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ABSTRACT

Period Estimation and Denoising Families of Nonuniformly Sampled Time Series

by

William Seguine

Nonuniformly sampled time series are common in astronomy, finance, and other areas

of research. Commonly, these time series belong to a family of signals recorded

from the same phenomenon. Period estimation and denoising of such data relies

on periodograms. In particular, the Lomb-Scargle periodogram and its extension,

the Multiband Lomb-Scargle, are at the forefront of time series period estimation.

However, these methods are not without flaws. This paper explores alternatives to the

Lomb-Scargle and Multiband Lomb-Scargle. In particular, this thesis uses regularized

least squares and the convolution theorem to introduce a spectral consensus model

of a family of nonuniformly sampled time series.
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1 INTRODUCTION

1.1 Nonuniformly Sampled Time Series

Time series are processes that evolve over time. These are denoted {x0, x1, . . . , xN}

where xk is defined to be the state of the process at time tk. They are commonly used

in the financial world to model a the evolution of the price of an asset over a span of

time [15].

In meteorology, time series can be used to study the effects of weather variations

on diseases and pest populations in agriculture [2]. Using time series analysis, Garrett

et al. in [2] found that crop yields could vary regardless of pest organism growth and

variations in weather conditions. Time series are also used to study and predict

earthquakes [10].

Time series are used in astronomy to study the intensity of electromagnetic radi-

ation emitted from stars, which is called luminosity. In particular, Vanderplas et al.

in [17] used data from RR Lyrae variable stars to illustrate the effectiveness of the

Multiband Lomb-Scargle algorithm.

There are two distinct types of time series: uniformly sampled, and nonuniformly

sampled. A uniformly sampled time series {x0, x1, . . . , xN} is of the form

xk = f(k∆t+ a) (1)

for some function f and fixed ∆t and a. Because ∆t is a fixed value, there is a uniform

time interval between each sample measurement. An example of one such time series

can be found in Figure 1 .
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Figure 1: A Uniformly Sampled Time Series

If ∆t in Equation 1 is a random variable with a nontrivial probability distribu-

tion (i.e. ∆t ∈ P a positive-valued probability distribution), the time series is said

to be nonuniformly sampled (also called an unevenly sampled time series [13]). In

astronomy, nonuniformly sampled time series may arise due the restrictions of the

instrumentation used, or may arise due to environmental variations. In fields such

as biology, there may be constraints on samples that lead to a time series becoming

nonuniformly sampled [3].

Whether uniformly or nonuniformly sampled, a time series Xt can be written as

Xt = St +Rt (2)

where St is said to be the signal and Rt is the noise component (or variation due to

observational errors) [13]. The noise component Rt in equation (2) is assumed to be

normally distributed with a finite variance and mean µ of zero [13]. We also assume

that the signal is stationary, can be represented as a Fourier series, or both.

In finance, astronomy, biology, and similar fields of research, it may be necessary

to conduct more than one observation or experiment of the same phenomenon for

the same reason. This results in a set of similar time series as they are all samplings

of a similar source. We call a set of such data a family of time series. It may also

9



be necessary to determine the period of St (if any) in order to make more accurate

observations and predictions regarding data. The most recent development known

for determining the period of times series (uniformly or nonuniformly sampled) is the

Lomb-Scargle periodogram and its extension to a family of time series the Multiband

Lomb-Scargle [17]. However, this approach is not without issues as discussed in the

third section of this chapter.

1.2 Chi-Square Estimation

The chi-square estimation is an approach to estimating the maximum likelihood

of a frequency in a periodogram. Employing this method requires the assumption

that the missing values are distributed according to a chi-square distribution. Data

corresponding to a single phenomenon is often in the form (tj, xj) where xj is the

recorded value of a phenomenon at time tj. In the simplest case, St is a single

sinusoid and the noise component Rt is zero.

We can thus assume the data is modeled by φ(t) given by

φ(t) = A sin(ωt) +B cos(ωt). (3)

We want to find the values of amplitudes and frequency A,B, and omega respectively

such that if θ = [A,B, ω], then

θ = argminθ∈Ω

(∑
j

|xj − φ(tj; θ)|2
)

(4)

where Ω is a set of admissible parameters In order to do this, consider the function

10



(called the chi-square comparison)

P (ω) =
1

2

∑
j

(xj − φ(tj; θ))
2 . (5)

By our assumption of the model of the data φ(t), this implies that xj must also be

of the form

xj = A sin (ωtj) +B cos (ωtj) . (6)

That is, the data (tj, xj) must be in the same form as the assumed model. In order to

determine the optimal values for A and B, we multiply the above equation separately

by B cos (ωtj) and A sin (ωtj). This results in the equation

Bxj cos (ωtj) = AB sin (ωtj) cos (ωtj) +B2 cos2 (ωtj) (7)

as well as the associated equation

Axj sin (ωtj) = AB sin (ωtj) cos (ωtj) + A2 sin2 (ωtj) . (8)

From this, we have a system of equations with which the values of A and B can be

computed explicitly in terms of sin (ωtj) and cos (ωtj). Consequently, we need only

to estimate ω. The Lomb-Scargle periodogram employs the Chi-square estimation

method as discussed in the next section.

1.3 The Lomb-Scargle Periodogram

The Lomb-Scargle periodogram was first detailed by Lomb in 1976 as a method for

determining the period of nonuniformly sampled time series [16]. Those time series

of particular interest to Lomb were those within the field of astronomy. This is not

11



to say, however, that the method is limited in use to astronomical data. The Lomb-

Scargle periodogram is a common tool in biology as well. It has been employed by

Glynn et al. to determine the periodicity of gene expression patterns of a particular

species of protozoans [3]. It was also used to determine the underlying periodicity of

body temperatures of organisms prior to hibernation and to determine the period of

the metabolic cycle of crassulacean acid metabolism of certain plants [3].

