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ABSTRACT 

Potable Water Leakage Prediction and Detection using Geospatial Analysis 

by 

Jacob Tittle 

Due to increasing water treatment costs and conservation needs, traditional water loss analysis and 

acoustic leak detection methods are becoming heavily scrutinized by water utilities. This study 

explores water loss in Johnson City, Tennessee and how geospatial data analysis techniques 

improve water loss mitigation. This project uses sample water system pressure data and ordinary 

kriging spatial interpolation methods to identify leakage areas for further investigation. Analysis of 

existing geographic information system (GIS) water utility datasets with interpolated hydraulic 

grade values at sample water pressure points produce manageable survey areas that pinpoint areas 

with possible water leakage. Field detection methods, including ground-penetrating radar (GPR) 

and traditional acoustic methods, are employed to verify leakage predictions. Ten leakage areas are 

identified and verified using traditional acoustic detection methods, work order research, and GPR. 

The resulting data show that spatial analysis coupled with geospatial analysis of field pressure 

information improves water loss mitigation.  
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CHAPTER 1 

INTRODUCTION 

Water is a fundamental building block in support of human populations and the efficient 

distribution of water is crucial to maintenance of sustainable communities. The treatment and 

distribution systems responsible for supplying water serve as the arteries and veins of communities 

and the sustainable development of a city must include the sustainable use of water in an era of 

rapid urbanization (Xu et al. 2014). Due to aging infrastructure and rising potable water treatment 

costs within water utilities across the globe, water loss/leakage has become an increasingly critical 

topic. Until the 1990s, community water utilities had no way to quantify potable water loss within 

their systems (Frauendorfer and Liemberger 2010). As water conservation needs increase and 

geospatial technology continues to advance, public and private water utilities are looking at ways 

to mitigate water loss, ranging from hydraulic modeling to improved methods in field leak 

detection (e.g. pressure monitoring, acoustic leak detection, and consumption monitoring). The 

goal of this project is to help reduce water loss in Johnson City, Tennessee’s water distribution 

system by detecting areas of potable water leakage using a combination of fire hydrant water 

pressure measurements and spatial interpolation methods to identify water leakage areas. After 

leakage areas are identified, field detection methods including ground-penetrating radar (GPR) and 

traditional acoustic leak detection are used to test leakage areas and pinpoint leaks.  

Within recent years, quantifying water leakage has improved due to the creation of the 

Infrastructure Leakage Index (ILI). ILI defines a community water utility’s non-revenue water and 

identifies real losses, or water loss occurring by leakage before the point of sale (Winarni 2009). 

The ILI is calculated by dividing a water distribution system’s Current Annual Real Losses 

(CARL) by the Unavoidable Annual Real Losses (UARL), which represents the lowest achievable 
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annual real losses for a well-managed distribution system (Samir et al. 2017). Recently, states 

within the U.S., including Tennessee, began requiring water utilities to report ILI information on 

an annual basis using water audit tools supplied by the American Water Works Association 

(AWWA). Other states are also in various stages of ILI report adoption and look to reduce water 

leakage (Hodgkins et al. 2016). 

Current approaches to water leakage monitoring include visual monitoring for signs of 

leakage, noise monitoring, and flow and pressure monitoring (Xu et al. 2014). Visual monitoring 

includes identifying visible clues of leaking water such as surface water and anomalous vegetation 

growth and is usually reported by the public. Noise or acoustic monitoring has long been used as a 

leakage detection method and identifies water leakage by using acoustic equipment to capture 

noise created by leaking pipes underground. The third method of flow and pressure monitoring 

acknowledges that leakage can cause change in hydraulic characteristics, which causes pressure to 

decrease and flow to increase (Xu et al. 2014). This study focuses on flow and pressure monitoring 

and uses pressure monitoring techniques to direct field monitoring efforts using both acoustic 

sounding and GPR.  

Using GIS and hydraulic modeling techniques, preliminary spatial analysis has improved 

efficiency in leak detection by discovering areas of water loss before field leak surveys are 

conducted. Water distribution systems are composed of large complex pipe networks and breaking 

these networks into smaller areas enables improvements in leakage management efforts. 

Efficiently detecting and defining these smaller areas known as District Metered Areas (DMAs) 

and measuring incoming/outgoing flows have enabled researchers to identify high leakage areas 

(Scibetta et al. 2013). Projects like the Italian H20LEAK project was successful in mitigating 
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water loss by using GIS to help identify and partition water networks into DMAs and discover 

localized leakage by monitoring pressure and flow values (Candelieri and Messina 2012).  

Dating back to the 1980s in the United Kingdom, many large water utilities adopted the 

practice of creating DMAs to quantify and manage water leakage, but the process becomes 

complex in large urbanized areas (Savic and Ferrari 2014). When creating DMAs, large water 

system networks are split into independent sub-networks, making water system management easier 

(Izquierdo et al. 2009). After dividing the water system into multiple DMAs, measuring incoming 

and outgoing flows for each DMA allows for the quantification of water losses (Scibetta et al. 

2013). Once DMA analysis verifies high water loss sub-systems, hydraulic grade elevations 

converted from water hydrant flow information or other known pressure points compared to water 

tank elevations should indicate high demand areas (Walski 1983). These high demand areas may 

indicate water leakage, thus creating smaller targeted areas for field leak detection surveys.  

This project uses spatial analysis of hydrant pressure tests to guide water leak detection 

surveys. Using Johnson City’s existing DMA boundary information and water network GIS data 

coupled with water pressure test information, the sample area shown in Figure 1 illustrates the 

1838A DMA and serves as the project focus area. Using past water consumption information, City 

of Johnson City Water Department personnel identified 1838A as the utility’s DMA with the 

highest water loss. This has been determined by metering all water flowing into the DMA and 

comparing the measured volume of water to customer consumption and accounting for any known 

loss through fire hydrant flows or construction.  
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Figure 1.  Johnson City Water System and 1838A Leakage Study Area  

Kriging Interpolation and Hydraulic Grade 

Predicting areas with water leakage requires interpolating hydraulic grade points taken 

from the field pressure test data. The hydraulic grade surface is then used to identify zones of 

hydraulic grade values lower than the local water tank elevations. A hydraulic grade value below 

local water tank elevation indicates high demand and possible leakage, although exceptions to that 

rule may occur (Wu et al. 2010). Areas illustrating hydraulic grade values below water tank 
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elevations must also be analyzed for specialized conditions involving pressure reducing valves or 

pumped areas exhibiting high pressures above water tank elevation. These areas are scrutinized for 

localized dips in hydraulic grade, thus also predicting water leakage.  

Ordinary prediction kriging is an appropriate interpolation method due to its ability to be 

flexible in dealing with slight departures from the initial data assumptions such as data normality, 

trends, and spatial autocorrelation along with its reputation as the “work-horse” of geostatistics 

(Oliver and Webster 2014). To use ordinary kriging, the initial data must conform to a normal 

distribution, be spatially autocorrelated, and not exhibit any overarching global trends (Scheeres 

2016). After ensuring the data meets ordinary kriging assumptions, model parameters are chosen to 

create a semivariogram, which can be plotted as a graph showing variance of measured distances 

between all sampled pair locations (Scheeres 2016). Due to the local nature of kriging, a minimum 

and maximum number of neighbors is selected as well as dividing each neighborhood into octants 

if points are unevenly scattered (Webster and Oliver 2007). Lastly, kriging models use cross-

validation to check for appropriate fit by omitting each point from the data and predicted its value 

by ordinary kriging with the proposed model (Oliver and Webster 2014). Although a goal of the 

project is to automate leakage surface production, the interpolation process must be developed first 

to establish the appropriate tool settings. If the kriging process is to be replicated in other areas of 

the water system, a unique model must be developed per individual area.  

Process Automation 

The data collection, post-processing, and analysis was achieved through a mixture of open 

source and proprietary geospatial technologies including data collection interfaces in the 

Cartegraph work order management software, Esri’s ArcGIS Pro geospatial software, and the 

Python programming language. The general process flow involved data collection by field 
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personnel in Cartegraph, automated data cleanup and manipulation using Python, then 

interpolating pressure test point data using kriging tools within ESRI’s software platform. 

