Engineering Conferences International

ECI Digital Archives

Bio-Char II: Production, Characterization and Applications

Proceedings

9-16-2019

Influence of feedstock and operational conditions on bio-chars derived from the pyrolysis of selected biomasses

David Chiaramonti

RE-CORD and Department of Industrial Engineering, University of Florence, Italy, david.chiaramonti@re-cord.org

David Casini Department of Industrial Engineering, University of Florence, Italy

Giovanni Ferraro CGSI - Center for Colloids and Surface Science, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Italy

Emiliano Fratini CGSI - Center for Colloids and Surface Science, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Italy

Giuditta Pecori Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, Italy Follow this and additional works at: https://dc.engconfintl.org/biochar_ii

See next page Foreincering authors

Recommended Citation

David Chiaramonti, David Casini, Giovanni Ferraro, Emiliano Fratini, Giuditta Pecori, Andrea Maria Rizzo, and Luca Rosi, "Influence of feedstock and operational conditions on bio-chars derived from the pyrolysis of selected biomasses" in "Bio-Char II: Production, Characterization and Applications", Franco Berruti, Western University, London, Ontario, Canada David Chiaramonti, RE-CORD, University of Firenze, Italy Ondrej Masek, University of Edinburgh, Edinburgh, United Kingdom Manuel Garcia-Perez, Washington State University, USA Eds, ECI Symposium Series, (2019). https://dc.engconfintl.org/biochar_ii/67

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Bio-Char II: Production, Characterization and Applications by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Authors

David Chiaramonti, David Casini, Giovanni Ferraro, Emiliano Fratini, Giuditta Pecori, Andrea Maria Rizzo, and Luca Rosi

RE-CORD Renewable Energy COnsortium for R&D

UNIVERSITÀ degli studi FIRENZE

Influence of feedstock and operational conditions on bio-chars derived from the pyrolysis of selected biomasses

David Chiaramonti David Casini Giovanni Ferraro Emiliano Fratini Giuditta Pecori Andrea Maria Rizzo Luca Rosi

RE-CORD and University of Florence, Italy

Outlook

Main goals

 To investigate (lab.scale) biochar properties versus feedstocks and pyrolysis conditions

✓ To consider biochar porosity and CEC for use as soil amendment

Feedstock

✓ Pinus nigra (softwood)
✓ Poplar (hardwood)
✓ Willow (hardwood)

Methodology

✓ Slow pyrolysis in macro-TGA

Pyrolysis PDU units at RECORD (in-house developed technologies)

Rotary Kiln

Slow pyrolysis of biomass & waste to fuels and products

- Solid (as fuel or amendment) + high T heat
- Integration in large-scale
 Advanced Biofuel supply chain
- IN=100 kg/h

CARBON

Slow pyrolysis of biomass for charcoal and biochar making.

- Fixed bed, Open-top Oxidative Reactor (Autothermal)
- Designed and developed for small farmers
- Continuous operation.
- IN=50 kg/h. OUT=12kg/h (ηc = 24 wt.%)

Intermediate pyrolysis Pilot Unit

Feedstocks and process conditions

università degli studi FIRENZE

Specific surface, water retention....

UNIVERSITÀ DEGLI STUDI FIRENZE

Wood structure: Hardwood/Softwood

università degli studi FIRENZE

Hardwood Angiosperms-Monocotyledons

Softwood *Gymnosperm-Coniferous*

EASTERN WHITE PINE

SOUTHERN YELLOW PINE

Yields and elemental composition

	Biomass			Biochar								
	Pine	Poplar	Willow	Pine 400°C	Poplar 400°C	Willow 400°C	Pine 550°C	Poplar 550°C	Willow 550°C	Pine 650°C	Poplar 650°C	Willow 650°C
Moist. %	28,5	39,4	40,2	-	-	-	-	-	-	-	-	-
Yield % w/w	-	-	-	29,6	29,9	29,2	19,6	19,7	21,2	17,9	18,7	16,9

BET

Softwood biochar (pine) shows higher BET values at 550 $^\circ$ C and 650 $^\circ$ C

Density vs superficial area - char produced at 550° C

università degli studi FIRENZE

Biochar 550°C	Total Porosity [%]	Density [g/cc]	Total intruded volume Hg [cc/g]
Pine	86	0,19	4,5
Poplar	86	0,16	5,3
Willow	91	0,12	7,6

RE-CORD

SEM analysis

Biomass

400°C

550°C

650°C

Broad bands at ~3400 cm⁻¹ in the feedstock, together with bands at ~2900–2800 cm⁻¹: they refer to cellulose and hemicellulose (due to the stretching vO-H and vCH).

These signals disappear increasing pyrolysis T.

The signal at 1730 cm⁻¹, probably due to the hemicellulose (C = O), gradually disappear from 400 to 650 $^{\circ}$ C. Some bands at ~1600-1500 cm⁻¹ attributed to aromatic group (C = C) both in biomass and in biochar; an increase in the intensity of aromatic CH at 870-850 cm⁻¹ probably due to graphitic structures

$CEC - NH_4^+$

Criteria for

assessment

High

Average

Low

università degli studi FIRENZE

CEC cmol(+)/Kg

> 20

10-20

< 10

Odinpie	
Pine 400°C	23,7
Pine 550°C	19,6
Pine 650°C	12,2
Poplar 400°C	52,3
Poplar 550°C	5,1
Poplar 650°C	4,1
Willow 400°C	64,7
Willow 550°C	22,7
Willow 650°C	17,8

Willow, 400 $^{\circ}$ C: highest CEC-NH₄⁺. Trend in agreement with the reduction of oxygenated functional groups with temperature

Sample

RE•	CO	RC	

Conclusions

Results in good agreement with literature and expectations:

- Softwood : higher BET surface (550°C).
- Hardwood: more macropores (consistent with wood structure). Better feedstock for plant water available water.
- CEC max at 400° C, decreasing with T (less oxygenated functional groups)

Ongoing R&D work

- Investigation of fresh and aged or partially oxidated biochar, both at lab and pilot scale
- Assessment of biochar characteristics vs plant and soil
- Final goal: framing process conditions and feedstock selection in the industrial scale of biochar production

Thanks for the attention

università degli studi FIRENZE

David Chiaramonti

Contacts

david.chiaramonti@re-cord.org info@re-cord.org