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The Atlantic sea scallop (Placopecten magellanicus) supports a highly valuable fishery in 

the United States over its range on the Northwest Atlantic Shelf. Scallop distribution has been 

shown to be highly affected by changes in climactic variables. Therefore, long-term changes in 

the thermal regime of the Gulf of Maine are expected to greatly impact scallop ecology; 

however, these projected changes have rarely been quantified. The modeling framework 

developed for my dissertation research will improve our understanding of the distribution of 

scallop habitat as well as the biogeography for this species. Additionally, this modeling capacity 

will provide several tangible tools to visualize species distribution over space and time as well as 

to evaluate potential impacts of a changing Gulf of Maine ecosystem.  

The framework for my dissertation research is comprised of 1) a bioclimate envelope 

covering the Gulf of Maine to quantify spatiotemporal variability in scallop habitat; 2) a 

statistical species distribution model to predict spatiotemporal changes in scallop distribution in 

the Gulf of Maine; 3) the design of a dredge survey in the Northern Gulf of Maine to obtain 

scallop biomass estimates; and 4) a two-stage modeling and computer simulation framework to 

refine fisheries surveys. 



 

Due to changing oceanographic conditions within the Gulf of Maine ecosystem it is 

becoming increasingly important to view resource management from within the context of 

climate change. Effective management of marine resources requires knowledge of population 

distribution and dynamics, however; fisheries managers must frequently base decisions on 

limited information. The modeling framework developed in my dissertation establishes the 

ability to better visualize sea scallop distribution as well as to evaluate the potential impacts of a 

changing ecosystem on this species. The results provided by this research increase the extent of 

knowledge about sea scallop ecology and have the potential to contribute to the conservation of 

this species. Additionally, the modeling approaches developed throughout my dissertation are 

highly generalizable to a variety of commercially important species and may be useful in 

advising conservation efforts for other fisheries in the Northwest Atlantic to help ensure the 

implementation of adaptive management strategies under uncertain climate conditions. 
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CHAPTER 1- BACKGROUND ON SEA SCALLOP ECOLOGY AND THE FISHERY IN 

THE UNITED STATES 

1.1 Sea Scallop Ecology 

The Atlantic sea scallop (Placopecten magellanicus) is a bottom-dwelling bivalve 

mollusk of the family Pectinidae which occurs on the continental shelf and has a distribution 

extending from the Gulf of St. Lawrence to Cape Hatteras, North Carolina, USA (Shumway and 

Parsons 2006).   

Like most benthic species, sea scallop abundance and distribution are influenced by a 

complex array of interacting environmental variables such as depth, bottom composition, 

currents, temperature, and salinity (Wildish and Saulnier 1992; Stokesbury and Himmelman 

1995; Hart and Chute 2004). Throughout their geographic range, sea scallops occur mainly at 

depths ranging from 15 to 110 m, but can be found in shallower water in the northern part of its 

range, where they have been reported at depths up to 2 m (Naidu and Anderson 1984; Carsen et 

al. 1995). Juveniles and adults are most abundant on gravel substrate, but are also commonly 

found on sand, shells, or small rocks (Thouzeau et al. 1991). Temperature is an important 

environmental factor influencing growth rates in this species with adult scallops showing optimal 

growth at temperature between 10-15 °C and temperatures above 21 °C being lethal (Stewart and 

Arnold 1994). This species prefers full strength seawater (~35 ppt), with salinities of 16.5 ppt or 

lower being lethal (Stewart and Arnold 1994).  

Sea scallops are suspension filter feeders that use cilia-generated currents to filter water 

and suspended particulate material (Hart and Chute 2004). Phytoplankton and microzooplankton 

make up the majority of nutrition for this species, however, detritus particles and dissolved 

organic matter can be ingested as well and make up a minor portion of the diet for this species 

(Hart and Chute 2004). Sea scallops are usually found in environments with strong currents (Hart 
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and Chute 2004), and flow velocity has been shown to be a key factor controlling waste removal, 

oxygen uptake, feeding, and growth rates (Stewart and Arnold 1994; Shumway and Parsons 

2006). Optimal growth for this species is around 0.1 m s-1  (Wildish and Saulnier 1992) and 

feeding inhibition has been observed to start at ~ 0.25 m s-1  Pilditch and Grant (1999). 

Reproduction in sea scallops is dependent on a number of local ecological conditions, but 

late summer to early fall spawning is typical in most populations (Shumway and Parsons 2006). 

Once fertilized, eggs generally reside on the sediment before developing into the larval stage 

(Hart and Chute 2004). The larval stage consists of a transition from the trocophore stage 

through the veliger stage and lasts for approximately 40 days (Stewart and Arnold 1994; 

Shumway and Parsons 2006). During this time the larvae are planktonic and can only minimally 

control their position via vertical migration (Hart and Chute 2004). 

Sea scallops are largely sedentary, especially during the adult phase of their life history 

(Shumway and Parsons 2006). Thus, this species does not actively move to select for optimal 

habitat. Rather, the abundance and distribution of scallops are influenced by a multitude of 

habitat characteristics and ocean currents that interact to control larval settlement and survival 

into the adult stage (MacDonald and Thompson 1985a, 1985b; Macdonald et al. 1987; Thouzeau 

et al. 1991; Wildish and Saulnier 1992; Stokesbury and Himmelman 1995; Hart and Chute 

2004). 

1.2 Status of Sea Scallop fisheries in the United States 

The federal scallop fishery has undergone a large recovery since the mid-1990s and now 

supports the most valuable fishery in the U.S. with total ex-vessel values exceeding $486 million 

in 2016 (NMFS 2016).  Conversely, the Maine scallop fishery is relatively depleted, having 

bottomed out in 2005 when only 33,000 pounds of scallop were reported landed. Historically, the 
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state fishery has undergone large, irregular fluctuations in abundance with high fishing pressure 

following peaks in scallop populations (Kelly 2012). While landings from this fishery are still 

relatively low, data from 2017 show that fisherman brought in 550,000 pounds, a marked 

increase from 2005. 

Figure 1.1: Maine landings from 1950 to 2018. Maine Division of Marine Resources 

The value of scallops has increased from $8.23 per pound in 2005 to over $10 per pound 

in 2017. This fishery has been very valuable historically during periods of high abundance and 

has the potential to build back to this point, supporting local Maine fisherman and other 

stakeholders.  Thus, improving stock assessment and management to maximize sustainable yield 

is highly important to the economies of coastal Maine areas where scallops are landed. Recent 

survey data shows that the increasing trend in scallop abundance is continuing, which provides 

an ideal opportunity to establish a sustainable, highly valuable fishery through properly informed 

management (Kelly 2012). 

1.3 Impacts of a climactically altered Gulf of Maine ecosystem on sea scallops 
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There is compelling evidence that anthropogenic climate change is already causing long-

term changes in oceanographic conditions that are impacting marine ecosystems (Townsend et 

al. 2004; Sumaila et al. 2011; Mills et al. 2013). The Northwest Atlantic in particular is 

undergoing rapid biophysical changes with water temperature increasing an average of 0.03 °C 

yr-1 since 1982 along with an accompanying increase in salinity (Mills et al. 2013; Pershing et al. 

2015; Saba et al. 2015). This enhanced warming exceeds that which could be accounted for by 

the magnitude of natural decadal variability, and is associated with a northerly shift in the Gulf 

Stream, resulting in an increase of Warm-Temperate Slope Water entering the Northwest 

Atlantic Shelf (Pershing et al. 2015; Saba et al. 2015). Based on the transient climate response, 

which is the global mean temperature rise at the time of CO2 doubling, warming on the scale of 

3-4 °C is expected in the Northwest Atlantic Ocean over the next 70 years (Saba et al. 2015). 

Thus, climate change will continue to restructure ecosystems and have escalating effects on both 

marine resources and ecosystem services (Pershing et al. 2015). 

The distribution of sea scallops has been shown to be keenly affected by changes in 

climactic variables (Kurihara 2008; Caputi et al. 2013; Tanaka et al. 2018; Torre et al. 2018). 

Dickie (1955) and Caddy (1979) showed that fluctuations in the abundance of sea scallops in the 

Bay of Fundy was correlated with bottom water temperature, with higher temperatures leading to 

increases in abundance. The influence of increased temperature is thought to result in rapid larval 

development and improved survival of juveniles and adults (Dickie 1955; Caddy 

1979).Therefore, long-term changes in the thermal regime in the Northwest Atlantic are expected 

to greatly impact sea scallop larval settlement, survival, and resulting adult distribution 

(Thouzeau et al. 1991; Wildish and Saulnier 1992; Crossin et al. 1998; Caputi et al. 2013). In 

light of a changing GOM ecosystem (Mills et al. 2013; Pershing et al. 2015) it is becoming 
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increasingly important to document the importance and synergistic effects of climate forcing on 

the dynamics of species abundance and distribution. 

1.4 Structure of dissertation 

The distribution and abundance of species are central concepts to ecological research and 

vital components of both conservation planning and fisheries management (Franklin 2010).  

The modeling framework developed for my dissertation research will improve our understanding 

of the distribution of habitat for sea scallops as well as the biogeography for this species. 

Additionally, this modeling capacity will establish the ability to quantify relationships between a 

commercially important fish stock and its surrounding environment, while providing several 

tangible tools to visualize species distribution over space and time as well as to evaluate potential 

impacts of a changing Gulf of Maine ecosystem. These chapters are arranged in order of the 

level of sophistication of the modeling approach and represent a progression of my skills in 

biostatistical modeling and computer programming. 

Chapter 2 presents a bioclimate envelope model to evaluate the impacts of climate 

variability on spatiotemporal availability of suitable habitat for sea scallops in the Gulf of Maine 

(Torre et al. 2018). This modeling approach constitutes the qualitative component of my 

dissertation research. Bioclimate envelopes were established through Habitat Suitability Indices 

(HSI) based on bottom temperature, bottom salinity, current velocity, depth, and bottom 

composition. This model was coupled with a regional circulation model to establish the ability to 

hindcast spatiotemporal dynamics of suitable habitat for sea scallops in coastal and offshore 

waters of the Gulf of Maine from 1978 to 2013. The relationship between sea scallop abundance 

and each environmental variable was quantified using Suitability Indices (SIs) which were 

generated based on standardized scallop abundance sampled over 10 years of dredge survey data. 
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Boosted regression tree (BRT) models were used to determine the relative importance of each 

environmental variable to scallop abundance, which established a weighting scheme within the 

HSI. Higher habitat suitability was found along inshore areas compared with offshore. Model 

predictions indicate an increasing trend in habitat suitability in inshore waters since 1978 and 

decreasing habitat suitability in offshore waters.  

Chapter 3 presents a climate-niche species distribution model to evaluate spatiotemporal 

trends in sea scallop distribution along the coastal waters of the Gulf of Maine (Torre et al. in 

press).  A Tweedie-generalized additive model (GAM) was used to quantify the relationships 

between scallop abundance and key environmental variables. A boosted regression tree was used 

to identify significant interactions among environmental variables to integrate within the 

Tweedie GAM and a regional circulation model was incorporated with the Tweedie GAM to 

hindcast projections of scallop distribution and assess the impacts of environmental change on 

this species. Additionally, within this chapter, two common model fitting and variable selection 

methods for GAMs were evaluated to ensure high model performance. A classic backward 

variable selection procedure was compared to penalized thin plate regression splines. Projections 

from the climate-niche species distribution model show higher scallop density along inshore 

areas relative to those farther offshore. An increasing temporal trend in scallop density was 

observed along inshore areas and a decreasing temporal trend was observed in areas farther 

offshore. Additionally, the GAM incorporating thin plate regression splines was found to 

outperform the widely used backwards stepwise procedure.  

Chapters 4 and 5 present an application of this modeling framework to improve fishery 

management for sea scallops in the Gulf of Maine. Chapter 3 comprises a technical report that 

details the design of the 2016 Northern Gulf of Maine (NGOM) sea scallop dredge survey and 
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analysis of resulting data. This survey took place during May- June of 2016 and covered seven 

key areas within the NGOM management area. The goal of this survey was to provide reliable 

biomass estimates of harvestable size sea scallops within the area in order to inform management 

actions for the 2017 fishing season. This survey is an ongoing process, so it remains important to 

use each iteration of survey information to optimize the design with regards to accuracy and 

precision of sea scallop biomass estimates. To this end, chapter 5 presents a coupled two-stage 

species distribution model (SDM) and computer simulation framework to evaluate and optimize 

this dredge survey (Torre and Chen, in review). Model-predicted distribution of sea scallop 

biomass from the 2016 survey was used as the underlying population upon which multiple 

sampling effort allocation schemes were simulated to evaluate the bias and precision of biomass 

estimates from survey design implemented in 2016 and to test alternative approaches. The SDM 

developed in this chapter performed well predicting both the occurrence and biomass distribution 

of sea scallops. There was considerable difference, in terms of accuracy and precision, in the 

reliability of biomass estimates across survey designs. A marked improvement was observed in 

the relative root mean squared error (RMSE%) of biomass estimates from the best performing 

survey design (11.4) relative to the implemented in the 2016 dredge survey (26.0), justifying 

changes be made for future surveying efforts. The framework developed in this study offers a 

dynamic and adaptive approach for evaluating and improving fishery survey design. 

In light of changing oceanographic conditions within the Gulf of Maine ecosystem it is 

becoming increasingly important to view resource management from within the context of 

climate change (Mills et al. 2013; Pershing et al. 2015; Saba et al. 2015). Effective management 

of marine resources requires knowledge of population distribution and dynamics (Langton et al. 

1995), however; fisheries managers must frequently base decisions on limited information 
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(Brown et al. 2000). Additionally, many management plans fail to incorporate environmental 

variability (NMFS, 2010). The modeling framework developed in this dissertation provides 

several tools to visualize sea scallop biogeography as well as to evaluate the potential impacts of 

a changing ecosystem on this species. Additionally, the modeling approaches developed 

throughout my dissertation are highly generalizable to a variety of commercially important 

species and can be useful in advising conservation efforts for the scallop fishery in the Northwest 

Atlantic to help ensure the implementation of adaptive management strategies under uncertain 

climate conditions. 
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CHAPTER 2 - A SPATIOTEMPORAL EVALUATION OF PLACOPECTEN 

MAGELLANICUS HABITAT IN THE GULF OF MAINE USING A BIOCLIMATE 

ENVELOPE MODEL 

 

2.1 Abstract 

A bioclimate envelope model was developed to evaluate the impacts of climate 

variability on spatiotemporal availability of suitable habitat for Atlantic sea scallop (Placopecten 

magellanicus) in the Gulf of Maine. Bioclimate envelopes were established through Habitat 

Suitability Indices (HSI) based on bottom temperature, bottom salinity, current velocity, depth, 

and bottom composition. The relationship between P. magellanicus abundance and each 

environmental variable was quantified using Suitability Indices (SIs) which were generated 

based on standardized scallop abundance sampled over 10 years of dredge survey data. Boosted 

regression tree (BRT) models were used to determine the relative importance of each 

environmental variable to scallop abundance, which established a weighting scheme within the 

HSI. A regional circulation model was coupled with the weighted HSI to hindcast spatiotemporal 

dynamics of suitable habitat for P. magellanicus in coastal and offshore waters of the Gulf of 

Maine from 1978 to 2013. Higher habitat suitability was found along inshore areas compared 

with offshore. Model predictions indicate an increasing trend in habitat suitability in inshore 

waters since 1978 and decreasing habitat suitability in offshore waters. This research provides a 

novel modeling framework for P. magellanicus to enhance research and management of 

commercially valuable stocks over broad spatiotemporal scales in the climatically altered Gulf of 

Maine. 

2.2 Introduction 
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The Atlantic sea scallop (Placopecten magellanicus) is a bivalve mollusk of the family 

Pectinidae. The species occurs on the continental shelf and its distribution extends from the Gulf 

of St. Lawrence to Cape Hatteras, North Carolina, USA(Shumway and Parsons 2006).  P. 

magellanicus supports a highly valuable fishery overall in the United States. However, the 

scallop fishery in the Gulf of Maine is depleted, having bottomed out in 2005 when only 33,000 

pounds were reported landed, compared with over 3 million pounds landed in the early 1990’s 

(Kelly 2012). Recent data show an increasing trend in P. magellanicus abundance, which 

provides an ideal opportunity to establish a persistent, valuable fishery through focused research 

and management efforts (Kelly 2012). 

The distribution and abundance of many benthic species are closely tied to their 

surrounding environment, which fluctuates over space and time (Dickie 1955; Slacum et al. 

