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While digital manufacturing methods such as computer numerical control machining and additive manufacturing 
have enabled the creation of small lots of components with various complex shapes and materials. Understated, 
is the degree of individual process engineering and expertise required to tune material behavior, processing 
conditions to achieve expected properties. Current robotic manufacturing control frameworks lack the sensing 
and autonomy to effectively perceive and decide a course of action in response to these dynamic manufacturing 
environments. As a result, many commercial platforms limit user control over materials to ensure repeatability at 
the cost of agility. This paradigm fundamentally prevents the maturation of processes like direct ink write (DIW) 
additive manufacturing, which has been used to 3D print tissue scaffolds, ceramics, metals, magnets, and free-
form structures.[1-5] In DIW additive manufacturing, both the materials behavior and desired structure are 
constantly changing, but the machine itself is rigid and never “learns” from past experiences. In general, only the 
user learns, thereby creating experienced “super users”. Using DIW as an example, we will present how 
materials and printed device development spurred the push to address the gap between robot and human 
experience by combining image classification, adaptive feedback, and analytical methods. A generalizable 
image classification method was developed to characterize the spanning behavior of a thixotropic fluid printed 
across 2- and 3-D gaps. The automated classification informed how to adapt the tool path and subsequently 
predict printing conditions for log-pile structures. By harvesting the relevant data and outcomes with user 
context, we seek to build an open knowledge community to enable more task-agnostic direct ink write 
manufacturing. 
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Figure 1 – The printer trains itself how to print a spanning feature on a pre-defined “obstacle course” (left), this 
information is use to predict tool path for a two-layer log pile structure of dimensions not included in the training 

set (middle). The structure is successfully printed and the image classifier verifies success (right). 


