IMPROVED BURST PRESSURE OF LPCVD Si3N4 MEMBRANES BY NANOMETER THICK COMPRESSIVE ADLAYERS

Airat Shafikov, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands a.shafikov@utwente.nl

Bart Schurink, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands Robbert van de Kruijs, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands Fred Bijkerk, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands

Key Words: Si₃N₄, thin film, membrane, strength, bulge test

Si₃N₄ is a material widely used in MEMS technology. Its high mechanical strength makes Si₃N₄ attractive for applications where there is a need for ultrathin, yet robust, freestanding films, such as nanometer thick X-ray windows and support films for TEM. In this work, mechanical properties of Si₃N₄ and B-coated Si₃N₄ membranes were studied using a bulge test method. Burst pressure and corresponding membrane stress in Si₃N₄ layers were found to be significantly increased when a 3nm thick B layer was deposited on the top side of 25nm thick Si₃N₄ membranes, whereas a B layer applied to the bottom side of the membranes did not have an effect on the membrane strength. Using FEM simulations, we show that the B layer deposited at the top side decreases the maximum tensile stress in Si₃N₄ near the membrane edge, where a significant contribution to the total stress comes from bending. From this, we conclude that failure in single layer Si₃N₄ membranes was found to be higher for membranes with lower (more compressive) residual stress in B, which indicates that failure of bilayer membranes is caused by fracture initiated in the B layer.

Figure 1 – Schematic of bilayer membrane during bulge testing

Figure 2 – Cumulative probability of failure vs. maximum membrane stress in Si₃N₄