Letting ω = 2πf , the method begins with the classical periodogram (i.e. P (f))

for a time series g(t) given in [16] by

P (f) =
1

N

∣∣∣∣∣
N∑
n=1

gne
−2πiftn

∣∣∣∣∣
2

, (9)

where f is the frequency (i.e. the reciprocal of the period). Observe that this expres-

sion is similar to a squared expression of the Fourier Transform. While the two appear

similar, they have different interpretations [16]. One can then apply the definition of

the complex exponential, as given in [16], resulting in

P (f) =
1

N

(
N∑
n=1

gn cos(2πftn)

)2

+
1

N

(
N∑
n=1

gn sin(2πftn)

)2

. (10)

An issue with this method is the variation is unavoidable when conducting a statistical

estimation of period [16]. In order to make this method invariant to time shifts in

the data, Scargle introduced the general periodogram

PS(f) =
A2

N

(
N∑
n=1

gn cos (2πf (tn − τ))

)2

+
B2

N

(
N∑
n=1

gn sin (2πf (tn − τ))

)2

(11)

where A2

N
and B2

N
are defined by

A2

N
=

1

2
∑N

n=1 cos2 (2πf (tn − τ))
and

B2

N
=

1

2
∑N

n=1 sin2 (2πf (tn − τ))
. (12)
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The shift τ is related to Ps(f) by

τ =
1

4πf
tan−1

(∑N
n=1 sin (4πftn)∑N
n=1 cos (4πftn)

)
. (13)

The result is the Lomb-Scargle periodogram given by

PX(f) =
1

2


(∑N

n=1 gn cos (2πf (tn − τ))
)2

2
∑N

n=1 cos2 (2πf (tn − τ))
+

(∑N
n=1 gn sin (2πf (tn − τ))

)2

2
∑N

n=1 sin2 (2πf (tn − τ))

 (14)

subject to the constraint

τ =
1

4πf
tan−1

(∑N
n=1 sin (4πftn)∑N
n=1 cos (4πftn)

)
. (15)

Scargle also modified the work of Lomb et al. in order to reduce the effects of aliasing:

an appearance of signals with higher frequencies appearing in the lower frequency area

of the spectrum [13].

It was also shown that this modified method possessed useful properties. First, the

behavior of the periodogram for nonuniformly sampled data is also that of uniformly

sampled data [13]. That is, it does not matter whether or not the signal was sampled

at regular time intervals. Also, the periodogram is equivalent to a least squares fitting

of sinusoids to the original data [13]. To illustrate the Lomb-Scargle periodogram, we

provide an example.

Example 1.1. Consider the signal of period 1
2

modeled by f(t) = cos(4π(t− 1)). We

take a sample of one-hundred values of this signal as displayed in Figure 2. We then

apply the definition of the Lomb-Scargle periodogram and plot the power as it changes

with the frequency using the matplotlib, numpy, and scipy.signal libraries in Python.

The periodogram for the example signal is displayed in Figure 3.
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Figure 2: A Sampling of a Continuous Signal Given by a cos(4π(t− 1))

Notice that there is a peak in the power at the frequency value of 2. From this

periodogram then, we can estimate the period (calculated by taking the reciprocal of the

frequency) to be 1
2

in agreement with our predefined signal period. Also notice that the

periodogram has peaks of lesser magnitude at other frequencies. Such phenomena are

Type I errors called false alarms and can lead to the assumption that these frequencies

are constituent frequencies of the original signal. Because false alarms are present with

a single sinusoidal signal, it is believed that false alarms are also present with more

complex signals.

The MultiBand form of the Lomb-Scargle periodogram was detailed by Jacob Van-

derPlas and Željko Ivezic in an effort to estimate the period of a family of nonuniformly

sampled time series data [17]. Here, a regularization is employed by first defining a

diagonal parameter matrix Λ with M diagonal entries, then constructing a chi-square

estimation by

χ2
Λ(ω) = (y −Xωθ)

T Σ−1 (y −Xωθ) + θTΛθ, (16)

where θ is defined to be the magnitude of the parameters, Σ is the covariance matrix

14



Figure 3: The Lomb-Scargle Periodogram for the Example Signal

of the noise, and Xω is the design matrix [17] defined for a signal of length N by

Xω =


sinωt1 cosωt1
sinωt2 cosωt2
sinωt3 cosωt3

...
...

sinωtN cosωtN

 . (17)

The authors then define a floating-mean periodogram for a single band k by

P k
N(ω) = 1−

χ2
min,k(ω)

χ2
(0,k)

. (18)

This definition is used to define the multiband form of the Lomb-Scargle. For a set

of data containing B bands, the Lomb-Scargle estimator given in [17] is

P
(0,1)
N =

∑B
n=1 χ

2
min,k(ω)∑B

n=1 χ
2
(0,k)

. (19)

1.4 Consensus Spectral Modeling

Alternatively, spectral consensus models form a consensus on the spectrum of a

family of data by applying the convolution theorem in some manner. This implies

15



that products of Fourier Transforms of the data are used. Such methods of modeling

are common in biology to identify commonalities in so-called hot-spots in nucleic

acids, protein interactions, and electroencephalogram data [19]. An example of a

consensus spectrum is found in Figure 4. Here the horizontal axis represents the

Figure 4: A Consensus Model of Transcription Binding Sites

different DNA transcription factor binding locations in the chromosomes of E. coli,

the letters represent the four nucleotides found in DNA, and vertical axis represents

the power of the consensus given in bits [11]. The power of each binding site together

with the nucleotide is determined using a method known as DNA footprinting [11].

There are many benefits to employing spectral consensus modeling. First, the

model estimates a common signal relatively independent of any added noise to the

signal. Second, statistical methods such as bootstrapping and resampling of the data

can be used to generate confidence intervals on the common spectrum. Finally, if the

Fourier transform is to be employed in forming a consensus, the algorithm for forming

a consensus is less computationally expensive than various other methods by using

the Fast Fourier Transform algorithm.

