the 

DUT should be placed 57.95 cm from the source to give a dose rate of 9.7 kRad/h. 

At the back of the trolley was a protective barrier formed by a series of interlocking lead 

blocks. These served the same purpose as in the SEE setup, they protected the support 

electronics from getting damaged by the radiation. The support electronics were also set 

up in a similar manner to the SEE setup however the test board was not connected to an 

ethernet network and the cDAQ was directly connected to a windows laptop that was 

located outside the irradiation chamber. The ethernet cable that connected the cDAQ to 

the windows laptop left the irradiation chamber through a cable duct that ran through the 

1m thick concrete wall of the chamber. Lead cylinders with small cut outs for cable runs 

were inserted on either end of this cable duct so as to minimize the amount of radiation 

and ionized air that could travel to the operator side. Other differences with the SEE setup 

are the absence of the XY table and cooling fan, and the presence of a heatsink on the DUT. 

The heatsink was not removed since it would not hinder the gamma radiation from 

reaching the DUT [70]. A schematic of the setup is given in Figure 3.17.  

During the TID test, the DUT was set to automatically be running the Sysbench benchmark 

at intervals of 2 minutes whenever the machine booted up. This would ensure a consistent 
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load on the processor throughout the test. The board BIOS had also been set to auto-reboot 

if for whatever reason the board lost power and then the power came back on again. 

Window

 

Figure 3.17: Wiring Diagram for TID Setup (SSD Boot Drive not shown) 
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3.3.2.1. Data Acquisition  
Data acquisition for the TID tests was done using the NI 9205 installed on the cDAQ chassis. 

The module, like in the previous test, was measuring the voltage across the shunt resistor. 

This value would be divided by the resistance of the shunt thus yielding the current draw 

of the board which would both be graphed and appended to a log file.  

The LabVIEW VI that had been used for the SEE test was reused however it had been 

modified to record similar data for 4 additional devices undergoing separate unrelated 

tests. Measurements for these devices were made using different channels of the NI 9205. 

Another modification made to the VI was the frequency at which measurements were 

made. Since the test was intended to run for approximately 10 hours, the VI was set to read 

100 samples at 1kHz every 1 minute, opposed to every 200ms as in the SEE test.  

Figure 3.18: Front panel of LabVIEW VI used for TID testing 



53 
 

 

Figure 3.19: LabVIEW code for the VI used in TID test 
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3.3.2.2. Testing Procedure 
The testing procedure for TID was rather straight forward, especially when compared to 

the procedure used for SEE testing. Once the setup was complete and it was verified that 

everything was operational, the entrance to the irradiation chamber was sealed. The user 

then initiated logging of the DUT current draw on the LabVIEW VI. At this point, the cobalt-

60 source was raised from its underground storage and irradiation of the DUT begun. The 

test was then left to run for the predetermined amount of time. 

After the test period elapsed, the cobalt-60 source was lowered back underground and the 

air in the irradiation chamber (now mostly composed of ozone) was pumped out. Logging 

of the current draw of the DUT was also stopped at this point. 

The test board was then removed from the chamber and allowed to anneal at room 

temperature for no less than 196 hours, after which performance was checked. 
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4. Results 

This chapter gives a description of the observations made during experimentation and 

presents data that was obtained. Methods adopted to analyse said data are also described, 

with examples given. 

4.1. SEE Results 
Characterization of the beam by use of several BLMs (Beam Loss Monitors) showed a spot 

size of 20mm diameter and a flux uniformity that varied by less than 10% of the average 

value [71].This flux variation should be considered to be a systematic error present 

throughout the results presented in this section.   

On initial test runs irradiating the DUT, it was noted that the supply current to the board 

would spike from an average value of about 0.5A to 1A – 1.5A.  Initially, these were 

interpreted to be SEL events which would lead to the beam getting shut off and the board 

power cycled. It was only later determined that these were transient current spikes that 

went away on their own and did not seem to affect system operation. 

As for the test programs developed, all kept getting interrupted by a system hang or system 

auto restart before any error information could be detected and reported. As a result, no 

register specific or ALU specific data could be obtained.  Program hangs and system restarts 

(counted as instances of SEFI) were therefore used to characterize the device.  

Once data was collected from a significant number of SEFI events, a high flux saturation 

test was carried out on one of the BLMs (at 30nA). In this time, the test-board had been 

moved to the beam shadow cast by the collimators. After this saturation test was 

completed, it was observed that the DUT failed to recognize some Linux command line 

commands (such as “ls”, “clear”, “dmesg”) and was also incapable of running two of the 

test programs (GPR test and MMX test). A power cycle seemed to resolve the problem with 

the Linux commands but did nothing to remedy the two test programs. 

Two final test runs were carried out on the DUT at a beam current of 30nA. The first one 

saw the device hang and the second one saw the device experience a current spike of about 

3A, promptly followed by the device powering off and failing to start up again, even after a 

power cycle. Additionally, an LED on the board atypically switched on and stayed on. No 

specific error codes were found to match this on the specification manuals for the board.  

With these final observations, the board was declared “dead” and the experiment was 

brought to an end.  

Table 4.1 is a log of events compiled from the screen recordings made, hand written notes 

and data recorded and made available by collaborators such as [71]. A plot of the supply 

current to the board for the entirety of the test is also provided in Figure 4.2. While 

interpreting this plot, take note that the point at which irradiation of the board begun does 

not necessarily coincide with time = 0 and neither does it with the point at which the 

current spikes begin to occur. 
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Table 4.1: Combined log of events from SEE testing at iThemba Labs (17th January 2019). Log data is included from [71]. “Crash” can be 
interpreted as either a system hang or auto reboot. All test runs ended with the test-board getting power cycled, unless otherwise indicated. 
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Figure 4.1: Key for Table 4.1 

 

Figure 4.2: Supply Current to DE3815TYBE during SEE Testing. 

 

Figure 4.3: An example plot that summarizes measurements made by the BLMs. The data presented here was measured 
from test run 17. Log files were provided by [71]. 
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The total fluence delivered to the DUT per test run was determined from log files of BLM 

measurements. Each BLM measured the instantaneous proton flux in its physical location 

at intervals of 1 second. These log files provided data such as what is summarized in Figure 

4.3. 

Using a mathematical relationship provided by [71], a scaling factor was calculated that 

would scale the readings of the Reference BLM (“Ref Count” in Figure 4.3) to the 

instantaneous flux that was at the location of the DUT within the beam. This flux 

measurement would be in the units protons per BLM area per second, where the BLM area 

was determined from the BLM sensor dimensions: 

𝐵𝐿𝑀 𝑎𝑟𝑒𝑎 = 2.712𝑚𝑚 𝑥 2.712𝑚𝑚 =  73.55 𝑥 10−3 𝑐𝑚2 

As an example, in the log file summarized by Figure 4.3, the Ref Count value at sample 

number 27550 is 1139 pulse counts. Using this, and the scaling factor that had been 

determined: 

𝑆𝑐𝑎𝑙𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 = 1524.63 

𝑆𝑐𝑎𝑙𝑒𝑑 𝑅𝑒𝑓 𝐶𝑜𝑢𝑛𝑡 = 𝑆𝑐𝑎𝑙𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 𝑥 𝑅𝑒𝑓 𝐶𝑜𝑢𝑛𝑡 = 1524.63 𝑥 1139

=  1.74 𝑥 106 𝑝𝑟𝑜𝑡𝑜𝑛𝑠 𝑝𝑒𝑟 𝐵𝐿𝑀 𝑎𝑟𝑒𝑎 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 (𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑖𝑜𝑢𝑠 𝑓𝑙𝑢𝑥 𝑎𝑡 𝐷𝑈𝑇) 

To convert this to the units of protons/cm2/s, the value would be divided by the BLM area. 

Following through: 

1.74 𝑥 106

73.55 𝑥 10−3
=  2.36 𝑥 107 𝑝𝑟𝑜𝑡𝑜𝑛𝑠/𝑐𝑚2/𝑠 

This means that when sample number 27550 was recorded by the reference BLM, the 

instantaneous flux at the location of the DUT was 2.36 𝑥 107 protons/cm2/s.  The total 

fluence delivered by the end of the test run (per cm2) would then be determined by adding 

up the instantaneous flux at the DUT location for each sample taken throughout the 

duration of the test run (i.e. integrating the instantaneous flux).  

The DUT die was measured to be a square of 1cm by 1cm (see Figure 3.3), which gives an 

area of 1cm2. Therefore, the total fluence delivered to the DUT by a test run would simply 

be the value of the prior determined fluence. This process was repeated for each logfile 

provided, where each file corresponded to a test run. The total calculated fluence to have 

been delivered to the DUT for each test run is presented in the rightmost column of Table 

4.1 (Page 56). 

Table 4.2: Calculated cross sections at different beam currents (all at 55.58 MeV). X indicates no data available. 
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As discussed in Section 2.3.1, the cross-section is determined using Eqn 2.2 repeated below: 

𝜎 =  
𝑛

𝐹𝑡 𝑐𝑜𝑠 𝜃
 

The numerator is the number of SEE events counted while the denominator is essentially 

an expression that calculates the total fluence delivered to the DUT. Table 4.2 shows cross 

sections calculated using this equation at each beam current that testing was carried out.  

For example, at 5nA with the Cache On, the cross section is calculated as follows: 

𝜎𝐷𝐸𝑉𝐼𝐶𝐸 =
𝑁𝑜. 𝑆𝐸𝐹𝐼 𝑐𝑜𝑢𝑛𝑡𝑒𝑑

𝑆𝑢𝑚 𝑜𝑓 𝑓𝑙𝑢𝑒𝑛𝑐𝑒 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝑒𝑎𝑐ℎ 𝑡𝑒𝑠𝑡 𝑟𝑢𝑛
=  

11

2.43 𝑥 1010
 

𝜎𝐷𝐸𝑉𝐼𝐶𝐸 = 4.52 𝑥 10−10 𝑆𝐸𝐹𝐼/𝑝𝑟𝑜𝑡𝑜𝑛/𝑐𝑚2 

The cross sections in this case can only be presented on a per device basis rather than per-

bit. This is because it is impossible to isolate the root cause of the SEFI with the equipment 

that was available. 

 The data presented in Table 4.2 is visualized in Figure 4.4. 

It will immediately be noticed that for each test case (Cache On/Cache Off), the majority of 

the data points sit around the same value for cross section. This is about 2.5 𝑥 10−10 cm2 

and 4.5 𝑥 10−10 cm2 for Cache Off and Cache On respectively. This was somewhat expected 

since cross section is dependent on the fluence rather than flux (or beam current), within 

reasonable limits. Another observation is that the majority of Cache Off data points are 

Figure 4.4: Calculated device cross-sections at different beam currents. 
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lower than the majority of Cache On data points, implying that Cache Off is less sensitive 

to SEFI. This too was to be expected as was discussed in section 3.1.1.3.  

The cross section determined from the 30nA (Cache On) test is considered to be an outlier. 

This is not only because of the large deviation from the majority of Cache On data points, 

but also because the test was carried out only after the DUT started showing signs of 

succumbing to TID damage. It is believed that during the BLM saturation test (carried out 

at large fluxes), stray deflected protons and secondary particles (i.e. neutrons) found their 

way to the test-board that was in the beam shadow. The combined total dose from these 

likely slower particles, as well as from the prior test runs, induced TID damage that 

inadvertently influenced SEFI sensitivity. For this reason, subsequent analysis ignores this 

data point. 

As for the Cache Off cross section at 2nA, it is believed that the deviation from the majority 

of cache off data points was due to a methodical error made while carrying out one of the 

test runs. Referring to Table 4.1, Run 13 was prematurely ended and the beam switched 

off after slow execution of a test program was accidentally interpreted to be a SEFI. The 

board was not power cycled before Run 14 commenced. The combined fluence from both 

runs was however taken into account while calculating the cross section. 

Figure 4.5 shows the distribution of the calculated device cross sections at different beam 

currents. Additionally, the overall SEE response of the DUT for the entire test is summarized 

in Table 4.3 and visualized in Figure 4.6. As mentioned, the cross section determined at 

30nA (Cache On) is not included. 

Figure 4.5: Distribution of cross sections determined (55.58MeV) 
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Table 4.3: Overall device cross sections. 

Although the amount of data collected was not statistically significant enough to fit an 

accurate and reliable cross section curve, one was still generated to provide ballpark figures 

of the responses to expect at different proton energies. The Bendel 1-parameter equation 

was used since all testing was carried out at a single beam energy. Numerical methods were 

used to determine the sensitivity parameter (A) for each case of the overall device cross 

section. Table 4.4 and Figure 4.7 summarize this information.  

 

Table 4.4: Bendel 1-prameter “A” parameter values for Cache On and Cache Off cross sections. 

 

 

Figure 4.6: Overall device cross sections 
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Figure 4.7: Bendel 1-parameter curve fitted to the overall SEFI cross sections 

 

4.2. TID Results 
Before any results are interpreted, it should be noted that the distance between the DUT 

and the Cobalt-60 source had some uncertainty in it. This inevitably extended to the final 

dose rate value of 9.7kRad/h. The tape measure used to determine the distance to place 

the DUT introduced an uncertainty of about 1cm while the method of mounting the board 

to the fixture introduced an additional 1cm (board was not perfectly vertical). With both of 

these considered, it was determined that the lower bound for the dose rate was 

9.064kRad/h and the upper bound was 10.406kRad/h [69]. 

The DUT was irradiated for 6.933 hours to a total dose of 67.25kRad (± uncertainty). By the 

end of this, it was noted that the device was no longer powered on and attempts to power 

cycle it failed. The device was then left to anneal at room temperature for a total of 210.28 

hours post irradiation. Despite this, it still failed to power on when connected to power. 