Although the process is described in this study using the previously mentioned tools, other 

technologies would also be able to replicate the process. The main function of the work order 

software is to provide a mobile solution to capture static pressure information in the field. Any 

other field solution would work if able to collect text and numeric information and provide it in a 

tabular format over the web. Other geospatial platforms could also be used including QGIS or any 

GIS software containing interpolation capabilities and providing access through a Python library. 

The Python component of this project was used to automate daily data imports and 

maintenance required to dependably produce leakage area results. Since the project is applied to a 

real-world water distribution system, data were generated daily, creating the need to automate 

labor intensive tasks. To do this, the pandas and geopandas Python libraries were used to handle 

most of the data management by performing data imports, data cleanup, data table merges, and 

hydraulic grade calculations. This was accomplished by importing regularly generated pressure 

information into pandas data frames and hydrant locational information into geopandas spatially 

enabled geodataframes. The term data frame refers to an object designed to align structured data 

into rows and columns within these Python libraries (Harrison and Prentiss 2016). The pandas 

library gets its name from the term “panel data,” which refers to three dimensional datasets found 

in statistics and is ideal for working with tabular data because of an ability to organize structured 

data (McKinney 2010).  

Any data frame created with geopandas is known as a geodataframe. Geodataframes are 

generally similar to pandas data frames, but have an added geometry column containing locational 

information used in a GIS. The geopandas library also uses the shapely Python library and enables 
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users to perform GIS functions within Python, without requiring a geospatial database (Geopandas 

2019). In addition to using pandas and geopandas, the resulting script was developed using 

multiple other libraries including datetime, which is used to manage date information within the 

pressure data, and fiona, a file handling package that can work with geodatabases. Esri’s arcpy 

library was also used to handle the project’s interpolation process and requires licensing, which 

was covered by using an enterprise license agreement. Each of the Python libraries are open source 

except for arcpy, which can be substituted with the QGIS library if an open source GIS platform is 

used.  

The Python language coupled with the pandas library has recently been used to perform 

data analysis within water leakage studies and help manage water utilities. One UK study 

employed the pandas library as a proof of concept to discover leakage using nighttime-flow time 

series data and to predict household water consumption (Wills et al. 2017). Also, the widely used 

open source EPANET water modeling software has incorporated pandas data frames for time 

series analysis in the Water Network Tool for Resilience (WNTR) Python package, which is a new 

tool to model water hydraulic characteristics and simulate water utility disaster scenarios (Klisel et 

al. 2018). The geopandas library has not yet been explored in the same manner as pandas within 

the water industry. This study utilizes pandas and geopandas to manage locational data in relation 

to water leakage, helping to develop points to feed into the kriging model. 

Field Leak Detection Techniques 

Physical water loss is the product of numerous leak events that consist of reported leaks, 

unreported leaks, and background losses with flow rates too low for detection by traditional 

equipment (Samir et al. 2017). After the initial pressure testing and creation of a leakage prediction 

surface, high proabability leakage sites may be investigated using either acoustic detection 
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methods or GPR surveys.  A third investigation technique involves past work order repair research 

in case a repair has already been performed. This step is not technically a field method but a 

necessary step to confirm leakage predicted by older pressure test data. 

The most common field method for locating water leakage utilizes acoustic technologies to 

detect sounds created by leaking pipes. Acoustic leak location detects water leakage sounds caused 

by velocity of flow and the size and condition of the pipe opening. Also, different detectable 

sounds are made depending on whether the leak is discharging under water or into the air (Babbitt 

et al. 1920). Currently, acoustic water leakage field techniques miss significant leakage occurring 

in plastic piping (Hunaidi et al. 2000). Acoustic leak detection methods typically work well in 

metallic piping, but leaks in plastic piping remain difficult to locate due to the inability of sound to 

travel through plastic materials (Hunaidi et al. 2000). Additional technologies have been developed 

to advance traditional acoustic leak detection, but problems with background noise within heavily 

populated areas and issues associated with plastic piping persist (Hunaidi 2012).  

Another field solution, GPR, is currently the most common geophysical survey technique 

employed to map underground utilities. In addition to utility location, GPR surveys extend to water 

leak detection. Instead of detecting leakage by audible noise, GPR can detect leakage by water’s 

reflection, signal attenuation, or underground voids created by leaking water. The method reflects 

radio waves off objects below the surface. The waves act as a digital tape measure, allowing the 

surveyor to estimate the sub-surface object’s depth (Witten 2006). Depending on soil conditions, 

GPR can detect buried pipe, increased soil moisture, and voids created around piping due to water 

leakage (Hunaidi 1998). 
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Water System and Project Background 

The study focuses on Johnson City, Tennessee’s public water utility, which owns and 

manages over 950 miles of water mains consisting of pipe varying in material and age. Johnson 

City manages its water distribution system by splitting the system into multiple DMAs. The water 

department had previously analyzed the amount of water supplied to each area and sold to 

customers over a multiyear period, calculating water loss amounts per DMA. The 1838A DMA 

consistently reported the highest water leakage in Johnson City’s water distribution system and 

was picked to be the project focus area. 

The chosen 1838A DMA contains 247 miles of water mains and currently serves 33 

percent of the utility’s 43,000 water accounts. The zone boundaries are established using 

strategically closed water valves known as isolation valves. These valves are commonly used to 

isolate the flow of water to turn off a portion of a system and may be intentionally kept closed to 

control area boundaries (Walski et al. 2003). Also, 1838A contains a number of pressure reducing 

valves, which serve to protect areas prone to damage caused by high pressures (Walski et al. 

2003). Water flowing into 1838A is monitored through metering known entry points and compared 

with water sold to help quantify leakage.  

The 1838A DMA also contains some of the oldest water distribution infrastructure within 

the city, containing pipe installation dates ranging from the 1890s through the present day. The 

area’s majority of pipe materials include cast iron, ductile iron, polyvinyl chloride (PVC), and 

galvanized iron. The cast iron water mains are the oldest pipe materials within the DMA, while 

ductile iron and PVC are the youngest pipes in the ground. Large diameter, equal to or greater than 

six inches, cast iron pipe within the DMA present a significant amount of water leakage due to age 

and a tendency towards corrosion. Cast-iron pipe, the oldest water mains in most water systems, 
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usually develop corrosion pitting along pipe segments that cause breakage and are difficult to 

predict (Rajani and Makar 2000). Also, small-diameter galvanized water mains installed within the 

mid-twentieth century are largely identified as a source of water leakage by the water utility. Each 

year, a portion of these galvanized water mains are scheduled for replacement. Other pipe 

materials found in smaller quantities include copper, concrete, and high-density polyethylene 

(HDPE), along with a portion of unknown materials. Figure 2 shows 1838A’s material quantities 

reported in miles of pipe.  

 

Figure 2.  1838A Water Pipe Material Percentages by Mileage 

In addition to containing the oldest pipe materials in the water system, 1838A encompasses 

Johnson City’s downtown area and is in close proximity to the city’s largest stormwater 
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infrastructure. The downtown area’s stormwater system includes multiple streams, causing water 

leakage to not always surface, going to stormwater instead. This creates difficulty in detecting 

water leakage due to non-surfacing water leaks and inhibits traditional acoustic leak detection 

techniques due to the typical sound pollution associated with densely populated downtown areas.  

As for storage infrastructure, the 1838A DMA contains three water tanks that serve as a 

guideline for expected hydraulic grade. The tanks, named Carter Hill, Masters Knob and Tannery 

Knob, all have a top elevation of 1838 feet above sea level and the number 1838 in within the 

DMA’s name indicates the top elevation of each water tank in the zone. The hilly terrain that 

comprises the DMA also presents the need for several water booster pumps and pressure reducing 

valves (PRVs). Homes sitting at higher elevations within the DMA rely on pumps to maintain 

water pressure while PRVs reduce pressure in areas experiencing high water pressure that may 

damage residential plumbing and burst pipes (Walski et al. 2003). Areas around these features 

exhibit hydraulic grade values differing from the typically observed values.  
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CHAPTER 2 

METHODS 

The process developed for this project includes multiple steps that require field data 

collection, data analysis, and field verification. The workflow used to generate areas exhibiting 

possible water leakage is described in the following sections. The first section briefly describes the 

initial pressure dataset and additional field pressure tests. The second section explains the overall 

GIS workflow developed to process pressure test data and produce a leakage prediction surface. 

