Engineering Conferences International

ECI Digital Archives

Bio-Char II: Production, Characterization and Applications

Proceedings

9-17-2019

Nanoindentation characterization of microwave-pyrolysis biochar

Muhammad T. Afzal

Chase Wallace

Gobinda Saha

Follow this and additional works at: https://dc.engconfintl.org/biochar_ii

Part of the Engineering Commons

Nanoindentation Characterization of Microwave-Pyrolysis Biochar

Chase A. Wallace, Muhammad T. Afzal*, Gobinda C. Saha

Department of Mechanical Engineering, University of New Brunswick, Fredericton, NB Canada

*mafzal@unb.ca

Biochar II: Production, Characterization and Applications

September 15-20, 2019, Cetraro (Calabria), Italy

Research Motivation & Goals

Strong potential for biochar in biocomposites manufacturing

- Can aid in compressive and flexural strength
- Can increase flammability resistance
- Need a better understanding of biochar mechanical properties

Goals

- Produce biochar via microwave pyrolysis
- Characterize biochar through common techniques and nanoindentation
- Evaluate the Young's modulus and hardness of char

Research Methodology – Feedstocks

- Softwood Chips
 - Mixture of spruce/fir
 - Non-uniform sizes
 - Moisture content ~12%
- Hemp
 - Dried Bale
 - Hand shredded, Non-uniform sizes
 - Moisture content ~13%
- Both feedstocks were locally sourced

Research Methodology – Microwave Pyrolysis Reactor

- Experimental parameters
 - 1 kg, feedstock
 - 100 grams, carbon microwave absorber
 - 1 hr run time
 - 2700-Watt microwave power level

Scaled-up microwave reactor, UNB

- 3000 Watt max
- Large insulated single batch reactor
- Real time temperature data
- Volatiles exit through condenser
- Max. 5 kg sample

MW power supply (1), Magnetron head (2), Sub-tuner (3), Waveguide (4), SS 309 reactor (5), N₂ gas generator (6), Flow meter (7), Main power switch (8), Condenser (9), Bio-oil collector (10), Computer and data logging system (11), Temperature data acquisition system (12)

Salema, A.A., and **Afzal, M.T^{*}.,** and Bennamoun, L. 2017. Pyrolysis of corn stalk biomass briquettes in a scaled-up microwave technology. *Bioresource Technology*, 233:353-362.

Research Methodology – Biochar Characterization

Biochar Characterization

- 1) Ultimate and Proximate analysis
- 2) Physiosorption analysis
- 3) SEM imaging
- 4) Nanoindentation

Research Methodology – Biochar Characterization

Nanoindentation

- 1) Cold-mounting samples
- 2) Polishing with decreasing grit sizes (300-1200 microns)
- Testing with iMicro Nanoindentor (10 indentations per sample)

nanomechanicsinc.com

Results – Microwave Pyrolysis Temperature

Feedstock	Residence	Heating Rate		
	Temperature (°C)	(°C/min)		
Softwood	659.8 ± 59.9	38.7 ± 13.3		
Hemp	604.2 ± 3.3	49.2 ± 10.8		

Results – Biochar

Softwood

Hemp

Results – Biochar Proximate/Ultimate

	Proximate Analysis			Ultimate Analysis				
Specimen	M.C. %	V.M. %	Ash %	F.C. %	Carbon %	Hydrogen %	Nitrogen %	Oxygen %
Raw Hemp	10	76	2	22	44.43	6.16	0.18	49.23
Raw Softwood	10	78	1	21	45.71	5.89	0.00	48.40
Hemp Char	3.0	26.8	1.0	72.2	78.5	3.3	0.6	17.6
Softwood Char	4.0	26.0	2.1	71.9	77.5	3.6	0.1	18.8

- Large increase in Fixed Carbon % and Carbon elemental % after pyrolysis due to release of volatiles
- Hemp biochar has larger carbon weight percentages than softwood (more full release of volatiles)

Results – Biochar Porosity

Sample	BET Surface Area (m²/g)	Average Pore Diameter (Å)	Micropore Area (m²/g)	Average Pore Volume (cm³/g)
Raw Hemp	2.97	78.06	N/A	0.0058
Raw Softwood	0.76	134.86	N/A	0.0026
Hemp Char	12.18	52.75	2.58	0.0161
Softwood Char	9.96	46.44	1.63	0.0116

- Increase in BET Surface Area and Micropore Area due to development of new micropores during pyrolysis
- Hemp Biochar has better porosity properties due to faster heating rate allowing a faster release of volatiles

Results – Biochar SEM softwood (A) and hemp (B)

Images taken at 1000x magnification. Power level 27kW Wallace, C.A., **Afzal, M.T^{*}.** & Saha, G.C. Bioresour. Bioprocess. (2019) 6: 33.

Results – Biochar Nanoindentation

Hemp biochar has a higher Young's modulus (resistance to deformation)

Results – Biochar Nanoindentation

Both biochar show partially elastic load-depth curves

Wallace, C.A., Afzal, M.T^{*}. & Saha, G.C. Bioresour. Bioprocess. (2019) 6: 33.

Conclusion

- Hemp biochar showed a higher average Young's Modulus than the softwood char
- Young's modulus and hardness of biochar are dependent on the amount of carbon percentage and development of healthy micropore lattice
- Both samples would be suitable for biocomposite manufacturing due to their high Young's Modulus values

Acknowledgements

THANK YOU!

mafzal@unb.ca