NOVEL CALCIUM ION CONDUCTING SOLID ELECTROLYTE WITH NASICON-TYPE STRUCTURE

Nobuhito Imanaka, Osaka University, Japan imanaka@chem.eng.osaka-u.ac.jp

Key Words: Calcium ion, Solid Electrolyte, NASICON-type Structure

Divalent calcium ion conducting solid electrolyte with a three dimensional NASICON-type structure, $(Ca_xHf_{1-x})_{4/(4-2x)}Nb(PO_4)_{3}^{1}$, was successfully prepared by introducing Ca²⁺ cations into the HfNb(PO_4)_3 solid. The existence of three kinds of high valence cation of Hf⁴⁺, Nb⁵⁺, and P⁵⁺ successfully realized the effective reduction of electrostatic interaction toward Ca²⁺ in the structure. The (Ca_{0.05}Hf_{0.95})_{4/3.9}Nb(PO_4)_3 solid possesses considerably higher Ca²⁺ cation conductivity and also lower activation energy compared with those of previously reported NASICON-type Ca_{0.5}Zr₂(PO₄)₃² solid.

Figure 1 shows the compositional dependence of the lattice volume of the NASICON-type phase estimated by the lattice parameters. By doping Ca²⁺ ions into the Hf site in the structure, the lattice volume of the NASICON-type phase monotonously increased with *x* up to 0.05 due to the larger ionic size of Ca²⁺ (ionic radius: 0.114 nm)³ compared with that of Hf⁴⁺ (ionic radius: 0.085 nm)³, whereas those for the solids with $x \ge 0.05$ were kept almost constant. These results clearly suggest that the solid solubility limit of the single phase of NASICON-type (Ca_xHf_{1-x})_{4/(4-2x})Nb(PO₄)₃ is approximately x = 0.05. On the other hand, the conductivity monotonously enhanced with the Ca content until the solid solution limit of x = 0.05 (See Fig. 1).

Figure 2 presents the temperature dependence of the Ca^{2+} ion conductivity for $(Ca_{0.05}Hf_{0.95})_{4/3.9}Nb(PO_4)_3$ with the corresponding data for the NASICON-type $Ca_{0.5}Zr_2(PO_4)_3^2$. The conductivity of the $(Ca_{0.05}Hf_{0.95})_{4/3.9}Nb(PO_4)_3$ solid was appreciably higher than that of the $Ca_{0.5}Zr_2(PO_4)_3^2$ solid in the temperature range measured.

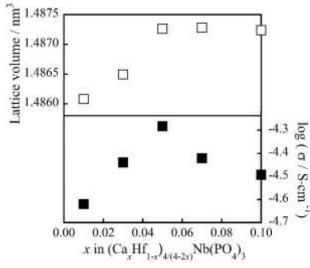


Figure 1 – Compositional dependencies of the lattice volume (\Box) and the ac conductivity (**■**) at 600 °C in air for (Ca_xHf_{1-x})_{4/(4-2x)}Nb(PO₄)₃ (x = 0.01-0.10).

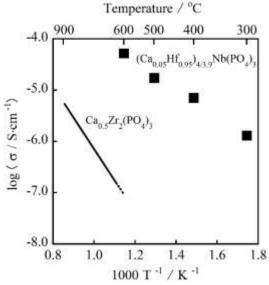


Figure 2 – The temperature dependencies on the ionic conductivity for $(Ca_{0.05}Hf_{0.95})_{4/3.9}Nb(PO_4)_3$ (**■**) and $Ca_{0.5}Zr_2(PO_4)_3$ (—).

References

- 1. Wonrak Lee, Shinji Tamura, and Nobuhito Imanaka, Chem. Lett., 2017, 46, 1487.
- 2. K. Nomura, S. Ikeda, and K. Ito, Bull. Chem. Soc. Jpn., 1992, 65, 3221.
- 3. R.D. Shannon, Acta Crystallogr., 1976, A32, 751