It is not without flaws, however. Phase representation of the signal consensus is

not stable and is often not reliable. That is, it is difficult and sometimes impossible, to

16



recover the phase of a signal after finding a consensus on the spectrum. As such, it is

primarily used where the frequencies are the primary focus such as mass spectroscopy

and applications in biology such as proteomics [19]. As there is nothing currently in

the literature concerning period estimation for a family of nonuniformly sampled time

series using consensus spectral models, it is the goal of this thesis to develop a con-

sensus spectral model alternative to the Multiband Lomb-Scargle method. A primary

issue that must be addressed is that the consensus spectrum is not a direct transform

of any given signal but is, potentially, a minimum-norm least squares estimation.

17



2 BACKGROUND INFORMATION

2.1 Signal Spaces

A vector space is a nonempty set of elements called vectors together with a scalar

field and binary operations of vector addition and multiplication of a vector by an

element in the scalar field that satisfies the group criteria under vector addition [18].

That is, vector addition is associative; there exists an identity element so that any

vector added to this element is the vector itself, and for every vector in the set there

is an inverse element. It is also required that vector addition is commutative and

multiplication of a vector by a scalar satisfies the distributive property [18]. An

example of a vector space is the set Rn together with the scalar field of real numbers

R.

A couple of vector spaces that are of use in signal processing are the Hilbert spaces

`p(Z) for p = 1 and p = 2. Here, `1(Z) is defined to be

{
〈. . . , x−2, x−1, x0, x1, x2, . . . 〉|

∞∑
i=−∞

|xi| <∞
}
. (20)

Similarly, the Hilbert space `2(Z) is defined to be

{
〈. . . , x−2, x−1, x0, x1, x2, . . . 〉|

∞∑
i=−∞

|xi|2 <∞
}
. (21)

Of particular interest are the norms associated with these Hilbert spaces. These

norms satisfy several properties. First, the norms satisfy the Triangle Inequality [12].

That is, for x, y ∈ `p(Z), we have

‖x− y‖ ≤ ‖x‖ − ‖y‖. (22)
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The `p(Z) norms also exhibit the nonnegativity property which means that the norm

of any element in this space is at least 0 where a norm of 0 is exclusive to the zero

vector [12]. In addition, the norms defined on `p(Z) have positive homogeneity. From

[12], this means that for any a ∈ R we have

‖ax‖ = |a|‖x‖. (23)

That is, we can factor out the scalar a from the norm with the condition that we take

the absolute value. The signals for which we estimate the period are recorded over

a finite time interval via a finite sampling rate. This means that the time series are

elements of a Hilbert space, in particular `2(Z).

2.2 Fourier Transform

When analyzing a signal (i.e. a time series) it may be necessary or insightful to

instead consider its frequency content. To do this, we employ the following definition.

Definition 2.1. Let x(t) be a time series of length N . Then the Fourier transform

F(x) is defined to be

F(x) =
1

N

N−1∑
k=0

x(k)e
2πikn
N .

Note that this transform is a mapping of a time series or signal of length n from

n-dimensional real space (Rn) to its spectral domain. The Fourier transform has

several properties that are useful when analyzing a signal. From [12], if f(t) and g(t)

are both signals where g(t) = f(−t), then

F(g(t)) = F(f(t)).
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In particular, if g(t) = f(−t), then the two signals have the same Fourier transform

(i.e. the two signals are the same in the spectral domain). When developing our

approach to period estimation, if two signals from the same phenomenon are measured

in such a way that they are out of phase with each other (i.e. delay due to instrument

readings etc, g(t) = f(−t)) then it is expected that the two have the same spectra.

By this first property, we know that f and g indeed have the same spectra.

Another property of the Fourier transform that will be useful to our algorithm

development in particular is what is called the convolution theorem. That is if f(t)

and g(t) are signals for which F(f) and F(g) exist, then

F(f ∗ g) = F(f)F(g) (24)

where ∗ represents the convolution operator [12]. Here, the product F(f)F(g) is

performed component-wise. So, for F(f) = [x̂1, x̂2, . . . , x̂n] and F(g) = [ŷ1, ŷ2, . . . , ŷn],

we have

F(f)F(g) = [x̂1ŷ1, x̂2ŷ2, . . . , x̂nŷn]. (25)

Notice in Equation 25 that if either x̂k or ŷk are close to 0, the product x̂kŷk is also

close to zero. We use this property in our algorithm development to form a consensus

on the spectra of constituent signals of a family of time series as the products of

components via the convolution theorem reinforce commonalities between spectra

and diminish dissimilar components. To illustrate how the Fourier transform works,

we give an example.

Example 2.2. Consider the continuous signal of a sinusoidal wave given by

a cos(4π(t− 1))

20



for some amplitude a, as seen in Figure 5.

Figure 5: A Continuous Signal Given by a cos(4π(t− 1))
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We create a time series by taking samples of the signal at uniform intervals as

seen in Figure 6. Applying the definition of the Fourier Transform yields the spectrum

Figure 6: A Sample of 80 Values of the Continuous Signal

displayed in Figure 7.

Figure 7: The Spectral Decomposition of the Time Series

Observe that the plot of the spectrum has two distinct peaks namely at 0 + T

and n− T for frequency T . Because the Fourier Transform exhibits such symmetry,

we will only consider the first half of the spectrum of any time series. Also, from
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the definition, the Fourier transform cannot be performed on nonuniformly sampled

data as the sampling times of the signal may not coincide with the regularly-spaced

intervals of the transform. This discrepancy is handled in Section 2 of Chapter 3.

2.3 Convolution

Convolution is a binary operation that takes two signals and produces a third

signal related to the product of the two original signals. It can be used for feature

extraction in images and is the basis of several kernel-based methods in the study of

neural networks [14]. In [14], Simard et al. used convolution-based methods to filter

images and increase or decrease color saturation for a grayscale image. For this thesis

we use the definition of convolution given in [18] as detailed in Definition 2.3.