2010). Abundance and distribution of P. magellanicus are influenced by a multitude of habitat 

characteristics such as depth, bottom composition, currents, temperature, and salinity 

(MacDonald and Thompson 1985a, 1985b; Macdonald et al. 1987; Thouzeau et al. 1991; 

Wildish and Saulnier 1992; Stokesbury and Himmelman 1995; Hart and Chute 2004). P. 

magellanicus occur mainly at depths ranging from 15 to 110 m throughout its geographic range, 

but can be found in shallower water in the northern part of its range, where it has been reported 

at depths up to 2 m (Naidu and Anderson 1984). Both juveniles and adults of this species are 

generally found on sand, gravel, shells, or small rock substrate with gravel typically holding the 

highest abundances (Thouzeau et al. 1991). Adult P. magellanicus show optimal growth at 

temperature between 10-15 °C with temperatures above 21 °C being lethal and prefer full 

strength seawater (~35 ppt), with salinities of 16.5 ppt or lower being lethal (Stewart and Arnold 

1994). P. magellanicus are usually found in environments with strong currents (Hart and Chute 
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2004), and flow velocity has been shown to be a key factor controlling waste removal, oxygen 

uptake, feeding, and growth rates (Stewart and Arnold 1994; Shumway and Parsons 2006). The 

feeding response of most suspension-feeding bivalves to increases in unidirectional flow velocity 

is expected to follow a unimodal function where, at low flow rates, increases in velocity enhance 

filtration up to an optimal rate upon which further increases result in feeding inhibition (Wildish 

and Kristmason 1993; Pilditch and Grant 1999). Optimal growth for this species is around 0.1 m 

s-1  (Wildish and Saulnier 1992).   Pilditch and Grant (1999) observed inhibition of feeding at 

0.25 m s-1. Despite the clear influence of habitat quality on bivalve ecology, evaluation of P. 

magellanicus-habitat relationships and spatiotemporal trends of suitable habitats remain scarce 

(Shumway & Parsons, 2006; Mendo et al., 2014). 

The Gulf of Maine (GOM) has warmed faster than the majority of the world’s oceans 

with temperatures increasing an average of 0.026 °C yr-1 since 1982 (Mills et al. 2013; Pershing 

et al. 2015). Both bottom temperature and bottom salinity are also increasing (Saba et al. 2015). 

Rapidly increasing temperatures are impacting the abundance and distribution of numerous 

marine species (Overholtz et al. 2011; Howell and Auster 2012; Hollowed et al. 2013) with 

many fish stocks exhibiting a poleward shift in their center of biomass and/or an increase in 

depth (Nye et al. 2009). P. magellanicus distribution and abundance have been shown to be 

impacted by climatic variability (Frank et al. 1990; Kurihara 2008). Dickie (1955) and Caddy 

(1979) showed that fluctuations in the abundance of P. magellanicus in the Bay of Fundy was 

correlated with bottom water temperature, with higher temperatures leading to increases in P. 

magellanicus abundance. The influence of increased temperature is thought to result in rapid 

larval development and improved survival of juveniles and adults (Dickie 1955; Caddy 1979). In 

light of a changing GOM ecosystem (Mills et al. 2013; Pershing et al. 2015) it is becoming 



12 
 

increasingly important to document the importance and synergistic effects of climate forcing on 

the dynamics of species abundance and distribution. 

A bioclimate envelope model was developed in this study through coupling empirical 

Habitat Suitability Indices (HSI) with a regional ocean circulation model, to evaluate the climate-

driven changes in habitat suitability for P. magellanicus from 1978–2013. Bioclimate envelopes 

are generally referred to as a multivariate space defined by a set of key climatic and 

environmental variables that best describes the physical and/or biological conditions of observed 

species distribution (Cheung et al. 2009; Araujo and Peterson 2012).  HSI is an ecological index 

that can quantify the relationships between environmental variables and species abundance and 

predict where a species is likely to persist (Giannoulaki et al. 2011; Araujo and Peterson 2012). 

Habitat suitability-based bioclimate envelope models are increasingly used to quantify the 

impact of climatic variation on the spatiotemporal availability of suitable habitat for a given 

species (Pearson and Dawson 2003; Araujo and Peterson 2012; Tanaka and Chen 2016).  

Bioclimate envelopes for P. magellanicus were defined by HSI derived from bottom 

temperature, depth, bottom composition, flow velocity, and bottom salinity. This HSI-based 

bioclimate envelope model has been adapted to incorporate the largely sedentary nature of adult 

P. magellanicus through temporal aggregation of dynamic environmental variables (temperature, 

salinity, and flow velocity) to reflect an annual range of conditions in a given location. The 

modelling effort developed in this study establishes the ability to evaluate spatiotemporal 

changes in bioclimate envelopes due to the incorporation of a regional ocean circulation model. 

Spatiotemporal trends in bioclimate envelopes are discussed with relation to potential climate-

driven changes in P. magellanicus abundance and distribution.  This research is novel as it’s the 
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first bioclimate envelope model developed for P. magellanicus and provides a framework that 

can facilitate ecosystem-based management of commercially valuable GOM stocks. 

 

2.3 Methods 

2.3.1 Study Area 

This modeling effort covers the inshore (<3 nm from shore) and offshore (>3 nm from 

shore) waters within the GOM from Cape Cod, Massachusetts to Downeast Maine, USA (Figure 

2.1). The GOM is characterized by a mixture of oceanic influences directly affected by the 

Labrador Current, the Gulf Stream, and the freshwater discharge from the St. Lawrence River 

(Sutcliffe et al. 1976). As such, water temperature follows a gradient moving up the coast and 

also offshore. Within the study area, P. magellanicus were found in areas with maximum yearly 

temperature ranging from 8 °C in deeper areas to 16 °C in shallow areas. Salinity ranged from 26 

ppt in inshore areas subject to freshwater inputs to full seawater (35 ppt) in offshore locations. 

This study covered depths to ~ 60 m since P. magellanicus are known to be uncommon deeper 

than this depth range (Hart and Chute 2004).   
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Figure 2.1: Spatial distribution of natural log standardized sea scallop abundance. The 

study area is in the Gulf of Maine from Cape Cod, Massachusetts to the Maine-Canada 

border. Size frequency is also shown with the vertical red line indicating the cutoff at 

65mm shell height below which scallops were not included in the model.  

 

2.3.2 Survey data 

This study incorporates 10 years of dredge-based fishery-independent surveys of P. 

magellanicus along the inshore and offshore waters of Maine and Massachusetts conducted by 

the Maine Department of Marine Resources (2005-2014: Kelly, 2012; Figure 2.1). Sections of 

this total area were sampled intermittently throughout this time period. An annual spring survey 
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covers alternating portions of inshore Maine waters and follows a stratified random design. An 

annual systematic survey covering select coastal areas occurs each fall. Offshore areas were 

surveyed in 2009 and 2012 using an adaptive two-stage random stratified design. The gear used 

for all surveys is an unlined, 7 ft New Bedford style drag with 2 in rings, 1.75 in head bale, 3.5 in 

twine top, 10 in pressure plate and rock chains. Since P. magellanicus < 65 mm in shell height 

were not efficiently sampled with the 2 in rings (Kelly 2012), these were excluded from all 

analyses.  Tows were conducted at 3.5-4 knots and lasted from 2.5 to 5 minutes depending on the 

location, bottom type, and amount of fixed fishing gear in the area. All combined surveys yielded 

a total of 2,469 tows and captured 235,111 samples (Figure 2.1).  

2.3.3 Environmental data 

The unstructured-grid Finite-Volume Community Ocean Model (FVCOM) configured in 

the Northwest Atlantic Shelf region was used to simulate monthly estimates of bottom 

temperature, salinity, and current velocity from 1978 to 2013 throughout the entire study area. 

The FVCOM is a regional ocean circulation model developed by the University of 

Massachusetts-Dartmouth and the Woods Hole Oceanographic Institution (Chen et al. 2006). It 

has a horizontal resolution ranging from 0.02 km to 10 km (Chen et al. 2011).The unstructured 

FVCOM grid captures complex and irregular coastal geometry, making FVCOM suitable for 

physical and biological studies in coastal regions and estuaries (Chen et al. 2011). Since the 

survey did not measure temperature, salinity, or current velocity, FVCOM predictions were 

matched to survey tows from the nearest neighboring FVCOM point during time of sample 

(Figure 2.2). The absolute value of two-dimensional current velocity was taken to approximate 

the magnitude of water flow at a given location. Current velocity C was estimated at station i, 

and year y from FVCOM predictions using the following equation:  
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𝐶𝑖,𝑦  = √𝑢𝑖,𝑦
2 +  𝑦𝑖,𝑦

2                                

where C is the magnitude of the predicted current velocity; u and y are the x and y vector 

components of the velocity (Chen et al. 2011).   

Bathymetry and substrate data were obtained from the U.S. Coastal Relief Model (CRM) 

and the Continental Margin Mapping (CONMAP) GIS database, respectively (NGDC, 1999; 

Poppe et al., 2005). Substrate type in the study area included gravel (pebbles defined as 2.00 - 

64.00 mm, cobbles defined as 64 - 256 mm, boulder defined as above 256 mm), gravel-sand 

(0.62 - 2.00 mm), sand-clay (0.001 - 0.004 mm), sand- clay/silt (0.004 - 0.062 mm), sand-

silt/clay, and sand/silt/clay (Poppe et al. 2005).  
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Figure 2.2: Schematic diagram of the bioclimate envelope modeling effort implemented in 

this study. All data exploration and modeling procedures were conducted in R 

programming environment. 

 

2.3.4 Model development 

The modeling approach used in this study to develop the HSI-based bioclimate envelope 

model (Figure 2.2) for P. magellanicus is an extension of previous modelling efforts for 

Homarus americanus in Long Island Sound and coastal New Hampshire to Maine (Tanaka and 

Chen 2015, 2016). Adult P. magellanicus are known to be largely sedentary, with little to no 

movement reported from previous studies (Posgay 1981; Carsen et al. 1995). Additionally, any 

movement that does happen is thought to be random in distance and direction, and any net 
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movement over time is likely the result of tidal currents as opposed to active habitat selection 

(Posgay 1981). Given this, distribution of P. magellanicus corresponds to both successful 

settlement in an area and survival until capture. Consequently, temporally dynamic 

environmental variables (bottom temperature, bottom salinity, current velocity) in this model 

were incorporated as yearly aggregates (mean bottom temperature, mean salinity, and mean 

current speed across the 12 months prior to capture) in order to better reflect the range of 

conditions that an individual would experience in its location over time. 

 The standardized P. magellanicus abundance derived from the dredge surveys was used to 

develop suitability indices (SIs) for each environmental variable. The nominal abundance index 

was calculated as a survey catch per unit of sampling effort (CPUE) at station i, and year y 

(Chang et al. 2012; Tanaka and Chen 2015, 2016);  

𝐶𝑃𝑈𝐸𝑖𝑦 = (
𝐶𝑜𝑢𝑛𝑡𝑖𝑦

𝑇𝑜𝑤 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑖𝑦
) ∗ 2.5                            

where Count represents the total abundance of all captured P. magellanicus > 65 mm in shell 

height. Tow duration, measured in minutes, varied from 2.5 to 7 minutes depending on location, 

bottom type, and amount of fixed fishing gear in the area and was standardized to 2.5 minutes at 

each station. In this study, P. magellanicus inhabiting offshore waters (>3 nm from shore) were 

found to exhibit different habitat preferences relative to those inhabiting inshore waters (<3 nm 

from shore). Thus, a separate set of SIs were developed for inshore and offshore areas to more 

accurately reflect an optimal (SI >0.8) range for each environmental variable.  

All continuous environmental variables were binned using Fisher’s natural breaks 

classification method (Bivand 2013).  The number of bins ranged from 6-10 to ensure adequate 

sample size in each data grouping. Each SI of class k for environment variable i, SIi,k, was 

calculated on a scale of 0.0 - 1.0 using the following equation (Tanaka and Chen 2015, 2016); 
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𝑆𝐼𝑖,𝑘 =  
𝐶𝑃𝑈𝐸𝑖,𝑘− 𝐶𝑃𝑈𝐸𝑖,𝑚𝑖𝑛

𝐶𝑃𝑈𝐸𝑖,𝑚𝑎𝑥− 𝐶𝑃𝑈𝐸𝑖,𝑚𝑖𝑛
                                     

where CPUEi,k represents the average CPUE over all sampling stations falling within the class k 

of environmental variable i in each P. magellanicus group. CPUEi,min and CPUEi,max represents 

the minimum and maximum values of the average CPUEs of all the classes for environmental 

variable d, respectively. To analyze the relationships between each environmental variable and 

P. magellanicus abundance, estimated SI was assigned to each class of environmental variables 

in the form of a linear transfer function, where the most suitable class (SI = 1) and the least 

suitable class (SI = 0) were identified (Bayer and Porter 1988).  

Inshore and offshore Suitability Indices (SIs) were estimated using the histogram method 

(Tanaka and Chen 2016). Local polynomial regression fitting (LOESS) smoothing was applied 

to the SIs (R Core Development Team, 2008). Suitable ranges were identified as SI values above 

0.8 (Tanaka and Chen 2015, 2016). Boosted regression tree (BRT) models were used to identify 

relative importance of environmental variables on the response variable (Elith et al. 2008; Xue et 

al. 2017). Using this method, weights were assigned to each environmental variable 

corresponding to its relative contribution (%) to the deviance explained in the BRT model (Xue 

et al. 2017). BRTs were developed with the “gbm.step” function within the “gbm” R package 

(Ridgeway 2015).  The SIs were then combined to form a composite HSI (also on a 0 - 1 scale) 

using an arithmetic mean model (Xue et al. 2017);  

𝐻𝑆𝐼 =  
1

∑ 𝑤𝑖
𝑛
𝑖=1

 𝑥 ∑ 𝑆𝐼𝑖𝑤𝑖
𝑛
𝑖=1                                          

where SIi represents a SI value associated with the ith environmental variable, and wi represents 

the weight of variable i based on BRT results and n represents the number of environmental 

variables included in the Arithmetic Mean Model (AMM). In this study, only the AMM was 
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used to generate HSI predictions as previous studies have shown consistently better performance 

of this model over a geometric mean model (GMM) (Tanaka and Chen 2015, 2016). 

2.3.5 Model validation 

 A cross-validation study was implemented to evaluate performance and predictive ability 

of weighted HSIs. A randomly selected subset representing 80% of all data (training data) was 

used for HSI development, while the remaining 20% (testing data) was used for the evaluation of 

HSI performance (Smith 1994; Zuur et al. 2007; Tanaka and Chen 2015, 2016). The predicted 

HSI values based on the training data were compared against the observed HSI values, based on 

testing data, and linear regression analysis was performed to evaluate the predictive performance 

of the HSI. This cross-validation procedure was repeated 100 times using random data selection 

in each round to obtain 100 sets of linear regression parameters (intercept, slope, and R2). Good 

model performance was indicated by an intercept parameter close to zero, a slope close to one 

and an R2 close to one. This process was carried out separately for inshore and offshore stations. 

2.3.6 Spatio-temporal HSI-based bioclimate envelope evaluation 

 The weighted HSI model coupled with FVCOM was used to predict spatiotemporal 

variability of bioclimatic envelope for P. magellanicus (> 65mm in shell height) in inshore and 

offshore GOM areas between 1978 and 2013. A spatial interpolation technique using ordinary 

Kriging with a semivariogram function was used to produce continuous model outputs (Bailey & 

Gatrell, 1995; R Core Development Team, 2008). HSI values were aggregated temporally by 

obtaining the median HSI value over the 36 years of study period at each FVCOM node. Median 

HSI values were used as opposed to mean because it provides a clearer interpretation of the 

tendency over the 36 year study period, i.e. it is not susceptible to skewing in rare cases of 

outliers.  The distribution of median HSI over 36 years was evaluated for the spatial distribution 
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in the quality of bioclimate envelopes. In this study, an area with a HSI value larger than 0.8 was 

designated as highly suitable habitat, while areas with a HSI value below 0.3 was considered 

poor habitat (Tanaka and Chen 2015, 2016). Linear regression analysis was performed at every 

FVCOM node and the derived slope (β) coefficient was used to evaluate temporal change in 

quality of P. magellanicus bioclimate envelopes over 36 years.  