Figure 4.8 is a plot of all the data collected during the test, plotted against the duration of 

the test. Figure 4.9 on the other hand is a plot of averaged data (i.e. average value of all 

samples made per 1-minute interval) plotted against absorbed dose. 
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Figure 4.9: Averaged current draw vs TID absorbed during the test 
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From Figure 4.9, it can be seen that the supply current to the board is fairly constant at the 

beginning of the test but steadily starts increasing at a total dose of around 15kRad. The 

supply current then sharply increases after about 22kRad is absorbed. This is believed to 

be a direct result of parasitic leakage currents being induced at the transistor level. It is 

assumed that this is the point where the device will start to display operability problems. 

At about 34kRad of total dose, the supply current sharply decreases to well below normal 

operational levels. This is assumed to correspond to a system failure and that this is the 

point where the board switched off and was unable to switch itself back on again. The 

supply current then continues to gradually decrease with absorbed dose until it reverses 

direction and appears to settle at an average value of -0.2A with random fluctuations of up 

to -10A. 
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5. Discussion and Conclusions 

Data obtained from the SEE test points to the device having a relatively high SEL tolerance 

since no SEL events were observed for the entirety of the experiment. However, transient 

current spikes were observed, though they appeared to be harmless to system operation. 

None of these transients ever exceeded the rated current of the board and there was no 

discernible effect observed on test program execution. It is possible that they were a result 

of other components on the test board getting affected by stray protons and/or secondary 

radiation. These transients however caused an increase to the average supply current 

which in turn increased the average power draw of the board. In a satellite where energy 

is limited, this may be a serious concern.  

No data was obtained with regards to the susceptibility of specific register banks of the 

processor. It was already mentioned that the SEFI rate was high enough such that the 

register specific test programs kept on getting interrupted mid execution, however, each 

program did manage to execute for some amount of time, about a minute or more on 

average. Despite this, none reported upsets within that time. Several reasons may 

contribute to this behaviour, individually and collectively.  

1. The upset rate on the registers may have not been high enough for upsets to be 

detected in the time that the programs were running. 

2.  The sequential order in which the programs checked for errors in a given register 

bank significantly narrowed the upset detection window. It is possible that upsets 

occurred in multiple registers but were missed because they did not occur in the 

register that the program was inspecting at the time. This is a fundamental 

limitation imposed by the architecture of the processor. 

3. The registers tested occupied a very small portion of the processor which in turn 

made it less probable for them to be struck by protons during irradiation. 

4. The pre-emptive nature of the operating system may have been limiting the 

number of detectable upsets by interrupting the test program in order to service 

some other process. This would result in less scan cycles happening per unit time 

and upsets getting corrected by processor context switching. 

The overall SEE response was dominated by SEFI. This should come as no surprise given the 

level of complexity of the processor. This complexity adds to the likelihood of SEFIs 

occurring since the protons would not have to strike only the most crucial areas of the 

processor to cause a SEFI. The protons could also strike less crucial areas of the device and 

induce errors here that could then propagate to more crucial areas, eventually causing a 

SEFI. For instance, errors induced in the output logic of the control unit could propagate 

through the datapath and back to the state memory registers thus forcing the control unit 

(and processor as a whole) to enter an undefined state. This makes it difficult to pinpoint 

where exactly the original upset(s) occurred that led to the observed SEFI. Adding on to 

this, support electronics for the processor that are located on the board could also have 

been affected by stray protons and/or secondary radiation. Depending on the severity of 
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the effect caused by the radiation, the entire system could momentarily lose functionality 

as the OS tries to correct the perceived error. This last point demonstrates why the SEFI 

rate observed cannot be completely attributed to just the processor.  

With that said, a clear relationship can be seen between SEFI sensitivity and the state of 

the on-board cache of the processor. With the cache on, the SEFI sensitivity is about 1.5 

times the SEFI sensitivity with the cache off at 55.58 MeV. It is clear that the on-board 

cache, when active, provides a large number of registers that could potentially experience 

upsets and propagate said upsets to the rest of the processor and cause SEFI. 

TID test results imply that the device was operable up until a total dose of about 22kRad 

was absorbed.  After this point, a significant increase to the supply current is observed, 

likely as a direct result of leakage currents in the processor. However, it is unclear as to why 

the current steadily decreased right before the device appeared to completely fail. It may 

be possible that the isolation structures (or field oxide) of affected transistors may have 

been undergoing short term annealing which in turn led to a decrease in leakage currents, 

however this is in conflict with the fact that the device was still undergoing irradiation and 

receiving ionizing dose. Further investigation into this observation is required.  

The relatively low TID survivability of the device that has been observed would mean that 

the device would not be suitable for use in long term missions, especially those with orbits 

within the Van Allen belts. Longer survivability would likely be observed in high altitude (>7 

earth radii) polar and high incline orbits where the spacecraft would spend the least 

amount of time within the radiation belts.  Unfortunately, these orbits offer little 

geomagnetic shielding for the spacecraft, meaning that the craft would be more vulnerable 

to solar events and cosmic ray induced SEEs. Regardless, the SEE rate experienced here 

(ignoring solar and galactic events) is expected to be lower than that experienced in lower 

altitude orbits since these SEEs would predominantly be induced by low flux cosmic rays. 

Even though cosmic ray particles typically possess energy that is orders of magnitude 

higher than that of protons present in lower altitudes of the radiation belts, their lower flux 

would mean that the spacecraft, and by extension, the processor, would be less frequently 

struck by a cosmic ray than if the same spacecraft was in a lower altitude orbit where high 

fluxes of energetic protons are present.  

The SEFI cross section observed cannot be used to specify a suitable orbit for a mission 

utilizing the processor within this text since the maximum tolerable SEE rate heavily relies 

on the application and mission requirements. A cost-benefit analysis would have to be 

carried out by a system designer should they desire to incorporate the E3815 into their 

system.  If the processor is used, it would be recommended that it be operated at a lower 

frequency than that used during the test since it is likely that a lower SEFI sensitivity would 

be experienced. Also, shielding the spacecraft would add to the TID survivability.  

With all of this said, the data presented here paints only a broad picture of the response of 

the E3815 processor to radiation. The processor is a complicated device that would require 

more time and resources in order to more accurately characterize. 
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5.1. Recommendations for further research 

• The OS used plays a large role in the behaviour of the device during testing. A 

recommendation would be to use simpler operating systems that give more control 

of the hardware to the user. 

• Use of a development board. Development boards for the E3800 processors come 

with the processor already soldered on and therefore would not offer direct access 

to the processor pins. However, these boards allow for custom BIOS to be installed. 

This may prove beneficial if a custom operating system is intended to be used. 

• Monitoring of support electronics during testing. This would be beneficial since it 

would add a layer of transparency as to whether observed behaviour is due to 

errors within the processor or due to the support electronics failing. 

• Inspection of a larger number of registers. The experiments presented here 

inspected 3 of the registers that applications mostly use. Other important registers 

such as the instruction pointer, flags register etc. that were not investigated also 

play a role in the overall device response, therefore determining their sensitivities 

to radiation would be useful. 

• Inclusion of timing tests during TID testing. Although shifts in the threshold voltage 

of transistors present in modern devices is negligible [15], including timing tests 

may provide some insight into the state of the processor during irradiation. 
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Appendix 1:  Intel Atom E3815 Specifications [55] 
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Appendix 2:  GPR Test Source Code 
#include <stdio.h> 

#include <stdlib.h> 

 

int GPRTest() 

{ 

    /*Value below shall be written to each GPR except %RBP and %RSP*/ 

    unsigned long long int inputVar = 0xf0f0f0f0f0f0f0f0; 

 

    /*Variables below shall store outputs from the asm program*/ 

    unsigned long long int readBackInput = 0, outError1 = 0, outError2 = 0, 

    outError3 = 0; 

    unsigned int stuckBit = 0;      /*If the asm outputs a non-zero value to this 

    variable, possibly a stuck bit has been detected, a register has failed to be 

    written to or an error has occured in the register that the variable is 

    stored in*/ 

    unsigned int seuOccured = 0;    /*If a non-zero value is returned here, an 

    error has occured. It will not be updated if a stuck bit is detected*/ 

    unsigned int position = 0;      /*This will store the position of the 

    register that the error occured in*/ 

 

    /*Below is code that tests the GPRs*/ 

    asm volatile ("Begin:       movq    $0,             %[seuTrue]      \n\t" 

                  "             movq    $0,             %[stuck]        \n\t" 

                  "             movq    %[inputVal],    %%rax           \n\t" 

                  "             movq    $150000000,     %%rbx           \n\t" 

                  "LoadRCX:     movq    %%rax,          %%rcx           \n\t" 

                  "             cmp     %%rax,          %%rcx           \n\t" 

                  "             jne     StuckBitRCX                     \n\t" 

                  "LoadRDX:     movq    %%rax,          %%rdx           \n\t" 

                  "             cmp     %%rax,          %%rdx           \n\t" 

                  "             jne     StuckBitRDX                     \n\t" 

                  "LoadRSI:     movq    %%rax,          %%rsi           \n\t" 

                  "             cmp     %%rax,          %%rsi           \n\t" 

                  "             jne     StuckBitRSI                     \n\t" 

                  "LoadRDI:     movq    %%rax,          %%rdi           \n\t" 

                  "             cmp     %%rax,          %%rdi           \n\t" 

                  "             jne     StuckBitRDI                     \n\t" 

                  "LoadR8:      movq    %%rax,          %%r8            \n\t" 

                  "             cmp     %%rax,          %%r8            \n\t" 

                  "             jne     StuckBitR8                      \n\t" 

                  "LoadR9:      movq    %%rax,          %%r9            \n\t" 

                  "             cmp     %%rax,          %%r9            \n\t" 

                  "             jne     StuckBitR9                      \n\t" 

                  "LoadR10:     movq    %%rax,          %%r10           \n\t" 

                  "             cmp     %%rax,          %%r10           \n\t" 

                  "             jne     StuckBitR10                     \n\t" 

                  "LoadR11:     movq    %%rax,          %%r11           \n\t" 

                  "             cmp     %%rax,          %%r11           \n\t" 

                  "             jne     StuckBitR11                     \n\t" 

                  "LoadR12:     movq    %%rax,          %%r12           \n\t" 

                  "             cmp     %%rax,          %%r12           \n\t" 

                  "             jne     StuckBitR12                     \n\t" 

                  "LoadR13:     movq    %%rax,          %%r13           \n\t" 

                  "             cmp     %%rax,          %%r13           \n\t" 

                  "             jne     StuckBitR13                     \n\t" 

                  "LoadR14:     movq    %%rax,          %%r14           \n\t" 

                  "             cmp     %%rax,          %%r14           \n\t" 

                  "             jne     StuckBitR14                     \n\t" 

                  "LoadR15:     movq    %%rax,          %%r15           \n\t" 

                  "             cmp     %%rax,          %%r15           \n\t" 

                  "             jne     StuckBitR15                     \n\t" 

                  "             jmp     Iterate                         \n\t" 

 

                  /*The code below retries writing to registers that have failed 

                  to have the correct value written to them. After 2 failed 



E 
 

   attempts,the asm exits and updates the "stuck bit" flag*/ 

 

                  "StuckBitRCX: movq    %%rax,          %%rcx           \n\t" 

                  "             cmp     %%rax,          %%rcx           \n\t" 

                  "             je      LoadRDX                         \n\t" 

                  "             movq    %%rax,          %%rcx           \n\t" 

                  "             cmp     %%rax,          %%rcx           \n\t" 

                  "             je      LoadRDX                         \n\t" 

                  "             movq    %%rax,          %[readInput]    \n\t" 

                  "             movq    %%rcx,          %[error1]       \n\t" 

                  "             movq    %%rcx,          %[error2]       \n\t" 

                  "             movq    %%rcx,          %[error3]       \n\t" 

                  "             movb    $0xf0,          %[stuck]        \n\t" 

                  "             movb    $2,             %[location]     \n\t" 

                  "             jmp     End                             \n\t" 

 

                  "StuckBitRDX: movq    %%rax,          %%rdx           \n\t" 

                  "             cmp     %%rax,          %%rdx           \n\t" 

                  "             je      LoadRSI                         \n\t" 

                  "             movq    %%rax,          %%rdx           \n\t" 

                  "             cmp     %%rax,          %%rdx           \n\t" 

                  "             je      LoadRSI                         \n\t" 

                  "             movq    %%rax,          %[readInput]    \n\t" 

                  "             movq    %%rdx,          %[error1]       \n\t" 

                  "             movq    %%rdx,          %[error2]       \n\t" 

                  "             movq    %%rdx,          %[error3]       \n\t" 

                  "             movb    $0xf0,          %[stuck]        \n\t" 

                  "             movb    $3,             %[location]     \n\t" 

                  "             jmp     End                             \n\t" 

 

                  "StuckBitRSI: movq    %%rax,          %%rsi           \n\t" 

                  "             cmp     %%rax,          %%rsi           \n\t" 

                  "             je      LoadRDI                         \n\t" 

                  "             movq    %%rax,          %%rsi           \n\t" 

                  "             cmp     %%rax,          %%rsi           \n\t" 

                  "             je      LoadRDI                         \n\t" 

                  "             movq    %%rax,          %[readInput]    \n\t" 

                  "             movq    %%rsi,          %[error1]       \n\t" 

                  "             movq    %%rsi,          %[error2]       \n\t" 

                  "             movq    %%rsi,          %[error3]       \n\t" 

