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Converting biomass to alternative fuels has attracted significant interest in recent decades. Lignin, 

a principal component of biomass, is composed of phenolic monomers, which can be 

depolymerized using fast pyrolysis to yield a “bio-oil”. However, bio-oil is not immediately 

suitable as a biofuel because of its high oxygen content, and it is necessary to efficiently remove 

these oxygen atoms by hydrodeoxygenation (HDO). This project is focused on the elucidation of 

the reaction kinetics associated with carbon-oxygen hydrogenolysis in phenolic molecules, which 

is a significant reaction for the production of hydrocarbon fuels from biomass pyrolysis oils. The 

studied molecules are 5-hydroxymethylfurfural (HMF) and phenol, both used as model 

compounds.  

 

For phenol hydrodeoxygenation (HDO) the optimal pathway is direct deoxygenation (DDO), but 

at relevant temperatures, C-C double bond saturation is a significant side reaction, following the 

hydrogenation pathway (HYD). The importance of metal-TiO2 sites has been shown for a variety 

of reactions.  Previous research in our group has shown that Ru/TiO2 is highly active for the 

conversion of phenol to benzene and that water could act as a co-catalyst.  In this work, we clarify 



 

 

 

iv 

the role of water in C-O hydrogenolysis catalyzed by this material. Here, we designed and carried 

out a series of reaction kinetics experiments that illustrate the complex effect water has on the 

DDO mechanism. We measured reaction orders for phenol hydrogenolysis with respect to water 

and phenol over Ru supported on TiO2 rutile and anatase using a high-pressure liquid phase flow 

reactor operated in a kinetically-controlled regime.  

 

Our most interesting results show that the reaction is positive-order with respect to water for 

Ru/rutile and negative-order for Ru/anatase. These observations correlate with heats of water 

adsorption measurements on TiO2 indicating that anatase is more hydrophilic than rutile 1 and 

suggest that under particular circumstances, water molecules at the interfacial sites could become 

the most abundant surface intermediate (MASI). Also, the reaction is zero order with respect to 

phenol in the absence of water for Ru/anatase and it shifts from positive to negative order at higher 

phenol concentrations for Ru/rutile. Those differences with catalytic support identity suggest that 

the reaction mechanisms are different for each catalyst. For rutile, we believe that phenol is a 

MASI at two different sites: the interfacial site and the metal site that leads to the HYD pathway. 

For anatase, it is expected that phenol is only a MASI at one of those sites. 

 

HMF can also undergo hydrodeoxygenation in a series of intermediate reactions until it becomes 

2,5-dimethylfuran. We perform a comparison between different Ni and Ru catalysts supported on 

Co3O4 with respect to literature performance. Our results were consistent with the literature, but 

we have obtained a different reaction intermediate, product distribution, and site time yields. We 

believe that those differences are due to difficulties in reproducing the catalysts by the co-

precipitation method.  
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CHAPTER 1: C-O HYDROGENOLYSIS 

 

C-O bond cleavage in aromatics is a widely used reaction for lignin depolymerization to phenolic 

compounds and thus deoxygenation to most suitable chemicals. In this context, hydrogenolysis of 

lignocellulosic compounds has been previously studied and reviewed 2–10. Model compounds from 

lignin-derived bio-oils were widely used; the most common are phenol, m-cresol, guaiacol, 

anisole, vanillin and eugenol 3. 

 

Research 2,11 indicates that noble metals, such as Ru, Pt, Pd and Ni, are favorable for this reaction. 

Bimetallic systems can also be highly selective for oxygen removal. Combinations of noble metals 

with first-row and late transition metals like Fe, Ni, Cu, Zn or Sn form highly selective catalysts. 

3,12,13 Also, alloying group VIII metals with oxophilic metals such as Sn, Re, or Fe will decrease 

the interaction with the ring and enhance the interaction with the carbonyl or hydroxyl group. 14  

 

The selectivity for hydrodeoxygenation (HDO) can be influenced by the properties of the support. 

15 Noble metals supported on acidic materials can offer good selectivity for direct deoxygenation 

(DDO) of the C-O bond, but also oxophilicity, metal dispersion, strength of metal-support 

interactions and deactivation effects by coking formation needs to be considered for the selection 

of the right metal-support combination. 