2.4 Results 

2.4.1 Suitability indices 

Highest yearly bottom temperature ranged from ~9 – 16 °C inshore, and ~7 – 12 °C 

offshore. Lowest yearly bottom salinity ranged from ~26 – 31.5 ppt inshore and ~30.5 – 33ppt 

offshore. Depth ranged from ~ 2 – 25 m inshore and ~15 – 57 m offshore. Average current speed 

ranged from close to 0 – 0.1 m s-1 for both inshore and offshore (Figure 2.3). Substantial 

differences in SI curves were found between P. magellanicus located within inshore areas 

relative to offshore (Figure 2.3). Peak SI for each environmental variable were as follows: 

highest yearly bottom temperature ~ 15 °C inshore, ~10 °C offshore; Lowest yearly bottom 

salinity ~31 ppt inshore, ~33 ppt offshore; depth ~ 10 m inshore, ~37 m offshore; average current 

speed ~0.05 m s-1 inshore, 0.1 m s-1 offshore (Table 2.1, Figure 2.3).   

Table 2.1: Summary of location specific suitable ranges (Suitability Index > 0.8) of each 

environmental variable. 

    

Suitable Variable Range 

(Suitability Index > 0.8)     

Location 

Mean 

Bottom 

Temperature (°C) 

Mean 

Bottom 

Salinity (ppt) 

Mean 

Flow Velocity 

(m/s) Depth (m) 

Bottom 

Composition 

Inshore 8.6 – 9.4 30.1 - 31.3 0.04 - 0.07 5 - 12 sand 

Offshore 8.1 – 8.7 33.0 + 0.07 - 0.13 35 - 41 gravel-sand 
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Figure 2.3: Inshore (black line) and offshore (blue line) Suitability Index (SI) curves 

showing the relationship between Placopecten magellanicus (>65 mm shell height) 

abundance and bottom temperature, depth, bottom salinity, current velocity, and bottom 

composition. Horizontal dotted lines represent the cutoff above which the suitability of a 

given habitat variable was considered high.   
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2.4.2 Variable weighting and model validation 

BRT-based variable weighting showed bottom salinity, bottom temperature, and flow 

velocity were the most important variables inshore, while bottom salinity, bottom temperature, 

and depth were the most important variables offshore (Table 2.2).  

 

Table 2.2: Relative contribution (%) of all environmental variables used in inshore and 

offshore Habitat Suitability Index (HSI) models to the deviance explained by the Boosted 

Regression Tree (BRT)  

  Relative Contribution (%)   

Location 

Mean 

Bottom 

Temperature 

Mean 

Bottom 

Salinity 

Mean 

Flow 

Velocity Depth 

Bottom 

Composition 

Inshore 28.18 32.30 16.25 8.39 14.86 

Offshore 29.47 34.32 13.12 15.83 7.24 

 

AMM model performance, tested through cross-validation, had better predictive ability within 

inshore stations relative to those offshore. Median values from linear regression show that 

inshore stations had a median intercept of 0.14, a slope of 0.88, and r2 of 0.81. Offshore stations 

had a median intercept of 0.14, a slope of 0.57, and r2 of 0.35. 

2.4.3 Spatio-temporal HSI-based bioclimate envelope evaluation 

Projected HSI-based bioclimate envelopes for P. magellanicus showed higher habitat 

suitability inshore compared with most offshore areas (Figure 2.4). However, offshore shoal 

areas displayed high habitat suitability on par with inshore areas. Cobskook bay appears to have 

the highest habitat suitability over the study area (Figure 2.4).    
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Figure 2.4: Map showing the spatial distribution of median habitat suitability index (HSI) 

over 1978-2013 for Placopecten magellanicus (>65 mm shell height) from Massachusetts to 

Maine. HSI values larger than 0.8 are designated as good habitat, while HSI values below 

0.3 are considered poor habitat. The color ramp corresponds to predicted HSI value, where 

blue indicates poor habitat and red indicates good habitat. 

 

Changes in climate-driven habitat suitability over the 36 years of study period (1978 – 

2013) were apparent throughout the study area. Overall, inshore areas show a trend of increasing 

habitat suitability (Figure 2.5).  Offshore areas show a decreasing trend in general, with the 

exception of shoal areas that show an increasing trend (Figure 2.5).  
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Figure 2.5: Map showing the temporal change in habitat suitability index (HSI) values for 

Placopecten magellanicus (>65mm shell height) from Massachusetts to Maine over 1978 – 

2013. The color ramp corresponds to the linear regression slope (β) coefficient. Red areas 

have a positive slope and blue areas have a negative slope.  

 

Proportion of total habitat with at least moderate habitat suitability (HSI > 0.5) for P. 

magellanicus in the Gulf of Maine ranged from 14.49% (1980) to 46.66% (2001) during 1978 to 

2013. Total habitat with HSI > 0.5 from the median over the 36-year study period was 26.16%. 

Proportion of total habitat with high habitat suitability (HSI value > 0.8) for P. magellanicus in 

the Gulf of Maine ranged from 0.03% (1988) to 6.04% (2012) during 1978 to 2013. Total habitat 

with HSI > 0.8 from the median over the 36-year study period was 0.02%. 
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2.5 Discussion 

A dominant spatial trend made apparent by this modeling approach is a decline in habitat 

suitability moving from inshore to offshore locations. It is likely that decreased habitat suitability 

in offshore areas is largely driven by increases in depth and decreases in temperature. This 

finding corresponds with habitat suitability being higher among offshore shoal areas, relative to 

adjacent deep areas. Previous studies sampling P. magellanicus along a depth gradient (10-30m) 

have observed decreases across a range of ecological energetics (shell growth, somatic growth, 

somatic production, gonad production, gonad output reproductive effort, and residual 

reproductive value) in deeper waters (MacDonald and Thompson 1985a, 1985b; Macdonald et 

al. 1987). These differences are attributed to deteriorating food availability and temperature 

conditions with water depth, which is thought to represent a natural gradient of habitat quality 

(Sarro and Stokesbury 2009; Hennen and Hart 2012).  

Modeled nonlinear responses of the suitability indices (SI) reflect larval supply coupled 

with the species‘ ability to survive environmental variability present in a given area. The SI 

curves for bottom temperature, depth, bottom salinity, current velocity, and bottom composition 

fell within known habitat ranges for P. magellanicus (Naidu and Anderson 1984; Thouzeau et al. 

1991; Wildish and Kristmason 1993; Stewart and Arnold 1994; Pilditch and Grant 1999; Hart 

and Chute 2004). However, within these broad ranges, this study identified considerable 

differences in habitat preference between P. magellanicus inhabiting inshore and offshore areas.  

Inshore P. magellanicus were most abundant in shallower areas with stronger currents, higher 

temperatures and lower salinities relative to offshore P. magellanicus. Abundance of inshore P. 

magellanicus was highest on sand substrate as opposed to offshore where gravel-sand was 

preferred. Inshore-offshore differences in dispersal and retention patterns of P. magellanicus 
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larvae were found by Tremblay & Sinclair (1991), which may factor into differences in habitat 

selectivity observed in the present study. Additionally, Beyer et al. (2010) speculate that habitat 

selection is context-dependent with functional responses in preference resulting from changing 

availability. While P. magellanicus inhabiting both inshore and offshore areas were within 

known, broad ranges of physiologically suitable environmental conditions, they still subject to a 

different composite of habitat variables. Thus, it is possible that perceived habitat preference 

may partially reflect given habitat availability rather than the species’ physiologically preferred 

habitat range. Also, interactive effects of multiple habitat variables could have resulted in the 

observed difference in inshore and offshore SI curves. For example, higher optimal flow velocity 

observed in inshore P. magellanicus may reflect a required higher feeding rate due to increased 

metabolic rate resulting from higher temperatures in these areas. Such complex interactions 

among key habitat variables highlight a benefit of evaluating habitat quality in a holistic manner 

as opposed to analyzing each variable in isolation. 

Total suitable habitat coverage (HSI value of > 0.8) in the model showed large inter-

annual variations, ranging from 0.03% to 6.04%, which reflect changes in dynamic 

environmental variables (bottom temperature, current velocity, bottom salinity). The mean 

proportion of total suitable habitat (HSI > 0.8) for P. magellanicus in the GOM over the 36 year 

study period was 0.02%. Brown et al., (2000), developed HSI models for eight fish and 

invertebrate species in Casco Bay and Sheepscot Bay, Maine. Total suitable habitat (HSI value 

of > 0.84; note difference in “suitable” habitat cutoff between this study and the current) for 

these species ranged from 6% (Ammodytes americanus) to 95% (adult Homarus americanus). 

Coverage of suitable habitat for P. magellanicus in the current study is low relative to the species 

modeled in Brown et al. (2000); however, consideration should be given to the spatial scale at 
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which these models are applied. Brown et al. (2000) confined their model to a much smaller, 

coastal area while the current model was applied over a large portion of the GOM. Applying the 

current model over a large spatial scale increased the likelihood that a gradient in habitat quality 

will be covered, effectively lowering percent of suitable habitat coverage. Environment-biota 

relationships can include a hierarchy of factors operating at different scales (Willis and 

Whittaker 2002; Pearson and Dawson 2003; Hattab et al. 2014). This study highlights spatial 

effects in the relationships between P. magellanicus and habitat variables. Thus, bioclimate 

envelope models may perform differently if applied over different spatial scales. In the current 

study, this was addressed through the individual development of both inshore and offshore SIs to 

reflect the perceived change in habitat preference between these areas. Future refinement of this 

model could include evaluating P. magellanicus – habitat relationships over even smaller spatial 

scales, to further explore the scale at which each environmental variable operates. 

An increasing temporal trend in climate-driven (i.e. bottom temperature and salinity) 

habitat suitability was observed for inshore areas with a decreasing trend in offshore areas 

(Figure 2.5). Any change in habitat suitability over time resulted from changes in dynamic 

habitat variables (bottom temperature, bottom salinity, and current velocity), suggesting that the 

composite of these 3 factors has changed favorably in regard to P. magellanicus from 1978-2013 

in inshore areas and remained relatively stable in offshore areas. These trends assume that the 

habitat preference of P. magellanicus does not change over the study period (Pearson and 

Dawson 2003; Crisp et al. 2009; Catullo et al. 2015).  

Model validation revealed that offshore areas had lower predictive ability relative to 

inshore areas. Higher inshore performance likely corresponds to having ~4.5 times more tows 

conducted in these areas. Future iterations of this model can include more data in both inshore 
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and offshore areas that will have the potential to increase predictive ability in offshore areas. 

However, it is also possible that it is more difficult to predict the distribution of offshore P. 

magellanicus habitat due to possible complex or de-coupled interactions between P. 

magellanicus and habitat variables in these areas as described above (Beyer et al. 2010).  

Modeling methodology in ecological research has historically been largely quantitative 

(Bradbury et al. 1986). However, qualitative models effectively capture ecological pattern and 

have the advantage of avoiding data driven biases that quantitative models are subject to 

(Bradbury et al. 1986; Store and Kangas 2001; Tanaka and Chen 2016). This HSI-based 

bioclimate envelope modeling approach can be applied to a number of different research areas 

such as modeling potential species distribution, and evaluating the effects of climate-driven 

changes in habitat suitability on this distribution through hindcasting/forecasting analyses 

(Pearson and Dawson 2003; Araujo and Peterson 2012; Tanaka and Chen 2016). However, there 

are intrinsic limitations to this approach that should be considered when evaluating model results 

(Pearson and Dawson 2003; Luoto et al. 2005). FVCOM predictions, used in this study as inputs 

for all dynamic habitat variables, provide the highest resolution and broadest spatial coverage for 

temperature, salinity, and current velocity data available in the study area; however, P. 

magellanicus beds can frequently occur over relatively small spatial scales. Due to the inherent 

resolution of this environmental data set, it is unlikely that the modeling approach used here 

would be able to resolve fine-scale patches of habitat with the potential to support P. 

magellanicus beds. Instead, the bioclimate envelopes developed in this study are more useful for 

exploring spatio-temporal trends in mesoscale climate-driven habitat suitability.   

Development of bioclimate envelope models relies upon environmental data, and as with 

any environmental data there are several possible sources of error that could cause 
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misrepresentation of model predictions. Since all data obtained through FVCOM are outputs 

from model simulations as opposed to directly measure values, prediction accuracy needs to be 

taken into account. To evaluate performance of FVCOM within the study area, Tanaka and Chen 

(2016) and Li et al. (2017) used a collection of observed bottom temperatures collected by 

environmental monitors on lobster traps (eMOLT) to compare with FVCOM predictions. They 

found that while some variability occurred in FVCOM outputs relative to eMOLT observations, 

FVCOM adequately captured general spatial and temporal trends in bottom temperature and 

salinity. These findings add validity to the quality and accuracy of FVCOM predictions over 

broader scales. Another important consideration is the bottom composition data obtained from 

the U.S. Continental Margin Mapping (CONMAP) GIS database (Poppe et al. 2005).  This GIS 

layer provides a relatively coarse resolution of bottom type which may be insufficient to resolve 

potential fine-scale P. magellanicus habitat. However, the CONMAP GIS database provides the 

most comprehensive coverage of bottom composition and is useful here as a key component to 

identifying large scale spatial trends in habitat suitability. 

In this study, the bioclimate envelopes were defined upon five environmental variables 

when in reality, a large number of physical, biological, and chemical conditions likely factor into 

the life history and distribution of P. magellanicus.  As more comprehensive environmental data 

becomes available in the future, studies to develop a further detailed bioclimate envelope model 

could include additional variables such as pH, dissolved oxygen, predator-prey, and other food-

web interactions to capture a more comprehensive representation of P. magellanicus ecology 

(Araújo and Luoto 2007). Additionally, environmental predictors in this study were selected 

based on availability, and assumed correlation with habitat quality. However, as is generally the 

case with species-environment modeling, variables used to build this model may be operating as 
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surrogates for factors directly controlling species distribution through physiological mechanisms 

(Austin 2007; Araujo and Peterson 2012). It is from the associations between variables that we 

can infer the relationship between spatiotemporal variability of environmental factors and habitat 

quality. For instance, salinity in these models may act as a proxy for broad spatial patterns in P. 

magellanicus distribution coupled with, and driven by, the origin of water mass existing in a 

given area. An additional example is that temperature and depth likely correspond to gradients in 

food availability (MacDonald and Thompson 1985a, 1985b; Macdonald et al. 1987. 

An important assumption to consider in this modeling framework is that predicted habitat 

quality is directly related to observed P. magellanicus density, when in reality, a number of other 

factors collectively act on the ecology of this species. For instance, P. magellanicus density is 

highly influenced by larval supply (Shumway and Parsons 2006), and also not accounted for in 

this modeling approach, is spatiotemporally variable fishing pressure, which acts directly on 

adult P. magellanicus density.  Thus, certain areas with quality habitat may still have low P. 

magellanicus density, which could impact modeled nonlinear responses of suitability indices. 

However, while this is an important point to consider, as a result of the large spatiotemporal 

extent of P. magellanicus observations used to calibrate this model, it is likely that collectively, 

suitability indices accurately reflect preferred ranges of environmental variability by this species 

in the given area.   

  In light of recent abrupt warming events as well as long-term warming trends within the 

GOM ecosystem it is becoming increasingly important to view resource management from 

within the context of climate change (Mills et al. 2013; Pershing et al. 2015). Effective 

management of marine resources requires knowledge of population distribution and dynamics 

(Langton et al. 1995), however; fisheries managers must frequently base decisions on limited 
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information (Brown et al. 2000). Even when intensive sampling efforts are conducted, they 

sometimes fail to provide adequate spatial or temporal coverage to capture an entire range of 

available habitat which can result in misinformed management decisions (Brown et al. 2000). 

Additionally, many stock assessments fail to incorporate environmental variability (NMFS, 

2010). The bioclimate envelope model developed in this study provides a unique tool to visualize 

the extent of available habitat for P. magellanicus as well as to evaluate the potential impacts of 

a changing ecosystem on the distribution of available habitat in the Gulf of Maine. This study 

sheds a new light on spatio-temporal trends in habitat suitability that could potentially inform 

and improve stock assessments and the management of P. magellanicus. Other potential 

management applications for this modeling framework could include the development of habitat 

maps in poorly sampled areas (Brown et al. 2000), refinement of fisheries independent surveying 

efforts, and prioritizing areas for conservation actions. 
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CHAPTER 3 - DEVELOPMENT OF A CLIMATE-NICHE MODEL TO EVALUATE SPATIOTEMPORAL 

TRENDS IN PLACOPECTEN MAGELLANICUS DISTRIBUTION IN THE GULF OF MAINE, USA 

 

3.1 Abstract 

We developed a climate-niche species distribution model to evaluate spatiotemporal 

trends in Atlantic sea scallop (Placopecten magellanicus) along the coastal waters of the Gulf of 

Maine.  We used a Tweedie-generalized additive model (GAM) to quantify the relationships 

between scallop abundance and key environmental variables. A boosted regression tree was used 

to identify significant interactions among environmental variables to integrate within the 

Tweedie GAM and a regional circulation model was incorporated with the Tweedie GAM to 

hindcast projections of scallop distribution and assess the impacts of environmental change on 

this species. Additionally, we evaluate two common model fitting and variable selection methods 

for GAMs to ensure high model performance. A classic backward variable selection procedure 

was compared to penalized thin plate regression splines. Projections from the climate-niche 

species distribution model show higher scallop density along inshore areas relative to those 

farther offshore. An increasing temporal trend in scallop density was observed along inshore 

areas and a decreasing temporal trend was observed in areas farther offshore. Additionally, we 

found that the GAM incorporating thin plate regression splines outperformed the widely used 

backwards stepwise procedure. This modeling framework will help to inform adaptive 

management strategies for the scallop fishery within the context of a changing Gulf of Maine 

ecosystem. 