Definition 2.3. For time series x(t) and h(t) of length n, the convolution of the two

time series, denoted x(t) ∗ h(t), is defined by

x(t) ∗ h(t) =
n∑
k=1

x(k)h(t− k). (26)

Notice that convolution is a product of the elements of x(t) with a delayed, or time-

shifted, copy of the signal h(t). In signal processing, this definition of convolution

can be used as a method of filtering a signal [14]. For example, if h has only a

finite number of nonzero components and x(ω) is the spectrum of a time series, the

convolution x ∗ h eliminates frequencies in the spectrum by multiplying by 0. This

kind of filter is called a Finite Impulse Response (FIR) filter [18].

The convolution operation has several properties that are used in this thesis. First,
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convolution, as given in [18], is associative, meaning for signals g, h, and k we have

g ∗ (h ∗ k) = (g ∗ h) ∗ k.

The second property of convolution used is commutativity [18]. This means that for

all x and h, we have

x ∗ h = h ∗ x.

The final property is that of the Convolution Theorem detailed in Section 2.2. To

illustrate the behavior of convolution in regards to periodic time series, we provide

an example.

Example 2.4. Suppose x(t) is uniformly sampled from a continuous signal modeled

by x(t) = b cos(2π(t− 1)), for a random number b as displayed in Figure 8.

Figure 8: A Uniformly Sampled Signal Modeled by x(t) = b cos(2π(t− 1))

Similarly, suppose we have another signal h(t) modeled by h(t) = c sin(4π(t− 1))

where c is a random number as displayed in Figure 9.

We use the definition of convolution given in Definition 2.3 to produce a new

signal (x ∗ h)(t) as given in Figure 10.
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Figure 9: A Uniformly Sampled Signal Modeled by h(t) = b sin(4π(t− 1))

Figure 10: The Convolution of Signals Given in Figures 8 and 9 Respectively

2.4 Singular Value Decomposition and Moore-Penrose Pseudoinverse

When solving systems of equations, it becomes necessary to compute the inverse

of a matrix. For example, the system of equations given by a coefficient matrix A in

the equation Ax = b can be solved by computing A−1 so that

~x = A−1b. (27)

However, if the matrix A is not invertible, whether underdetermined or overdeter-

mined, the equation Ax = b has no unique solutions. To demonstrate this, we provide

an example.
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Example 2.5. Suppose that we are given a set of data in the form (ai, bi) and we

want to calculate the line of best fit of these points, otherwise known as the regression

line. To achieve this, we note that a general linear equation has two parameters: slope

and y-intercept. Then, we form the system of linear equations Ax = b where

A =


1 a1

1 a2
...

...
1 an

 (28)

and the associated column vector

b =


b1

b2
...
bn

 . (29)

If there are only two points to consider (say (a1, b1) and (a2, b2)), then we have the

system of equations given by[
1 a1

1 a2

] [
x1

x2

]
=

[
b1

b2

]
. (30)

The equation in (30) can be solved via augmenting the matrix A with the column

vector b and using Gauss-Jordan elimination to produce the the reduced row-echelon

form (RREF). From the RREF, we have that

x1 = b1 − a2
b2 − b1

a2 − a1

, x2 =
b2 − b1

a2 − a1

. (31)

Notice that b2− b1 and a2−a1 are the changes in the y and x coordinates respectively.

This means that x2 is the slope of the regression line and x1 is the y intercept.

The method of finding the coefficients outlined in the example does not work with

three or more data points, however, as the matrix defined in Equation 28 will not have

26



an inverse. So, a different method must be used to solve linear systems of equations

where the coefficient matrix is not invertible. To do this, we consider square roots of

the eigenvalues of the covariance matrix ATA called singular values [7]. If the matrix

A is not a square matrix, we cannot find eigenvalues, but the covariance matrix is

by definition a square matrix. With the definition of singular values, we discuss a

method of finding these values for a matrix A. This is accomplished with Theorem

2.6 called the Singular Value Decomposition (SVD).

Theorem 2.6 (The Singular Value Decomposition [7]). Let A be an m × n matrix.

Then, there exists an m×m matrix U , an n×n matrix V , and a matrix Σ containing

the singular values of A along the main diagonal, and 0 elsewhere such that

A = UΣV T .

In Theorem 2.6, the columns of the U matrix are called the left singular vectors

while the rows of V T are called the right singular vectors [9]. The matrices U and V

are also unitary matrices meaning that UTU = UUT = I and V V T = V TV = I [9].

This means that

ATA = V ΣTUTUΣV T = V ΣTΣV T . (32)

If a matrix A is full rank, the inverse can be calculated by computing the inverse of

U,Σ, and V T . Because U and V T are unitary matrices, the transpose of the matrix

is its inverse. Also, because Σ is a diagonal matrix, Σ−1 is computed by taking the

reciprocal of each diagonal entry. The SVD is not limited only to finding coefficients of

regression curves, as it has been used in applications such as latent semantic analysis,

principal component analysis, and calculation of the Moore-Penrose pseudoinverse,
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among others [8].

For noninvertible matrices, we have an alternative to the inverse called the Moore-

Penrose pseudoinverse, and can be calculated from the SVD. Because the matrix is

not invertible, it will have zero as an eigenvalue with multiplicity of at least one. This

means that the matrix Σ is of the form

Σ =

[
Σr 0
0 0

]
, (33)

where Σr is a diagonal matrix with size equal to the rank of the original matrix A

[9]. With (33), the Moore-Penrose pseudoinverse is defined in [9] by

A† = V

[
Σ−1
r 0
0 0

]
UT . (34)

In algorithm development, we use the Moore-Penrose pseudoinverse as it is a means of

computing the inverse of a matrix if it is not full rank. In Theorems 3.3, 3.5, and 3.6,

we have that all matrices are invertible. Also, calculation of A† is computationally

fast due to the algorithm developed by Courrieu in [1]. This algorithm also has an

error in computation of less than 2× 10−10 per coefficient [1].