                  "             movb    $0xf0,          %[stuck]        \n\t" 

                  "             movb    $5,             %[location]     \n\t" 

                  "             jmp     End                             \n\t" 

 

                  "StuckBitRDI: movq    %%rax,          %%rdi           \n\t" 

                  "             cmp     %%rax,          %%rdi           \n\t" 

                  "             je      LoadR8                          \n\t" 

                  "             movq    %%rax,          %%rdi           \n\t" 

                  "             cmp     %%rax,          %%rdi           \n\t" 

                  "             je      LoadR8                          \n\t" 

                  "             movq    %%rax,          %[readInput]    \n\t" 

                  "             movq    %%rdi,          %[error1]       \n\t" 

                  "             movq    %%rdi,          %[error2]       \n\t" 

                  "             movq    %%rdi,          %[error3]       \n\t" 

                  "             movb    $0xf0,          %[stuck]        \n\t" 

                  "             movb    $6,             %[location]     \n\t" 

                  "             jmp     End                             \n\t" 

 

 

                  "StuckBitR8:  movq    %%rax,          %%r8            \n\t" 

                  "             cmp     %%rax,          %%r8            \n\t" 

                  "             je      LoadR9                          \n\t" 

                  "             movq    %%rax,          %%r8            \n\t" 

                  "             cmp     %%rax,          %%r8            \n\t" 

                  "             je      LoadR9                          \n\t" 

                  "             movq    %%rax,          %[readInput]    \n\t" 

                  "             movq    %%r8,           %[error1]       \n\t" 

                  "             movq    %%r8,           %[error2]       \n\t" 
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                  "             movq    %%r8,           %[error3]       \n\t" 

                  "             movb    $0xf0,          %[stuck]        \n\t" 

                  "             movb    $8,             %[location]     \n\t" 

                  "             jmp     End                             \n\t" 

 

                  "StuckBitR9:  movq    %%rax,          %%r9            \n\t" 

                  "             cmp     %%rax,          %%r9            \n\t" 

                  "             je      LoadR10                         \n\t" 

                  "             movq    %%rax,          %%r9            \n\t" 

                  "             cmp     %%rax,          %%r9            \n\t" 

                  "             je      LoadR10                         \n\t" 

                  "             movq    %%rax,          %[readInput]    \n\t" 

                  "             movq    %%r9,           %[error1]       \n\t" 

                  "             movq    %%r9,           %[error2]       \n\t" 

                  "             movq    %%r9,           %[error3]       \n\t" 

                  "             movb    $0xf0,          %[stuck]        \n\t" 

                  "             movb    $9,             %[location]     \n\t" 

                  "             jmp     End                             \n\t" 

 

                  "StuckBitR10: movq    %%rax,          %%r10           \n\t" 

                  "             cmp     %%rax,          %%r10           \n\t" 

                  "             je      LoadR11                         \n\t" 

                  "             movq    %%rax,          %%r10           \n\t" 

                  "             cmp     %%rax,          %%r10           \n\t" 

                  "             je      LoadR11                         \n\t" 

                  "             movq    %%rax,          %[readInput]    \n\t" 

                  "             movq    %%r10,          %[error1]       \n\t" 

                  "             movq    %%r10,          %[error2]       \n\t" 

                  "             movq    %%r10,          %[error3]       \n\t" 

                  "             movb    $0xf0,          %[stuck]        \n\t" 

                  "             movb    $10,             %[location]    \n\t" 

                  "             jmp     End                             \n\t" 

 

                  "StuckBitR11: movq    %%rax,          %%r11           \n\t" 

                  "             cmp     %%rax,          %%r11           \n\t" 

                  "             je      LoadR12                         \n\t" 

                  "             movq    %%rax,          %%r11           \n\t" 

                  "             cmp     %%rax,          %%r11           \n\t" 

                  "             je      LoadR12                         \n\t" 

                  "             movq    %%rax,          %[readInput]    \n\t" 

                  "             movq    %%r11,          %[error1]       \n\t" 

                  "             movq    %%r11,          %[error2]       \n\t" 

                  "             movq    %%r11,          %[error3]       \n\t" 

                  "             movb    $0xf0,          %[stuck]        \n\t" 

                  "             movb    $11,            %[location]     \n\t" 

                  "             jmp     End                             \n\t" 

 

                  "StuckBitR12: movq    %%rax,          %%r12           \n\t" 

                  "             cmp     %%rax,          %%r12           \n\t" 

                  "             je      LoadR13                         \n\t" 

                  "             movq    %%rax,          %%r12           \n\t" 

                  "             cmp     %%rax,          %%r12           \n\t" 

                  "             je      LoadR13                         \n\t" 

                  "             movq    %%rax,          %[readInput]    \n\t" 

                  "             movq    %%r12,          %[error1]       \n\t" 

                  "             movq    %%r12,          %[error2]       \n\t" 

                  "             movq    %%r12,          %[error3]       \n\t" 

                  "             movb    $0xf0,          %[stuck]        \n\t" 

                  "             movb    $12,            %[location]     \n\t" 

                  "             jmp     End                             \n\t" 

 

                  "StuckBitR13: movq    %%rax,          %%r13           \n\t" 

                  "             cmp     %%rax,          %%r13           \n\t" 

                  "             je      LoadR14                         \n\t" 

                  "             movq    %%rax,          %%r13           \n\t" 

                  "             cmp     %%rax,          %%r13           \n\t" 

                  "             je      LoadR14                         \n\t" 

                  "             movq    %%rax,          %[readInput]    \n\t" 
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                  "             movq    %%r13,          %[error1]       \n\t" 

                  "             movq    %%r13,          %[error2]       \n\t" 

                  "             movq    %%r13,          %[error3]       \n\t" 

                  "             movb    $0xf0,          %[stuck]        \n\t" 

                  "             movb    $13,            %[location]     \n\t" 

                  "             jmp     End                             \n\t" 

 

                  "StuckBitR14: movq    %%rax,          %%r14           \n\t" 

                  "             cmp     %%rax,          %%r14           \n\t" 

                  "             je      LoadR15                         \n\t" 

                  "             movq    %%rax,          %%r14           \n\t" 

                  "             cmp     %%rax,          %%r14           \n\t" 

                  "             je      LoadR15                         \n\t" 

                  "             movq    %%rax,          %[readInput]    \n\t" 

                  "             movq    %%r14,          %[error1]       \n\t" 

                  "             movq    %%r14,          %[error2]       \n\t" 

                  "             movq    %%r14,          %[error3]       \n\t" 

                  "             movb    $0xf0,          %[stuck]        \n\t" 

                  "             movb    $14,            %[location]     \n\t" 

                  "             jmp     End                             \n\t" 

 

                  "StuckBitR15: movq    %%rax,          %%r15           \n\t" 

   /*retry writing the value*/ 

                  "             cmp     %%rax,          %%r15           \n\t" 

   /*Check if it worked*/ 

                  "             je      Iterate                         \n\t" 

   /*Resume with program if succesful*/ 

                  "             movq    %%rax,          %%r15           \n\t"  

  /*retry writing the value one more time*/ 

                  "             cmp     %%rax,          %%r15           \n\t" 

   /*Check if it worked*/ 

                  "             je      Iterate                         \n\t"  

  /*Resume with program if succesful*/ 

                  "             movq    %%rax,          %[readInput]    \n\t" 

  /*Output the value that was to be written to the register*/ 

                  "             movq    %%r15,          %[error1]       \n\t" 

  /*Unsuccesful, writing erronous values to output variables*/ 

                  "             movq    %%r15,          %[error2]       \n\t" 

                  "             movq    %%r15,          %[error3]       \n\t" 

                  "             movb    $0xf0,          %[stuck]        \n\t" 

   /*Set the stuck bit flag*/ 

                  "             movb    $15,            %[location]     \n\t" 

   /*Save the locaion of the register*/ 

                  "             jmp     End                             \n\t" 

   /*End the asm function*/ 

 

                  /*Code segment below checks for any errors that occur during 

   execution*/ 

 

                  "RCX_Error:   movq    %%rax,          %[readInput]    \n\t" 

                  "             movq    %%rcx,          %[error1]       \n\t" 

                  "             movq    %%rcx,          %[error2]       \n\t" 

                  "             movq    %%rcx,          %[error3]       \n\t" 

                  "             movb    $2,             %[location]     \n\t" 

                  "             movb    $0xf0,          %[seuTrue]      \n\t" 

                  "             jmp     End                             \n\t" 

 

                  "RDX_Error:   movq    %%rax,          %[readInput]    \n\t" 

                  "             movq    %%rdx,          %[error1]       \n\t" 

                  "             movq    %%rdx,          %[error2]       \n\t" 

                  "             movq    %%rdx,          %[error3]       \n\t" 

                  "             movb    $3,             %[location]     \n\t" 

                  "             movb    $0xf0,          %[seuTrue]      \n\t" 

                  "             jmp     End                             \n\t" 

 

                  "RSI_Error:   movq    %%rax,          %[readInput]    \n\t" 

                  "             movq    %%rsi,          %[error1]       \n\t" 

                  "             movq    %%rsi,          %[error2]       \n\t" 
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                  "             movq    %%rsi,          %[error3]       \n\t" 

                  "             movb    $5,             %[location]     \n\t" 

                  "             movb    $0xf0,          %[seuTrue]      \n\t" 

                  "             jmp     End                             \n\t" 

 

                  "RDI_Error:   movq    %%rax,          %[readInput]    \n\t" 

                  "             movq    %%rdi,          %[error1]       \n\t" 

                  "             movq    %%rdi,          %[error2]       \n\t" 

                  "             movq    %%rdi,          %[error3]       \n\t" 

                  "             movb    $6,             %[location]     \n\t" 

                  "             movb    $0xf0,          %[seuTrue]      \n\t" 

                  "             jmp     End                             \n\t" 

 

                  "R8_Error:    movq    %%rax,          %[readInput]    \n\t" 

                  "             movq    %%r8,           %[error1]       \n\t" 

                  "             movq    %%r8,           %[error2]       \n\t" 

                  "             movq    %%r8,           %[error3]       \n\t" 

                  "             movb    $8,             %[location]     \n\t" 

                  "             movb    $0xf0,          %[seuTrue]      \n\t" 

                  "             jmp     End                             \n\t" 

 

                  "R9_Error:    movq    %%rax,          %[readInput]    \n\t" 

                  "             movq    %%r9,           %[error1]       \n\t" 

                  "             movq    %%r9,           %[error2]       \n\t" 

                  "             movq    %%r9,           %[error3]       \n\t" 

                  "             movb    $9,             %[location]     \n\t" 

                  "             movb    $0xf0,          %[seuTrue]      \n\t" 

                  "             jmp     End                             \n\t" 

 

                  "R10_Error:   movq    %%rax,          %[readInput]    \n\t" 

                  "             movq    %%r10,          %[error1]       \n\t" 

                  "             movq    %%r10,          %[error2]       \n\t" 

                  "             movq    %%r10,          %[error3]       \n\t" 

                  "             movb    $10,            %[location]     \n\t" 

                  "             movb    $0xf0,          %[seuTrue]      \n\t" 

                  "             jmp     End                             \n\t" 

 

                  "R11_Error:   movq    %%rax,          %[readInput]    \n\t" 

                  "             movq    %%r11,          %[error1]       \n\t" 

                  "             movq    %%r11,          %[error2]       \n\t" 

                  "             movq    %%r11,          %[error3]       \n\t" 

                  "             movb    $11,            %[location]     \n\t" 

                  "             movb    $0xf0,          %[seuTrue]      \n\t" 

                  "             jmp     End                             \n\t" 

 

                  "R12_Error:   movq    %%rax,          %[readInput]    \n\t" 

                  "             movq    %%r12,          %[error1]       \n\t" 

                  "             movq    %%r12,          %[error2]       \n\t" 

                  "             movq    %%r12,          %[error3]       \n\t" 

                  "             movb    $12,            %[location]     \n\t" 

                  "             movb    $0xf0,          %[seuTrue]      \n\t" 

                  "             jmp     End                             \n\t" 

 

                  "R13_Error:   movq    %%rax,          %[readInput]    \n\t" 

                  "             movq    %%r13,          %[error1]       \n\t" 

                  "             movq    %%r13,          %[error2]       \n\t" 

                  "             movq    %%r13,          %[error3]       \n\t" 

                  "             movb    $13,            %[location]     \n\t" 

                  "             movb    $0xf0,          %[seuTrue]      \n\t" 

                  "             jmp     End                             \n\t" 

 

                  "R14_Error:   movq    %%rax,          %[readInput]    \n\t" 

                  "             movq    %%r14,          %[error1]       \n\t" 

                  "             movq    %%r14,          %[error2]       \n\t" 

                  "             movq    %%r14,          %[error3]       \n\t" 

                  "             movb    $14,            %[location]     \n\t" 

                  "             movb    $0xf0,          %[seuTrue]      \n\t" 

                  "             jmp     End                             \n\t" 
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                  "R15_Error:   movq    %%rax,          %[readInput]    \n\t" 

                  "             movq    %%r15,          %[error1]       \n\t" 

                  "             movq    %%r15,          %[error2]       \n\t" 

                  "             movq    %%r15,          %[error3]       \n\t" 

                  "             movb    $15,            %[location]     \n\t" 

                  "             movb    $0xf0,          %[seuTrue]      \n\t" 

                  "             jmp     End                             \n\t" 

 

                    /*The code segment belowis a loop that checks the registers 

                    to see if any value has changed since loaded*/ 

 

                  "Iterate:                                             \n\t" 