3.2 Introduction 

Atlantic sea scallops (Placopecten Magellanicus) support a highly valuable fishery in the 

United States. However, the scallop fishery within Maine state waters is relatively depleted. The 



34 
 

fishery there bottomed out in 2005 when only 33,000 lb was taken, about 1% of what was landed 

in the early 1990’s (Kelly 2012). However, recent years have shown an increasing trend in 

scallop abundance, with over 800,000 lb landed in 2018, allowing for an opportunity to establish 

a persistent, valuable fishery through research-informed management and conservation efforts 

(Kelly 2012). 

The distribution and abundance of species are central concepts to ecological research and 

vital components of conservation planning and fisheries management (Franklin 2010). Species 

distributions are influenced by many interacting biotic and abiotic processes that can manifest as 

complex occurrence-environment relationships (Boulangeat et al. 2012; Merow et al. 2014). 

Thus, a key step in understanding the biogeography of species is identifying environmental 

factors that regulate the distribution of a species (Merow et al. 2014). Like most benthic species, 

scallop abundance and distribution are influenced by an array of interacting variables such as 

depth, current, temperature, and salinity (Stokesbury and Himmelman 1995; Hart and Chute 

2004). 

 Throughout their geographic range, scallops occur mainly at depths of 15 to 110 m, but 

can be found as shallow as 2 m in the northern part of its range (Naidu and Anderson 1984; 

Carsen et al. 1995). Temperature is an important environmental factor influencing growth rates 

of this species with adult scallops showing optimal growth at temperature between 10-15 °C and 

temperatures above 21 °C being lethal (Stewart and Arnold 1994). This species prefers full 

strength seawater (~35 ppt), with salinities of 16.5 ppt or lower being lethal (Stewart and Arnold 

1994). Scallops are usually found in environments with strong currents (Hart and Chute 2004), 

and flow velocity has been shown to be a key factor controlling waste removal, oxygen uptake, 

feeding, and growth rates (Stewart and Arnold 1994; Shumway and Parsons 2006). Optimal 
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growth for this species occurs near 0.1 m s-1  (Wildish and Saulnier 1992) and feeding inhibition 

has been observed to start at ~ 0.25 m s-1 (Pilditch and Grant 1999). While the influence of key 

environmental variables on bivalve ecology is apparent, quantitative evaluations of scallop-

environment relationships and spatiotemporal trends of distribution are uncommon (Shumway 

and Parsons 2006; Mendo et al. 2014). 

Water temperatures within the Gulf of Maine (GoM) have increased over the past 35 

years at an average rate of 0.026 °C yr-1 (Mills et al. 2013; Pershing et al. 2015). Rapidly 

increasing temperatures are changing the distribution of numerous marine species (Overholtz et 

al. 2011; Howell and Auster 2012; Hollowed et al. 2013), with many fish stocks undergoing a 

poleward shift in their center of biomass and/or an increase in depth (Nye et al. 2009). Scallop 

distribution has also been shown to be impacted by climatic variability (Frank et al. 1990; 

Kurihara 2008). Dickie (1955) and Caddy (1979) demonstrated that higher temperatures in the 

Bay of Fundy were correlated with changes in scallop abundance. Additionally, climatic changes 

may alter larval development as well as the survival of juvenile and adult scallops (Dickie 1955; 

Caddy 1979). Considering a changing GoM ecosystem (Mills et al. 2013; Pershing et al. 2015), it 

is important to document the importance and potential synergistic effects of climate forcing on 

the dynamics of species abundance and distribution. 

In this study, we use data describing the distribution of scallops in the GoM to develop a 

climate-niche species distribution model (SDM). This SDM predicts the spatial distribution of 

scallops within the inshore Gulf of Maine across unsampled areas and hindcasts spatiotemporal 

changes in the distribution of scallops from 2005-2013 to evaluate the effects of shifting 

environmental conditions on this species. We used Tweedie-generalized additive models 

(GAMs) to quantify the relationships between scallop abundance and key environmental 
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variables. Additionally, we evaluate two prevalent model fitting and variable selection methods 

for GAMs to ensure high model performance. A classic backward variable selection procedure 

was compared to penalized thin plate regression splines following Wood (2003, 2006). This 

modeling framework will help to inform adaptive management strategies for the scallop fishery 

within the context of a changing GoM ecosystem. 

3.3 Methods 

3.3.1 Study Area and survey data.  

Dredge-based fishery-independent scallop surveys conducted over 15 years, from 2005 to 

2017, by the Maine Department of Marine Resources were used for this modeling effort (DMR: 

Kelly, 2012; Figure 3.1). Survey coverage extends out to 3 nm from shore from southern Maine 

to the Maine-Canadian border, USA (Figure 3.1).  

Figure 3.1: Spatial distribution of natural log standardized scallop (Placopecten 

magellanicus) density from the Maine Department of Marine Resources Scallop Dredge 

Survey from 2005-2017. The study area encompasses nearshore waters of the Gulf of 

Maine from Casco Bay to the Maine-Canada border.  
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This dataset comprised two annual random systematic surveys, one in the spring survey 

covering alternating portions of inshore Maine waters and one in the fall covering select coastal 

areas. The gear used for both surveys is an unlined, 7 ft New Bedford style drag with 2 in rings, 

1.75 in head bale, 3.5 in twine top, 10 in pressure plate and rock chains. Since scallops < 65 mm 

in shell height were not efficiently sampled with the 2 in rings (Kelly 2012), these were excluded 

from all analyses.  Tows were conducted at 3.5-4 knots and lasted ~ 2.5 minutes. A total of 4,321 

tows were made yielding 507,911 total observed scallops in this dataset (Figure 3.2). All tows 

from the survey were included within the modeling framework. Scallop abundance from each 

tow was standardized to catch-per-unit-effort (CPUE) over a 2.5-minute tow. 

 

 

Figure 3.2: Frequency plots of scallop (Placopecten magellanicus) density (left) and size 

frequency (right) in the density data from the Maine Department of Marine Resources 

Scallop Dredge Survey 
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The Gulf of Maine is characterized by a mixture of oceanic influences directly affected 

by the Labrador Current, the Gulf Stream, and the freshwater discharge from the St. Lawrence 

River (Tremblay 1997; Drinkwater and Gilbert 2004). As such, water temperature follows a 

gradient moving up the coast and offshore. Within the study area, scallops were found where 

maximum yearly temperature ranged from 8 °C in deeper areas to 16 °C in shallow areas. 

Salinity ranged from 26 ppt in areas subject to freshwater inputs to full seawater (35 ppt) in 

offshore locations. The study area covered depths to ~ 110 m, since scallops are uncommonly 

found outside of this depth range (Hart and Chute 2004), with the majority of tows occurring in 

< 60 m.   

3.3.2 Environmental data.  

Because the DMR surveys did not measure temperature, salinity, or current velocity, the 

Finite-Volume Community Ocean Model (FVCOM), a regional ocean circulation model 

developed by the University of Massachusetts-Dartmouth and the Woods Hole Oceanographic 

Institution (Chen et al. 2006) was used to simulate monthly estimates of bottom temperature, 

salinity, and current velocity from 2005 to 2013. It has a horizontal resolution ranging from 0.02 

km to 10 km and captures complex and irregular coastal geometry, making it suitable for 

physical and biological studies in coastal regions and estuaries (Chen et al. 2011). FVCOM 

predictions were matched to survey tows from the nearest neighboring FVCOM node during 

time of sampling (Figure 3.3). Horizontal current velocity was calculated to approximate the 

magnitude of water flow at a given FVCOM node. Current velocity C was estimated at station i, 

and year y from FVCOM predictions using the following equation  

𝐶𝑖  = √𝑢𝑖
2 +  𝑦𝑖

2                               
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where C is the magnitude of the predicted current velocity and u and y are the x and y vector 

components of the velocity (Chen et al. 2011; Torre et al. 2018). Bathymetry data were obtained 

from the U.S. Coastal Relief Model (CRM) (National Geophysical Data Center 1999).  

Figure 3.3: Schematic diagram of the modeling framework implemented in this study. All 

data exploration and modeling procedures were conducted within the R programming 

environment. 

 

3.3.3 Generalized additive models. 

 A generalized additive model (GAM) was used to make spatiotemporal predictions of 

scallop distribution in the inshore GoM (Figure 3.3). Conceptually, GAMs are generalized linear 
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models with a linear predictor upon which smooth functions are applied to covariates (Guisan et 

al. 2002; Marra and Wood 2011). The strength of GAMs lie in their ability to handle, in a 

multivariate regression setting, non-linear and non-monotonic relationships between the response 

and covariates that arise often in nature (Guisan et al. 2002). Resulting from their ability to deal 

with a variety of distributions that occur in ecological data, the use of GAMs has been 

extensively applied to species distribution modeling efforts (Guisan et al. 2002; Sagarese et al. 

2014; Young and Carr 2015). 

Terms included within the full model were selected according to boosted regression tree 

(BRT) analysis (Elith et al. 2008), and bivariate interaction terms were also identified and 

included based on this analysis.  BRT models were used to determine the relative importance of 

each environmental variable with relation to scallop density. Bivariate terms were included when 

interaction between two variables in the BRT was considered high (> 100). 

Formulation of the GAM for the estimate of scallop CPUE can be expressed as follows; 

𝑔(𝑛) = ∝  + ∑ 𝑆𝑗(𝑥𝑗) +  𝜀

𝑝

𝑗=1

 

where g(.) is a log link function between the response variable, n, and each additive predictor, xj; 

α is the intercept term; sj are smooth functions of the predictors, represented by either cubic 

splines, that are linear or nonlinear, or thin plate regression splines with a penalty; ԑ is the 

residual error (Wood 2003; Marra and Wood 2011). Predictors comprised either a single variable 

or interacting pair of variables that are thought to relate to scallop distribution (Table 3.1). 

Smooth terms were used in conjunction with a pair of variables to model interactions. Where 

cubic splines were used, the maximum value for degrees of freedom were set at 5 for univariate 

functions and 30 for bivariate functions. These values were chosen as a balance between over 
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generalization and over-fitting as suggested in the literature (Zuur et al. 2009; Sagarese et al. 

2014). Statistical analyses were carried out within the R programming environment (R Core 

Team Development 2016). Boosted regression tree analysis was done using the dismo package 

(Hijmans et al. 2017) and GAMs were fitted using the mgcv package (Wood 2011). 

 

Table 3-1: Variables used in generalized additive modeling of scallop (Placopecten 

magellanicus) density in the nearshore Gulf of Maine. 

Variables Description 

Longitude (°) Measurement of longitude of tow starting location 

Latitude (°) Measurement of latitude of tow starting location 

Bottom Temperature (°C) bottom temperature at tow location (imported from FVCOM) 

Bottom Salinity (ppt) bottom salinity at tow location (imported from FVCOM 

Current Velocity (m s-1) current velocity at tow location (imported from FVCOM) 
Depth (m) depth at tow location 

FVCOM: Finite Volume Community Ocean Model 

 

A Tweedie distribution was used as the likelihood to measure GAM fit to account for a 

high proportion of zero-catch tows and skewness in the CPUE data (Figure 3.2). The Tweedie 

distribution handles zero and positive values simultaneously, and works as a Poisson-Gamma 

compound distribution when the power parameter p is greater than 1 but less than 2 (Li et al. 

2011; Wood 2011). This distribution has been shown to outperform other methods for dealing 

with zero inflated data (Shono 2008; Li et al. 2011). Tweedie GAMs were fitted through a 

process of optimizing its profile likelihood. Power parameter p was estimated with the range of 1 

< p < 2 during the fitting process (Shono 2008; Wood 2011; Tanaka et al. in review). 

 Final GAMs were used to predict the density of scallops at every FVCOM node in the 

study area during 2005-2013. Predictive fields were interpolated using ordinary kriging with a 

semivariogram function to produce continuous model outputs (Bailey and Gatrell 1995; R Core 
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Team Development 2016). Predicted density of scallops was aggregated temporally by obtaining 

the median density value over the 8-year study period at each FVCOM node. Median values 

were used as opposed to means because they provide a clearer interpretation of the tendency over 

the study period, i.e. not susceptible to skewing in rare cases of outliers. Linear regression was 

performed at every FVCOM node and the derived slope (β) coefficient was used to evaluate 

temporal change in predicted density of scallops over the 8-year study period.  

3.3.4 Model selection.  

In this modeling framework, two methods of fitting and variable selection were 

performed to assess their relative performance (Figure 3.3). Here, performance signifies both a 

balance between goodness of fit and parsimony, and maximizing prediction accuracy while 

maintaining model interpretability (Marra and Wood 2011). The first method of model fitting 

and variable selection was a conventional backwards stepwise procedure (BSP), where terms 

were removed iteratively from an initial full model using AIC  (Akaike 1974). This method is 

widely used in ecological modeling due to its simplicity and demonstrated effectiveness 

(Burnham and Anderson 2002; Marra and Wood 2011). During each step, the variable with the 

highest p-value was removed and AIC was recalculated for the reduced model. This iterative 

process was repeated as long as variable removal lowered AIC.  

The second method of model fitting and variable selection was a shrinkage approach 

where each variable in the full model was fitted with a thin plate regression spline including a 

thin plate spline penalty (TPRS). These are low rank isotropic smoothers of covariates that 

include a modification to the smoothing penalty, so that whole terms can be reduced to zero, 

effectively removing superfluous variables (Wood 2003; Marra and Wood 2011). Unlike the 

stepwise algorithm from BSP, this procedure is carried out in a single step.  
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3.3.5 Model Validation.  

The performance of final models from BSP & TPRS was evaluated using multiple 

evaluation criteria (Figure 3.3). Two traditional model evaluation criteria, AIC and BIC 

(Burnham and Anderson 2002; Wood 2006), were used to compare relative performance of BSP 

and TPRS. AIC and BIC are widely used as model evaluation criteria. AIC is an estimator of the 

relative quality of statistical models based on goodness of fit. BIC is closely related to AIC, but 

has been shown to penalize complexity to a higher degree than AIC (Hastie 2009).  

A cross-validation study was implemented to evaluate predictive performance of final 

GAMs, where a randomly selected subset, training data, (80% of all data) was used for GAM 

development, while the remaining 20%, testing data was used for the evaluation of performance 

(Smith 1994; Wood 2006; Zuur et al. 2007; Tanaka and Chen 2015, 2016). The GAM-predicted 

CPUE values based on training data were compared against observed CPUE values, based on 

testing data, and linear regression analysis was performed to evaluate the predictive performance 

of the GAM. The cross-validation procedure was repeated 100 times using random data selection 

in each round to obtain 100 sets of linear regression parameters (intercept, slope, and R2). Good 

model performance was indicated by an intercept parameter close to zero, a slope close to one 

and an R2 close to one.  

3.4 Results 

3.4.1 GAM performance.  

Full GAMs included nine terms in total (Tables 2 and 3). Single terms included latitude 

(°), longitude (°), depth (m), bottom temperature (°C), bottom salinity (ppt), and current velocity 

(m/s). BRT analysis identified strong two-way interactions (value > 100) between three pairs of 

variables, depth-latitude (163.13), salinity-temperature (112.79), and longitude-latitude (125.10) 
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(Table 3.2). All three of these two-dimensional terms were significant and included in both full 

and final GAMs (Table 3.3, Figure 3.4 and 3.5). 

 

Table 3.2: Results from boosted regression tree analysis. Higher values are associated with 

stronger interaction between variables. Variable pairs with a value > 100 were considered 

to have a “strong” interaction and included as terms in the generalized additive models. 