2.5 Method of Least Squares

Similar to Example 2.5, suppose that we have a set of data in the form (xi, yi)

as displayed in Figure 11 and we want to find a line that models the data. Another

method of determining the coefficients for this line is the method of least squares. To

do this, we assume the coefficients of the line of best fit, given by a+mx, are modeled

by a column vector x such that

x =

[
a
m

]
. (35)
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Figure 11: A Scatter Plot of Data Points of the Form (xi, yi)

The method of least squares considers the norm of the residuals, as described in [5]

given by

‖Ax− b‖2, (36)

where b is the column vector formed by the y coordinates of the data points and

A is the matrix defined in (28) [9]. In order to compute the coefficients of the line,

we must find a and m from (35) such that (36) is minimized, denoted a0 and m0

respectively. Notice that because the norm in (36) can be written as

〈Ax− b, Ax− b〉, (37)

we instead find the minimum of

(Ax− b)T (Ax− b). (38)

It is shown in [9], that the solution to this minimization problem is given by

x = A†b, (39)
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where A† is the Moore-Penrose pseudoinverse. Once these parameters are found, the

equation of the line of best fit is given by y = a0 + m0x exemplified by Figure 12

indicated by the red line. In Figure 12 it is assumed that all data points have equal

Figure 12: Data With the Line of Best Fit

importance or weight.

If the data exhibits high variation, it may be necessary to apply a weighting scheme

in order to compute the coefficients of the line that better fits the data [4]. This is

accomplished by assigning an importance, also called a weight, to the data points.

So, possible outliers in the data receive a lower weight than the rest of the data. This

results in the modification of (36) given by

minx∈Rn ‖W (Ax− b)‖2, (40)

where W is the matrix representation of the desired weighting scheme [6]. We may

also impose a condition on the norm of the vector x called a regularization [4]. This
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further modifies (36) to produce the regularized least squares method given by

minx∈Rn ‖W (Ax− b)‖2 + ε‖x‖2, (41)

where ε is the weight assigned to the norm of x [4]. The method of regularized

least squares is used in Chapter 3 to form a consensus on the spectrum of a family

of nonuniformly sampled time series as we want a consensus spectrum that has a

minimum norm.
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3 RESULTS

3.1 Signal Testing and Benchmarking

In order to develop the algorithms, a number of tests were developed. As such,

a signal testing laboratory was created using Python. The laboratory consisted of

five baseline families of signals and fourteen other consensus test families that were

deemed to adequately describe the majority of naturally-occurring phenomena. In

both sets of tests, each test family consisted of thirty-two individual signals and

frequencies used in all tests were chosen arbitrarily. The baseline tests were used as

a proof of principle for each method and contained time series with no added noise.

The first baseline test consisted of 32 identical signals of 7Hz. The second family of

test signals decayed the signals from the first family exponentially. The remaining

test families consisted of chirps at 16 Hz and a 3Hz chirp followed by a 7Hz chirp

respectively.

Once a method had satisfactorily estimated the period for these tests, the second

round of tests was administered. The first sets of these tests were standing waves

consisting of a 3 Hz (or 7 Hz) carrier wave with added noise of magnitude 0.01 (and

0.1 respectively). Next, signals were fixed at either 1 Hz or 3Hz and a signal with

a randomly generated frequency greater than 1 Hz, or 3 Hz respectively, was then

superimposed upon the fixed carrier. The seventh family of test data was comprised

of two signals that were allowed to vary in time and frequency. The latter half of the

test families consisted of signals that had been amplified in some fashion. The first

of these were amplified 3 Hz fixed signals with a signal of random frequency greater

32



than 3 Hz superimposed. Next, 16 Hz signals were amplified and transient signals of

a random frequency between 5 Hz and 15 Hz was added. Following this test was the

family of amplified 8 Hz moving signals with transient random signals added with

frequency between 5Hz and 30 Hz. Finally, we considered the family of amplified 8

Hz moving signals with an added frequency-based amplified transient random signal

of frequency between 5 Hz and 30 Hz and added pure 3 Hz signal. Upon sufficiently

denoising and estimating the period for each of these fourteen test cases, a final test

was administered consisting of two families of electroencephalographic data.

3.2 The Regularized Least Squares Approach

The first method considered is applying the least squares method to form a spectral

consensus model. For this approach and the convolution approach discussed in the

next section, it is necessary to make two assumptions. First, we must assume that

the data is sampled at such a rate that either one value is recorded or no value is

recorded during any given time partition. If instead of assuming that the data was

sampled at such a rate, it is assumed that sampling times follow a random distribution

it may be that two recordings are arbitrarily close together along the time axis as

is possible when considering a probability distribution. As such, we only consider

discrete sampling of signals as assumed. It must also be assumed that the data

exhibits periodic behavior. Otherwise, the spectrum of each signal may not have a

distinct set of peaks.

Because the data is sampled nonuniformly, each constituent signal in the family

of signals contains missing values. In this case, we reorganize the signal as given in
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the next definition.

Definition 3.1. Let X be a nonuniformly sampled time series of length n with n−m

missing values where n > m, and σ be a permutation such that

X = [xσ(1), xσ(2), . . . xσ(m), xσ(m+1), . . . , xσ(n−1), xσ(n)]

and

xσ(m+1), xσ(m+2), . . . , xσ(n−1), xσ(n)

are missing values. That is to say, the permutation σ maps the missing values in the

time series to the end. Then, the downsampling operator P : Rn 7→ Rm is defined to

be

PX = [xσ(1), xσ(2), . . . , xσ(m−1), xσ(m)].

Before continuing to develop the approach, we prove a necessary result concerning

the downsampling operator defined in Definition 3.1. Because the result of Theorem

3.3 contains a product of P with its Hermitian transpose, we first show what this

product looks like.

Proposition 3.2. Let P and X be as in definition 3.1. Then PP ∗ = Im, and

P ∗P =

[
Im 0
0 0

]
.