                  "             cmp     %%rax,          %%rcx           \n\t" 

                  "             jne     RCX_Error                       \n\t" 

                  "             cmp     %%rax,          %%rdx           \n\t" 

                  "             jne     RDX_Error                       \n\t" 

                  "             cmp     %%rax,          %%rsi           \n\t" 

                  "             jne     RSI_Error                       \n\t" 

                  "             cmp     %%rax,          %%rdi           \n\t" 

                  "             jne     RDI_Error                       \n\t" 

                  "             cmp     %%rax,          %%r8            \n\t" 

                  "             jne     R8_Error                        \n\t" 

                  "             cmp     %%rax,          %%r9            \n\t" 

                  "             jne     R9_Error                        \n\t" 

                  "             cmp     %%rax,          %%r10           \n\t" 

                  "             jne     R10_Error                       \n\t" 

                  "             cmp     %%rax,          %%r11           \n\t" 

                  "             jne     R11_Error                       \n\t" 

                  "             cmp     %%rax,          %%r12           \n\t" 

                  "             jne     R12_Error                       \n\t" 

                  "             cmp     %%rax,          %%r13           \n\t" 

                  "             jne     R13_Error                       \n\t" 

                  "             cmp     %%rax,          %%r14           \n\t" 

                  "             jne     R14_Error                       \n\t" 

                  "             cmp     %%rax,          %%r15           \n\t" 

                  "             jne     R15_Error                       \n\t" 

 

                  "             dec     %%rbx                           \n\t" 

   /*Decrementing the loop counter*/ 

                  "             cmpq    $0,             %%rbx           \n\t" 

                  "             jne     Iterate                         \n\t" 

                  "End:         nop                                     \n\t" 

 

 

                  : [readInput]    "=m" (readBackInput), 

                    [error1]       "=m" (outError1), 

                    [error2]       "=m" (outError2), 

                    [error3]       "=m" (outError3), 

                    [stuck]        "=m" (stuckBit), 

                    [seuTrue]      "=m" (seuOccured), 

                    [location]     "=m" (position) 

 

                  : [inputVal]  "m" (inputVar) 

                        

.:"%rax","%rbx","%rcx","%rdx","%rsi","%rdi","%r8","%r9","%r10", 

  "%r11","%r12","%r13","%r14","%r15"); 

 

                  /*Data logging follows*/ 

    if (stuckBit == 0xf0) 

       { 

        /*First we print the mssage on the console*/ 

        printf("Failed to write %d\t Input: %llx\t Error1: %llx\t Error2: %llx\t 

        Error3: %llx\t", position, readBackInput, outError1,outError2,outError3); 

 

        /*Now we write to file*/ 

        FILE * myFilePointer = fopen("GPR_Failed_Writes.csv", "a"); 

        fprintf(myFilePointer, "%d, %llx, %llx, %llx, %llx\n", position, 
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         readBackInput, outError1,outError2,outError3); 

         fclose(myFilePointer); 

         return 1; 

        } 

     else if (seuOccured == 0xf0) 

        { 

         /*First we print the message on the console*/ 

         printf("Error at %d\t Input: %llx\t Error1: %llx\t Error2: %llx\t 

   Error3: %llx\t", position,readBackInput,outError1,outError2,outError3); 

 

         /*Now we write to file*/ 

         FILE * myFilePointer = fopen("GPR_Errors.csv", "a"); 

         fprintf(myFilePointer, "%d, %llx, %llx, %llx, %llx\n", position, 

         readBackInput, outError1,outError2,outError3); 

         fclose(myFilePointer); 

         return 2; 

        } 

     else 

        { 

         printf("No error detected"); 

         return 0; 

        } 

} 

 

 

int main() 

{ 

    int numTestRuns; 

    float energy,flux; 

 

    printf("Enter Test Energy in MeV\n"); 

    scanf("%f", &energy); 

    printf("Enter test flux\n"); 

    scanf("%f", &flux); 

    printf("Enter the number of tests to run (for loop counter)\n"); 

    scanf("%d", &numTestRuns); 

 

    /*We beginby creating the files that will be used to log errors or failed  

    writes, as well as test parameters*/ 

    FILE * fp1 = fopen("GPR_Failed_Writes.csv", "a"); 

    fprintf(fp1, "\n"); 

    fprintf(fp1, "New test run\n"); 

    fprintf(fp1, "============\n"); 

    fprintf(fp1,"Energy: %f, Flux: %f\n", energy, flux); 

    fprintf(fp1, "REG Locaton, Read Back Value, Error 1, Error 2, Error 3\n"); 

    fclose(fp1); 

 

    FILE * fp2 = fopen("GPR_Errors.csv", "a"); 

    fprintf(fp2, "\n"); 

    fprintf(fp2, "New test run\n"); 

    fprintf(fp2, "============\n"); 

    fprintf(fp2,"Energy: %f, Flux: %f\n", energy, flux); 

    fprintf(fp2, "REG Locaton, Read Back Value, Error 1, Error 2, Error 3\n"); 

    fclose(fp2); 

 

    printf("Log file Appended. Beginning test\n"); 

 

    /*Now we run the actual test*/ 

    int errCount = 0, writeFailCount = 0; 

    for (int i = 0; i < numTestRuns; i++) 

    { 

        printf("Run %d: ",i); 

        int errType = GPRTest(); 

        if (errType == 1) 

        { 

            writeFailCount++; 

            printf("WF No: %d\n",writeFailCount); 

        } 
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        else if (errType == 2) 

        { 

            errCount++; 

            printf("E No: %d\n",errCount); 

        } 

        else 

            printf("\n"); 

    } 

    printf("\n\nGPR Test Program Completed\n"); 

 

    return 0; 

} 
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Appendix 3:  MMX Test Source Code 

#include <stdio.h> 

#include <stdlib.h> 

 

int MMXTest () 

{ 

    /*Below are vriables declared to be input to the asm*/ 

    /*Do not change the writeval during execution. It is hardcoded in the asm*/ 

    long long unsigned int writeVal = 0xf0f0f0f0f0f0f0f0, numLoops = 150000000; 

 

    /*Below are variables to hold data output by the asm*/ 

    long long unsigned int error1, error2, error3, currentMMXVal; 

    unsigned int location = 0xf0; 

 

    asm volatile ("Begin:       movq        %[loopCount],   %%rdx           \n\t" 

                  "             movq        %[toWrite],     %%r8            \n\t" 

                  "             movq        %[toWrite],     %%r9            \n\t" 

                  "             movq        %[toWrite],     %%r10           \n\t" 

                  "             movq        %[toWrite],     %%mm0           \n\t" 

                  "             movq        %%mm0,          %%mm1           \n\t" 

                  "             movq        %%mm0,          %%mm2           \n\t" 

                  "             movq        %%mm0,          %%mm3           \n\t" 

                  "             movq        %%mm0,          %%mm4           \n\t" 

                  "             movq        %%mm0,          %%mm5           \n\t" 

                  "             movq        %%mm0,          %%mm6           \n\t" 

                  "             movq        %%mm0,          %%mm7           \n\t" 

 

                  /*Now that the registers are loaded, we check for any errors. 

 Unfortunately due to the inability of MMX registers to be used 

 as operands for branch commands, we will not be able to 

 differenciate a bitflip(s) error from a write fail error*/ 

 

                  "CheckMM0:    movq        %%mm0,          %%rax           \n\t" 

                  "             movq        %%mm0,          %%rbx           \n\t" 

                  "             movq        %%mm0,          %%rcx           \n\t" 

                  "             cmp         %%r8,           %%rax           \n\t" 

                  "             je          CheckMM1                        \n\t" 

                  "             cmp         %%r9,           %%rbx           \n\t" 

                  "             je          CheckMM1                        \n\t" 

                  "             cmp         %%r10,          %%rcx           \n\t" 

                  "             je          CheckMM1                        \n\t" 

                  "             movq        %%mm0,          %[readBackVal]  \n\t" 

                  "             movq        %%rax,          %[err1]         \n\t" 

                  "             movq        %%rbx,          %[err2]         \n\t" 

                  "             movq        %%rcx,          %[err3]         \n\t" 

                  "             movb        $0,             %[position]     \n\t" 

                  "             jmp         End                             \n\t" 

 

                  "CheckMM1:    movq        %%mm1,          %%rax           \n\t" 

                  "             movq        %%mm1,          %%rbx           \n\t" 

                  "             movq        %%mm1,          %%rcx           \n\t" 

                  "             cmp         %%r8,           %%rax           \n\t" 

                  "             je          CheckMM2                        \n\t" 

                  "             cmp         %%r9,           %%rbx           \n\t" 

                  "             je          CheckMM2                        \n\t" 
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                  "             cmp         %%r10,          %%rcx           \n\t" 

                  "             je          CheckMM2                        \n\t" 

                  "             movq        %%mm1,          %[readBackVal]  \n\t" 

                  "             movq        %%rax,          %[err1]         \n\t" 

                  "             movq        %%rbx,          %[err2]         \n\t" 

                  "             movq        %%rcx,          %[err3]         \n\t" 

                  "             movb        $1,             %[position]     \n\t" 

                  "             jmp         End                             \n\t" 

 

                  "CheckMM2:    movq        %%mm2,          %%rax           \n\t" 

                  "             movq        %%mm2,          %%rbx           \n\t" 

                  "             movq        %%mm2,          %%rcx           \n\t" 

                  "             cmp         %%r8,           %%rax           \n\t" 

                  "             je          CheckMM3                        \n\t" 

                  "             cmp         %%r9,           %%rbx           \n\t" 

                  "             je          CheckMM3                        \n\t" 

                  "             cmp         %%r10,          %%rcx           \n\t" 

                  "             je          CheckMM3                        \n\t" 

                  "             movq        %%mm2,          %[readBackVal]  \n\t" 

                  "             movq        %%rax,          %[err1]         \n\t" 

                  "             movq        %%rbx,          %[err2]         \n\t" 

                  "             movq        %%rcx,          %[err3]         \n\t" 

                  "             movb        $2,             %[position]     \n\t" 

                  "             jmp         End                             \n\t" 

 

                  "CheckMM3:    movq        %%mm3,          %%rax           \n\t" 

                  "             movq        %%mm3,          %%rbx           \n\t" 

                  "             movq        %%mm3,          %%rcx           \n\t" 

                  "             cmp         %%r8,           %%rax           \n\t" 

                  "             je          CheckMM4                        \n\t" 

                  "             cmp         %%r9,           %%rbx           \n\t" 

                  "             je          CheckMM4                        \n\t" 

                  "             cmp         %%r10,          %%rcx           \n\t" 

                  "             je          CheckMM4                        \n\t" 

                  "             movq        %%mm3,          %[readBackVal]  \n\t" 

                  "             movq        %%rax,          %[err1]         \n\t" 

                  "             movq        %%rbx,          %[err2]         \n\t" 

                  "             movq        %%rcx,          %[err3]         \n\t" 

                  "             movb        $3,             %[position]     \n\t" 

                  "             jmp         End                             \n\t" 

 

                  "CheckMM4:    movq        %%mm4,          %%rax           \n\t" 

                  "             movq        %%mm4,          %%rbx           \n\t" 

                  "             movq        %%mm4,          %%rcx           \n\t" 

                  "             cmp         %%r8,           %%rax           \n\t" 

                  "             je          CheckMM5                        \n\t" 

                  "             cmp         %%r9,           %%rbx           \n\t" 

                  "             je          CheckMM5                        \n\t" 

                  "             cmp         %%r10,          %%rcx           \n\t" 

                  "             je          CheckMM5                        \n\t" 

                  "             movq        %%mm4,          %[readBackVal]  \n\t" 

                  "             movq        %%rax,          %[err1]         \n\t" 

                  "             movq        %%rbx,          %[err2]         \n\t" 

                  "             movq        %%rcx,          %[err3]         \n\t" 

                  "             movb        $4,             %[position]     \n\t" 

                  "             jmp         End                             \n\t" 
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                  "CheckMM5:    movq        %%mm5,          %%rax           \n\t" 

                  "             movq        %%mm5,          %%rbx           \n\t" 

                  "             movq        %%mm5,          %%rcx           \n\t" 

                  "             cmp         %%r8,           %%rax           \n\t" 

                  "             je          CheckMM6                        \n\t" 

                  "             cmp         %%r9,           %%rbx           \n\t" 

                  "             je          CheckMM6                        \n\t" 

                  "             cmp         %%r10,          %%rcx           \n\t" 

                  "             je          CheckMM6                        \n\t" 

                  "             movq        %%mm5,          %[readBackVal]  \n\t" 

                  "             movq        %%rax,          %[err1]         \n\t" 

                  "             movq        %%rbx,          %[err2]         \n\t" 

                  "             movq        %%rcx,          %[err3]         \n\t" 

                  "             movb        $5,             %[position]     \n\t" 

                  "             jmp         End                             \n\t" 

 

                  "CheckMM6:    movq        %%mm6,          %%rax           \n\t" 

                  "             movq        %%mm6,          %%rbx           \n\t" 

                  "             movq        %%mm6,          %%rcx           \n\t" 

                  "             cmp         %%r8,           %%rax           \n\t" 

                  "             je          CheckMM7                        \n\t" 

                  "             cmp         %%r9,           %%rbx           \n\t" 

                  "             je          CheckMM7                        \n\t" 

                  "             cmp         %%r10,          %%rcx           \n\t" 

                  "             je          CheckMM7                        \n\t" 

                  "             movq        %%mm6,          %[readBackVal]  \n\t" 

                  "             movq        %%rax,          %[err1]         \n\t" 

                  "             movq        %%rbx,          %[err2]         \n\t" 

                  "             movq        %%rcx,          %[err3]         \n\t" 

                  "             movb        $6,             %[position]     \n\t" 

                  "             jmp         End                             \n\t" 

 

                  "CheckMM7:    movq        %%mm7,          %%rax           \n\t" 

                  "             movq        %%mm7,          %%rbx           \n\t" 

                  "             movq        %%mm7,          %%rcx           \n\t" 

                  "             cmp         %%r8,           %%rax           \n\t" 

                  "             je          Loop                            \n\t" 

                  "             cmp         %%r9,           %%rbx           \n\t" 

                  "             je          Loop                            \n\t" 

                  "             cmp         %%r10,          %%rcx           \n\t" 

                  "             je          Loop                            \n\t" 

                  "             movq        %%mm7,          %[readBackVal]  \n\t" 

                  "             movq        %%rax,          %[err1]         \n\t" 

                  "             movq        %%rbx,          %[err2]         \n\t" 

                  "             movq        %%rcx,          %[err3]         \n\t" 

                  "             movb        $7,             %[position]     \n\t" 

                  "             jmp         End                             \n\t" 

 

 

                  "Loop:        dec         %%rdx                           \n\t" 

                  "             cmpq        $0,             %%rdx           \n\t" 

                  "             jne         CheckMM0                        \n\t" 

 

                  "End:         emms                                        \n\t" 

   /*Thos opcode releases the FPU to be used for other functions*/ 
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                  : [readBackVal]   "=m" (currentMMXVal), 

                    [err1]          "=m" (error1), 

                    [err2]          "=m" (error2), 

                    [err3]          "=m" (error3), 

                    [position]      "=m" (location) 

 

                  : [toWrite]   "m" (writeVal), 

                    [loopCount] "m" (numLoops) 

                    .       