 

 

 

 

 

 Longitude Latitude 
Bottom 

Temperature 

Bottom 

Salinity 

Current 

Velocity 
Depth 

Longitude 0 125.1 13.33 46.73 5.34 30.65 

Latitude 0 0 60.15 12.93 8.55 163.13 

Bottom Temperature 0 0 0 112.79 24.78 44.98 

Bottom Salinity 0 0 0 0 49.63 27.83 

Current Velocity 0 0 0 0 0 4.77 

Depth 0 0 0 0 0 0 
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Figure 3.4: Plots describing the partial effect of significant univariate explanatory variables 

in the thin plate regression spline generalized additive model. The response curves describe 

the relationship between a given environmental term and smoothed density of scallops 

(Placopecten magellanicus). Tick marks on the x-axis correspond to number of 

observations. 
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Figure 3.5: Partial generalized additive model plots depicting the significant interaction 

effects of bivariate environmental variables included in the modeling framework.   

 

Model fitting and variable selection using BSP went through two iterations of term 

removal. Depth was removed during the first round and bottom temperature was removed during 

the second round. Deviance explained for the parsimonious BSP model was 48.60 %.  Model 

fitting and variable selection using TPRS, similarly, penalized depth to a high degree (edf = 0.05, 

Table 3.3, Figure 3.4) to where it had a negligible effect on predictions. The effect of both 

bottom temperature (edf = 0.91) and longitude (edf = 0.94) on scallop density were reduced to 
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almost linear relationships (Table 3.3, Figure 3.4). Deviance explained for the parsimonious 

TPRS model was 49.70% (Table 3.3). 

 

Table 3.3: Generalized additive models for scallop (Placopecten magellanicus) density in the 

nearshore Gulf of Maine. Deviance explained by the model (Dev. Exp.), Akaike 

Information Criterion (AIC), and Bayesian Information Criterion (BIC). Model terms are 

latitude (La), longitude (Lo), depth (De), bottom temperature (Bt), bottom salinity (BS), 

and current velocity (Cv). Edf = estimated degrees of freedom. Greyed out terms are 

variables that were removed from the model. * Denotes the highest performing model from 

each category (thin plate regression spline and backwards stepwise).  

 

While overall model performance was similar between the parsimonious BSP and TPRS 

GAMs, TPRS model slightly outperformed BSP model across all evaluation criteria (Table 3.3, 

Figure 3.6).  AIC and BIC were lower in the TPRS model (AIC = 42,274.97, BIC = 42,888.10), 

suggesting its superior performance over the BSP model (Table 3.3). Assessed by cross 

Model edf 

Dev. 

explained AIC BIC 

Thin plate regression spline w/ penalty  

   

* s(La) + s(Lo) + s(De) + s(Bt) + s(Bs) + 

s(Cv) +s(La*Lo) + s(Bt*Bs) + 

s(De*La)  

4.84, 0.94, 0.05, 0.91, 

7.92, 5.03, 24.21, 

21.11, 20.16 

49.70% 42274.97 42888.10 

Backwards stepwise   

   

  s(La) + s(Lo) + s(De) + s(Bt) + s(Bs) + 

s(Cv) +s(La*Lo) + s(Bt*Bs) + 

s(De*La)  

2.64, 1.00, 1.00, 1.00, 

3.47, 3.85, 25.04, 

21.12, 20.03  

48.60% 42361.42 42919.23 

  s(La) + s(Lo) + s(De) + s(Bt) + s(Bs) + 

s(Cv) +s(La*Lo) + s(Bt*Bs) + 

s(De*La)  

2.644, 1.00, 1.00, 3.47, 

3.85, 25.04, 21.12, 

21.03 

48.60% 42358.74 42908.00 

* s(La) + s(Lo) + s(De) + s(Bt) + s(Bs) + 

s(Cv) +s(La*Lo) + s(Bt*Bs) + 

s(De*La)  

2.644, 1.00, 3.47, 3.85, 

25.04, 22.16, 21.03 

48.60% 42357.53 42902.99 

  s(La) + s(Lo) + s(De) + s(Bt) + s(Bs) + 

s(Cv) +s(La*Lo) + s(Bt*Bs) + 

s(De*La)  

2.654, 1.00, 3.85, 25.07, 

24.41, 21.09 

48.40% 42370.16 42905.51 
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validation, the TPRS model showed higher predictive performance (α = -0.60, β = 1.02, R2 = 

0.42) compared to the BSP model (α = -2.278, β = 1.04, R2 = 0.41; Figure 3.6). Therefore, the 

TPRS model was determined to be more appropriate than the BSP model in this study. 

 

Figure 3.6: Diagnostic plots depicting the comparison of model performance between the 

parsimonious generalized additive model produced by backwards selection (left) and thin 

plate regression splines (right). Predictive performance was assessed by cross validation. A 

graphical summary of observed vs predicted scallop (Placopecten magellanicus) density 

based on100 runs of random data sampling are displayed.   

 

3.4.2 Model predictions 

 The parsimonious TPRS GAM was used to map model predictions over the inshore 

GoM. Model results show that nonlinear relationships commonly exist between environmental 

variables and scallop density; however, both bottom temperature and longitude were reduced to 

decreasing, near-linear relationships by the TPRS model. The response curves for scallop density 
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as a function of bottom salinity and current velocity were dome shaped, with salinity peaking 

between 27 – 32 ppt and current velocity peaking between 0.10 – 0.17 (m/s).  Because depth was 

penalized out of the TPRS model, this response curve was flat.   

Interactions included in this model (latitude-longitude, latitude-depth, bottom 

temperature-bottom salinity), identified using BRT analysis, were included to capture the 

common effect of single environmental variables operating within a more complex composite of 

factors directly controlling species distribution (Austin 2007; Araujo and Peterson 2012). For 

example, salinity in this model acts as a proxy for broad spatial patterns in scallop distribution 

which is shown by the strong interaction between salinity and temperature detected within the 

model, and likely corresponds to the origin of water mass existing in a given area (MacDonald 

and Thompson 1985a, 1985b; Macdonald et al. 1987). 

Predicted scallop density was higher (> 20 scallops per m2), in general, along inshore 

areas relative to offshore areas (< 5 scallops per m2) (Figure 3.7). Select estuaries along the 

Maine coast show significantly higher (> 60 scallops per m2) predicted scallop density relative to 

other inshore areas. In particular, the Cobscook Bay area shows high predicted density (> 100 

scallops per m2) relative to surrounding areas (Figure 7). Additionally, offshore waters in 

Western Maine show slightly higher predicted density (10 - 20 scallops per m2) relative to 

Eastern Maine (< 10 scallops per m2) (Figure 3.7).  Over the 8-year study, predicted density 

shows a strong increasing trend along inshore areas and a decreasing trend in offshore areas 

(Figure 3.8). Cobscook Bay and Penobscot Bay show stronger increasing trends relative to other 

inshore areas and offshore waters in Western Maine show a stronger decreasing trend in 

predicted density relative to Eastern Maine.   
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Figure 3.7: Map showing the spatial distribution of median predicted density of 

scallops (Placopecten magellanicus) in the nearshore Gulf of Maine from 2005-2013. The 

color ramp corresponds to predicted density (scallops per m2), where blue indicates low 

catches and red indicates high catches. 
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Figure 3.8: Map showing the temporal change in predicted density of scallops (Placopecten 

magellanicus) in the nearshore Gulf of Maine waters from 2005 – 2013. The color ramp 

corresponds to the degree of change in predicted density. Red areas have a positive change 

and blue areas have a negative change.  

 

3.5 Discussion 

Decision-making associated with conservation planning and fisheries management should 

use as much information and knowledge as possible to maximize the benefits of management 

actions (De Ornellas et al. 2011). The model developed in our study was designed to use an 

existing dataset describing both the abundance and distribution of Atlantic sea scallops to 

develop a climate-niche species distribution model (SDM). Our Tweedie GAM approach 

produced high quality predictions of abundance for scallops. Model outputs agree generally with 

consensus of the distribution of scallops along coastal Maine according to fishermen knowledge, 

the distribution of fishing effort in the area, as well as landings information (not able to be shown 
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here due to confidentiality agreements).  Thus, we consider this modeling effort a successful 

approach to predict the distribution of scallops across unsampled areas.  

This study provides a regional projection in the distribution of scallops within the inshore 

GoM and hindcasts these projections back eight years. A dominant spatial trend made apparent 

by this climate-niche SDM is a decline in predicted density moving from inshore to offshore 

locations. This finding corresponds with habitat value for scallops being higher among inshore 

areas relative to offshore areas likely attributed to deteriorating food availability moving offshore 

(Torre et al. 2018). This is thought to represent a natural gradient of habitat quality (Sarro and 

Stokesbury 2009).  

An increasing temporal trend in climate-driven scallop density was observed for inshore 

areas with a decreasing trend in offshore areas (Figure 3.8). Any change in density over time 

results from changes in dynamic environmental variables (bottom temperature, bottom salinity, 

and current velocity), suggesting that the composite of these 3 factors has changed favorably 

regarding scallop abundance from 2005-2013 in inshore areas and has changed unfavorably in 

offshore areas. These trends assume that scallop-environment relationships have remained 

consistent over the study period (Pearson and Dawson 2003; Crisp et al. 2009; Catullo et al. 

2015). This general temporal trend is reflected in a recent study which depicts the spatiotemporal 

distribution of available scallop habitat in the GoM using a bioclimate envelope model (Torre et 

al. 2018).  

The TPRS GAM, incorporating a Tweedie distribution for zero-inflated catch data was 

shown to be a useful prediction tool according to cross validation. The response curves in general 

agreed with known information about drivers of scallop distribution (Naidu and Anderson 1984; 
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Thouzeau et al. 1991; Wildish and Kristmason 1993; Stewart and Arnold 1994; Pilditch and 

Grant 1999; Hart and Chute 2004; Torre et al. 2018).  

Depth in the case of this modeling framework was not significant, and so was penalized 

out of the TPRS model. In other studies, scallops have been shown to grow more slowly 

(MacDonald and Thompson 1985a; Thouzeau et al. 1991) and occur at reduced densities (Schick 

et al. 1988; Shumway and Parsons 2006) at deeper depths; however, the example given here is 

comprised of areas that were surveyed in less than 100 m, as opposed to scallops occupying deep 

areas in other studies (up to 170 m in the case of Schick et al. 1988). Since, within the current 

study, the dataset describing scallop distribution has low contrast in depth, it follows that depth is 

not a critical environmental component in this modeling framework.  

The results show that, overall, a shrinkage approach where each variable in the full GAM 

was fitted with a thin plate regression spline including a thin plate spline penalty (TPRS) 

performed better across all model evaluation criteria than a classic, backwards selection 

procedure (BSP) for predicting scallop density. These results support findings from Marra and 

Wood (2011), which used simulated data to show that shrinkage approaches perform 

significantly better than competing approaches (including BSP) in terms of predictive ability, 

and are competitive in terms of variable selection performance. However, when using simulated 

data, the advantage of one modeling approach over another depends on the underlying structure 

of the simulated data, which makes it difficult to select a “best procedure” for all situations 

(Binder and Tutz 2008). For example, Marra and Wood (2011) suggest that BSP would be 

preferred over shrinkage approaches in situations where the data have particularly high 

information content. Hence, using real-world data to evaluate the utility of model fitting and 



54 
 

variable selection methods, as they apply to species distribution modeling, adds an important 

dimension to comparisons made with simulated data. 

In addition to direct model performance benefits offered by TPRS, compared to BSP, 

shown here and in Marra and Wood (2011), there are other considerations that need to be taken 

into account when choosing an appropriate method for model fitting and variable selection. 

Stepwise procedures, such as BSP, have the potential to be inconsistent due to high sensitivity to 

small variability in the response data, which can sometimes lead to very different subsets of 

chosen variables. Additional variation in application of stepwise procedures results from a 

dependence on the initial starting path chosen through the variable space (Marra and Wood 

2011). Another downside of these procedures is that during variable selection and hypothesis 

testing using the selected model, p-values associated with model terms do not take into account 

variable selection uncertainty, and can therefore be misleading (Marra and Wood 2011). 

Conversely, shrinkage approaches have been shown to be a valid alternative to stepwise 

procedures in terms of consistency among iterations of application, and increased robustness to 

variability in the data (Marra and Wood 2011). Moreover, since variable selection in shrinkage 

approaches is carried out within a single step these methods are less computationally demanding, 

especially when using larger datasets (Leathwick et al. 2006; Hesterberg et al. 2008)  

An important limitation of this modeling framework is that the development of species 

distribution models relies upon environmental data, and as with any environmental data there are 

several possible sources of error that could cause misrepresentation of model predictions. The 

current modeling framework relies particularly heavily upon FVCOM predictions. To evaluate 

performance of FVCOM within the study area, Tanaka and Chen (2016) and Li et al. (2017) 

performed comparisons between environmental monitors on observed temperature data to and 
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FVCOM predictions. They found that in general, FVCOM adequately captured broad spatial and 

temporal trends in bottom temperature and salinity which adds validity to the quality and 

accuracy of FVCOM predictions.   

In this study, environment-density relationships for scallops were defined upon only four 

environmental variables when many physical, biological, and chemical conditions likely factor 

into the life history and distribution of this species. However, variables used to train the 

generalized additive model may have functioned as surrogates for factors directly controlling 

scallop distribution through physiological mechanisms (Austin 2007; Araujo and Peterson 2012). 

From the associations between variables we can infer the relationship between spatiotemporal 

variability of environmental factors, habitat quality, and resulting scallop distribution. For 

example, salinity in this model may act as a proxy for broad scale spatial patterns in scallop 

distribution due to the inherent relationship between salinity and the origin of water mass 

existing in a given area. Environmental predictors in this study were selected based on 

availability and assumed correlation with scallop density. As more comprehensive environmental 

data becomes available in the future, studies to develop a further detailed species distribution 

modeling approach could include additional variables such as pH, dissolved oxygen, predator-

prey, and other food-web interactions to capture a more comprehensive representation of scallop 

ecology (Araújo and Luoto 2007).  

The climate-niche SDM developed in this study establishes the ability to quantify relationships 

between a commercially important fish stock and the surrounding environment, which provides a 

tangible tool to visualize species distribution over space and time as well as to evaluate potential 

impacts of a changing GoM ecosystem. Also, our real-world evaluation of two common GAM 

selection and fitting procedures provides insights into the effectiveness of each method and can 
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be incorporated into further research using GAMs. This modeling approach is highly 

generalizable to a variety of commercially important species and can advise conservation efforts 

for the scallop fishery in the GoM to help ensure the implementation of adaptive management 

strategies under uncertain climate conditions. 
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Chapter 4 - THE 2016 MAINE DEPARTMENT OF MARINE RESOURCES-

UNIVERSITY OF MAINE NORTHERN GULF OF MAINE SEA SCALLOP DREDGE 

SURVEY: SURVEY DESIGN, ANALYSIS, AND BIOMASS ESTIMATES.  

4.1  Project background and survey rationale 

Fishery-independent surveys are used to gather information regarding the status of fish 

stocks in order to satisfy a central goal of fishery resource management: to estimate the 

abundance of populations over space and time. Addressing this goal constitutes a critical 

component of stock assessment and management (Smith and Lundy 2006; Liu et al. 2009) and is 

vital to establishing sustainable fisheries. The usefulness of survey information to provide 

reliable abundance estimates is greatly impacted by survey design and the allocation of sampling 

effort (Liu et al. 2009; Wang et al. 2009). Thus, great care must be taken to ensure an appropriate 

sampling design. 

The Northern Gulf of Maine (NGOM) has limited fishery-independent data available 

with the only recent broad-scale surveying efforts being the two previous DMR-UMaine dredge 

surveys, which took place in 2009 and 2012. There were three surveys conducted between 1974 

and 1984. However, these efforts were confined spatially, and no large-scale surveys were 

conducted between 1980 and 2008 (Spencer 1974; Serchuk 1984; Serchuk and Wigley 1984).  A 

total allowable catch (TAC)-based management approach was established for the NGOM scallop 

fishery prior to 2010, which targeted a small number of General Category permit holders that 

were actively fishing this area during that time. Due to a lack of fishery-independent data, the 

initial TAC was determined using federal landings data, and subsequent TACs were informed by 

the 2009 and 2012 DMR-UMaine dredge surveys along with occasional sampling efforts by 

UMass Dartmouth (Stokesbury et al. 2010; Truesdell 2014).  
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This section goes over the details regarding the design of the 2016 Maine Department of 

Marine Resources-University of Maine Northern Gulf of Maine Sea Scallop Dredge Survey and 

analysis of resulting data. The following sections include a condensed overview of survey area 

selection and delineation, methodology pertaining to the allocation of sampling effort, and data 

analysis.   The initial design of this survey was based off the two past surveying efforts 

conducted by Sam Truesdell at the University of Maine (Truesdell 2014). This survey was 

funded by the 2015 sea scallop Research Set-Aside (RSA) allocation. While the main purpose of 

this survey was to develop biomass estimates for the NGOM, the data generated by this survey 

was also used for the development of a species distribution model-computer simulation 

framework to optimize the design of fisheries surveys discussed in a subsequent chapter of this 

dissertation (See chapter 5).  

