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Traditional chemical production processes have high yields but require harsh reaction conditions and use non-
renewable feedstocks derived from petroleum [1, 2]. These processes have a negative impact on the 
environment, which motivates the development of more sustainable processes as replacements [2]. Advances 
in systems metabolic engineering over the past thirty years have given rise to bioprocesses where engineered 
microbes make chemicals from natural feedstocks under mild reaction conditions [1]. The promise of the field 
has also resulted in financial resources being made available to the development and commercialization of 
bioprocess. According to a recent report by Ontario Genomics [3], global investment in the field is projected to 
be at $38.7B in 2020, a 12-fold increase from what it was at in 2013.  
 
Recently, a novel aldolase-based pathway for producing 1,3-butanediol (BDO) in E. coli was reported by Nemr 
et. al [4, 5]. 1,3-BDO is a commercially viable product as it is used in formulations in cosmetics products, and as 
a precursor for pharmaceuticals [2]. This pathway involves the conversion of pyruvate to acetaldehyde via the 
EutE enzyme from E. coli, followed by the conversion of acetaldehyde to 3- hydroxybutanal via the enzyme 
BH1352 – a Deoxyribose-phosphate aldolase (DERA) – from Bacillus halodurans and subsequently by the 
conversion of 3-hydroxybutanal to 1,3-BDO via the enzyme PA1127 (an aldo-keto reductase) from 
Pseudomonas aeruginosa [5].  
 
We examined the crystal structure of BH1352, which revealed key residues involved in catalytic activity in the 
substrate binding pocket. We show that two DERA mutants F160Y and F160Y/M173I improve the production of 
1,3-BDO 5-fold and 6-fold respectively in bench-scale bioreactors [6].  
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