.:"%rax","%rbx","%rcx","%rdx","%r8","%r9","%r10","%mm0","%mm1",  

.."%mm2","%mm3","%mm4","%mm5","%mm6","%mm7"); 

 

    if(location != 0xf0) 

       { 

        /*First we prompt the user*/ 

        printf("Error at %d\t Input: %llx\t Error1: %llx\t Error2: %llx\t Error3: 

        %llx\t", location, currentMMXVal, error1,error2,error3); 

        /*Now we write to file*/ 

        FILE * myFilePointer = fopen("MMX_Errors.csv", "a"); 

 fprintf(myFilePointer, "%d, %llx, %llx, %llx, %llx\n", location, 

 currentMMXVal, error1,error2,error3); 

        fclose(myFilePointer); 

        return 1; 

       } 

    else 

       { 

         printf("No error detected"); 

         return 0; 

       } 

} 

 

int main() 

{ 

    int numTestRuns; 

    float energy,flux; 

 

    printf("Enter Test Energy in MeV\n"); 

    scanf("%f", &energy); 

    printf("Enter test flux\n"); 

    scanf("%f", &flux); 

    printf("Enter the number of tests to run (for loop counter)\n"); 

    scanf("%d", &numTestRuns); 

 

    /*We beginby creating the files that will be used to log errors as well as 

    test parameters*/ 

    FILE * fp = fopen("MMX_Errors.csv", "a"); 

    fprintf(fp, "\n"); 

    fprintf(fp, "New test run\n"); 

    fprintf(fp, "============\n"); 

    fprintf(fp,"Energy: %f, Flux: %f\n", energy, flux); 

    fprintf(fp, "REG Locaton, Read Back Value, Error 1, Error 2, Error 3\n"); 

    fclose(fp); 

 

    printf("Log file Appended. Beginning test\n"); 

 

    /*Now we run the actual test*/ 

    int errCount = 0; 
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    for (int i = 0; i < numTestRuns; i++) 

    { 

        printf("Run %d: ",i); 

        int errType = MMXTest(); 

        if (errType == 1) 

        { 

            errCount++; 

            printf("Error No: %d\n",errCount); 

        } 

        else 

            printf("\n"); 

    } 

    printf("\n\nGPR Test Program Completed\n"); 

    return 0; 

} 
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Appendix 4:  XMM Test Source Code 

#include <stdio.h> 

#include <stdlib.h> 

 

int XMMTest() 

{ 

    /*Below are inputs to the asm*/ 

    unsigned int loopCount = 1500000; 

    unsigned long long int inputVal = 0xf0f0f0f0f0f0f0f0; 

 

    /*outputs from the asm*/ 

    unsigned long long int error1H, error2H, error3H, error1L, error2L, error3L; 

    unsigned long long int xmmValH, xmmValL; 

    unsigned int errorFlag = 0, location = 0xf0; 

 

    /*Begin asm*/ 

 

    asm volatile("Begin:        movq    %[toWrite],     %%rax       \n\t" 

                 "              movq    %[toWrite],     %%rbx       \n\t" 

                 "              movq    %[toWrite],     %%rcx       \n\t" 

                 "              movq    %[numLoops],    %%rdx       \n\t" 

 

                 "              movlps  %[toWrite],     %%xmm0      \n\t" 

                 "              movhps  %[toWrite],     %%xmm0      \n\t" 

                 /*Loading the xmm registers with known values, excluding xmm15*/ 

                 "              movaps  %%xmm0,         %%xmm1      \n\t" 

                 "              movaps  %%xmm0,         %%xmm2      \n\t" 

                 "              movaps  %%xmm0,         %%xmm3      \n\t" 

                 "              movaps  %%xmm0,         %%xmm4      \n\t" 

                 "              movaps  %%xmm0,         %%xmm5      \n\t" 

                 "              movaps  %%xmm0,         %%xmm6      \n\t" 

                 "              movaps  %%xmm0,         %%xmm7      \n\t" 

                 "              movaps  %%xmm0,         %%xmm8      \n\t" 

                 "              movaps  %%xmm0,         %%xmm9      \n\t" 

                 "              movaps  %%xmm0,         %%xmm10     \n\t" 

                 "              movaps  %%xmm0,         %%xmm11     \n\t" 

                 "              movaps  %%xmm0,         %%xmm12     \n\t" 

                 "              movaps  %%xmm0,         %%xmm13     \n\t" 

                 "              movaps  %%xmm0,         %%xmm14     \n\t" 

 

 

                 /*Now we begin checking for errors that may occur during  

  irradiation. XMM15 shall be used as a placeholder register  

   for swapping data between registers*/ 

 

                 "CheckXMM0L:   movq    %%xmm0,         %%r10       \n\t" 

                 "              movq    %%xmm0,         %%r11       \n\t" 

                 "              movq    %%xmm0,         %%r12       \n\t" 

                 "              movhlps %%xmm0,         %%xmm15     \n\t"  

  /*Only way to copy from XMM to GPR is through lower quadword*/ 

                 "              movq    %%xmm15,        %%r13       \n\t" 

                 "              movq    %%xmm15,        %%r14       \n\t" 

                 "              movq    %%xmm15,        %%r15       \n\t" 

                 "              cmp     %%r10,          %%rax       \n\t" 

                 "              je      CheckXMM0H                  \n\t" 
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                 "              cmp     %%r11,          %%rbx       \n\t" 

                 "              je      CheckXMM0H                  \n\t" 

                 "              cmp     %%r12,          %%rcx       \n\t" 

                 "              je      CheckXMM0H                  \n\t" 

                 "              movq    %%r10,          %[err1L]    \n\t" 

                 "              movq    %%r11,          %[err2L]    \n\t" 

                 "              movq    %%r12,          %[err3L]    \n\t" 

                 "              movq    %%r13,          %[err1H]    \n\t" 

                 "              movq    %%r14,          %[err2H]    \n\t" 

                 "              movq    %%r15,          %[err3H]    \n\t" 

                 "              movlps  %%xmm0,         %[readBackL]\n\t" 

                 "              movhps  %%xmm0,         %[readBackH]\n\t" 

                 "              movb    $0,             %[position] \n\t" 

                 "              movb    $0xf0,          %[errFlag]  \n\t" 

                 "              jmp     End                         \n\t" 

                 "CheckXMM0H:   cmp     %%r13,          %%rax       \n\t" 

                 "              je      CheckXMM1L                  \n\t" 

                 "              cmp     %%r14,          %%rbx       \n\t" 

                 "              je      CheckXMM1L                  \n\t" 

                 "              cmp     %%r15,          %%rcx       \n\t" 

                 "              je      CheckXMM1L                  \n\t" 

                 "              movq    %%r10,          %[err1L]    \n\t" 

                 "              movq    %%r11,          %[err2L]    \n\t" 

                 "              movq    %%r12,          %[err3L]    \n\t" 

                 "              movq    %%r13,          %[err1H]    \n\t" 

                 "              movq    %%r14,          %[err2H]    \n\t" 

                 "              movq    %%r15,          %[err3H]    \n\t" 

                 "              movlps  %%xmm0,         %[readBackL]\n\t" 

                 "              movhps  %%xmm0,         %[readBackH]\n\t" 

                 "              movb    $0,             %[position] \n\t" 

                 "              movb    $0xf0,          %[errFlag]  \n\t" 

                 "              jmp     End                         \n\t" 

                 "CheckXMM1L:   movq    %%xmm1,         %%r10       \n\t" 

                 "              movq    %%xmm1,         %%r11       \n\t" 

                 "              movq    %%xmm1,         %%r12       \n\t" 

                 "              movhlps %%xmm1,         %%xmm15     \n\t"  

  /*Only way to copy from XMM to GPR is through lower quadword*/ 

                 "              movq    %%xmm15,        %%r13       \n\t" 

                 "              movq    %%xmm15,        %%r14       \n\t" 

                 "              movq    %%xmm15,        %%r15       \n\t" 

                 "              cmp     %%r10,          %%rax       \n\t" 

                 "              je      CheckXMM1H                  \n\t" 

                 "              cmp     %%r11,          %%rbx       \n\t" 

                 "              je      CheckXMM1H                  \n\t" 

                 "              cmp     %%r12,          %%rcx       \n\t" 

                 "              je      CheckXMM1H                  \n\t" 

                 "              movq    %%r10,          %[err1L]    \n\t" 

                 "              movq    %%r11,          %[err2L]    \n\t" 

                 "              movq    %%r12,          %[err3L]    \n\t" 

                 "              movq    %%r13,          %[err1H]    \n\t" 

                 "              movq    %%r14,          %[err2H]    \n\t" 

                 "              movq    %%r15,          %[err3H]    \n\t" 

                 "              movlps  %%xmm1,         %[readBackL]\n\t" 

                 "              movhps  %%xmm1,         %[readBackH]\n\t" 

                 "              movb    $1,             %[position] \n\t" 

                 "              movb    $0xf0,          %[errFlag]  \n\t" 

                 "              jmp     End                         \n\t" 
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                 "CheckXMM1H:   cmp     %%r13,          %%rax       \n\t" 

                 "              je      CheckXMM2L                  \n\t" 

                 "              cmp     %%r14,          %%rbx       \n\t" 

                 "              je      CheckXMM2L                  \n\t" 

                 "              cmp     %%r15,          %%rcx       \n\t" 

                 "              je      CheckXMM2L                  \n\t" 

                 "              movq    %%r10,          %[err1L]    \n\t" 

                 "              movq    %%r11,          %[err2L]    \n\t" 

                 "              movq    %%r12,          %[err3L]    \n\t" 

                 "              movq    %%r13,          %[err1H]    \n\t" 

                 "              movq    %%r14,          %[err2H]    \n\t" 

                 "              movq    %%r15,          %[err3H]    \n\t" 

                 "              movlps  %%xmm1,         %[readBackL]\n\t" 

                 "              movhps  %%xmm1,         %[readBackH]\n\t" 

                 "              movb    $1,             %[position] \n\t" 

                 "              movb    $0xf0,          %[errFlag]  \n\t" 

                 "              jmp     End                         \n\t" 

                 "CheckXMM2L:   movq    %%xmm2,         %%r10       \n\t" 

                 "              movq    %%xmm2,         %%r11       \n\t" 

                 "              movq    %%xmm2,         %%r12       \n\t" 

                 "              movhlps %%xmm2,         %%xmm15     \n\t"  

  /*Only way to copy from XMM to GPR is through lower quadword*/ 

                 "              movq    %%xmm15,        %%r13       \n\t" 

                 "              movq    %%xmm15,        %%r14       \n\t" 

                 "              movq    %%xmm15,        %%r15       \n\t" 

                 "              cmp     %%r10,          %%rax       \n\t" 

                 "              je      CheckXMM2H                  \n\t" 

                 "              cmp     %%r11,          %%rbx       \n\t" 

                 "              je      CheckXMM2H                  \n\t" 

                 "              cmp     %%r12,          %%rcx       \n\t" 

                 "              je      CheckXMM2H                  \n\t" 

                 "              movq    %%r10,          %[err1L]    \n\t" 

                 "              movq    %%r11,          %[err2L]    \n\t" 

                 "              movq    %%r12,          %[err3L]    \n\t" 

                 "              movq    %%r13,          %[err1H]    \n\t" 

                 "              movq    %%r14,          %[err2H]    \n\t" 

                 "              movq    %%r15,          %[err3H]    \n\t" 

                 "              movlps  %%xmm2,         %[readBackL]\n\t" 

                 "              movhps  %%xmm2,         %[readBackH]\n\t" 

                 "              movb    $2,             %[position] \n\t" 

                 "              movb    $0xf0,          %[errFlag]  \n\t" 

                 "              jmp     End                         \n\t" 

                 "CheckXMM2H:   cmp     %%r13,          %%rax       \n\t" 