4.2 Methods: data collection and analyses 

4.2.1 Survey design 

  Following the previous surveys in 2009 and 2012, a stratified random sampling survey 

design was used to allocate sampling effort within survey areas.  Stratified random sampling 

(Cochran 1997) is a widely used, highly effective method to estimate the abundance and 

distribution of different fish species.  This type of design tends to be cost-effective and produce 

estimates of abundance with relatively higher precision compared to other sampling designs 

under the same level of effort. The effectiveness of this method is dependent upon how well 

survey strata are selected in reflecting the variability of the organism’s spatial distribution.  

Based on the 2009-2012 surveys, the strata were able to be delineated to closely match the 

distribution of scallops in the region.  The number of sampling stations in each area reflected 

stratum size, expected resource abundance, and spatial variability.  More intensive sampling took 
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place in areas considered as having commercial importance as well as showing high abundance 

and spatial variability in the 2009 and 2012 surveys.  Based on these criteria, areas of high 

priority included the federal waters near Machias Seal Island, Mount Desert Island, Platts Bank, 

Ipswich Bay, the northern part of Stellwagen Bank and the southern part of Jeffrey’s Ledge. 

Fippennies Ledge was also sampled; however, this area falls outside of the NGOM management 

area, thus is was excluded from overall biomass estimates (Figure 4.1). 

 

Figure 4.1: Northern Gulf of Maine (NGOM) management area along with survey areas 

from the 2016 Maine Department of Marine Resources - University of Maine Scallop 

Dredge Survey. 

The total area of each survey area was delineated based on depth, which is often 

considered a key factor in the selection of strata boundaries as it influences many important 
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aspects of habitat quality (e.g. water temperature, salinity, and food availability), and thus, 

abundance and distribution of fish species (Smith and Gavaris 1993). Historical surveys of the 

NGOM from the 1980s (Serchuk 1984; Serchuk and Wigley 1984), along with NMFS sea 

scallop survey and trawl survey data on Georges Bank and the GOM have identified depth 

thresholds. These survey efforts show that catch rates of scallops are much higher in shallow 

areas and indicate that scallop biomass drops off at depths > 100 m. Thus, delineation of survey 

areas followed these criteria to maximize sampling coverage on areas of productive scallop 

habitat (Smith and Gavaris 1993). 

Total sampling effort within each area was allocated based on the importance to the 

fishery and expected biomass following the 2009-2012 survey data. As per Smith and Gavaris 

(1993), an appropriate allocation of sampling effort to the various strata can play a large role in 

improving the precision of abundance estimates. To further refine sampling effort allocation in 

the three strata where highest scallop biomass was expected (Ipswich Bay, Southern Jeffry’s 

Ledge, Northern Stellwagen Bank), each area was split into three strata: high, medium, and low 

density, based on expected scallop biomass following VTR records, VMS data, as well as 2009 

and 2012 survey data.  Stratified sampling has been shown to increase the precision over simple 

random sampling by reducing the variance of estimates due to increased homogeneity in catches 

within a stratum versus between strata (Nielsen and Johnson 1983); i.e. more sampling effort is 

allocated to areas with higher expected variance to increase precision.    

After defining the strata for each survey area, we analyzed 2009 and 2012 survey data to 

calculate the relative variance among strata. To determine the number of stations within each 

stratum, we used the Neyman equation: 
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where n is the total number of sampling stations for the survey area, H is the total number of 

strata, Wh is the proportion of stratum h area over the survey area, and Sh is the estimated 

standard deviation of historical data in stratum h. The Neyman’s equation ensures that sampling 

effort is allocated to areas of high variance to increase precision of abundance indices and refine 

the resulting biomass estimates.   

4.2.2 Data Collection 

 The 2016 UMaine/DMR NGOM Scallop Survey ran from 5/3/2016 to 6/24/2016. This 

coastwide dredge-based survey covered six areas within the NGOM management zone 

considered to have high current and historical scallop abundance as well as having high recent 

fishing intensity (Figure 4.1). Survey area covered 3805 km2 and 230 tows were conducted in 

total. Gear used for this survey was a 7 ft. wide New Bedford-style chain sweep with 2-inch 

rings, 1¾ inch head bale, 125 mm twine top and 10 inch pressure plate. The dredge was unlined 

and equipped with rock chains. An onboard marine navigation program was used to chart tow 

locations. Pitch and roll of the drag, as well as depth and water temperature, was measured using 

Star-Oddi™ sensors mounted to the neck of the survey drag. This survey type allowed for the 

collection of data describing the distribution and abundance as well as the collection of shell-

height meat-weight information.  
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Scallops in each tow were counted and weighed.  At least 100 scallops (or all scallops if n ≤ 100) 

from each tow was measured for SH. If n > 1,000, a subsample of 10% was measured.  Juniper 

Allegro™ units with ports for digital calipers was used for rapid entry of shell height 

measurements and other tow data.  Meats were extracted and individually weighed from a 

representative sample of 8-10 scallops from every tow to determine shell height-meat weight 

height relationships for each area which are necessary to generate biomass estimates. Shell depth 

and shell width were also measured on these scallops.  All other bycatch and bottom type data 

was collected as described by DMR scallop survey protocol (Schick and Feindel 2005; Kelly 

2012). 

4.2.3 Data analysis 

  Using the swept area method and incorporating dredge efficiency coefficients, the total 

exploitable stock biomass/abundance was calculated for each survey area, accounting for the 

efficiency of the dredge and the approximate selectivity. For each survey area, the overall 

average abundance of swept area was estimated as: 
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where 


hX is the average abundance of swept area for stratum h, H is the total number of strata, 

and hW  is proportion of the area of stratum h with respect to the survey area.  Since scallop 

distribution within this region is known to be patchy, common distribution-based estimates of 

error are not appropriate and, as in the analysis of the past survey data, we used use 

bootstrapping procedures to estimate the confidence limits around the abundance estimates.   
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Total exploitable stock biomass/abundance was then estimated for each survey area, accounting 

for the efficiency of the dredge and the approximate selectivity. Since meat size for a given shell 

height is known to vary regionally within the Gulf of Maine, shell height-meat weight 

relationships were modeled individually for each sampling area using a generalized linear mixed 

model (GLMM) with sampling station as a random effect and depth and an environmental 

covariate after (Hennen and Hart 2012).  We refer to the estimated stock biomass/abundance as 

exploitable because we depend heavily on active fisheries data in determining survey area and 

allocating sampling stations.  For each survey area, the 95% confidence intervals for the 

estimated exploitable stock biomass/abundance were calculated using bootstrap methods. 

4.3 Results  

4.3.1  Scallop distribution and biomass estimates 

Within recent years, the most heavily fished area within the NGOM is the southwestern 

part, from survey areas Ipswich Bay (IB), Southern Jeffries Ledge (SJ), and Northern Stellwagen 

Bank (NSB). During the 2016 survey, within the IB area, most scallops were found on the 

western side near the state waters boundary (Figure 4.2). In the NSB area, the main scallop 

biomass was found towards the south eastern boundary, and in the SJ area, the main scallop 

biomass was found towards the south western boundary (Figure 4.2).  
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Figure 4.2: Distribution of sea scallop abundance on Ipswhich Bay (top right), Jeffries 

Ledge (middle) and Stellwagen Bank (bottom). 

 

IB, SJ, and NSB had, multimodal shell height distributions in 2016 (Figure 4.3). The growth of 

the cohort observed in 2012 was evident in all areas (Figure 4.3). The mode shell heights on IB, 

SJ, and NSB were ~ 110 mm, ~95 mm, and ~90 mm respectively (Figure 4.4). 
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Figure 4.3: Shell height distribution in mm for Ipswich Bay (top left), Jeffries Ledge (top 

right), and Northern Stellwagen Bank (bottom) during 2012 (red) and 2016 (black). 

 

The survey in Machias Seal Island encountered scallops spread fairly evenly across this 

area relative to the patchiness observed in the southern areas (Figure 4.4). The only persistent 

aggregation of scallops was near Machias Seal Island, within state waters. Two age classes of 

scallops were seen in this region and were between 75 and 110 mm and 130-150 mm 

respectively (Figure 4.5). 

The survey in MDI encountered almost no scallops in 2016 as in past surveys (Figure 

4.4). There were scallops to the south of this area near Mount Desert Rock in 2016, but this small 

region is within Maine state waters and not part of the NGOM.  
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The survey on Platts Bank found the highest biomass on the southwest portion (Figure 

4.4). The growth of the cohort first observed in 2012 was evident (Figure 4.5); the mode shell 

height grew from ~75 mm in 2012 to ~110 mm in 2016. In both years there was a small 

proportion of scallops that were between 125 and 150 mm. 
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Figure 4.4: Distribution of scallop abundance on Machias Seal Island (top), Mount Desert 

Island (middle), and Platts Bank (bottom). 
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Figure 4.5: Shell height distribution in mm for Machias Seal Island (top), Mount Desert 

Island (middle), and Platts Bank (bottom) during 2012 (red) and 2016 (black). 

 

The relationship between shell height and meat weight varied by area, as in past surveys 

(Figure 4.6). The best condition meats were in NSB and SJ, while the meats in MSI were clearly 

smaller for their size. Few samples of larger scallops were taken on PB, but those greater than 

100 mm were of similarly poor condition to the scallops sampled in MSI. 
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Figure 4.6: Relationship between shell height and meat weight in 2016 for the survey areas. 

The highest scallop biomass from this survey was observed on Stellwagen Bank (Figure 

4.7). Total biomass in the NGOM, assuming a dredge efficiency of 0.4 and selecting a 

conservative value (q 0.10 on the bootstrapped distribution), was estimated at ~ 795 MT (Table 

1). Using an exploitation rate of 0.2, the removable biomass was calculated to be ~ 159 MT 

(Table 1).  

 

 Table 4.1: Biomass estimated from 2016 NGOM survey (F = 0.2, Dredge Efficiency = 0.4) 
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Figure 4.7: Estimated harvestable biomass from each survey area 

 

4.4 Conclusion 

The biomass estimates obtained through this survey design and analysis were used to 

recommend an appropriate level of removable biomass to the New England Fishery Management 

Council which informed the final TAC for the 2017 fishing season. Despite the limited amount 

of fishery-independent data available for scallops in this region, it is evident from the length 

frequency distributions that NGOM scallop populations are characterized by sporadic 

recruitment events. A large recruitment event was observed within the western NGOM during 

the 2009 and 2012 DMR-UMaine scallop surveys (Truesdell 2014). This recruitment is what 
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drove high harvestable biomass in the Ipshwich Bay, Southern Jeffrey’s Ledge, and Northern 

Stellwagen Bank areas.  

The goal of this survey was to provide reliable biomass estimates of harvestable sea 

scallops within the NGOM in order to inform management actions for the 2017 fishing season. 

Since fishing activity remains high in this area, this survey is an ongoing process, so it remains 

important to use each iteration of survey information to optimize the design with regards to 

accuracy and precision of sea scallop biomass estimates. To this end, chapter 5 presents a 

coupled two-stage species distribution model (SDM) and computer simulation framework to 

evaluate and optimize future iterations of this dredge survey (Torre and Chen in review). 
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Chapter 5 - EVALUATION AND OPTIMIZATION OF FISHERIES SURVEY DESIGN 

USING COMPUTER SIMULATION  

 

5.1 Abstract 

We present a coupled two-stage species distribution model (SDM) and computer 

simulation framework to evaluate and optimize an ongoing dredge survey for Atlantic sea 

scallops (Placopecten magellanicus). Model-predicted distribution of P. magellanicus biomass is 

used as the underlying population upon which we simulate multiple sampling effort allocation 

schemes to evaluate the bias and precision of biomass estimates from the currently implemented 

survey design and test alternative approaches to select the top performers with respect to these 

criteria. The SDM developed in our study performed well predicting both the occurrence and 

biomass distribution of P. magellanicus. There was considerable difference, in terms of accuracy 

and precision, in the reliability of biomass estimates across survey designs. A marked 

improvement was observed in the relative root mean squared error (RMSE%) of biomass 

estimates from the best performing survey design (11.4) relative to the one currently 

implemented in the dredge survey (26.0), justifying changes be made for future surveying 

efforts. The framework developed in this study offers a dynamic and adaptive approach for 

evaluating and improving fishery survey design.  

5.2 Introduction 

A central goal of fishery resource assessment is to estimate the abundance of populations 

over space and time, which is critical in developing sustainable fisheries. Fishery-independent 

surveys are used to gather this information about fish stocks on distinct spatial and temporal 

scales, and are thus critical components of stock assessment and management (Smith and Lundy 

2006; Liu et al. 2009).  However, the usefulness of survey information to provide reliable stock 
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assessments or hypothesis testing depends greatly on both the bias and precision of abundance 

estimates (Mier and Picquelle 2008), which are impacted by survey design and the allocation of 

sampling effort (Liu et al. 2009; Wang et al. 2009).  

Within this context, the need to optimize the effectiveness of survey designs with respect 

to providing abundance estimates that are both unbiased and precise, and thus biologically 

realistic, is of principle importance to fisheries management (Wang et al. 2009; Hyun et al. 

2018). However, this can be difficult when contending with large survey areas and limited 

resources due to the high costs associated with such efforts (McAllister and Pikitch 1997; Mier 

and Picquelle 2008; Wang et al. 2009). Thus, many surveying efforts default to implementing 

traditional designs with insufficient background information, and as a result, abundance 

estimates may be unreliable or misinterpreted (Wang et al. 2009; Hyun et al. 2018).   

Advances in species distribution modeling (SDM) have brought these techniques to the 

forefront of conservation planning (Austin 2007; Buisson et al. 2010; Merow et al. 2014). 

Through quantification of species-environment relationships, an environmental profile is 

established that can be used to predict the distribution of a species across unsampled areas 

(Austin 2007; Reiss et al. 2015). Application of SDMs can be a cost-effective way to use existing 

data to expand upon the current understanding of a species distribution (Guisan and Thuiller 

2005) and evaluate and refine survey methodology to provide more reliable abundance estimates. 

As such, the overall goal of this study was to provide a general framework to improve fishery 

survey design through the development and application of an SDM. 

This study develops a two-stage modeling approach to produce an underlying distribution 

of species biomass upon which multiple survey designs are simulated and evaluated. The first 

stage of this approach uses an ensemble SDM to predict probability of occupancy which is then 
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regressed in the second stage, along with other environmental covariates, using random forest 

regression to predict a spatial distribution of species biomass. This modeling approach makes the 

implicit assumption that species occurrence and biomass distribution are regulated by related 

environmental factors, but display different relationships with these factors (He and Gaston 

2000). Therefore, a two-stage approach better characterizes both occurrence-habitat and 

biomass-habitat relationships and takes advantage of the greater amount of presence-absence 

data available relative to abundance or biomass data for many species (Hill et al. 2017). Similar 

two-stage approaches have been applied to terrestrial species and were successful in predicting 

species abundance (Hill et al. 2017; Mi et al. 2017). 

We develop a coupled two-stage SDM and survey simulation framework designed for 

evaluating and optimizing survey designs.  We applied this framework to a dataset describing 

both the presence-absence and biomass distribution of Atlantic sea scallops (Placopecten 

magellanicus) to evaluate and optimize an ongoing dredge survey. The model-predicted 

distribution of P. magellanicus biomass is used as the underlying population upon which we 

simulate and evaluate multiple survey designs. We sought to evaluate both the bias and precision 

of abundance estimates from the currently implemented survey design and test alternative 

sampling approaches to identify the best performing design with respect to these criteria. This 

study provides a straightforward, cost-effective framework for evaluating and improving fishery 

survey design.    

5.3 Materials and Methods 

5.3.1 Survey information 

This study seeks to develop and test a framework to evaluate and improve an ongoing 

dredge-based fishery-independent survey of P. magellanicus that has been conducted during the 
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spring of 2009, 2012, and 2016 through a joint effort between Maine Department of Marine 

Resources (DMR) and the University of Maine (Figure 5.1). The gear used for all surveys was an 

unlined, 7 ft New Bedford style drag with 2 in rings, 1.75 in head bale, 3.5 in twine top, 10 in 

pressure plate and rock chains. Tows were conducted at 3.5-4 knots and lasted 5 minutes. All 

combined surveys yielded a total of 361 tows and captured 12,745 individuals (Figure 5.1). Since 

P. magellanicus < 65 mm in shell height were not efficiently sampled with 2 in rings (Kelly 

2012), these were excluded from SDMs. A subsample of the P. magellanicus catch (n=24) was 

retained, and meat samples taken, from approximately one third of all tows to estimate shell 

height-meat weight relationships and convert catch density into grams per meter.  