Although incorporated into the GIS workflow, the kriging surface model development is described 

separately and includes selected parameters specific to 1838A. Another section incorporates the 

previous processes into an automated script. Lastly, field techniques used to verify predicted 

leakage areas are described. Figure 3 illustrates the general workflow, which breaks the process 

into data collection, data management and analysis, interpretation, and field verification. 

 

Figure 3.  General Leakage Detection Workflow 

Data Collection 

The initial focus on the 1838A DMA uses the Johnson City’s water distribution Esri feature 

dataset obtained by request from the Johnson City Water/Sewer utility. The dataset contains 

multiple feature classes consisting of location and attribute information for water mains, hydrants, 

water meters, tanks, system valves, and DMA boundaries. In addition to existing GIS data, water 
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hydrant flow history information was obtained from the Johnson City Fire Department’s work 

order records. The flow history reflected the most readily available data containing hydrant 

pressure readings taken during routine fire hydrant flow inspections between 2015 and 2017 and 

provided the baseline pressure test information. Additional pressure test data taken from water 

hydrants were acquired through the water utility’s Cartegraph work order system, which is 

dynamic and was later incorporated into the Python automation. The water utility’s pressure tests 

replace fire hydrant pressure test information as newer data are collected.  

Overall GIS Workflow 

The GIS data management and analysis workflow used to generate areas exhibiting 

possible water leakage is described in the following section. The general steps are illustrated 

within the flowchart in Figure 4, which supplies a road map to reproduce results in similar water 

distribution systems or DMAs. The green polygons represent data inputs and blue/red squares 

represent processes performed within ArcGIS. When performed in order, the workflow produces 

an interpolated surface of hydraulic grade elevations and identifies possible water leakage areas. 

The entire GIS workflow illustrated in Figure 4 was automated with a script written in the Python 

programming language and utilized multiple Python libraries to perform the necessary data 

cleanup, manipulation, and interpolation steps described later in this section.  
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Figure 4.  GIS Workflow for Water Hydrant Static Pressure Interpolation 

Hydrant pressure test data were first imported into a table and joined to the water hydrant 

feature class using the fire department’s hydrant identification number. Null values and pressures 

above 300 pounds per square inch, which reflect any data entry errors, were removed. Each 

hydrant required an elevation value, so elevations of all public water hydrants were either 

previously surveyed by traditional field methods or extracted from the 2015 Tennessee LIDAR 

dataset generated digital terrain model (DTM). A new field named HydroGrade within the hydrant 

feature class was then created to record hydraulic grade calculations.  

At each pressure test site, the hydraulic grade was calculated for each hydrant using the 

elevation added to the product of a 2.31 unit conversion factor and the flow data’s static pressure 

value. The 2.31 conversion factor represents 2.31 feet for every pound per square inch of pressure 
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(Walski et al. 2003).  Shown in the equation (1) below, hydraulic grade (H) equals the elevation (z) 

plus the 2.31 conversion factor multiplied by the pressure (p).   

                      H = z + 2.31p                               (1) 

Ideally, if no leakage is present, hydraulic grade values would equal the elevation of the 

water tank supplying water to the DMA. The 1838A DMA is part of a larger water pressure zone 

that is supplied by multiple tanks with an elevation at the top of each tank averaging 1838 feet 

above sea level. The 1019 hydrants with completed hydraulic grade calculations within the 1838A 

DMA were then selected and exported into a new feature class. Figure 5 illustrates the hydrant 

locations within the 1838A DMA and area water mains.  

The initial 1838A DMA boundary polygon includes a large area with no hydrants available 

for static pressure testing. This area and a small area in the southwest were removed because 

interpolated values there would be invalid. Along with the hydrant test location points, Figure 5 

also shows the trimmed DMA zone after redefinition. This step prepared the data for interpolation 

and reduced the possibility of false leakage predictions in large areas lacking pressure test 

information. 

After importing pressure tests, data cleanup, and calculating hydraulic grade values at each 

hydrant pressure test site, the resulting pressure test point locations were fed into an ordinary 

kriging interpolation model using ArcGIS Pro’s Geostatistical Wizard toolset. The kriging model, 

developed to be replicated in an automated workflow, is used to specify customized parameters 

appropriate to hydrants within the 1838A DMA and creates a geostatistical layer within ArcGIS 

Pro. After the layer was produced, the surface was clipped to the boundary of 1838A. This process 

is further explained in the kriging development section and script development sections. 
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Figure 5.  Hydrants Located Within the Redefined 1838A Boundary 
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Kriging Model Development 

The pressure test points converted to hydraulic grade were analyzed for ordinary kriging 

model suitability by checking for normal distribution, spatial autocorrelation, and any overarching 

global trends. The histogram illustrated in Figure 6 shows that the data are generally normally 

distributed. The spatial autocorrelation report in Figure 7 shows a 0.4105 Moran’s I value along 

with a z-score of 29.9673 and pseudo p-score of 0.0000. These numbers indicate that there is less 

than one percent likelihood that the data are random in space and suggests spatial autocorrelation. 

A test for overarching global trends is illustrated in Figure 8. Although showing a slight increase, 

the plotted polynomial trend lines are relatively flat, suggesting no overarching global trends. If 

overarching global trends were present the line would reflect a more dramatic curve. The graph in 

Figure 8 illustrates the lack of a global trend within the test data and serves to reinforce the kriging 

method choice for the purposed of the water leakage project. 

 

 

Figure 6.  HydroGrade Suggested Normal Distribution Illustrated in ArcGIS Pro 
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Figure 7.  Spatial Autocorrelation Report in ArcGIS 
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Figure 8.  Analysis Plot Used to Detect Global Trends 

 After the data were determined to be a good fit for ordinary kriging, the hydrant pressure 

test data were plugged into the Geostatistical Wizard to create an appropriate model. Parameters 

were selected to create a semivariogram including a nugget or error value, number of lags, and lag 

size. Within ArcGIS, this was achieved using the optimization tool, which picks lag size and 

nugget values that result in the lowest mean standard error (Esri 2019). Figure 9 displays the 

semivariogram graph and optimized parameters. For the model displayed in Figure 9, the number 

of lags was set to 12, the lag size was 393.9094 feet and the nugget value was 335.8350. Other 

values in the optimized model are also displayed in Figure 9 including the model nugget 

measurement error, model parameter, major range, and partial sill number.  
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Figure 9.  Kriging Semivariogram Modeling Values and Graphs 

The next step to develop the model specified attributes relating to the kriging search 

neighborhood and included setting the neighborhood type, sector type, and the maximum and 

minimum number of neighbors. For this model, the standard neighborhood type was selected. As 

recommended by Oliver and Webster’s 2014 article about computing variograms and ordinary 

kriging, the maximum neighborhood was set to 25 neighbors, the minimum was specified as 7 

neighbors, and the sector type was set to 8 sectors (Oliver and Webster 2014). The searching 

neighborhood settings are illustrated in Figure 10 as well as a map displaying the sample kriging 

surface with an example neighborhood broken into 8 sectors. 
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Figure 10.  Search Neighborhood and Sector Type 

Figure 11 displays the cross-validation report generated to check the model validity. The 

left side displays a graph based on predicted error and the right portion reports the data summary 

and a record table of all the points. The summary includes multiple values including three that are 

used to judge validity of the kriging model. These are mean error, mean standardized error, and the 

root mean square standardized error. Both the mean error and mean standardized error are close to 

zero, which is an indication that the model is accurate. The root mean square standardized error is 

close to 1, which also indicates an appropriate ordinary kriging model.  A root mean square 

standardized error over 1 underestimates prediction variabilty, while a value under 1 overestimates 

variability (Oliver and Webster 2014). Also, the root mean square error was 27.5515 and the 

average standard error was 24.9850. After model development, the chosen parameters were 



 

31 

 

exported to an xml document for later incorporation in the Python script, allowing automation and 

replication of the ordinary kriging process. Figure 12 displays a sample kriging surface using the 

1838A model.  