                 "              je      CheckXMM3L                  \n\t" 

                 "              cmp     %%r14,          %%rbx       \n\t" 

                 "              je      CheckXMM3L                  \n\t" 

                 "              cmp     %%r15,          %%rcx       \n\t" 

                 "              je      CheckXMM3L                  \n\t" 

                 "              movq    %%r10,          %[err1L]    \n\t" 

                 "              movq    %%r11,          %[err2L]    \n\t" 

                 "              movq    %%r12,          %[err3L]    \n\t" 

                 "              movq    %%r13,          %[err1H]    \n\t" 

                 "              movq    %%r14,          %[err2H]    \n\t" 

                 "              movq    %%r15,          %[err3H]    \n\t" 

                 "              movlps  %%xmm2,         %[readBackL]\n\t" 

                 "              movhps  %%xmm2,         %[readBackH]\n\t" 

                 "              movb    $2,             %[position] \n\t" 
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                 "              movb    $0xf0,          %[errFlag]  \n\t" 

                 "              jmp     End                         \n\t" 

                 "CheckXMM3L:   movq    %%xmm3,         %%r10       \n\t" 

                 "              movq    %%xmm3,         %%r11       \n\t" 

                 "              movq    %%xmm3,         %%r12       \n\t" 

                 "              movhlps %%xmm3,         %%xmm15     \n\t"  

  /*Only way to copy from XMM to GPR is through lower quadword*/ 

                 "              movq    %%xmm15,        %%r13       \n\t" 

                 "              movq    %%xmm15,        %%r14       \n\t" 

                 "              movq    %%xmm15,        %%r15       \n\t" 

                 "              cmp     %%r10,          %%rax       \n\t" 

                 "              je      CheckXMM3H                  \n\t" 

                 "              cmp     %%r11,          %%rbx       \n\t" 

                 "              je      CheckXMM3H                  \n\t" 

                 "              cmp     %%r12,          %%rcx       \n\t" 

                 "              je      CheckXMM3H                  \n\t" 

                 "              movq    %%r10,          %[err1L]    \n\t" 

                 "              movq    %%r11,          %[err2L]    \n\t" 

                 "              movq    %%r12,          %[err3L]    \n\t" 

                 "              movq    %%r13,          %[err1H]    \n\t" 

                 "              movq    %%r14,          %[err2H]    \n\t" 

                 "              movq    %%r15,          %[err3H]    \n\t" 

                 "              movlps  %%xmm3,         %[readBackL]\n\t" 

                 "              movhps  %%xmm3,         %[readBackH]\n\t" 

                 "              movb    $3,             %[position] \n\t" 

                 "              movb    $0xf0,          %[errFlag]  \n\t" 

                 "              jmp     End                         \n\t" 

                 "CheckXMM3H:   cmp     %%r13,          %%rax       \n\t" 

                 "              je      CheckXMM4L                  \n\t" 

                 "              cmp     %%r14,          %%rbx       \n\t" 

                 "              je      CheckXMM4L                  \n\t" 

                 "              cmp     %%r15,          %%rcx       \n\t" 

                 "              je      CheckXMM4L                  \n\t" 

                 "              movq    %%r10,          %[err1L]    \n\t" 

                 "              movq    %%r11,          %[err2L]    \n\t" 

                 "              movq    %%r12,          %[err3L]    \n\t" 

                 "              movq    %%r13,          %[err1H]    \n\t" 

                 "              movq    %%r14,          %[err2H]    \n\t" 

                 "              movq    %%r15,          %[err3H]    \n\t" 

                 "              movlps  %%xmm3,         %[readBackL]\n\t" 

                 "              movhps  %%xmm3,         %[readBackH]\n\t" 

                 "              movb    $3,             %[position] \n\t" 

                 "              movb    $0xf0,          %[errFlag]  \n\t" 

                 "              jmp     End                         \n\t" 

 

                 "CheckXMM4L:   movq    %%xmm4,         %%r10       \n\t" 

                 "              movq    %%xmm4,         %%r11       \n\t" 

                 "              movq    %%xmm4,         %%r12       \n\t" 

                 "              movhlps %%xmm4,         %%xmm15     \n\t"  

  /*Only way to copy from XMM to GPR is through lower quadword*/ 

                 "              movq    %%xmm15,        %%r13       \n\t" 

                 "              movq    %%xmm15,        %%r14       \n\t" 

                 "              movq    %%xmm15,        %%r15       \n\t" 

                 "              cmp     %%r10,          %%rax       \n\t" 

                 "              je      CheckXMM4H                  \n\t" 

                 "              cmp     %%r11,          %%rbx       \n\t" 

                 "              je      CheckXMM4H                  \n\t" 
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                 "              cmp     %%r12,          %%rcx       \n\t" 

                 "              je      CheckXMM4H                  \n\t" 

                 "              movq    %%r10,          %[err1L]    \n\t" 

                 "              movq    %%r11,          %[err2L]    \n\t" 

                 "              movq    %%r12,          %[err3L]    \n\t" 

                 "              movq    %%r13,          %[err1H]    \n\t" 

                 "              movq    %%r14,          %[err2H]    \n\t" 

                 "              movq    %%r15,          %[err3H]    \n\t" 

                 "              movlps  %%xmm4,         %[readBackL]\n\t" 

                 "              movhps  %%xmm4,         %[readBackH]\n\t" 

                 "              movb    $4,             %[position] \n\t" 

                 "              movb    $0xf0,          %[errFlag]  \n\t" 

                 "              jmp     End                         \n\t" 

                 "CheckXMM4H:   cmp     %%r13,          %%rax       \n\t" 

                 "              je      CheckXMM5L                  \n\t" 

                 "              cmp     %%r14,          %%rbx       \n\t" 

                 "              je      CheckXMM5L                  \n\t" 

                 "              cmp     %%r15,          %%rcx       \n\t" 

                 "              je      CheckXMM5L                  \n\t" 

                 "              movq    %%r10,          %[err1L]    \n\t" 

                 "              movq    %%r11,          %[err2L]    \n\t" 

                 "              movq    %%r12,          %[err3L]    \n\t" 

                 "              movq    %%r13,          %[err1H]    \n\t" 

                 "              movq    %%r14,          %[err2H]    \n\t" 

                 "              movq    %%r15,          %[err3H]    \n\t" 

                 "              movlps  %%xmm4,         %[readBackL]\n\t" 

                 "              movhps  %%xmm4,         %[readBackH]\n\t" 

                 "              movb    $4,             %[position] \n\t" 

                 "              movb    $0xf0,          %[errFlag]  \n\t" 

                 "              jmp     End                         \n\t" 

 

                 "CheckXMM5L:   movq    %%xmm5,         %%r10       \n\t" 

                 "              movq    %%xmm5,         %%r11       \n\t" 

                 "              movq    %%xmm5,         %%r12       \n\t" 

                 "              movhlps %%xmm5,         %%xmm15     \n\t"  

  /*Only way to copy from XMM to GPR is through lower quadword*/ 

                 "              movq    %%xmm15,        %%r13       \n\t" 

                 "              movq    %%xmm15,        %%r14       \n\t" 

                 "              movq    %%xmm15,        %%r15       \n\t" 

                 "              cmp     %%r10,          %%rax       \n\t" 

                 "              je      CheckXMM5H                  \n\t" 

                 "              cmp     %%r11,          %%rbx       \n\t" 

                 "              je      CheckXMM5H                  \n\t" 

                 "              cmp     %%r12,          %%rcx       \n\t" 

                 "              je      CheckXMM5H                  \n\t" 

                 "              movq    %%r10,          %[err1L]    \n\t" 

                 "              movq    %%r11,          %[err2L]    \n\t" 

                 "              movq    %%r12,          %[err3L]    \n\t" 

                 "              movq    %%r13,          %[err1H]    \n\t" 

                 "              movq    %%r14,          %[err2H]    \n\t" 

                 "              movq    %%r15,          %[err3H]    \n\t" 

                 "              movlps  %%xmm5,         %[readBackL]\n\t" 

                 "              movhps  %%xmm5,         %[readBackH]\n\t" 

                 "              movb    $5,             %[position] \n\t" 

                 "              movb    $0xf0,          %[errFlag]  \n\t" 

                 "              jmp     End                         \n\t" 

                 "CheckXMM5H:   cmp     %%r13,          %%rax       \n\t" 
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                 "              je      CheckXMM6L                  \n\t" 

                 "              cmp     %%r14,          %%rbx       \n\t" 

                 "              je      CheckXMM6L                  \n\t" 

                 "              cmp     %%r15,          %%rcx       \n\t" 

                 "              je      CheckXMM6L                  \n\t" 

                 "              movq    %%r10,          %[err1L]    \n\t" 

                 "              movq    %%r11,          %[err2L]    \n\t" 

                 "              movq    %%r12,          %[err3L]    \n\t" 

                 "              movq    %%r13,          %[err1H]    \n\t" 

                 "              movq    %%r14,          %[err2H]    \n\t" 

                 "              movq    %%r15,          %[err3H]    \n\t" 

                 "              movlps  %%xmm5,         %[readBackL]\n\t" 

                 "              movhps  %%xmm5,         %[readBackH]\n\t" 

                 "              movb    $5,             %[position] \n\t" 

                 "              movb    $0xf0,          %[errFlag]  \n\t" 

                 "              jmp     End                         \n\t" 

                 "CheckXMM6L:   movq    %%xmm6,         %%r10       \n\t" 

                 "              movq    %%xmm6,         %%r11       \n\t" 

                 "              movq    %%xmm6,         %%r12       \n\t" 

                 "              movhlps %%xmm6,         %%xmm15     \n\t"  

  /*Only way to copy from XMM to GPR is through lower quadword*/ 

                 "              movq    %%xmm15,        %%r13       \n\t" 

                 "              movq    %%xmm15,        %%r14       \n\t" 

                 "              movq    %%xmm15,        %%r15       \n\t" 

                 "              cmp     %%r10,          %%rax       \n\t" 

                 "              je      CheckXMM6H                  \n\t" 

                 "              cmp     %%r11,          %%rbx       \n\t" 

                 "              je      CheckXMM6H                  \n\t" 

                 "              cmp     %%r12,          %%rcx       \n\t" 

                 "              je      CheckXMM6H                  \n\t" 

                 "              movq    %%r10,          %[err1L]    \n\t" 

                 "              movq    %%r11,          %[err2L]    \n\t" 

                 "              movq    %%r12,          %[err3L]    \n\t" 

                 "              movq    %%r13,          %[err1H]    \n\t" 

                 "              movq    %%r14,          %[err2H]    \n\t" 

                 "              movq    %%r15,          %[err3H]    \n\t" 

                 "              movlps  %%xmm6,         %[readBackL]\n\t" 

                 "              movhps  %%xmm6,         %[readBackH]\n\t" 

                 "              movb    $6,             %[position] \n\t" 

                 "              movb    $0xf0,          %[errFlag]  \n\t" 

                 "              jmp     End                         \n\t" 

                 "CheckXMM6H:   cmp     %%r13,          %%rax       \n\t" 

                 "              je      CheckXMM7L                  \n\t" 

                 "              cmp     %%r14,          %%rbx       \n\t" 

                 "              je      CheckXMM7L                  \n\t" 

                 "              cmp     %%r15,          %%rcx       \n\t" 

                 "              je      CheckXMM7L                  \n\t" 

                 "              movq    %%r10,          %[err1L]    \n\t" 

                 "              movq    %%r11,          %[err2L]    \n\t" 

                 "              movq    %%r12,          %[err3L]    \n\t" 

                 "              movq    %%r13,          %[err1H]    \n\t" 

                 "              movq    %%r14,          %[err2H]    \n\t" 

                 "              movq    %%r15,          %[err3H]    \n\t" 

                 "              movlps  %%xmm6,         %[readBackL]\n\t" 

                 "              movhps  %%xmm6,         %[readBackH]\n\t" 

                 "              movb    $6,             %[position] \n\t" 

                 "              movb    $0xf0,          %[errFlag]  \n\t" 



W 
 

                 "              jmp     End                         \n\t" 

                 "CheckXMM7L:   movq    %%xmm7,         %%r10       \n\t" 

                 "              movq    %%xmm7,         %%r11       \n\t" 

                 "              movq    %%xmm7,         %%r12       \n\t" 

                 "              movhlps %%xmm7,         %%xmm15     \n\t"  

  /*Only way to copy from XMM to GPR is through lower quadword*/ 

                 "              movq    %%xmm15,        %%r13       \n\t" 

                 "              movq    %%xmm15,        %%r14       \n\t" 

                 "              movq    %%xmm15,        %%r15       \n\t" 

                 "              cmp     %%r10,          %%rax       \n\t" 

                 "              je      CheckXMM7H                  \n\t" 

                 "              cmp     %%r11,          %%rbx       \n\t" 

                 "              je      CheckXMM7H                  \n\t" 

                 "              cmp     %%r12,          %%rcx       \n\t" 

                 "              je      CheckXMM7H                  \n\t" 

                 "              movq    %%r10,          %[err1L]    \n\t" 

                 "              movq    %%r11,          %[err2L]    \n\t" 

                 "              movq    %%r12,          %[err3L]    \n\t" 

                 "              movq    %%r13,          %[err1H]    \n\t" 

                 "              movq    %%r14,          %[err2H]    \n\t" 

                 "              movq    %%r15,          %[err3H]    \n\t" 

                 "              movlps  %%xmm7,         %[readBackL]\n\t" 

                 "              movhps  %%xmm7,         %[readBackH]\n\t" 

                 "              movb    $7,             %[position] \n\t" 