Proof. Let P and X be as in the definition. Then P has a matrix representation

given by

P =
[
Im 0

]
, (42)
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where there are n−m columns of zeros. Note that P can be represented by an m×n

matrix. By the definition of Hermitian transpose, we have

P ∗ =

[
Im
0

]
(43)

where there are n−m rows of zeros. Note P ∗ is an n×m matrix. It follows that

PP ∗ =
[
Im 0

] [ Im
0

]
= Im. (44)

Similarly,

P ∗P =

[
Im
0

] [
Im 0

]
=

[
Im 0
0 0

]
. (45)

As stated in Definition 3.1, PXj creates a new time series with the sample times

that are not missing data in Xj. Suppose that the permutation σj acting on a time

series Xj is of the form

Xj = [xσ(1), xσ(2), . . . xσ(m), xσ(m+1), . . . , xσ(n−1), xσ(n)],

where xσ(m+1), xσ(m+2), . . . , xσ(n−1), xσ(n) are missing values. If one replaces the miss-

ing data in Xj with zeros to form a new time series (say X ′j), so that

X ′j = [xσ(1), xσ(2), . . . xσ(m), 0, 0, . . . , 0, 0]

and if Pj is the downsampling operator for Xj, then

PjX
′
j = [xσ(1), xσ(2), . . . , xσ(m−1), xσ(m)] = PjXj. (46)

We know from equation (46) that any sampled time in a time series that is missing

a value can have 0 used as a placeholder value provided that the same Pj and σj are
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used for both Xj and X ′j. This effectively converts a nonuniformly sampled time series

to a uniformly sampled one provided the assumption is made that the sample times

for Xj are not randomly distributed. As we have the necessary properties for the

products of the downsampling operator P , we can now develop the means of finding

the consensus spectral model for a family of nonuniformly sampled time series.

Theorem 3.3. If {x0, x1, . . . , xm} is a family of nonuniformly sampled time series of

length n with n− r missing values, where F is the Fourier Transform operator and P

is the downsampling operator defined above, then the solution to the regularized least

squares equation
m∑
j=1

‖PjF ∗y − xj‖2 + ε‖y‖2

is given by the expression

y = F

(
n∑
j=1

P ∗j Pj + εI

)−1 n∑
j=1

Pj
∗xj.

Proof. Let Pj be the downsampling operator for time series xj, F be the Fourier

Transform operator, and y be the spectral consensus model for the family of time

series. Also, let {x1, x2, . . . , xm} be a family of nonuniformly sampled time series

taken from the same phenomenon. Consider the regularized least squares expression

given by
m∑
j=1

‖PjF ∗y − xj‖2 + ε‖y‖2. (47)

We then consider a perturbation of y. Let ∆ ∈ Rn. Note that y + ∆ is not the con-

sensus spectral model with the minimum norm (from the definitions of perturbation

and norm respectively). Then, by the definition of the norm we have

m∑
j=1

(PjF
∗y − xj + PjF

∗∆)∗(PjF
∗y − xj + PjF

∗∆) + (y + ∆)∗(y + ∆). (48)
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Note that F ∗ is the Hermitian transpose of the Fourier Transform operator, etc.

Performing the multiplication in equation (48), yields

m∑
j=1

(y∗FPj
∗ − xj∗ + ∆∗FPj

∗)(PjF
∗y − xj + PjF

∗∆) + y∗y + y∗∆ + ∆∗y + ∆∗∆

=
m∑
j=1

(y∗FPj
∗ − xj∗)(PjF ∗y − xj) + (y∗FPj

∗ − xj∗)PjF ∗∆ + ∆∗FPj
∗(PjF

∗y − xj)

+y∗y + y∗∆ + ∆∗y + ∆∗∆ +O(∆2). (49)

The definition of the norm implies that the right side of equation (49) reduces to the

expression

m∑
j=1

‖PjFy − xj‖2 + ε‖y‖2 + (y∗FPj
∗ − xj∗)PjF ∗∆ + ∆∗FPj

∗(PjF
∗y − xj)

+y∗∆ + ∆∗y. (50)

From the definition of an argmin, we have

m∑
j=1

C + 2 Re((y∗FPj
∗ − x∗j)PjF ∗∆) + 2εRe(y∗∆) +O(∆2) (51)

where C = ‖PjF ∗y − xj‖2 + ε‖y‖2. This can be condensed to produce

m∑
j=1

C + 2 Re(∆∗(FPj
∗(PjF

∗y − xj) + εy) (52)

Allowing ∆ to approach 0 yields the equation

m∑
j=1

(FPj
∗(PjF

∗y − xj) + εy) = 0. (53)

Distributing the FPj
∗ in Equation (53) and rearranging, we have

m∑
j=1

(FPj
∗PjF

∗ + εI)y = FPj
∗xj. (54)
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We can factor out the Fourier and inverse Fourier transform respectively. This pro-

duces the equation

F

(
m∑
j=1

Pj
∗Pj + εI

)
F ∗y =

m∑
j=1

FPj
∗xj. (55)

We multiply both sides of the equation on the left by the inverse Fourier Transform

(i.e. F ∗) This results in the following equation(
m∑
j=1

Pj
∗Pj + εI

)
F ∗y =

m∑
j=1

Pj
∗xj. (56)

From Proposition 3.2, we have that the matrix formed by the summation

m∑
j=1

Pj
∗Pj =

[
C 0
0 0

]
. (57)

Since ε > 0 is strictly positive and the product Pj
∗Pj is of the form given in Proposition

3.2, all diagonal entries of the diagonal matrix are strictly positive. This means that

the matrix
m∑
j=1

Pj
∗Pj + εI (58)

is positive definite. Because the matrix in Equation (58) is positive definite, the

inverse exists. Then, we solve for y producing

y = F

(
m∑
j=1

Pj
∗Pj + εI

)−1 m∑
j=1

Pj
∗xj. (59)

Notice that this method relies heavily on the definition of the downsampling op-

erator P . It is this operator that creates a new time series from signals with missing

data. This allows us to perform the Fourier transform in order to analyze and form

a consensus on the spectra of the family of signals. We can modify the consensus

spectral model if we consider different families of signals.
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Definition 3.4. If {x1, x2, . . . , xm} is a family of time series over a time interval [a, b]

with partition {t0, t1, . . . , tn} such that t0 < t1 < · · · < tn, and for all j ∈ {1, 2, . . . ,m}

and k ∈ {1, 2, . . . , n}, xj(tk) is not a missing value, then the family is said to cover

the time interval.

