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The targeted design and optimization of novel enzymes and enzymatic reaction cascades increasingly demands 
a close connection between rational design, computational prediction and experimental feedback. In recent 
years, lots of effort have been put on increasing the throughput of experimental results, however, this approach 
frequently tends to stick in local minima and unsatisfying performance improvement despite considerable 
screening efforts. Contrary, model-based computational predictions, despite increasing available computation 
power, need to introduce severe simplifications and therefore will continue to lack accuracy and perfect 
predictability in the foreseeable future. The interplay of thorough model-based understanding, automated 
experimental feedback and, based on the latter, refinement of model predictions using for example machine 
learning methods, will in the near future become an important approach to combine the best of the two worlds. 
Ultimately, this provides potential to boost highly efficient automated or semi-automated design of new 
enzymatic properties in the scope of a “fourth wave” of enzyme engineering. 
We present a new integrated directed evolution framework to achieve this simulation-experimental feedback 
loop, called “Feedback Guided Enzyme Optimization” (FEO). The implementation includes the setup of a 
suitable simulation back-end, robot-based experimental generation of mutants and evaluation of their 
performance [1], and finally feedback to the simulation in order to close the loop and verify and refine the quality 
of the predictions.Focus is laid on thorough statistical analysis of both prediction and experimental results, in 
order to tune false positive vs. false negative error rate, depending on experimental conditions: This includes, 
e.g., availability of time, ingredients, parallel workflows and distortions (random noise and potential systematic 
deviations) in both experimental and simulation setups.  
The framework is being implemented in an automated robotic setup. We demonstrate results on three 
exemplary enzymatic systems: Firstly, GFP is employed as a simple role model to demonstrate the looping 
principle. The second example, aspartokinase III (AK3), is a key enzyme for the biosynthetic production of 
amino acids and derivatives thereof. Its activity is naturally limited by its own downstream products, e.g., lysine. 
Simulated predictions of the sensitivity of AK3 towards lysine have been compared to experimental data. This 
allowed a significant (p<0.05) simulation-based discrimination of highly resistant versus non-resistant variants. 
Determination of new lysine resistant mutants by multiple point mutations is performed within few dozen of 
iterations. The obtained candidates were validated, showing that new Lys-resistant variants can be obtained 
using the new workflow without special a priori knowledge or extensive (random) screening. 
The third and most sophisticated enzyme system is the pyruvate dehydrogenase complex (PDC) which involves 
interesting features like shielding of reaction intermediates, renewal of co-factors, self-assembly, modularity and 
others. Based on recently published models of PDC by our group [2-3] and in collaborations [4], we demonstrate 
how the dynamic self-assembly of mutants of PDC and structurally similar enzymes complexes can be 
predicted, iteratively refined and in the future used for the creation of new enzyme cascades. 
This presented framework is expected to have large impact on design and evolution of novel biomolecules and 
biosystems. 
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