 

Figure 11.  Kriging Cross Validation 
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Figure 12.  Hydrant Pressure Interpolation Reclassified to Show Hydraulic Grade Values 
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Model Python Script Development 

 The pressure test update processing is an ongoing program at the water department, so an 

automated script was developed to capture additional hydrant pressure tests daily. This places 

information indicating large areas of water leakage in front of decision-makers in a timely manner 

so that large water breaks can be identified and repaired. The script was written in Python 3.6 and 

developed using Jupyter Notebooks in conjunction with ArcGIS Pro to document each step and 

support replication in other water systems. Each cell within the Jupyter Notebook contains 

individual process code for steps within the script. The code can be referenced within Appendix A 

to follow along with the process steps. The flowchart in Figure 13 describes the general automated 

steps. 

 

Figure 13.  General Python Script Workflow 
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The resulting Jupyter Notebook required a custom Python virtual environment created to 

manage custom Python libraries, including pandas, geopandas, numpy, arcpy, matplotlib, shapely, 

and fiona. The script also utilized stock Python packages (e.g.  os, csv, and datetime). The virtual 

environment was created with Anaconda Navigator, which managed custom library installations 

through the Anaconda command prompt and was also used to install the Jupyter Notebook 

application. The custom virtual environment also only referenced the Python version 3.6 included 

with ArcGIS Pro, so that any older versions of Python previously installed were not used. This 

installation step allowed portability when duplicated on additional computers and ensured 

separation between previously installed Python versions.  

 The script begins by importing all the necessary libraries including arcpy, pandas, 

geopandas, and others. The complete list of needed Python libraries is shown in Table 1. The 

arcpy, pandas, and geopandas libraries handle the bulk of the computation while datetime and 

fiona are used to access and write to file format types as well as standardize any dates within the 

data.  

 Table 1.  Python Libraries Imported into the Automated Script

 

Package Name Script Role Description

arcpy Used to perform the kriging interpolation process

csv Used to open and read pressure record csv files

datetime Used to manipulate date information within the data

fiona Used to read layers within a geodatabase

geopandas Used to manipulate water hydrant data frames

matplotlib Used to test plot resulting pressure test locations

numpy Used by pandas for array computations

os Used to name resulting shapefiles

pandas Used to manipulate pressure test results data frames

shapely Used by geopandas for geometry operations

sys Used to name resulting files
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 The next few cells set up the project’s workspace and variables used throughout the project. 

The code defines multiple variables containing file locations for a pressure test csv file, pressure 

test site file containing existing water hydrants, and a polygon file containing the DMA boundary. 

The water hydrants and DMA polygons are located within a geodatabase and serve as the project 

workspace. An output raster location and name variable are also created as well as variables for the 

location of a kriging model .xml file and name of the kriging geostatistical layer created later in the 

script. Each variable is called later in the script and used in multiple process cells. Fiona’s 

listlayers function is then called to list all the layers within the project geodatabase containing the 

spatial information for the 1838A test hydrants and the DMA boundary. Geopandas converts the 

attribute table from a geodatabase feature class to a geodataframe using the read_file function. This 

imports the test hydrants layer as a data frame, using the fiona generated list to call the appropriate 

geodatabase layer by position in the layer list. The same read_file function then opens the hydrant 

pressure test csv file to import data into a second data frame. Both data frames contain a date 

column containing date information about when the pressure test was completed. The pandas 

to_datetime function runs on both columns to standardize the date format. The result is two data 

frames representing the physical hydrant locations with existing elevation information and existing 

pressure information, and another data frame containing updated pressure test results.  

 The two data frames must be manipulated so their columns match in name and data type to 

update new pressure information. A critical column in both data frames contains a unique identifier 

for each water hydrant and is stored in two fields called “FACILITYID” in the water hydrant data 

frame and “Asset” in the updated pressure test data frame.  These columns record the same 

information and act as a common item to join the data frames later in the script. Without cleanup, 

the Asset column contains the needed hydrant identifier info, but contains a string before each id. 
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This is remedied by adding a new “FACILITYID” column to the pressure test data frame and 

populating it with the Asset field’s information minus the first characters in the string using a 

string slicing command. The resulting column contains water hydrant identifiers without the extra 

string characters and can now serve as the common column to merge the two data frames. 

Additional functions performed on the data frame include removing spaces from any 

column names, changing any static pressure columns to a numeric data type, and removing any 

records containing static pressure information that is incorrect or zero values. Initially, geopandas 

imports the given field names from Cartegraph as column names. These field names contain spaces 

and can cause difficulty with some Python functionality, so the spaces are replaced with 

underscores using the Python replace command. Also, the static pressure values are imported as 

text and are converted to the numeric data type using the pandas to_numeric function. This permits 

numeric calculations later in the script when the data are converted to hydraulic grade. The zero 

values and values above 300 indicate errors within the pressure test data and can be removed from 

the data frame, since those readings are not typical of Johnson City’s water system. 

 After formatting the new pressure test data frame, the two data frames are joined using the 

pandas merge function and specifying the FACILITYID column as the common item or key field. 

As a result, a new pandas data frame is created, but still maintains the geometry column necessary 

for a later re-import into geopandas. The new data frame contains only records matching the data 

frame containing hydrants in the 1838A boundary. Within the next cell of code, new static pressure 

values are updated in the original StaticPressure column from the testSites data frame and new 

dates are updated in the DateCollected column. Any new static pressures and dates overwrite the 

original data to update the data frame with new hydrant pressure tests. The new hydraulic grade 

calculations are also performed and stored in the HydroGrade column. 
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 Further manipulation of the new pandas data frame includes deleting any unnecessary 

columns using the del command after the new hydraulic grade values have been created. This 

includes an extra geometry column created by the pressure test data frame. The newly created 

geometry_x field, which contains the hydrant location information, is then converted back to the 

original geometry column name. After all the field names are set, the sort_values and 

drop_duplicates functions are used within pandas to remove duplicate values. The sort_values 

function is used to sort the records by the DataCollected field in ascending order. The 

drop_duplicates function is then called to remove records containing duplicate facility IDs 

previously sorted. The “keep” parameter is set to ‘first’, since the DateCollected is sorted as text 

and shows later dates before older dates when sorted. The resulting data frame contains updated 

pressure tests with newly calculated hydraulic grade values that do not contain duplicates. The next 

step within the process takes this new data frame and updates the values in the existing hydrant test 

sites. 

 The merged data frame containing water hydrants with newly acquired pressure test 

information and hydraulic grade calculations must check back in with the original hydrant data 

frame to update any new information. This is accomplished by first setting the FACILITYID field 

in both the merged data frame and the original hydrant data frame as the index using the pandas 

set_index function. After that, using the pandas update command on the hydrant data frame and 

specifying the merged data frame as the update source, new hydrant pressure test information and 

hydraulic grade calculations are applied to the water hydrants geodataframe. The indexes are reset 

using the reset_index command and the hydrant data frame can now be prepared for the kriging 

interpolation process. 
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 Exporting the newly updated hydrant information is accomplished by first converting the 

updated hydrant data frame to a geodataframe using the geopandas GeoDataFrame function, 

specifying the geometry field as the column containing the locational information. Any hydrants 

containing null values in the HydroGrade column are dropped by exporting to a new geodataframe 

called “NewGdf” using the notnull() command on the HydroGrade column. Another .astype(str) 

function is performed on the DateCollected column to ensure dates are recorded as strings. This 

step permits export of the geodataframe to a shapefile without error later in the script. Another cell 

within the notebook is added containing code to plot the hydrant locations using the matplotlib plot 

function and project the geodataframe to the NAD83 Tennessee State Plane projection. Figure 14 

illustrates the expected plot for the 1838A DMA.  

After inspection of the plotted hydrant locations containing pressure information, the 

geopandas to_file function is called to convert the NewGdf geodataframe to an Esri shapefile. The 

DateCollected column data type is also changed to a string using the .astype command. The 

shapefile name is specified by a variable containing the file location and current date, then 

exported using the to_file command.  
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Figure 14.  Plotted Hydrant Pressure Test Sites in NAD83 TN State Plane 
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The last portion of code within the script uses the arcpy library to create an interpolated 

surface from the updated pressure test sites. The tools used within the arcpy library are part of the 

Spatial Analyst and Geostatistical Analyst software extensions and require Esri licensing. Before 

using arcpy, the required Python virtual environment must be set up and have an active ArcGIS 

license. Once established, the arcpy.CheckOutExtension command is used to check out the needed 

Esri extensions. This allows users to use the extension tools with an appropriate license. The code 

then calls arcpy’s Create Geostatistical Layer tool to build a kriging layer using three variables 

including the pressure test site shapefile, kriging model file, and output layer name. Since a kriging 

model has already been established for the 1838A DMA, the earlier kriging model xml information 

is used as a variable within Esri’s Create Geostatistical Layer geoprocessing tool. The resulting 

layer is then clipped and exported as a clipped raster. The last cell of code within the notebook 

calls the arcpy.CheckInExtension to check the two Esri extension licenses back in. This is only 

important if licensing is shared with other users. 