                 "              movb    $0xf0,          %[errFlag]  \n\t" 

                 "              jmp     End                         \n\t" 

                 "CheckXMM7H:   cmp     %%r13,          %%rax       \n\t" 

                 "              je      CheckXMM8L                  \n\t" 

                 "              cmp     %%r14,          %%rbx       \n\t" 

                 "              je      CheckXMM8L                  \n\t" 

                 "              cmp     %%r15,          %%rcx       \n\t" 

                 "              je      CheckXMM8L                  \n\t" 

                 "              movq    %%r10,          %[err1L]    \n\t" 

                 "              movq    %%r11,          %[err2L]    \n\t" 

                 "              movq    %%r12,          %[err3L]    \n\t" 

                 "              movq    %%r13,          %[err1H]    \n\t" 

                 "              movq    %%r14,          %[err2H]    \n\t" 

                 "              movq    %%r15,          %[err3H]    \n\t" 

                 "              movlps  %%xmm7,         %[readBackL]\n\t" 

                 "              movhps  %%xmm7,         %[readBackH]\n\t" 

                 "              movb    $7,             %[position] \n\t" 

                 "              movb    $0xf0,          %[errFlag]  \n\t" 

                 "              jmp     End                         \n\t" 

 

                 "CheckXMM8L:   movq    %%xmm8,         %%r10       \n\t" 

                 "              movq    %%xmm8,         %%r11       \n\t" 

                 "              movq    %%xmm8,         %%r12       \n\t" 

                 "              movhlps %%xmm8,         %%xmm15     \n\t"  

  /*Only way to copy from XMM to GPR is through lower quadword*/ 

                 "              movq    %%xmm15,        %%r13       \n\t" 

                 "              movq    %%xmm15,        %%r14       \n\t" 

                 "              movq    %%xmm15,        %%r15       \n\t" 

                 "              cmp     %%r10,          %%rax       \n\t" 

                 "              je      CheckXMM8H                  \n\t" 

                 "              cmp     %%r11,          %%rbx       \n\t" 

                 "              je      CheckXMM8H                  \n\t" 

                 "              cmp     %%r12,          %%rcx       \n\t" 



X 
 

                 "              je      CheckXMM8H                  \n\t" 

                 "              movq    %%r10,          %[err1L]    \n\t" 

                 "              movq    %%r11,          %[err2L]    \n\t" 

                 "              movq    %%r12,          %[err3L]    \n\t" 

                 "              movq    %%r13,          %[err1H]    \n\t" 

                 "              movq    %%r14,          %[err2H]    \n\t" 

                 "              movq    %%r15,          %[err3H]    \n\t" 

                 "              movlps  %%xmm8,         %[readBackL]\n\t" 

                 "              movhps  %%xmm8,         %[readBackH]\n\t" 

                 "              movb    $8,             %[position] \n\t" 

                 "              movb    $0xf0,          %[errFlag]  \n\t" 

                 "              jmp     End                         \n\t" 

                 "CheckXMM8H:   cmp     %%r13,          %%rax       \n\t" 

                 "              je      CheckXMM9L                  \n\t" 

                 "              cmp     %%r14,          %%rbx       \n\t" 

                 "              je      CheckXMM9L                  \n\t" 

                 "              cmp     %%r15,          %%rcx       \n\t" 

                 "              je      CheckXMM9L                  \n\t" 

                 "              movq    %%r10,          %[err1L]    \n\t" 

                 "              movq    %%r11,          %[err2L]    \n\t" 

                 "              movq    %%r12,          %[err3L]    \n\t" 

                 "              movq    %%r13,          %[err1H]    \n\t" 

                 "              movq    %%r14,          %[err2H]    \n\t" 

                 "              movq    %%r15,          %[err3H]    \n\t" 

                 "              movlps  %%xmm8,         %[readBackL]\n\t" 

                 "              movhps  %%xmm8,         %[readBackH]\n\t" 

                 "              movb    $8,             %[position] \n\t" 

                 "              movb    $0xf0,          %[errFlag]  \n\t" 

                 "              jmp     End                         \n\t" 

 

                 "CheckXMM9L:   movq    %%xmm9,         %%r10       \n\t" 

                 "              movq    %%xmm9,         %%r11       \n\t" 

                 "              movq    %%xmm9,         %%r12       \n\t" 

                 "              movhlps %%xmm9,         %%xmm15     \n\t"  

  /*Only way to copy from XMM to GPR is through lower quadword*/ 

                 "              movq    %%xmm15,        %%r13       \n\t" 

                 "              movq    %%xmm15,        %%r14       \n\t" 

                 "              movq    %%xmm15,        %%r15       \n\t" 

                 "              cmp     %%r10,          %%rax       \n\t" 

                 "              je      CheckXMM9H                  \n\t" 

                 "              cmp     %%r11,          %%rbx       \n\t" 

                 "              je      CheckXMM9H                  \n\t" 

                 "              cmp     %%r12,          %%rcx       \n\t" 

                 "              je      CheckXMM9H                  \n\t" 

                 "              movq    %%r10,          %[err1L]    \n\t" 

                 "              movq    %%r11,          %[err2L]    \n\t" 

                 "              movq    %%r12,          %[err3L]    \n\t" 

                 "              movq    %%r13,          %[err1H]    \n\t" 

                 "              movq    %%r14,          %[err2H]    \n\t" 

                 "              movq    %%r15,          %[err3H]    \n\t" 

                 "              movlps  %%xmm9,         %[readBackL]\n\t" 

                 "              movhps  %%xmm9,         %[readBackH]\n\t" 

                 "              movb    $9,             %[position] \n\t" 

                 "              movb    $0xf0,          %[errFlag]  \n\t" 

                 "              jmp     End                         \n\t" 

                 "CheckXMM9H:   cmp     %%r13,          %%rax       \n\t" 

                 "              je      CheckXMM10L                 \n\t" 
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                 "              cmp     %%r14,          %%rbx       \n\t" 

                 "              je      CheckXMM10L                 \n\t" 

                 "              cmp     %%r15,          %%rcx       \n\t" 

                 "              je      CheckXMM10L                 \n\t" 

                 "              movq    %%r10,          %[err1L]    \n\t" 

                 "              movq    %%r11,          %[err2L]    \n\t" 

                 "              movq    %%r12,          %[err3L]    \n\t" 

                 "              movq    %%r13,          %[err1H]    \n\t" 

                 "              movq    %%r14,          %[err2H]    \n\t" 

                 "              movq    %%r15,          %[err3H]    \n\t" 

                 "              movlps  %%xmm9,         %[readBackL]\n\t" 

                 "              movhps  %%xmm9,         %[readBackH]\n\t" 

                 "              movb    $9,             %[position] \n\t" 

                 "              movb    $0xf0,          %[errFlag]  \n\t" 

                 "              jmp     End                         \n\t" 

 

                 "CheckXMM10L:  movq    %%xmm10,        %%r10       \n\t" 

                 "              movq    %%xmm10,        %%r11       \n\t" 

                 "              movq    %%xmm10,        %%r12       \n\t" 

                 "              movhlps %%xmm10,        %%xmm15     \n\t"  

  /*Only way to copy from XMM to GPR is through lower quadword*/ 

                 "              movq    %%xmm15,        %%r13       \n\t" 

                 "              movq    %%xmm15,        %%r14       \n\t" 

                 "              movq    %%xmm15,        %%r15       \n\t" 

                 "              cmp     %%r10,          %%rax       \n\t" 

                 "              je      CheckXMM10H                 \n\t" 

                 "              cmp     %%r11,          %%rbx       \n\t" 

                 "              je      CheckXMM10H                 \n\t" 

                 "              cmp     %%r12,          %%rcx       \n\t" 

                 "              je      CheckXMM10H                 \n\t" 

                 "              movq    %%r10,          %[err1L]    \n\t" 

                 "              movq    %%r11,          %[err2L]    \n\t" 

                 "              movq    %%r12,          %[err3L]    \n\t" 

                 "              movq    %%r13,          %[err1H]    \n\t" 

                 "              movq    %%r14,          %[err2H]    \n\t" 

                 "              movq    %%r15,          %[err3H]    \n\t" 

                 "              movlps  %%xmm10,        %[readBackL]\n\t" 

                 "              movhps  %%xmm10,        %[readBackH]\n\t" 

                 "              movb    $10,            %[position] \n\t" 

                 "              movb    $0xf0,          %[errFlag]  \n\t" 

                 "              jmp     End                         \n\t" 

                 "CheckXMM10H:  cmp     %%r13,          %%rax       \n\t" 

                 "              je      CheckXMM11L                 \n\t" 

                 "              cmp     %%r14,          %%rbx       \n\t" 

                 "              je      CheckXMM11L                 \n\t" 

                 "              cmp     %%r15,          %%rcx       \n\t" 

                 "              je      CheckXMM11L                 \n\t" 

                 "              movq    %%r10,          %[err1L]    \n\t" 

                 "              movq    %%r11,          %[err2L]    \n\t" 

                 "              movq    %%r12,          %[err3L]    \n\t" 

                 "              movq    %%r13,          %[err1H]    \n\t" 

                 "              movq    %%r14,          %[err2H]    \n\t" 

                 "              movq    %%r15,          %[err3H]    \n\t" 

                 "              movlps  %%xmm10,        %[readBackL]\n\t" 

                 "              movhps  %%xmm10,        %[readBackH]\n\t" 

                 "              movb    $10,            %[position] \n\t" 

                 "              movb    $0xf0,          %[errFlag]  \n\t" 



Z 
 

                 "              jmp     End                         \n\t" 

 

                 "CheckXMM11L:  movq    %%xmm11,        %%r10       \n\t" 

                 "              movq    %%xmm11,        %%r11       \n\t" 

                 "              movq    %%xmm11,        %%r12       \n\t" 

                 "              movhlps %%xmm11,        %%xmm15     \n\t"  

  /*Only way to copy from XMM to GPR is through lower quadword*/ 

                 "              movq    %%xmm15,        %%r13       \n\t" 

                 "              movq    %%xmm15,        %%r14       \n\t" 

                 "              movq    %%xmm15,        %%r15       \n\t" 

                 "              cmp     %%r10,          %%rax       \n\t" 

                 "              je      CheckXMM11H                 \n\t" 

                 "              cmp     %%r11,          %%rbx       \n\t" 

                 "              je      CheckXMM11H                 \n\t" 

                 "              cmp     %%r12,          %%rcx       \n\t" 

                 "              je      CheckXMM11H                 \n\t" 

                 "              movq    %%r10,          %[err1L]    \n\t" 

                 "              movq    %%r11,          %[err2L]    \n\t" 

                 "              movq    %%r12,          %[err3L]    \n\t" 

                 "              movq    %%r13,          %[err1H]    \n\t" 

                 "              movq    %%r14,          %[err2H]    \n\t" 

                 "              movq    %%r15,          %[err3H]    \n\t" 

                 "              movlps  %%xmm11,        %[readBackL]\n\t" 

                 "              movhps  %%xmm11,        %[readBackH]\n\t" 

                 "              movb    $11,            %[position] \n\t" 

                 "              movb    $0xf0,          %[errFlag]  \n\t" 

                 "              jmp     End                         \n\t" 

                 "CheckXMM11H:  cmp     %%r13,          %%rax       \n\t" 

                 "              je      CheckXMM12L                 \n\t" 

                 "              cmp     %%r14,          %%rbx       \n\t" 

                 "              je      CheckXMM12L                 \n\t" 

                 "              cmp     %%r15,          %%rcx       \n\t" 

                 "              je      CheckXMM12L                 \n\t" 

                 "              movq    %%r10,          %[err1L]    \n\t" 

                 "              movq    %%r11,          %[err2L]    \n\t" 

                 "              movq    %%r12,          %[err3L]    \n\t" 

                 "              movq    %%r13,          %[err1H]    \n\t" 

                 "              movq    %%r14,          %[err2H]    \n\t" 

                 "              movq    %%r15,          %[err3H]    \n\t" 

                 "              movlps  %%xmm11,        %[readBackL]\n\t" 

                 "              movhps  %%xmm11,        %[readBackH]\n\t" 

                 "              movb    $11,            %[position] \n\t" 

                 "              movb    $0xf0,          %[errFlag]  \n\t" 

                 "              jmp     End                         \n\t" 

 

                 "CheckXMM12L:  movq    %%xmm12,        %%r10       \n\t" 

                 "              movq    %%xmm12,        %%r11       \n\t" 

                 "              movq    %%xmm12,        %%r12       \n\t" 

                 "              movhlps %%xmm12,        %%xmm15     \n\t"  

  /*Only way to copy from XMM to GPR is through lower quadword*/ 

                 "              movq    %%xmm15,        %%r13       \n\t" 

                 "              movq    %%xmm15,        %%r14       \n\t" 

                 "              movq    %%xmm15,        %%r15       \n\t" 

                 "              cmp     %%r10,          %%rax       \n\t" 

                 "              je      CheckXMM12H                 \n\t" 

                 "              cmp     %%r11,          %%rbx       \n\t" 

                 "              je      CheckXMM12H                 \n\t" 
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                 "              cmp     %%r12,          %%rcx       \n\t" 

                 "              je      CheckXMM12H                 \n\t" 

                 "              movq    %%r10,          %[err1L]    \n\t" 

                 "              movq    %%r11,          %[err2L]    \n\t" 

                 "              movq    %%r12,          %[err3L]    \n\t" 

                 "              movq    %%r13,          %[err1H]    \n\t" 

                 "              movq    %%r14,          %[err2H]    \n\t" 

                 "              movq    %%r15,          %[err3H]    \n\t" 