 

Based on Sabatier’s rule, an oxide support with moderate metal–oxygen bond strength is the 

optimal support of choice if the substrate reacts at the interface. 8 If the metal-oxygen bond is too 

strong, it is difficult to create surface vacancies for oxygenated group adsorption, but if the metal-
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oxygen bond strength is too low it would make the catalyst unable to abstract oxygen effectively 

7. In terms of oxygen bond strength, metals were evaluated as follows: Mg > Al > Zr > Ti > W > 

Cr > Zn > V > Sn > Fe > Ge > Mn > Ni > Bi > Cu > Pb. 3 Therefore, mild to moderate acidic 

supports such as TiO2, ZrO2, zeolites, Al2O3 and CeO2 are often used for the HDO process due to 

their ability to catalyze C-O bond hydrogenolysis with minimal coking effects. 7 Basic support 

(CoMo/MgO) catalysts are more likely to resist sintering and coking effects but offer significantly 

lower HDO activity. 3  

 

Some metal-support combinations in heterogeneous catalysts are known to exhibit metal-support 

interactions and present physicochemical properties that were not present when metals and 

supports were just physically mixed. Metal-support interactions generally arise due to the 

electronic perturbation of metallic atoms by surrounding atoms from the support, which would 

result in the change of electronic properties of the metal catalyst. 3 For selective HDO catalyst, 

surface oxide-metal interactions are not desired. 

 

A general mechanism for C-O bond cleavage in aromatics can be established as follow. 16 

 

1. Oxygenated groups can be adsorbed through Lewis acid/base interaction and activated on 

the following sites. An aromatic species with more than one oxygen atom may adsorb at 

different sites. 17 

o Reduced metal sites 

o Oxygen vacancies on the support 

o Exposed cations on the support 
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o Coordinatively unsaturated metal sites: for bimetallic catalysts the second metal 

can also adsorb the oxygenated group. 18 

2. At the same time, the aromatic ring is easily bonded to the metallic surface. 19  

3. Proton donation to the oxygenated group donation, which is available directly from: 

o Phosphides, carbides and nitrides  

o Brønsted acids, -OH groups 

o SH groups 

o Metals and noble metals by H spillover: Adsorbed H2 atoms spill over from noble 

metals to an adsorbed oxygen atom. 8 Noble metals are particularly efficient 

catalysts in activating molecular hydrogen.  

 

Some heterogeneous catalysts that favor DDO are presented as follows:   

 

Cresol deoxygenation over Pt/Al2O3 catalysts at atmospheric pressure generates toluene and 

benzene, but methylcyclohexane remains the main reaction product. 20 In the conversion of m-

cresol over Pd/SiO2, hydrogenation of the aromatic ring is favored, but using ZrO2 as a support 

helps by creating oxophilic sites favoring the DDO mechanism. 21 As another example, Ni/SBA-

15 catalyst exhibits higher catalytic performance for hydrodeoxygenation of the aromatic ring 

(HYD) of anisole, On the contrary, the direct hydrogenolysis of the methoxy group is favored over 

Co/SBA-15, leading to much higher aromatic selectivity. 22 For Ga particles, in general, despite 

steric effects and mass transfer limitations, the higher acid support strength (SiO2 < HBeta ≈  

HZSM-5) is generally associated withhigher C-O bond cleavage activity. 23  
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A mechanism for HDO of 2-ethylphenol over a CoMoS/Al2O3 catalyst was proposed. 24 On 

MoS/Al2O3 catalysts, vacancy sites are created by the removal of H2S in the presence of H2. 
8 H2 

is activated by heterolytic dissociation forming one S-H and one Mo-H group; the oxygenated 

group is adsorbed on those vacancy sites formed an adsorbed carbocation after receiving a proton 

from the S-H group. This intermediate undergoes direct C-O bond cleavage and generates 

ethylbenzene. The vacancy site is recovered by the formation of H2O from the adsorbed OH and 

H groups. 24 The addition of cobalt to this catalyst CoMoS/Al2O3 enhances the direct C–O bond 

scission, because of an increment in the number of active sites, some of them being new sulfur 

vacancies. 24 

 

ReS2/ZrO2 is highly active for guaiacol DDO. Reaction with H2 breaks in the first instance the C-

O bond of the methoxy group and then breaks the formed hydroxyl group, producing mostly 

catechol and phenol. Here, demethoxylation occurs on the vacancies of the sulfide metal ReS2. 