The completed code was developed in Jupyter Notebooks to document each step 

thoroughly for replication in other DMAs in the Johnson City water system and allows replication 

in other systems. The code is also stored as a script in a Python .py file which allows the process to 

run as an automation on a regular basis. 

Field Testing Process 

The kriging prediction surface indicated multiple areas predicting hydraulic grade values 

less than 1838 as well as areas exhibiting higher pressures than expected. Ten sites were selected 

from the resulting leak prediction surface for field investigation using either acoustic detection 

methods, GPR survey, or past work order repair research. After work order research, traditional 

acoustic leak surveys were performed by water department personnel to verify water leakage and 
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identify areas to repair water mains. The chosen locations all contained metallic water mains, 

making acoustic leak surveys the appropriate choice of inspection technique. To ensure data 

validity, area hydrants were re-tested to ensure existing low pressures before each survey.  

Although most field verification was performed by traditional acoustic leak detection 

methods, they are not always able to detect water leakage in non-metallic pipe. To help discover 

leakage, ground-penetrating radar (GPR) survey techniques were also selected to identify water 

leakage. Initially, GPR was chosen as a supplementary survey method to detect leakage where 

acoustic techniques were ineffective due to plastic water mains or areas with high levels of noise. 

Since all areas selected for field detection surveys contained metallic pipe, GPR was only used at 

one site to verify the ability to detect leaking water. 
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CHAPTER 3 

RESULTS 

Pressure Test Results 

 Using 1,019 hydrant pressure tests within the 1838A DMA, 87 percent fell below the 

expected 1838 hydraulic grade value. The mean hydraulic grade value was 1804.63 and the 

median value was 1805. The minimum hydraulic grade value was 1640 and the maximum value 

was 2089. Figure 15 displays hydraulic grade values with a centerline drawn on the mean value. 

The data conforms to a normal distribution as shown in Figure 15 and does not follow any global 

spatial trends. Additionally, a test for spatial autocorrelation resulted in a 0.4105 Moran’s I value 

along with a z-score of 29.9672 and p-score of 0.0000. These numbers indicate that there is less 

than one percent likelihood that the data are random and suggests spatial autocorrelation.  

 

Figure 15.  Histogram of Hydraulic Grade Values 

Figure 16 displays the sample hydrant pressure values distributed throughout 1838A and 

illustrate a concentration of hydraulic grade values closest to 1838 within the DMA’s southern 
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area. These southern pressure test areas also contain multiple values spiking above 1838, which 

make up 13 percent of all hydrant pressure tests. The lowest hydraulic grade values ranging from 

1640 through 1774 are predominantly located within the northern portion of 1838A and consist of 

values well below 1838. 
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Figure 16.  Pressure Test Hydraulic Grade Value Distribution  
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Kriging Model Results 

The resulting kriging interpolation model used Esri's Geostatistical Wizard and reports 

statistically necessary values to indicate the model’s quality of fit within a cross-validation data 

summary. These include three values used to judge the validity of the model and include the mean 

error (0.1765), mean standardized error (-0.0031), and root mean square standardized 

error(1.0771). The mean error and the mean standardized error are both acceptably close to zero. 

The root mean square standardized error is close to 1 and ideal.  These values are illustrated in 

Figure 11 within the previous methods chapter.  

After running the model with 1,019 hydrant pressure test sites, the interpolated surface 

results are illustrated in Figure 17 and display predicted hydraulic grade values within the 1838A 

DMA. The surface was reclassified into twelve classes using natural breaks and symbolized. Six 

classes illustrate hydraulic grade values lower than 1838, leaving another six to display values 

equal to and above 1838. Additionally, an error surface was created to illustrate areas with 

insufficient data to predict leakage using the model.  The error suface is displayed in Figure 18.  

Verification Findings  

Illustrated in Figure 17, the resulting raster surface shows multiple areas predicting 

hydraulic grade values less than 1838, especially within the northern portion of the 1838A DMA. 

Figure 17 also shows multiple areas exhibiting high pressure. A selection of ten high and low 

hydraulic grade value areas was investigated during the project and are referenced as their street 

name location or the associated subdivision name if located in residential areas. Each investigated 

area is labeled in Figure 17 and described in Table 2.  Of the ten areas, three sites predicted large 

water main breaks, one area resulted in a hydrant leak, three sites were affected by either a pump 
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or PRV, and another area discovered a water lateral leak.  The remaining two sites were 

inconclusive and need further investigation. 

 

Figure 17.  Hydrant Pressure Field Investigation Areas 
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Figure 18.  Kriging Error Surface 
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Table 2.  Field Investigation Areas and Results 

 

The Silverdale Drive area reported multiple hydraulic grade values ranging from 1747 to 

1798 and is illustrated in Figure 19. After further investigation by the city’s leak detection 

personnel using acoustic leak detection technology, leakage was verified and repaired within the 

zone identified by the interpolation process. Additional low pressures detected on Hanover Road 

resulted in a 12-inch waterline break and is illustrated in Figure 20. This leakage area was first 

thought to be the result of suction pressure created by a water pump at the edge of the 1838A zone 

but was later found to be a broken pipe when leak detection field crews investigated the area. Low 

pressures were detected on Hanover Road, but the leaking water main was located on Franklin 

Terrace. Both areas contain cast iron water mains, making acoustic leak detection possible.  

Site Hydraulic Grade Values Result

Harbor Approach 1677 - 1795 Pressures influenced by a PRV

Spring Street 1803 - 1838 Water lateral leak

North Roan Street 1683 - 1801 Investigation ongoing

Browns Mill Road 1709 - 1806 Large water main break

Rambling Road 1773 Water hydrant leak

Silverdale Drive 1747 - 1798 Large water main break

West Locust Street 1784 - 1789 Inconclusive 

Tamassee area 1898 - 1960 Pressures influenced by a pump

Hanover Road 1730 - 1782 Large water main break

Taylor Ridge 1916 - 1955 Pressures influenced by a pump
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Figure 19.  Silverdale Drive Water Leakage Area 
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Figure 20.  Hanover Road Area Water Leakage 

An additional area indicating possible water leakage included the Browns Mill Road Area 

and produced low pressures as early as 2015, displaying hydrants with hydraulic grade values 

ranging from 1709 to 1806. The intersection of Browns Mill Road and North State of Franklin 

Road contains multiple large diameter water mains supplying water to many large businesses in 

the area. In September 2018 and during this study, a 10-inch ductile iron water main break running 

through the intersection resulted in customer water outages for half of a day. Once the broken pipe 

was excavated and repaired, multiple holes indicated pipe leakage for an extended time. Although 

the kriging surface illustrates low hydraulic pressure as early as 2015, water did not surface at that 

time. The hydraulic grade calculations produced from hydrant pressure readings and the resulting 

kriging interpolation model is displayed in Figure 21. 