Figure 5.1: Spatial extent of the Maine Department of Marine Resources Scallop 

Dredge Survey from 2009, 2012, and 2016 which covers a ~ 2,000 km2 portion of the 

Northern Gulf of Maine (NGOM) Scallop Management area, off Gloucester Massachusetts, 

USA. A) Presence and absence of Placopecten magellanicus (catch density < 15 individuals 

per tow marks absence) from 2009, 2012, and 2016 surveys. B) Biomass distribution (grams 
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per m2) of Placopecten magellanicus from the 2016 survey. The survey area is comprised of 

three distinct areas, Ipswich Bay, Stellwagen Bank, and Jeffries Ledge. 

 

The survey covers a ~ 2,000 km2 portion of the Northern Gulf of Maine (NGOM) Scallop 

Management area, off Gloucester Massachusetts, USA (Figure 5.1). The total survey coverage 

comprises three distinct areas, Ipswich Bay, Jeffries Ledge, and Stellwagen Bank (Figure 5.1). 

Each area is divided into “High”, “Medium”, and “Low” density (P. magellanicus) strata. Strata 

delineation was set to follow perceived biomass distribution of P. magellanicus within the survey 

areas based on past survey data, direct input from fisherman, and vessel monitoring system 

(VMS) data. Each survey is allotted 120 tows divided evenly between the three areas. Within 

each area the allocation of sampling effort (number of dredge tows) follows a stratified random 

design with effort being divided amongst between high, medium, and low-density strata. Layout 

of the strata cannot be shown here due to confidentiality agreements, however it remained 

consistent for all survey designs tested in this study. Tow allocation among strata is carried out 

using the following equation, Neyman’s Allocation (Neyman 1934):  
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where 𝑛 is the total number of sampling stations for the survey area (40 per each area), 𝐻 is the 

total number of strata, 𝑊ℎ is the proportion of stratum ℎ area over the survey area, and 𝑆ℎ is the 

estimated standard deviation of historical data (from the 2016 UMaine-DMR survey) in stratum 

ℎ. The incorporation of high, medium, and low-density strata coupled with the Neyman equation 

help to allocate more sampling effort, or tows, to areas with a high variance in P. magellanicus 

biomass (Neyman 1934).  
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5.3.2 Environmental data 

The unstructured-grid Finite-Volume Community Ocean Model (FVCOM) configured in 

the Northwest Atlantic Shelf region was used to simulate monthly estimates of bottom 

temperature, bottom salinity, and current velocity. Temperature, salinity, and current velocity 

were input into the model as the average yearly values from 2009 to 2016 throughout the study 

area (Chen et al. 2011; Torre et al. 2018) (Figure 5.2).  Li et al. (2017) used a collection of 

observed bottom temperatures collected by environmental monitors on lobster traps (eMOLT) to 

compare with FVCOM predictions in order to evaluate performance of FVCOM within the study 

area. They found some variability in FVCOM outputs relative to eMOLT observations, but that 

FVCOM adequately captured general spatial and temporal trends in bottom temperature and 

salinity. These findings add validity to the quality and accuracy of FVCOM predictions over 

broader spatial scales.   Bathymetry data was obtained from the U.S. Coastal Relief Model 

(CRM) (NGDC, 1999; Poppe et al., 2005) (Figure 5.2). All environmental data was interpolated 

using ordinary kriging with a semivariogram function to produce continuous outputs at 1 km2  

resolution (Bailey and Gatrell 1995; R Core Team Development 2016). 
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Figure 5.2: Average yearly values from 2009 to 2013 of bottom temperature, bottom 

salinity, and current velocity obtained from the unstructured-grid Finite-Volume 

Community Ocean Model (FVCOM) along with bathymetry data obtained from the U.S. 

Coastal Relief Model (CRM). All environmental data was interpolated using ordinary 

kriging with a semivariogram function to produce continuous outputs at 1 km2 resolution.  

 

5.3.3 Two-stage approach to modeling species biomass 

Data from the University of Maine-Maine DMR Dredge Survey was used to model 

scallop distribution and abundance within the study area. This modeling framework was carried 

out in two stages, where the first stage develops an ensemble species distribution model (SDM) 

and the second stage couples these results with random forest regression to predict the 
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distribution of P. magellanicus biomass. An overview of this modeling framework is shown in 

Figure 5.3. 

 

Figure 5.3: Schematic diagram of the modeling and computer simulation framework 

implemented in this study. All data exploration and modeling procedures were conducted 

within the R programming environment. 

 

The first stage of the modeling framework uses the R package biomod2 (R Core Team 

Development 2016; Thuiller et al. 2016) to train ensemble SDMs that map probability of 

occupancy for P. magellanicus across the study area. This stage incorporates presence-absence 

data for P. magellanicus with environmental data (Table 5.1) to run several algorithms 

commonly used to map the distribution of species (generalized linear model, boosted regression 

tree, generalized additive model, classification tree analysis, artificial neural network, surface 

range envelope, flexible discriminant analysis, multiple adaptive regression splines, random 
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forest, and maximum entropy; Miller 2010; Thuiller et al. 2016; Mi et al. 2017). Abundance data 

from the dredge survey were transformed into presence-absence using a cutoff of 15 

individuals/swept area of tow, i.e. any tow that captured less than 15 individuals was considered 

an absence. This presence-absence criterion was implemented to better reflect the presence, or 

absence, of P. magellanicus beds rather than scattered individuals and to better reflect areas of 

suitable habitat. 

All ten algorithms were run 20 times each using a randomly chosen 80% of the presence-

absence data, with the remaining 20% of the data being used to cross-validate model results 

(Thuiller et al. 2016). Algorithms were run 20 times each in order to limit computational 

demands while still achieving stable results. Using cross-validation, two model evaluation 

criteria, receiver operator curve (ROC) and the true skill statistic (TSS), were used to assess the 

performance of each algorithm, with higher values for each metric being an indication of better 

model fit (Hill et al. 2017; Mi et al. 2017). An ensemble distribution model was built using the 

best performing algorithms based on both the TSS and ROC. Additionally, the response curves 

for all models produced from each algorithm were visually assessed for validity. If model results 

produced by an algorithm differed greatly from consensus it was excluded from the ensemble 

model. Top performing algorithms (excluding those with implausible results) were ranked by 

TSS score and the top 50 were combined, using a weighted average of TSS scores, to produce 

the final ensemble model, which predicts probability of occupancy for P. magellanicus at 1 km2 

resolution in the study area. This model selection process was developed to produce a robust 

SDM that is biologically realistic and has high predictive power.  

The second stage of this modeling framework uses a machine learning technique, random 

forest, from the R package randomForest (Liaw and Wiener 2002; R Core Team Development 



81 
 

2016) to regress probability of P. magellanicus occupancy with biomass data alongside 

additional environmental covariates to map the distribution of P. magellanicus biomass over the 

study area (Figure 5.3). Random forest regression was used because of its ability to handle a high 

proportion of zero-catch tows and skewness in CPUE data, along with its robustness to 

overfitting (Liaw and Wiener 2002; Prasad et al. 2006). Additionally, it has been shown to 

perform well using similar types of data inputs (Hill et al. 2017; Mi et al. 2017). Depth was 

included as an environmental covariate due to known decreases of growth and somatic 

production of P. magellanicus in deeper areas (MacDonald and Thompson 1985b; Cote et al. 

1993; Stokesbury and Himmelman 1995). Random forest withholds data (OOB, out-of-bag) to 

validate each tree for the classification of OOB error, which is used for the calculation of root 

mean squared error (RMSE) (Liaw and Wiener 2002; Prasad et al. 2006). This commonly used 

evaluation criterion shows the average error of a model when testing against the independent 

OOB data (Chai and Draxler 2014).  

5.3.4 Survey Simulation 

The results from random forest regression were used to test the effectiveness of different 

survey designs in estimating the total biomass of P. magellanicus within the study area (Figure 

5.3). The distribution of P. magellanicus biomass, as predicted by random forest regression, was 

treated as the “real” underlying population upon which the simulated surveys were conducted. 

For each simulated survey, 40 tows were conducted in each of the three areas (Ipswich Bay, 

Jeffries Ledge, Stellwagen Bank; Figure 5.1).  Each of the tested survey designs was unique with 

respect to the proportion of sampling effort among high, medium, and low-density strata, that 

was allocated using the Neyman equation vs random allocation; i.e. a varying percent of 

sampling effort (90%, 80%, 70%, …0% of tows) was allocated using the Neyman equation and 
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the remaining tows were allocated randomly among each strata. Table 5.2 shows all survey 

designs that were tested in this study. Survey-estimated biomass for each area was calculated 

using the data picked up from simulated tows by means of the following equation: 







H

h

hh XWX
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where  �̅� is the total biomass of the sampling area, �̅�ℎ is the bootstrapped mean biomass of all 

sampled cells for strata ℎ, 𝐻 is the total number of strata, and 𝑊ℎ  is the area of stratum h.  

Because scallops in this region follow a patchy distribution, typical distribution-based estimates 

of error were not appropriate, and a bootstrapping procedure was used to calculate mean biomass 

of all sampled cells within each strata (Efron and Tibshirani 1986). Total survey estimated 

biomass was calculated by taking the sum of biomass in all three areas. 

For each survey design, 100 simulations were carried out and mean estimated biomass 

was calculated. The effectiveness of each survey design was ranked based on the relative root-

mean-square-error (RMSE%), which is a measure of the uncertainty in survey-estimated biomass 

that takes account of both the bias and the precision (Harbitz et al. 2009), of biomass estimates 

with respect to the model-estimated biomass: 

 

𝑅𝑀𝑆𝐸% =  
√𝑏𝑖𝑎𝑠2(𝐵𝑠) + 𝑣𝑎𝑟(𝐵𝑠)

𝑀
100% 

 

where 𝑀 is the model-estimated biomass, 𝐵𝑠 is the survey-estimated biomass, and 𝑏𝑖𝑎𝑠2(𝐵𝑠)    

and 𝑣𝑎𝑟(𝐵𝑠) are the bias and variance (precision) of 𝐵𝑠 relative to 𝑀. This equation effectively 

quantifies the effectiveness of each survey design using both the bias and precision of survey-
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estimated biomass with respect to model-estimated biomass. Survey designs were ranked 

according to the 𝑅𝑀𝑆𝐸% score where lower scores corresponded to better survey performance.  

5.4 Results 

Nine out of the ten algorithms run to develop the ensemble SDM performed acceptably 

with regards to prediction capability (TSS score > 0.65; Figure 5.4; Hill et al. 2017, Mi et al. 

2017). SRE was rejected straight away from the final distribution model due to a considerably 

lower ROC & TSS score than other algorithms (Figure 5.4). 

Figure 5.4: Diagnostic plot depicting the comparison of model performance among all 

algorithms used in the development of an ensemble species distribution model. Algorithms 

were assessed using both the true skill statistic (TSS) and the receiver operator curve 

(ROC).  

 Based on producing the highest combined TSS & ROC scores, along with having the 

most biologically plausible model results (Figure 5.5, 5.6), the four algorithms included in the 

final ensemble model were GLM, GBM, GAM, and RF (Figure 5.4). Each of these four 
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algorithms had a ROC score between 0.85 and 0.90 and a TSS score between 0.68 and 0.72 

(Figure 5.4).   

 

Figure 5.5: Predicted probability of occupancy of Placopecten magellanicus across the 

study area from top performing algorithms at 1 km2 resolution: generalized linear model 

(GLM), boosted regression tree (GBM), generalized additive model (GAM), and random 

forest (RF). The first three runs are shown for each algorithm out of 20 total runs. 
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Figure 5.6: Plots describing the effect of environmental covariates on the probability of 

occupancy of Placopecten magellanicus among the top performing algorithms used in 

ensemble model development. The response curves describe the relationship between a 

given environmental term and catch densities of Placopecten magellanicus.  

 

Since the final model was built using 100% of available data, evaluation information is 

not given for the ensemble model, because this would effectively test the model on the same data 

upon which is was built, thus resulting in misleading evaluation statistics (Hill et al. 2017). 

However, prediction accuracy of the four selected algorithms was good and they successfully 

predicted a substantial proportion of presence-absence points for P. magellanicus (Figures 5.4, 

5.5).  

All four algorithms included in the final ensemble model (GLM, GBM, GAM, and RF) 

show similar relationships overall between the response of P. magellanicus and each 

environmental variable (bottom temperature, bottom salinity, current velocity, and depth; Figure 

5.6). Some deviation is shown among algorithms for Bottom temperature, where GBM and RF 
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show a more favorable condition for P. magellanicus at lower temperatures (<8.4 °C), relative to 

GLM and GAM, and all four algorithms show a similar relationship at temperatures > 8.4 °C.  

Random forest regression successfully predicted 30.2% of the variation of the distribution 

of P. magellanicus biomass within the study area and root-mean-square error (RMSE) was 0.35.  

Overall, random forest regression performed well for predicting P. magellanicus biomass. The 

general distribution of biomass within the study area agrees closely with both general knowledge 

and data from the fishery (Figure 5.7). Random forest regression predicted a total P. 

magellanicus biomass of 520.8 MT, a biologically plausible value that corresponds well with 

data from the fishery. 
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Figure 5.7: Left: Map showing the probability of occupancy for Placopecten magellanicus 

across the study area as predicted by the final ensemble model. The color ramp 

corresponds to predicted probability of occupancy value, where white indicates poor low 

probability of occupancy and green indicated high probability.  Right: Map showing the 

spatial distribution of biomass for Placopecten magellanicus across the study area as 

predicted by random forest regression (right). Both maps are at a resolution of 1 km2.  

 

A total of 11 survey designs were tested in this study (Table 5.2).  The best performing 

survey design allocated 50% of tows via the Neyman equation and 50% of tows randomly and 

the worst performing design allocated 100% of tows via the Neyman equation and 0% of tows 

randomly. In general, the best performing survey designs tended to split allocation more evenly 

between the Neyman allocation and random allocation than did the worst performing designs 

(Table 5.2).  Figure 5.8 shows sample tow placement from the best two and worst two survey 

designs. Overall, the top designs appear to disperse tows to a greater degree than poor designs 

while still adequately covering high biomass areas; whereas survey designs that performed 
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relatively poorly clustered sampling effort too tightly and left areas of biomass unsampled   

(Figure 5.8).  

 

Figure 5.8: Sample tow allocation by best (A,B) and worst (C,D) performing survey 

designs. Simulated surveys are run upon the biomass distribution as predicted by the two-

stage modeling framework (shown in figure 5.7). Tows are denoted by black circles. Each 

survey design was run 100 times to obtain mean accuracy and precision of survey-

estimated biomass relative to model-estiamted biomass. Sampling allocation of each 

depicted survey is as follows: A) 50% Neyman equation, 50% random; B) 40% Neyman, 

60% random; C) 90% Neyman, 10% random; D) 100% Neyman, 0% random.  
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There was considerable difference, in terms of accuracy and precision, in the reliability of 

biomass estimates across survey designs. The top performing design had a mean biomass 

estimate close (0.13% difference) to model-estimated biomass while the worst performing design 

had a mean biomass estimate that was 1.6% higher than model-estimated biomass. In terms of 

precision, the top performing model had a CV of 0.1 while the worst performing design had a 

CV of 0.3.  Additionally, there was a marked improvement in the relative root mean squared 

error (RMSE%) of biomass estimates between the top performing survey designs (RMSE% of 

11.4 for the top performing design) relative to the poorest performing designs (RMSE% of 26.0 

for the worst performing design; Table 5.2).  

 

5.5 Discussion 

Conservation planning and decision-making should use as much available information 

and knowledge as possible to maximize the benefits of management actions (De Ornellas et al. 

2011). The occurrence and biomass distribution models developed in our study were designed to 

use a limited dataset describing both the presence-absence and biomass distribution of 

Placopecten magellanicus to evaluate and refine an ongoing dredge survey. Our two-stage 

modeling approach produced high quality predictions of both occurrence, and biomass 

distribution for P. magellanicus in the study area. Model outputs closely agree with general 

consensus of the distribution of P. magellanicus biomass in the NGOM according to fishermen 

knowledge, the distribution of fishing effort in the area, as well as landings information (not able 

to be shown here due to confidentiality agreements).  Thus, we consider the modeling framework 

a successful approach to utilizing existing survey data to predict biomass distribution of P. 
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magellanicus across unsampled areas and to produce a reliable model-predicted population upon 

which varying survey designs were evaluated.   