                 "              movlps  %%xmm12,        %[readBackL]\n\t" 

                 "              movhps  %%xmm12,        %[readBackH]\n\t" 

                 "              movb    $12,            %[position] \n\t" 

                 "              movb    $0xf0,          %[errFlag]  \n\t" 

                 "              jmp     End                         \n\t" 

                 "CheckXMM12H:  cmp     %%r13,          %%rax       \n\t" 

                 "              je      CheckXMM13L                 \n\t" 

                 "              cmp     %%r14,          %%rbx       \n\t" 

                 "              je      CheckXMM13L                 \n\t" 

                 "              cmp     %%r15,          %%rcx       \n\t" 

                 "              je      CheckXMM13L                 \n\t" 

                 "              movq    %%r10,          %[err1L]    \n\t" 

                 "              movq    %%r11,          %[err2L]    \n\t" 

                 "              movq    %%r12,          %[err3L]    \n\t" 

                 "              movq    %%r13,          %[err1H]    \n\t" 

                 "              movq    %%r14,          %[err2H]    \n\t" 

                 "              movq    %%r15,          %[err3H]    \n\t" 

                 "              movlps  %%xmm12,        %[readBackL]\n\t" 

                 "              movhps  %%xmm12,        %[readBackH]\n\t" 

                 "              movb    $12,            %[position] \n\t" 

                 "              movb    $0xf0,          %[errFlag]  \n\t" 

                 "              jmp     End                         \n\t" 

 

                 "CheckXMM13L:  movq    %%xmm13,        %%r10       \n\t" 

                 "              movq    %%xmm13,        %%r11       \n\t" 

                 "              movq    %%xmm13,        %%r12       \n\t" 

                 "              movhlps %%xmm13,        %%xmm15     \n\t"  

  /*Only way to copy from XMM to GPR is through lower quadword*/ 

                 "              movq    %%xmm15,        %%r13       \n\t" 

                 "              movq    %%xmm15,        %%r14       \n\t" 

                 "              movq    %%xmm15,        %%r15       \n\t" 

                 "              cmp     %%r10,          %%rax       \n\t" 

                 "              je      CheckXMM13H                 \n\t" 

                 "              cmp     %%r11,          %%rbx       \n\t" 

                 "              je      CheckXMM13H                 \n\t" 

                 "              cmp     %%r12,          %%rcx       \n\t" 

                 "              je      CheckXMM13H                 \n\t" 

                 "              movq    %%r10,          %[err1L]    \n\t" 

                 "              movq    %%r11,          %[err2L]    \n\t" 

                 "              movq    %%r12,          %[err3L]    \n\t" 

                 "              movq    %%r13,          %[err1H]    \n\t" 

                 "              movq    %%r14,          %[err2H]    \n\t" 

                 "              movq    %%r15,          %[err3H]    \n\t" 

                 "              movlps  %%xmm13,        %[readBackL]\n\t" 

                 "              movhps  %%xmm13,        %[readBackH]\n\t" 

                 "              movb    $13,            %[position] \n\t" 

                 "              movb    $0xf0,          %[errFlag]  \n\t" 

                 "              jmp     End                         \n\t" 

                 "CheckXMM13H:  cmp     %%r13,          %%rax       \n\t" 



BB 
 

                 "              je      CheckXMM14L                 \n\t" 

                 "              cmp     %%r14,          %%rbx       \n\t" 

                 "              je      CheckXMM14L                 \n\t" 

                 "              cmp     %%r15,          %%rcx       \n\t" 

                 "              je      CheckXMM14L                 \n\t" 

                 "              movq    %%r10,          %[err1L]    \n\t" 

                 "              movq    %%r11,          %[err2L]    \n\t" 

                 "              movq    %%r12,          %[err3L]    \n\t" 

                 "              movq    %%r13,          %[err1H]    \n\t" 

                 "              movq    %%r14,          %[err2H]    \n\t" 

                 "              movq    %%r15,          %[err3H]    \n\t" 

                 "              movlps  %%xmm13,        %[readBackL]\n\t" 

                 "              movhps  %%xmm13,        %[readBackH]\n\t" 

                 "              movb    $13,            %[position] \n\t" 

                 "              movb    $0xf0,          %[errFlag]  \n\t" 

                 "              jmp     End                         \n\t" 

 

                 "CheckXMM14L:  movq    %%xmm14,        %%r10       \n\t" 

                 "              movq    %%xmm14,        %%r11       \n\t" 

                 "              movq    %%xmm14,        %%r12       \n\t" 

                 "              movhlps %%xmm14,        %%xmm15     \n\t"  

  /*Only way to copy from XMM to GPR is through lower quadword*/ 

                 "              movq    %%xmm15,        %%r13       \n\t" 

                 "              movq    %%xmm15,        %%r14       \n\t" 

                 "              movq    %%xmm15,        %%r15       \n\t" 

                 "              cmp     %%r10,          %%rax       \n\t" 

                 "              je      CheckXMM14H                 \n\t" 

                 "              cmp     %%r11,          %%rbx       \n\t" 

                 "              je      CheckXMM14H                 \n\t" 

                 "              cmp     %%r12,          %%rcx       \n\t" 

                 "              je      CheckXMM14H                 \n\t" 

                 "              movq    %%r10,          %[err1L]    \n\t" 

                 "              movq    %%r11,          %[err2L]    \n\t" 

                 "              movq    %%r12,          %[err3L]    \n\t" 

                 "              movq    %%r13,          %[err1H]    \n\t" 

                 "              movq    %%r14,          %[err2H]    \n\t" 

                 "              movq    %%r15,          %[err3H]    \n\t" 

                 "              movlps  %%xmm14,        %[readBackL]\n\t" 

                 "              movhps  %%xmm14,        %[readBackH]\n\t" 

                 "              movb    $14,            %[position] \n\t" 

                 "              movb    $0xf0,          %[errFlag]  \n\t" 

                 "              jmp     End                         \n\t" 

                 "CheckXMM14H:  cmp     %%r13,          %%rax       \n\t" 

                 "              je      Loop                        \n\t" 

                 "              cmp     %%r14,          %%rbx       \n\t" 

                 "              je      Loop                        \n\t" 

                 "              cmp     %%r15,          %%rcx       \n\t" 

                 "              je      Loop                        \n\t" 

                 "              movq    %%r10,          %[err1L]    \n\t" 

                 "              movq    %%r11,          %[err2L]    \n\t" 

                 "              movq    %%r12,          %[err3L]    \n\t" 

                 "              movq    %%r13,          %[err1H]    \n\t" 

                 "              movq    %%r14,          %[err2H]    \n\t" 

                 "              movq    %%r15,          %[err3H]    \n\t" 

                 "              movlps  %%xmm14,        %[readBackL]\n\t" 

                 "              movhps  %%xmm14,        %[readBackH]\n\t" 

                 "              movb    $14,            %[position] \n\t" 



CC 
 

                 "              movb    $0xf0,          %[errFlag]  \n\t" 

                 "              jmp     End                         \n\t" 

 

                 "Loop:         dec         %%rdx                   \n\t" 

                 "              cmpq        $0,             %%rdx   \n\t" 

                 "              jne         CheckXMM0L              \n\t" 

                 "End:          nop                                 \n\t" 

 

 

                 : [err1H] "=m" (error1H), 

                   [err1L] "=m" (error1L), 

                   [err2H] "=m" (error2H), 

                   [err2L] "=m" (error2L), 

                   [err3H] "=m" (error3H), 

                   [err3L] "=m" (error3L), 

                   [readBackH] "=m" (xmmValH), 

                   [readBackL] "=m" (xmmValL), 

                   [errFlag] "=m" (errorFlag), 

                   [position] "=m" (location) 

 

                 : [toWrite] "m" (inputVal), 

                   [numLoops] "m" (loopCount) 

 

                 

:"%rax","%rbx","%rcx","%rdx","%r10","%r11","%r12","%r13","%r14",  

."%r15","%xmm0","%xmm1","%xmm2","%xmm3","%xmm4","%xmm5","%xmm6",

."%xmm7","%xmm8","%xmm9","%xmm10","%xmm11","%xmm12","%xmm13", 

."%xmm14","%xmm15"); 

 

                   if (errorFlag == 0xf0) 

                   { 

                       /*First we prompt the user*/ 

                       printf("XMM%d: %llx %llx\n",location, xmmValH, xmmValL); 

                       printf("Error 1: %llx %llx\n",error1H, error1L); 

                       printf("Error 2: %llx %llx\n",error2H, error2L); 

                       printf("Error 3: %llx %llx\n",error3H, error3L); 

                       /*Now we write to file*/ 

                       FILE * myFilePointer = fopen("XMM_Errors.csv", "a"); 

              fprintf(myFilePointer, "%d, %llx, %llx, %llx, 

      %llx,%llx,%llx,%llx,%llx\n", location, xmmValH, xmmValL, 

              error1H, error1L, error2H, error2L, error3H, error3L); 

                       fclose(myFilePointer); 

                       return 1; 

                   } 

                   else 

                   { 

                      printf("No error detected"); 

                      return 0; 

                   } 

} 

 

 

 

 

 

 

 



DD 
 

 

int main() 

{ 

    int numTestRuns; 

    float energy,flux; 

 

    printf("Enter Test Energy in MeV\n"); 

    scanf("%f", &energy); 

    printf("Enter test flux\n"); 

    scanf("%f", &flux); 

    printf("Enter the number of tests to run (for loop counter)\n"); 

    scanf("%d", &numTestRuns); 

 

    /*We beginby creating the files that will be used to log errors as well  

    as test parameters*/ 

    FILE * fp = fopen("XMM_Errors.csv", "a"); 

    fprintf(fp, "\n"); 

    fprintf(fp, "New test run\n"); 

    fprintf(fp, "============\n"); 

    fprintf(fp,"Energy: %f, Flux: %f\n", energy, flux); 

    fprintf(fp, "REG Locaton, xmmH, xmmL, Error1H, Error1L, Error2H, Error2L, 

    Error3H, Error3L\n"); 

    fclose(fp); 

 

    printf("Log file Appended. Beginning test\n"); 

 

    /*Now we run the actual test*/ 

    int errCount = 0; 

    for (int i = 0; i < numTestRuns; i++) 

    { 

        printf("Run %d: ",i); 

        int errType = XMMTest(); 

        if (errType == 1) 

        { 

            errCount++; 

            printf("Error Count: %d\n",errCount); 

        } 

        else 

            printf("\n"); 

    } 

    printf("\n\nGPR Test Program Completed\n"); 

    return 0; 

} 
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Appendix 5:  Math Test Source Code 

#include <stdio.h> 

#include <stdlib.h> 

#include <math.h> 

 

 

int main() 

{ 

    long double result = 0, correctResult = 0.7126148039773066; 

    float energy, flux; 

    int numLoops; 

 

    printf("Enter Energy in MeV\n"); 

    scanf("%f", &energy); 

    printf("Enter flux\n"); 

    scanf("%f", &flux); 

    printf("Enter the number of calculations to perform\n"); 

    scanf("%d", &numLoops); 

 

    FILE * fp = fopen("Cache Test.csv", "a"); 

    fprintf(fp, "Energy:\t %f\n", energy); 

    fprintf(fp, "Flux:\t %f\n", flux); 

    fclose(fp); 

    printf("File Appended\n"); 

 

 

    int errCount = 0; 

    for (int i = 0; i < numLoops; i++) 

    { 

 result=cos(sin(sin(M_SQRT2*sin(cos(sin(cos(pow(M_E,M_PI)*16032001))))))); 

        if (result == correctResult) 

            printf("Run: %d\t Ok\n", i); 

        else 

        { 

            errCount++; 

            printf("Run: %d\t Mismatch\t Error Count: %d\n", i, errCount); 

 

            FILE * tempFp = fopen("Cache Test.csv", "a"); 

            fprintf(tempFp,"Run No,%d,Error Count,%d\n", i, errCount); 

            fclose(tempFp); 

        } 

    } 

    return 0; 

} 
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Appendix 6:  Cache Disable/Enable Kernel Module 

#include <linux/init.h> 

#include <linux/module.h> 

 

static int switchOffCache_init(void) 

{     

   printk(KERN_ALERT "Cache is switching OFF\n");    

   asm volatile("mov    %%cr0,                  %%eax   \n\t"              

        "add     $0b01100000000000000000000000000000,    %%eax   \n\t"

        "mov     %%eax,                  %%cr0   \n\t" 

        "wbinvd              \n\t" 

   :          

   :            

   :"%eax"); 

   printk(KERN_ALERT "Cache has been switched OFF\n");  

   return 0; 

} 

 

 

static void switchOffCache_exit(void) 

 

{     

   printk(KERN_ALERT "Cache is switching ON\n");    

   asm volatile("mov   %%cr0,                  %%eax   \n\t"     

         "sub   $0b01100000000000000000000000000000,     %%eax   \n\t"                 

         "mov   %%eax,                  %%cr0   \n\t"

         "wbinvd           \n\t"           

   :        

   :        

   :"%eax"); 

   printk(KERN_ALERT "Cache has been switched ON\n"); 

} 

 

module_init(switchOffCache_init); 

module_exit(switchOffCache_exit); 
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Appendix 7:  Makefile for Cache Disable/Enable Kernel 

Module 

obj-m += CacheDisableEnable.o 

 

KDIR = /usr/src/linux-headers-4.18.0-13-generic 

 

 

all:  

 $(MAKE) -C $(KDIR) SUBDIRS=$(PWD) modules 

 

clean:  

 rm -rf *.o *.ko *.mod.* *.symvers *.order 

 

 