 

51 

 

 

Figure 21.  Browns Mill Road Intersection Water Leakage Area  

Another leakage area was identified around the Sundale/Town Acres portion at the 

intersection of Rambling Road and Sundale Circle. Displayed in Figure 22, this leak was next to a 

water hydrant and identified by pressure information collected in 2015. After referencing past 

work order repair records and consulting with Johnson City Water personnel, the repair was 

determined to be made before this study. 
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Figure 22.  Rambling Road Water Hydrant Leak 

Other low hydraulic pressure areas include the Harbor Approach area shown in Figure 23, 

the North Roan Street Area, and West Locust Street. Harbor Approach’s low-pressure values were 

determined to be the result of a pressure-reducing valve located south of that neighborhood. The 

North Roan Street and West Locust Street areas are stilling under investigation. Both areas 

exhibited low hydrant pressure tests, which are currently scheduled to be re-tested. 
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Figure 23.  Harbor Approach High Pressure Area 

The Tamassee, Hanover Road, and Taylor Ridge areas all displayed hydraulic grade values 

well above 1838. In Figure 24, the map containing the Tamassee area included values as high as 

1960. Both Hanover Road and Taylor Ridge displayed similar results with values above 1900. 

These three areas are all located at higher elevations than surrounding neighborhoods and in near 

water pumping stations. 
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Figure 24.  Tamassee High Pressure Area 

All selected investigations in the field were conducted using traditional leak detection 

equipment. One individual location at Spring Street did not display prominently within the 

interpolated surface but did produce values lower that 1838 and was requested by the water 

department as a candidate for GPR inspection. The resulting images in Figure 25 display evidence 

of water leakage and were later found to be a leaking water lateral. A six-inch diameter cast iron 

water main was detected with GPR along with patch material from a previous repair.  
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Figure 25.  GPR Sample Survey Used to Identify Water Leakage around Spring Street 
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Process Automation 

 To update the leakage prediction surface results quickly, the data management and analysis 

process was automated using the Python programming language. Each day, an exported csv was 

obtained from the water departments work order system which documented any new hydrant 

pressure tests. These new tests were imported into the existing data and used to update the existing 

surface. The resulting Python script runs daily and is illustrated as a Jupyter Notebook within 

Appendix A.  
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CHAPTER 4 

DISCUSSION 

The water leakage project’s key components included collecting pressure data within the 

water distribution system, converting pressure results into hydraulic grade values, creating an 

interpolated surface based on hydraulic grade values, identifying potential leaks based on that 

surface, and testing them. The results indicate successes in water main leak detection and provided 

key indicators describing water system pressure conditions using a kriging interpolation model to 

predict changes in hydraulic gradient. The pressure conditions discovered included high pressures 

created by water pump stations as well as low pressure areas created by pressure reducing valves. 

Additionally, the bulk of data manipulation and analysis was automated using a script developed 

with the Python programming language. 

Data Collection Process 

 The importance of accurate and varied field data is critical to the success of water 

distribution system optimization efforts including leakage detection. The field pressure test data for 

this project was initially taken from fire hydrant flows conducted between 2015 and 2017 as 

performed by Johnson City’s fire department. Although providing sufficiently distributed coverage 

across the 1838A DMA, the data’s age did not reflect current and changing conditions within the 

water distribution system. To capture updated information, hydrant pressure test readings collected 

by water department personnel provided new data as it was recorded using a geospatially enabled 

work order management system. These data collection efforts were already part of the water 

department’s current water quality and leak detection efforts, so no additional personnel were 

needed. Access to the work order system allowed incorporation of new hydrant pressure test data 

in a timely fashion by incorporating exported work orders into updated prediction surfaces. 
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Kriging Model Development 

When developing the ordinary kriging prediction surface model, the cross-validation report 

generated by the Geostatistical Wizard toolset supported the selection of ordinary kriging model 

parameters. The reported values for the mean error, mean standardized error, and square 

standardized error were all included and helped develop an appropriate kriging model. For the 

1838A DMA hydrant test points, both the mean error and mean standardized error were close to 

zero, which supported the model fit. Also, the root mean square standardized error was close to 1 

and the best kriging model cross-validation test indicator, meaning that the model was an 

appropriate fit (Oliver and Webster 2014).  

The resulting model parameters were then incorporated into the process automation script 

as a parameter within the arcpy geoprocessing tool. To replicate these results within another DMA 

in Johnson City or other water system, a separate ordinary kriging model must be developed, 

checking the respective cross-validation results for an appropriate fit. Also, initial data points 

should be checked for normal distribution, the absence of any overarching global trends, and 

spatial autocorrelation (Sheeres 2016). If the data points do not reflect these conditions, steps 

should be taken to normalize the data or remove any trends. Otherwise, a different interpolation 

method should be investigated. 

Hydraulic Grade Surface Predictions and Investigations 

After developing the hydraulic grade surface model, multiple variations in hydraulic 

gradient were identified throughout 1838A that suggested high water demand and possible 

leakage. Any predicted area with a hydraulic grade value lower than the expected supply tank’s top 

elevation suggests high demand and possible water leakage (Walski 1983). The 1838A hydraulic 

grade surface predicted hydraulic gradient values in those areas ranging from 1748 to 2014. The 
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1838A DMA’s expected hydraulic gradient was 1838. Multiple hydrants within the DMA provided 

hydraulic grade values well below 1838 and was reflected in the prediction surface. After running 

the model multiple times, water department personnel elected to field verify results in a few 

selected areas that were reported previously as results. 

 Using a combination of field investigations and research of previous work orders, four 

areas investigated for low hydraulic grade values were false positives. All four had documented 

water leakage or water main breaks that had since been repaired, but were manifest in the 

hydraulic grade surface from outdated pressure test data. Browns Mill Road, Silverdale Drive, and 

Hanover Road areas contained water main breaks with hydraulic gradient values well below 1838 

since 2015. These areas experienced a period of water leakage leading up to a water main break 

event and subsequent repair. The Rambling Road water leakage area was the result of a broken 

hydrant lateral. Past records within the work order management system identified the previous 

repair and leak history from 2015, the same year as the pressure test. After identifying these four 

sites, water department personnel re-tested the hydrants and reported hydraulic gradient values 

above 1800. The new values were used to regenerate the hydraulic grade surface. 

Additional areas resulting in spikes in hydraulic gradient were found to be caused by 

pumps supplying water to areas at high elevations within the DMA. These pumps add energy in 

the form of increased hydraulic grade to overcome pressure losses experienced with physical 

changes in elevation (Walski et al. 2003). This was evident in the Tamassee and Taylor Ridge 

areas, which are within the 1838A DMA. Currently, twelve water booster stations are located 

within the 1838A DMA and are used to maintain water pressure to homes and businesses. Pumped 

areas with spikes in hydraulic gradient need further investigation, since excess and frequent 

variations in pressure are directly related to new leaks and water main breaks (Lambert 2000). 
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Another two areas investigated for water leakage after reporting low pressures returned 

inconclusive results. They are the North Roan Street area and West Locust Street and these are still 

under investigation. Leak detection crews re-tested hydrants and surveyed the area around West 

Locust Street, finding no leaks capable of affecting pressure. The North Roan Street area lies at the 

boundary of another DMA and may be influenced by pressure reduction due to an open isolation 

valve, which can be used to block water and control pressure zone boundaries (Walski et al. 2003). 

Field Leak Detection 

 The field leak detection efforts were used to validate drops in hydraulic gradient in the 

previously discussed areas plotted on top of in the interpolated surface in Figure 3.3. By using a 

pressure-dependent leak detection method, leakage hotspots were able to direct field investigations 

on focused areas instead of random or regular sounding surveys. This method attempted to 

discover unreported leaks and breaks, which is one of three categories of water leakage according 

to the Bursts and Background Estimates (BABE) philosophy to approaching water system leakage. 

The other two categories of BABE include reported leaks or breaks, and background losses with 

flow rates too low to be detected by traditional means (Samir et al. 2017). 

 Traditional acoustic noise monitoring is still the primary field leak detection method used 

by Johnson City’s water system personnel. This method detects noise propagated along pipes and 

the ground that is generated as water passes through a hole or fractures in pipes as well as passing 

through substances outside pipes (Xu et al. 2014). Each selected low-pressure area generated by 

the interpolated hydraulic gradient surface was inspected using acoustic leak detection survey 

methods. GPR was also used on the Spring Street water leak to validate results. Although both 

acoustic and GPR detected water leakage, GPR created a more detailed view of conditions below 

the surface as illustrated in Figure 3.10. The Spring Street water leak was a service line connecting 
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to an older six-inch cast iron water main that was easily detectable by both methods. GPR would 

likely prove itself more valuable for leak detection in plastic water mains, since there is evidence 

that acoustic techniques struggle to detect leakage in plastic water mains where leaks typically 

create less sound in plastic material and lower pressure conditions (Wu et al. 2010). Additional 

study is reccommended to verify these claims. 