So a family of time series covers a time interval if all of the sample times in the

interval have at least one recorded value from a constituent signal. If a family of

signals exhibits this behavior, the consensus spectral model in Equation (59) can be

modified.

Corollary 3.5. If a family of nonuniformly sampled time series {x1, x2, . . . , xm}

covers a sampling time [a, b], then the consensus spectral model in Theorem 3.3 is

given by

y = F

(
m∑
j=1

Pj
∗Pj

)−1 m∑
j=1

Pj
∗xj. (60)

Proof. As in Theorem 3.3, let Pj be the downsampling operator for time series xj,

F be the Fourier Transform operator, and y be the spectral consensus model for the

family of time series. Also, let {x1, x2, . . . , xm} be a family of nonuniformly sampled

time series taken from the same phenomenon. Consider the regularized least squares

expression given by
m∑
j=1

‖PjF ∗y − xj‖2 + ε‖y‖2. (61)

From Theorem 3.3 we have the consensus spectral model is

y = F

(
m∑
j=1

Pj
∗Pj + εI

)−1 m∑
j=1

Pj
∗xj. (62)

From Proposition 3.2, we have that the matrix formed by the summation

m∑
j=1

Pj
∗Pj =

[
C 0
0 0

]
, (63)
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where C is an invertible matrix of the form
ct1 0 0 . . . 0
0 ct2 0 . . . 0
0 0 ct3 . . . 0
...

...
...

. . .
...

0 0 0 . . . ctm

 ,
and each ctk is the count of nonuniformly sampled signals with a recorded value at

time tk. From our assumption that the family of time series covers the interval,

however, all sampling times have at least one signal for which a value is recorded.

This implies that the right-hand side Equation (63) is
ct1 0 0 . . . 0
0 ct2 0 . . . 0
0 0 ct3 . . . 0
...

...
...

. . .
...

0 0 0 . . . ctn

 . (64)

Since ε > 0 is strictly positive, all diagonal entries of the diagonal matrix are strictly

positive. Because the family of signals covers the time interval, we can allow ε to

approach 0 while maintaining the invertibility of the matrix on the left-hand side in

equation (63). Allowing ε to approach 0 in this fashion gives us the equation

y = F

(
m∑
j=1

Pj
∗Pj

)−1 m∑
j=1

Pj
∗xj. (65)

If the family of time series does not cover the sampling interval, the matrix in

Equation (63) is positive semi-definite and therefore may not be invertible. That is

to say, if there is a 0 in the diagonal of the matrix, the determinant is therefore 0

and the matrix is not invertible. However, the addition of the term εI, for any ε > 0,

makes the matrix positive definite and invertible. This is because the diagonal entries

that previously were 0, now have an ε instead.
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3.3 The Convolution Approach

The approach involving the convolution theorem follows from a corollary of the

least squares consensus model from Theorem 3.3. If instead of individual signals from

a family, we consider pair-wise convolutions of signals, the result is Corollary 3.6.

Corollary 3.6. If a family of signals {x1, x2, . . . , xm} covers a time interval [a,b] and

{(P ∗i xi ∗P ∗kxk)} is the family of all pair-wise convolutions of xi, xk ∈ {x1, x2, . . . , xn}

with 0 substituted for missing values, then the spectral consensus model y is given by

y = F

(
m∑
j=1

Pj
∗Pj

)−1 m∑
i,k=1

(P ∗i xi ∗ P ∗kxk)

Proof. Let S be a family of nonuniformly sampled times series that covers a time

interval [a,b]. Because S covers [a,b], the family defined by {(P ∗i xi ∗P ∗kxk)|xi, xk ∈ S}

also covers the interval [a,b]. From Equation (65) together with

m∑
i,k=1

P ∗i xi ∗ P ∗kxk (66)

gives us that the consensus spectral model is given by

y = F

(
m∑
j=1

Pj
∗Pj

)−1 m∑
i,k=1

(P ∗i xi ∗ P ∗kxk). (67)

Note that if the Fourier transform operator commutes with the inverse matrix in

Equation (67), then

F

(
m∑
j=1

Pj
∗Pj

)−1 m∑
i,k=1

(P ∗i xi ∗ P ∗kxk) =

(
m∑
j=1

Pj
∗Pj

)−1 m∑
i,k=1

(FP ∗i xi)(FP
∗
kxk). (68)

The equivalence in Equation (68) can be thought of as the version of the convo-

lution theorem for a family of nonuniformly sampled time series.
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From Corollary 3.6 we can develop the computation methods necessary to deter-

mine the efficacy of this algorithhm using the Python computing language together

with the numpy, pandas, scipy, and matplotlib libraries. Each test family described

in Section 1 of Chapter 3 is in the form of a .dat file. So, the data is read into the

program and entered into a Pandas data frame. From there, each signal is sampled

via an exponential distribution found in the numpy.random library so that, on aver-

age, each signal is missing 20 percent of the total length in values. An example of a

signal sampled this way can be found in Figure 13.

Figure 13: A Nonuniformly Sampled Signal from Consensus Test 3.
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The signal exhibited in Figure 13 is from the third family of consensus test data

which consisted of signals with a frequency of 3 Hz and added noise of magnitude 0.1.

In particular the signal is the sixteenth in the family. Before applying the Fourier

transform, we note that because the signals are sampled nonuniformly, and each indi-

vidual signal contains a number of missing values. From Theorem 3.3 and Equation

(46), we can replace all missing values with 0 and apply the Fourier Transform. For

the sake of computation speed, we use the Fast Fourier transform function in the

scipy library. Upon transforming the data via the Fast Fourier transform, we have a

set of spectra of the constituent signals. An example of this can be seen in Figure 14.