An ensemble modeling approach was used during the first stage of this modeling 

framework to predict probability of occurrence for P. magellanicus in the study area. Ensemble 

models are being increasingly applied to species distribution modeling because they address a 

major source of uncertainty in SDM projections, that choice of model algorithm has a large 

impact on projections (Araújo and New 2007; Buisson et al. 2010; Forester et al. 2013).  A 

growing body of literature suggests that the combination of individual algorithms yield lower 

mean error than any of the constituent parts (Araújo and New 2007; Buisson et al. 2010). Thus, 

ensemble models offer the distinct advantages of producing more reliable predictions as well as 

providing a more straightforward approach to model selection. The inclusion of a machine 

learning technique, random forest regression, as the second stage of this modeling framework 

offers additional benefits. Random forest does not make any assumptions about the shape of 

species-habitat relationships and is robust to overfitting, making it a powerful technique for 

applications such as this, where a high proportion of zero-catch and skewness in the CPUE data 

is present (Liaw and Wiener 2002; Prasad et al. 2006). 

This two-stage modeling framework has an advantage over conventional single-stage 

models in that it establishes relationships between occurrence-habitat and biomass-habitat 

separately. This approach better characterizes each of these relationships and satisfies the 

concept that occurrence, and abundance or biomass are not influenced identically by 

environmental covariates (He and Gaston 2000; Nielsen et al. 2005), thus resulting in a more 

robust and biologically realistic model results. Similar two-stage models have been used on other 

species, in terrestrial environments, with promising results. Hill et al. (2017), produced ensemble 
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SDMs and modeled the abundance distributions for 25 British tree species. They found that a 

two-stage modeling approach predicted the abundance well in 20 of the 25 species with TSS 

scores between 0.31 and 0.83 (for ensemble occurrence model) and RMSEs generally less than 5 

(for random forest regression models) (Hill et al. 2017).  Another example of a similar two-stage 

modeling framework was developed for the Great Bustard (Otis tarda dybowskii) in Bohai Bay, 

China by Mi et al. (2017). Their model produced reliable predictions of occurrence and 

abundance for this species, with a ROC of 0.77 and RMSE of 26.54, and they were able to use 

these predictions to develop a guide for placement of protected areas. The models developed in 

our study had TSS scores between 0.68 and 0.72, ROC scores between 0.85 and 0.90, and a 

RMSE of 0.35 thus, establishing that this framework performed well for predicting both the 

occurrence and biomass distribution of P. magellanicus.  

A critical factor to consider in this coupled modeling-simulation approach is that the 

simulations upon which different survey designs are evaluated are based entirely upon the 

model-derived distribution of scallop biomass. This makes interpretation of simulation results 

more difficult due to the fact that the random forest regression model only predicted ~30% of the 

variation in scallop biomass. Thus, while the results of the simulation component of this study 

should be of some limited interest in that they provide an example of how this type of modeling 

approach can be a valuable tool as applied to fisheries management, more emphasis should be 

placed on the framework itself than on the results of this study. However, while fine-scale 

interpretation of the simulation results should be avoided, the results from this study adequately 

establish a mis-match between the distribution of scallop biomass and the delineation of 

substrata in the study area. For this reason, future survey efforts in the area should incorporate an 

element of randomness in the design, which will help to alleviate this mis-match.  
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An important limitation to consider regarding this modeling approach is that the 

development of SDMs relies upon environmental data, which are subject to numerous sources of 

error and could cause misrepresentation of model predictions. The current modeling framework 

relies upon FVCOM predictions. To evaluate performance of FVCOM within the study area, 

Tanaka and Chen (2016) and Li et al. (2017) performed comparisons between observed 

temperature data from environmental monitors and FVCOM predictions. In general, they found 

that FVCOM adequately captured broad spatial and temporal trends in bottom temperature and 

salinity which adds validity to the quality and accuracy of FVCOM predictions used in this 

study. 

The best performing survey designs, with regards to the accuracy and precision of 

survey-estimated biomass relative to model-predicted biomass, split the allocation of sampling 

effort between the Neyman allocation and random allocation. This resulted in tows that were 

spread more evenly among high, medium, and low-density strata while still having concentrated 

coverage of high biomass areas. Low performing survey designs either allocated the majority of 

tows via the Neyman equation or randomly, which resulted in sampling coverage either too 

concentrated, and likely missing areas of biomass, or too dispersed and not providing adequate 

coverage to areas of high biomass. The UMaine-DMR dredge survey is currently set up to 

allocate 100% of tows among strata via the Neyman allocation, which in our study was the 

lowest performing allocation scheme. This design tended to overestimate P. magellanicus 

biomass with a mean survey-estimated biomass of 529.3 MT compared with a model-predicted 

520.8 MT. Additionally this allocation scheme had the lowest precision of any of the survey 

designs tested, with a standard error of 13.5 and a CV of 0.3. Conversely, the highest performing 

design, which allocated 50% of tows via the Neyman equation and 50% of tows randomly, had a 
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mean estimated biomass closer to the model-predicted biomass (521.5 MT), and was more 

precise with a standard error of 5.9 MT and a CV of 0.1, constituting a substantial improvement 

over the setup for the current survey. 

It is possible that low performance exhibited by those survey designs which allocated a 

high proportion of tows via the Neyman allocation was due to a mismatch between high, 

medium, and low strata delineation and model-predicted biomass distribution.  If so, allocating 

more tows using the Neyman allocation could potentially cluster tows in low biomass areas 

while leaving high biomass areas with too few samples, resulting in biomass estimates with low 

accuracy and precision. Thus, these results justify further investigation into the delineation of 

strata within each area. 

While the current study only tested a single feature of survey design, the framework 

developed here, which couples a two-stage modeling approach with a survey simulation, can be 

used to evaluate any aspect of survey design. Future studies could assess criteria such as the 

optimal number of total tows a survey needs to provide adequate coverage while maximizing 

efficiency, or overall sampling design, i.e. stratified random sampling vs systematic random 

sampling. Additionally, as mentioned above, the delineation of strata can be further refined to 

correspond to areas of high biomass as predicted by the modeling framework.     

In conclusion, this framework for identifying species occurrence and the distribution of 

biomass, coupled with computer simulation provides a straightforward, cost-effective framework 

for evaluating and improving fishery survey design. In this study we evaluate a dredge survey for 

P. magellanicus, however, this framework is flexible to other species and survey types. 

Additionally, this modeling approach and survey simulation will become increasingly effective 

as future surveying efforts provide additional data that can be incorporated into the models. This 
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allows for the further refinement of occurrence-environment and biomass-environment 

relationships that are crucial for predicting the underlying “real” population upon which survey 

design is evaluated. An ideal application of this framework would use an iterative process where 

early surveying efforts could be informed using limited available data for a species followed by 

constant refinement of each subsequent survey design using newly available data from past 

surveys. Thus, this framework offers a dynamic and adaptive approach to the design of fisheries 

surveys.  
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Chapter 6 – FITTING SPECIES DISTRIBUTION MODELING INTO BROADER 

ECOLOGICAL THEORY 

 

Understanding species biogeography constitutes a critical component of ecological 

research, conservation planning, and fisheries management (Franklin 2010). Species distributions 

are known to be influenced by many interacting biotic and abiotic processes which can manifest 

as highly complex occurrence-environment relationships (Anderson et al. 2002; Chang et al. 

2010; Boulangeat et al. 2012; Merow et al. 2014) and a key step in understanding the 

biogeography of species is identifying primary environmental factors that control the distribution 

of a species (Merow et al. 2014). 

 The biogeography of many marine species is currently shifting in response to climate 

related changes in habitat suitability (Nye et al. 2009; Howell and Auster 2012; Hollowed et al. 

2013). Altered biogeography of a species poses several management challenges because changes 

in species distributions can move stocks into and out of fixed management boundaries (Gaines et 

al. 2018). If management does not adapt to shifting species distributions, underinformed 

practices can lead to overharvesting, even in fisheries that are currently managed well (Gaines et 

al. 2018). Therefore, understanding likely responses of important fish stocks to changes in 

climactic conditions is critical to the implementation of adaptive management measures 

(Hollowed et al. 2013). However, shifts in biogeography for many species remain largely 

unknown (Tompkins and Adger 2004).   

The modeling framework developed in my dissertation research has elucidated aspects of 

the distribution of habitat for sea scallops as well as the biogeography for this species in the Gulf 

of Maine. Additionally, this research has further established the ability to quantify sea scallop-

environment relationships, while providing several tangible tools to visualize the distribution of 
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this species over space and time as well as to evaluate potential impacts of a changing Gulf of 

Maine ecosystem. 

6.1 How this modeling framework fits into ecological niche theory 

The distributional area of a species is an intricate expression of its ecology, determined 

by myriad factors operating at different intensities among different scales (Pearson and Dawson 

2003; Soberon and Peterson 2005). Critical to conceptualizing species distribution modeling is 

the ecological niche concept (Sinclair et al. 2010). From this theory, we can break down the 

factors which determine the areas in which a species is found into four distinct classes: 1) 

Abiotic conditions - including aspects of climate, along with the physical environment which 

impose physiological limits on a species ability to persist in an area; 2) Biotic factors – a set of 

interactions with other species that modify the species’ ability to maintain a population; 3) hard 

dispersal limitations from existing populations to new areas based on landscape configuration; 

and 4) the evolutionary capacity of populations to adapt to new conditions (Soberon and Peterson 

2005). From this, we can assume that a species will be present in a particular area when three 

conditions are met (summarized in figure 6.1): 1) favorable abiotic conditions (A); 2) a suitable 

suite of species is present (B); and 3) the area is reachable from established populations (M) 

(Soberon and Peterson 2005). Region A represents the functional niche (FN), region B represents 

the area where appropriate interspecific interactions necessary for the species presence are met, 

and region M represents the area that is able to be dispersed to from established populations 

(Soberon and Peterson 2005). 𝐴 ∩ 𝐵 is the area where both abiotic and biotic conditions are 

suitable for the persistence of the species, and 𝐴 ∩ 𝐵 ∩ 𝑀 = 𝑃, where P is equal to the area that 

has the right set of biotic and abiotic factors that is also physically accessible to the species 

(Soberon and Peterson 2005). 
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Figure 6.1:from (Soberon and Peterson 2005) – Shows a graphic representation of the 

ecological niche theory where region A represents the area that has favorable abiotic 

conditions, or the functional niche (FN), region B represents the area where appropriate 

interspecific interactions necessary for the species presence are met, and region M 

represents the area that is able to be dispersed to from established populations. 

The chapters of my dissertation constitute an effort to visualize different aspects of this 

ecological niche concept. The development of a bioclimate envelope model in chapter 2 predicts 

the fundamental niche (A) for sea scallops in the Gulf of Maine, or the network of areas that 

display a favorable composite of abiotic conditions. This shows areas that scallops are likely able 

to persist in, relating to conditions where density-dependent fitness would be positive; however, 

the bioclimate envelope model does not predict P, or the areas where scallops are actually 

distributed. Conversely, the development of the generalized additive model in chapter 3 predicts 

the realized niche (P) or the actual distribution of sea scallops. The two stage species distribution 
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modeling approach developed in Chapter 5 also predicts the realized niche for sea scallops over a 

small area in the Northern Gulf of Maine in the form of both expected probability of occupancy 

and the distribution scallop biomass.  While biotic conditions are not specified directly in the 

modeling frameworks presented in either chapter 3 or 5 due to a lack of available data, proxies 

for these variables are included in the form of latitude and longitude. An important factor to 

consider in these modeling approaches is that model predictions are derived entirely from catch 

data made up of the adult life history stage. Thus, successful larval dispersal, settlement, and 

survival into the late juvenile to early adult life history stages are implied.    

6.2 Model assumptions and potential issues associated with spatiotemporal modeling 

Given the pervasiveness of uncertainty in ecological systems, it is important to consider 

the impacts that uncertainty can have on model results (Hoshino et al. 2014).  Multiple types of 

uncertainty exist, inherent to models, that affect the accuracy and precision of model outputs 

including process error, observation error, and model error (Hoshino et al. 2014). These type of 

error each arise from different aspects of the modeling process from spatial and temporal 

stochastic error to the ability of the modeling framework to accurately reflect system dynamics 

(Hoshino et al. 2014).   

Based on the importance of uncertainty in modeling studies, it is worthwhile to consider 

the assumptions and limitations of my dissertation research. One important limitation inherent to 

all modeling approaches used in my dissertation is that model development relied upon 

environmental data which introduces several possible sources of error that could cause 

misinterpretation of results. Species-habitat relationships were developed using environmental 

data from the Finite Volume Community Ocean Model (FVCOM; Chen et al. 2011). Since all 

data obtained through FVCOM are outputs from model simulations as opposed to measure 
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values, the prediction accuracy of FVCOM needs to be considered when evaluating the validity 

of model outputs. To evaluate performance of FVCOM within the study area, Tanaka and Chen 

(2016) and Li et al. (2017) used a collection of observed bottom temperatures collected by 

environmental monitors on lobster traps (eMOLT) to compare with FVCOM predictions. They 

found that while some variability occurred in FVCOM outputs relative to eMOLT observations, 

FVCOM adequately captured general spatial and temporal trends in bottom temperature and 

salinity. These findings add validity to the quality and accuracy of FVCOM predictions over 

broader scales.  

Species-environment relationships for sea scallops in the modeling framework for my 

dissertation were defined upon a limited number of environmental variables when in reality, 

many physical, biological, and chemical conditions likely factor into the life history and 

distribution of this species. However, as is often the case with species-environment modeling, 

certain variables used to train these models may be functioning as surrogates, or proxies, for 

factors directly controlling species distribution through physiological mechanisms (Austin 2007; 

Araujo and Peterson 2012). Thus, from the associations between variables we can infer the 

relationship between spatiotemporal variability of environmental factors, habitat quality, and 

resulting species distribution. For instance, salinity in these models may act as a proxy for broad 

scale spatial patterns in sea scallop distribution due to the inherent relationship between salinity 

and the origin of water mass existing in a given area. Another example of this concept is that 

latitude and longitude can be thought of as proxy variables to capture a wide range of covarying 

bioclimate factors (Guernier et al. 2004). Environmental predictors for each modeling approach 

were selected based on availability and assumed importance to the species. As more 

comprehensive environmental data becomes available in the future, studies to develop more 
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detailed modeling approaches could include additional variables such as pH, dissolved oxygen, 

predator, and other food-web interactions to capture a more comprehensive representation of the 

ecology of sea scallops (Araújo and Luoto 2007).  

Another important factor to consider in these modeling approaches is that the developed 

species-environment relationships are directly related to the observed abundance or presence of 

sea scallops, while not accounting for several additional factors that collectively act on the 

distribution of this species. For instance, not accounted for in these modeling approaches, is 

spatiotemporally variable fishing pressure, which acts directly on the density of this species.  As 

a result, certain areas with quality habitat may still have lower scallop densities, and thus a lower 

probability of detected presence, which could impact modeled nonlinear presence-environment 

or abundance-environment relationships. An additional factor to consider is that the density of 

benthic species is highly influenced by larval supply, or dispersal during the pelagic larval stage, 

which is especially true for a sedentary species like sea scallops (Shumway and Parsons 2006). 

An important next step in this type of research would be to couple these species distribution 

models with a dispersion model to capture the effects of larval supply on large scale 

spatiotemporal patterns of species distribution. However, while these are important points to 

consider, as a result of the large spatiotemporal extent of observations used to train these models, 

it is likely that collectively, modeled species-environment relationships reflect preferred ranges 

of environmental variability for sea scallops.  

Due to the limitations discussed above as well as the limited resolution of environmental 

data used in these models, it is unlikely that the approaches used throughout my dissertation 

would be able to resolve fine-scale species-environment patterns or have the ability to produce 

predictions that warrant high confidence over small spatial scales. Instead, the modeling 
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approaches developed in my dissertation are more useful for exploring broader-scale spatio-

temporal trends in habitat suitability and species distribution.  Additionally, in general, while the 

model results and the inference upon these results should be of some interest, greater emphasis 

should be placed upon the modeling frameworks themselves that were developed in each 

chapter. These frameworks can be applied to other species and ecosystems as well as more 

precisely over a local scale, to help visualize fine-scale species-environment relationships. Being 

applied to areas where a higher density of both species data and environmental data is present 

will allow for high resolution model results and predictions that warrant a higher degree of 

confidence over fine spatial scales.  
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