Hidden Benefits 

The hydraulic grade surface illustrates realistic conditions in the field including pumping 

pressure effects and conditions created by PRVs. The northern region of 1838A contains multiple 

areas exhibiting these scenarios. Multiple pumps within the DMA increase pressures to reach 

residential areas in higher elevations, but also increase pressures to levels above 1838. These areas 

can be seen in Figure 3.3. Low predicted values include the Harbor Approach residential area in 

the northeastern portion of 1838A where hydraulic gradient values are below 1800 due to a PRV 

put in place to reduce damage to plumbing systems within private homes. These areas where 

pressure is regulated to control leakage are downstream of a PRV and known as DPAs, or discrete 

pressure areas (Sage 2014). The hydraulic grade surface clearly detected the Harbor Approach 

DPA and can be viewed in Figure 3.8. This may also be the case in the North Roan Street area, but 

further investigation is needed. Continuous updates to the surface as new pressure test data are 

collected will detect these pressure anomalies and help future decision making in regard to water 

system optimization. 

Process Automation 

In addition to developing the prediction surface and investigating possible leakage areas, a 

large portion of the project was devoted to developing an automated script to quickly update the 

prediction surface as new hydrant pressure test results became available. The pandas and 
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geopandas libraries used within the resulting Python script handled a large amount of data 

management and analysis. Developed in conjunction with Jupyter Notebooks, the pandas and 

geopandas tools calculated hydraulic gradient values, updated timestamp information, and joined 

hydrant test work orders with existing GIS data. This was possible due to geopandas’ inherent 

GeoSeries object, which preserved each hydrant’s spatial location within a GeoDataFrame as a 

spatial attribute in the geometry column (GeoPandas 2019). 

Process Improvements 

Improvements to the pressure test process would include pressure tests on additional asset 

types such as meters and water blowoff valves. The ability to collect more pressure tests in a 

shorter time period would also help detect water main leaks and breaks as they occur. The Johnson 

City Water/Sewer department has indicated that it will invest in a future advanced metering 

infrastructure (AMI) system, which would greatly improve pressure testing capabilities by 

recording pressures at water meters and transmitting data across cellular networks. Instead of only 

gathering hydrant pressure information when staff members are working in the field, water meters 

will have the ability to send real time pressure information. This would exponentially increase the 

data to be processed daily and may require running the process on a more powerful computer. 

Johnson City’s current water hydrant inventory contains 3,700 hydrants, which limits the number 

of pressure test sites. Implementing AMI would add roughly 43,000 water meters to the process, 

thus drastically increasing the ability to detect leakage. Being able to gather meter pressures 

quickly would increase water leakage detection times and decrease repair times. 

Another improvement involves imported csv files converted to pandas data frames obtained 

from the work order system, which captured daily hydrant pressure tests and served to update 

existing test point hydraulic gradient values. This process allowed daily updates to the prediction 
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surface, but still required manual file updates to the script. Future utilization of the work order 

system’s application programming interface (API) would eliminate the need to import a csv into 

the script, thus enabling the Python program to run as a scheduled task. The data frame 

information would be retrieved by an API request instead, thus eliminating the need to export a csv 

file out of Cartegraph and further automating the process. 

Lastly, further development of a GIS-based hydraulic model would allow the water 

department to improve DMA management. For example, the system could be monitored for errors 

such as accidentally closed valves (when valves were temporarily closed for repair and not 

reopened after). In addition, the lower average hydraulic grade values experienced within the 

northern areas of 1838A and higher values in the south suggest that the DMA should be split into 

two or more zones. Currently, 1838A contains over 14,000 customers, which is well over the 

suggested optimal range of 350 to 5,000 water users (Scibetta et al. 2013). A well-developed 

hydraulic model would allow users to simulate multiple real-world water demand scenarios and 

better plan DMA boundaries (Samir et al. 2017). 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATIONS 

Conclusion 

 This project used water pressure is an indicator of water leakage as described in other 

research. Not only will hydraulic gradient checks throughout a DMA identify water leakage areas, 

pressure checks conducted at water hydrant locations translated into an interpolated surface 

produce an effective tool to predict water leakage. The chosen kriging interpolation method not 

only creates hotspots indicating water loss, but also provides an indication of real-world pressure 

conditions and overall water system health. The pressure testing and kriging interpolation process 

easily identifies areas experiencing high pressures created by water pumps boosting pressure and 

low-pressure areas established by pressure reducing valves.  

 Pressure test information is expensive when collected by pressure monitoring equipment 

and is limited by the number of purchased monitors throughout a system. In populated areas, water 

hydrants are already distributed throughout a system as a function of public safety and provide 

multiple test sites that are ideal in developing an interpolated prediction surface. In addition to 

regular hydrant maintenance and water quality testing by water distribution professionals, fire 

department personnel regularly inspect and flow-test hydrants. These maintenance activities by 

multiple departments create the possibility of multiple pressure test data collection efforts used to 

detect water leakage. Combined with the previously described kriging model and easily configured 

Python automation, existing maintenance activity data are employed to detect water leaks.  

Leak detection through interpolated pressure testing helps to reduce costs by discovering 

large water leaks that create enough demand to lower hydraulic gradient values throughout a water 

system. This is especially true for large water leaks that do not surface, run for long periods of 
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time, and usually cost large amounts of money. Using the previously described methods within this 

project and within DMAs helps to isolate systems into zones and prioritize leak repair activities. In 

Johnson City, multiple leaks were discovered using these methods in the 1838A DMA. 

Recommendations 

 Improvements to the current process include collecting pressure tests at additional water 

infrastructure assets such as water meters. Water meter pressure monitoring would greatly increase 

the number of pressure test locations. Also, increased pressure test frequency would provide water 

leakage indicators in a timely manner. This would increase chances of detecting large water leaks 

as they occur. When scrutinizing process speed and data management, the incorporation of an API 

within the automated Python script would allow pressure test updates to be scheduled at regular 

intervals and not rely on manual work order system exported files. Water pressure test information 

could be directly fed into a pandas data frame through the API instead of reading manually created 

csv files.  

 When investigating leakage within DMAs, the optimal number of water customers is 

between 350 and 5,000 (Scibetta et al. 2013). The 1838A DMA contains over 14,000 water 

customers and should be broken into three or more DMAs. Additional DMA boundaries could be 

developed through incorporating a hydraulic model using existing water system GIS information. 

Hydraulic models help to investigate existing and planned water system conditions by modeling 

possible scenarios in valving, pumping, and pressure reduction (Walski et al. 2003). Adoption of a 

hydraulic model would also help to investigate the observed average 1805 hydraulic gradient 

values within 1838A.  

 Further use of alternative field leak detection survey methods to the traditional acoustic 

techniques is also recommended. Johnson City’s water system contains many miles of plastic 
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water mains that create difficult leak detection conditions for acoustic location devices. The tested 

GPR method proved capable in detecting water leakage in cast iron water mains as well as 

supplying a detailed view of underground conditions surrounding water mains. Further testing in 

plastic water mains may prove helpful in detecting water leakage that is not audible due to material 

conditions. 
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APPENDIX:  Process Automation Python Code 

https://github.com/jktittle/Water-Leakage-Surface-

Updates/blob/master/WaterLeakagePressureUpdates.ipynb 

Script to Update Hydraulic Grade Values and Interpolate 

Sample Points Using Ordinary Kriging 
Introduction 

The Python component of this project was used to automate daily data imports and maintenance 
required to dependably produce leakage area results. Since the project is applied to a real-world water 
distribution system, data were generated daily, creating the need to automate labor intensive tasks. To 
do this, the pandas and geopandas Python libraries were used to handle most of the data management 
by performing data imports, data cleanup, data table merges, and hydraulic grade calculations. This was 
accomplished by importing regularly generated pressure information into pandas data frames and 
hydrant locational information into a geopandas spatially enabled geodataframes. 

The static pressure update processing is an ongoing program at the water department, so an automated 
script was developed to capture additional hydrant pressure tests daily. This placed information 
indicating large areas exhibiting water leakage in front of decision-makers in a timely manner so that 
large water breaks can be identified and repaired. The script was written in Python and developed using 
Jupyter Notebooks in conjunction with ArcGIS to document each step and support replication in other 
water systems. 