Figure 14: A Signal and its Fourier Transform After Replacing Missing Values.

Next, the Convolution Theorem is applied to the spectra to form a consensus

model. For the test cases described in Section 1, it was found that applying the con-

volution theorem twice (i.e. convolving three spectra together sequentially) produced

a consensus that denoised signals as in the Figure 15. The inverse Fourier Transform

is then applied to the individual consensus models and are, for the sake of simplicity,

plotted to ensure the method has successfully denoised the signal. An example of one
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Figure 15: A Consensus Spectrum Formed Via the Convolution Theorem.

such plot is displayed in Figure 16.

Figure 16: Inverse FFT Applied to Spectra.
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4 CONCLUSIONS AND FUTURE RESEARCH

4.1 Conclusions

The Multiband Lomb-Scargle periodogram is the most recent development in pe-

riod estimation for a family of nonuniformly sampled time series. To do this, the

method relies upon regularization by defining a parameter matrix Λ, a matrix Σ de-

fined to be the covariance matrix of the noise distributions for each band, and a design

matrix Xω [17]. These matrices are next used to produce the Chi-square estimation

as given in Equation (19) for a family of signals. This method is prone to issues such

as aliasing and unavoidable variation due to the statistical nature of the periodogram

as described in [13] and [16].

It is the goal of this thesis to develop an alternative to the Lomb-Scargle peri-

odogram using consensus spectral modeling. This is accomplished by first assuming

that the time series are sampled in such a rate as either one value is recorded at any

given sampling time or no value is recorded. This allows us to define a downsampling

operator P that maps a signal of length n with n − r missing values to a signal of

length r with no missing values. The product of this operator and its Hermitian

transpose (P ∗P ) is a key component in the development of the consensus spectral

model shown in Theorem 3.3.

It is shown in Corollary 3.5 that if a family of time series covers a time interval, the

consensus spectral model given in Theorem 3.3 can be modified by letting ε approach

zero. It is also shown in Corollary 3.6 that if we consider the set of all pair-wise

convolutions of nonuniformly sampled time series, instead of the family itself, the
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consensus spectral model in Theorem 3.3 can be modified further.

4.2 Future Research

In Equation (68), it is a direct consequence that if the Fourier operator F com-

mutes with the matrix given by (63), we have a form of the convolution theorem for

a family of nonuniformly sampled time series. However, F may or may not have this

property for a given family of signals. For future research, it may be analyzed under

what circumstances the Fourier transform operator has the commutative property

desired. We may also analyze time series exhibiting behaviors not of those described

in Section 1 of Chapter 3 in order to better ascertain the limitations of the methods

developed in this thesis.
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Appendix: Python Code

#!/ usr / b in /env python

# coding : u t f−8

# In [ ] :

### code used to demonstrate the c o n v o l u t i o n c o r o l l a r y

get ipython ( ) . run l i n e mag i c ( ’ matp lo t l i b ’ , ’ i n l i n e ’ )

from matp lo t l i b import pyplot as p l t

import numpy as np

import pandas as pd

from numpy . random import exponent ia l , rand int

from s c ipy import s i g n a l

from s c ipy . f f t p a c k import f f t , i f f t

from s c ipy import l i n a l g
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get ipython ( ) . run l i n e mag i c ( ’ l s ’ , ’ Tests ’ )

##s p e c i f y the t e s t f a m i l y o f s i g n a l s and read in as

##a pandas dataframe

FN = ’ PureSignal1 ’

S i g n a l s = pd . r ead c sv ( f ’ Tests \{FN} . dat ’ , sep = ’\ t ’ ,

header = None ) .T

## l a b e l the s i g n a l s and c r e a t e a copy o f the data

##f o r sampling nonuniformly

S i g n a l s . columns = [ ” s i g%s ” % ( i +1) for i in range ( 3 2 ) ]

S i g n a l s . index = S i g n a l s . index / ( len ( S i g n a l s . index ) − 1)

S igna l s Un i fSample s = S i g n a l s

Signals NonUnfSmpls = S i g n a l s . copy ( )

## On average , every 20% of s i g n a l i s miss ing

NumberMissingAve = len ( S i g n a l s )∗0 . 2

## sample the time s e r i e s nonuniformly

for i in range ( S i g n a l s . shape [ 1 ] ) :

miss ing = exponent i a l ( len ( S i g n a l s )/ NumberMissingAve ,
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int ( NumberMissingAve ) )

miss ing = np . cumsum( np . maximum( miss ing , 1 ) ) . astype ( int )

Signals NonUnfSmpls . i l o c [ miss ing [ miss ing < len ( S i g n a l s ) ] ,

i ] = np . nan

## F i l l s miss ing v a l u e s in each s i g n a l wi th 0

Patched=Signals NonUnfSmpls . f i l l n a (0 )

Patched mat=Patched . va lue s

## c r e a t e s matr ices t h a t w i l l conta in the spectrum of each s i g n a l

## and p a i r w i s e c o n v o l u t i o n s o f s i g n a l s r e s p e c t i v e l y

Four mat=np . z e r o s ( Patched mat . shape , np . complex64 )

t imes=Patched . index

Conv matr=np . z e r o s ( Four mat . shape , np . complex64 )

##Computes the Fourier transform and c o n v o l u t i o n s

for i in range ( len ( Patched mat [ 0 , : ] ) ) :

Four mat [ : , i ]= f f t ( Patched mat [ : , i ] )

for i in range ( 3 2 ) :

Conv matr [ : , i ]=Four mat [ : , i ]∗ Four mat [ : , i −1]∗Four mat [ : , i −2]
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## Takes in the i f f t o f the consensus s p e c t r a l model f o r the

## f a m i l y and p l o t s an o v e r l a y o f the s i g n a l s

for c o l in range ( 3 2 ) :

p l t . p l o t ( times , i f f t ( Conv matr [ : , i ] ) . r e a l )
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