 

#Import the following python libraries 

import sys, os, csv, fiona, datetime, arcpy 

import pandas as pd 

import numpy as np 

import geopandas as gp 

from geopandas import GeoSeries, GeoDataFrame 

from shapely.geometry import Point 

import matplotlib.pyplot as plt 

from arcpy import env 

from arcpy.sa import * 

 

#Set the environment workspace and overwrite settings 

arcpy.env.overwriteOutput = True 

arcpy.env.workspace = "C:\\StaticPressureProcess\\StaticPressureData.gdb" 

 

#Create variables for the pressure update csv, pressure test point file, and pr

essure zone polygon file 

pressureUpdateFile = "C:\\StaticPressureProcess\\TasksExport.csv" 

pressurePoint = "C:\\StaticPressureProcess\\StaticPressureData.gdb\\PZ1838A_Pre

ssureTestPnts" 

https://github.com/jktittle/Water-Leakage-Surface-Updates/blob/master/WaterLeakagePressureUpdates.ipynb
https://github.com/jktittle/Water-Leakage-Surface-Updates/blob/master/WaterLeakagePressureUpdates.ipynb
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pressureZone = "C:\\StaticPressureProcess\\StaticPressureData.gdb\\PZ1838A_Rede

fined" 

outRaster = "C:\\StaticPressureProcess\\StaticPressureData.gdb\\LeakSurface_" + 

datetime.date.today().strftime("%m%d%Y") 

clippedRaster = "C:\\StaticPressureProcess\\StaticPressureData.gdb\\Clipped

Surface_" + datetime.date.today().strftime("%m%d%Y") 

redefined1838aDma = "C:\\StaticPressureProcess\\DMA1838A.shp" 

geoStatModel = "C:\\StaticPressureProcess\\OrdinaryKrigingModel_1838A_TheBest.x

ml" 

geoStatLayer = "KrigingOutLayer" 

 

#Use the fiona library to list all layers within the StaticPressureData geodata

base.  

#The list will be used to reference the layer imported with geopandas 

fiona.listlayers("C:\\StaticPressureProcess\\StaticPressureData.gdb") 

 

#Import the PZ1838_PressureTestPnts feature class as a geodataframe. 

#The layer parameter is taken from the fiona generated list position of the des

ired geodatabase feature class. 

testSites = gp.read_file("C:\\StaticPressureProcess\\StaticPressureData.gdb",dr

iver='FileGDB', layer=3) 

testSites 

 

#Standardize the DateCollected column 

testSites['DateCollected']=pd.to_datetime(testSites['DateCollected']) 

testSites 

 

#Import the pressure updates csv into a pandas data frame 

staticUpdates = gp.read_file( "C:\\StaticPressureProcess\\TasksExport.csv") 

staticUpdates 

 

#Add the FACILITYID column and slice the text to only contain hydrant identifie

rs 

staticUpdates['FACILITYID'] = staticUpdates.Asset.str[14:] 

 

#Replace spaces with underscores 

staticUpdates.columns = staticUpdates.columns.str.replace(' ', '_').str.replace

('(', '').str.replace(')', '') 

 

#Convert the Static_Pressure column to numericvalues 

staticUpdates['Static_Pressure']=pd.to_numeric(staticUpdates.Static_Pressure) 

staticUpdates 



 

73 

 

 

#Standardize the Actual_Stop_Date column 

staticUpdates['Actual_Stop_Date']=pd.to_datetime(staticUpdates['Actual_Stop_Dat

e']) 

staticUpdates 

 

#Find and remove all rows with a Static_Pressure value equal to zero 

zeroStaticP = staticUpdates[ staticUpdates['Static_Pressure'] == 0 ].index 

staticUpdates.drop(zeroStaticP , inplace=True) 

 

#Find and remove all rows with a Static_Pressure value greater than 200 

zeroStaticP = staticUpdates[ staticUpdates['Static_Pressure'] > 300 ].index 

staticUpdates.drop(zeroStaticP , inplace=True) 

 

staticUpdates 

 

#Join the staticUpdates data frame to the testSites data frame using the FACILI

TYID field 

#This creates a new data frame that contains the static pressure updates to app

ly to the 1838A test hydrants 

mergedPressureInfo = testSites.merge(staticUpdates, on='FACILITYID') 

mergedPressureInfo 

 

#Update new StaticPressure column 

mergedPressureInfo.StaticPressure = mergedPressureInfo.Static_Pressure 

 

#Recalculate the Hydrograde column 

mergedPressureInfo.HydroGrade = mergedPressureInfo.Elevation + 2.31 * mergedPre

ssureInfo.StaticPressure 

 

#Update the DateCollected column with new dates from the Actual_Stop_Date colum

n 

mergedPressureInfo.DateCollected = mergedPressureInfo.Actual_Stop_Date 

mergedPressureInfo 

 

#Remove unneeded fields from the data frame 

del mergedPressureInfo['Task_ID'] 

del mergedPressureInfo['Asset'] 

del mergedPressureInfo['Activity'] 

del mergedPressureInfo['Static_Pressure'] 

del mergedPressureInfo['Actual_Stop_Date'] 
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del mergedPressureInfo['geometry_y'] 

 

#Rename the geometry column 

mergedPressureInfo.rename(columns={"geometry_x":"geometry"}, inplace=True) 

mergedPressureInfo 

 

#Remove duplicate values 

mergedPressureInfo = mergedPressureInfo.sort_values('DateCollected',ascending=T

rue) 

mergedPressureInfo = mergedPressureInfo.drop_duplicates(subset='FACILITYID', ke

ep='first') 

mergedPressureInfo = mergedPressureInfo.sort_values('FACILITYID',ascending=True

) 

mergedPressureInfo 

 

Update testSite values with the new static pressure test values and 

export to a shapefile 
 

#Set the testSites index to the FACILITYID column 

testSites = testSites.set_index('FACILITYID') 

 

testSites 

 

#Set the mergedPressureInfo data frame index to the FACILITYID column 

mergedPressureInfo = mergedPressureInfo.set_index('FACILITYID') 

 

mergedPressureInfo 

 

#Run the update function on the testSites data frame 

testSites.update(mergedPressureInfo) 

 

#Reset the indexes 

testSites.reset_index(inplace=True) 

 

testSites 

 

#Convert the merged data frame to a GeoDataFrame and remove null HydroGrade Val

ues 
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updatedGdf = gp.GeoDataFrame(testSites, geometry='geometry') 

NewGdf = updatedGdf[updatedGdf.HydroGrade.notnull()] 

NewGdf 

 

#Convert the DateCollected column to string values in order to export to shapef

ile 

NewGdf['DateCollected']=NewGdf['DateCollected'].astype(str) 

 

#Set the new geodataframe's projection and plot the new pressure tests within 1

838A 

NewGdf.crs = {"init":"epsg:2274"} 

updatedGdf.plot(figsize=(12,12)); 

 

##Create new shapefile name and export the geodataframe to new shapefile 

shpFileName = r"C:\StaticPressureProcess\UpdatedStaticPressureTests_" + datetim

e.date.today().strftime("%m%d%Y") + ".shp" 

 

NewGdf.to_file(shpFileName) 

 

Run the ordinary kriging model on the updated hydrant pressure 

points 

Run the Kriging interpolation using the pressure point layer. This step creates a Geostatistical Layer 
using tools from Geostatistical Analyst. The tool uses an existing Geostatistical layer as a model source 
to duplicate its parameters and should be stored in the project workspace. 

 

#Check out the ESRI Spatial and Geostatistical Analyst Extensions 

arcpy.CheckOutExtension("Spatial") 

arcpy.CheckOutExtension("GeoStats") 

 

krigingInLayer = shpFileName + " X=Shape Y=Shape F1=HydroGrade" 

 

#arcpy.GACreateGeostatisticalLayer_ga(in_ga_model_source, in_datasets, out_laye

r) 

arcpy.GACreateGeostatisticalLayer_ga(geoStatModel, krigingInLayer, geoStatLayer

) 

 

#Export Geostatistical layer to a raster arcpy.GALayerToRasters_ga(geoStatLayer, outRaster) 

#Clip the interpolation surface to the desired polygon boundary layer 
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arcpy.Clip_management(outRaster, "#",clippedRaster, redefined1838aDma,"0","

ClippingGeometry") 

 

#Check back in the ESRI Spatial and Geostatistical Analyst Extensions 

arcpy.CheckInExtension("Spatial") 

arcpy.CheckInExtension("GeoStats") 

 

print("Completed Script") 
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