The use of sulfated ZrO2 as a support provides a stronger interaction with the Re precursor leading 

to a highly dispersed catalyst. 25 The mechanism for HDO over sulfided NiW 26 is similar to that  

proposed by Romero et al. 24  

 

Bifunctional catalyst have been studied recently for DDO reactions. The presence of Fe and Ni-Fe 

bimetallic catalysts supported on SiO2 promotes the hydrogenation of the C-O group of m-cresol. 

On the mixed Ni-Fe catalysts, hydrogenation of the non-aromatic tautomer produces a reactive 

alcohol, which is easily dehydrated (Figure 1.1). The favorable sites for this process come from 

Lewis acids associated with the incomplete reduction of Fe and/or Ni-Fe cations. 14 Here, the 

aromatic ring is repulsed from the catalyst surface, while the oxygenated group strongly interacts 
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with the acid sites, promoting the oxygen removal reaction pathway. 14 Otherwise, in pure Ni 

catalysts, HYD is favored, forming 3-methyl-cyclohexanol and 3-methyl-cyclohexanone showed 

in Figure 1.1. 

 

 

Figure 1. 1 Mechanism of deoxygenation of m-cresol over Ni, Fe and Ni-Fe Catalysts. Adapted 

from ref. 14 

When studying HDO of m-cresol over Pt/C and Pt-WOx/C, the latter was much more active and 

selective towards DDO. 27 The HDO reaction on Pt-WOx/C proceeds selectively for m-cresol, 

because of the synergetic effect between the Pt and the redox supported WOx complexes. Pt 

stabilizes the partially reduced tungsten-oxide sites and favors the formation of oxygen vacancies, 

where the hydroxyl group is adsorbed, by forming a Pt-W bond. These sites are very important for 

selective C−O scission, because they limit the interaction of the aromatic ring with the Pt surface, 

avoiding its parallel adsorption that could cause ring hydrogenation. 27 
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Selective C-O hydrogenolysis of vanillin was also found over Au–Pt/CeO2 using formic acid as 

the hydrogen source. Pt interacts with Au forming Au–Pt alloys showing excellent performance. 

The presence of small nanoparticles, the CeO2 support, the good dehydrogenation ability of formic 

acid and the hydrogenolysis of C=O species are also key factors for this reaction. The strong 

activity of this catalyst is, again, because of oxygen vacancies that interact with the hydroxyl group, 

which facilitates the C-O bond cleavage. The remaining oxygen is removed by hydrogenation, 

forming water and thus leading to the formation of new oxygen defects 28. 

 

The activity of transition metal carbides (TMC) and nitrides (TMN) depends on the surface 

structure, metal oxidation state, and N and C deficiency. 29 Increasing the concentration of 

molybdenum oxynitride species reduces the overall HDO activity but favors the formation of 

Mo2N species. Oxynitride species are formed by reactions between the unsaturated Mo sites and 

the oxygen that is available either on the support surface or on the subsurface of the Mo2N species. 

8,29 Tungsten carbides, WxC, exhibit an impressive activity for hydrogenolysis of the aryl ether 

oxygen of guaiacol. Here, the activation of both H2 and guaiacol on the surface of the catalyst is 

necessary for the cleavage. 30 

 

Some supports are discovered to be active in the molecular mechanism of C-O bond 

hydrogenolysis; those will be called active supports and their performance were in some cases very 

well studied.  17,31–36 

Improvements of inert supports like carbon modified into a nitrogen-doped hierarchical porous 

carbon (NHPC), has also been developed, reaching higher performances for C-O cleavage. A 

direct hydrogenation-hydrogenolysis reaction mechanism for vanillin was proposed. Here, 
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Ni/NHPC favors full oxygen removal of a broad set of oxygenated aromatics. The reason for its 

high activity is the structure of the modified nickel interacting with nitrogen dopant contributed by 

the hierarchical porous structure of the carbon. 31 

 

A strontium (Sr)-substituted lanthanum cobaltite (La0.8Sr0.2CoO3) was recently found to be 

selective towards C-O and C-C hydrogenolysis on anisole by stabilizing the Co0/CoII sites. This 

stabilization effect plays an important role on the activity of the catalyst. CoII sites were favored 

at low temperatures and performed selective C-O hydrogenolysis by the existence of oxygen 

vacancies generated by Sr-substitution. With the participation of Co0 sites in close proximity to 

CoII sites, the adsorbed anisole can also form H-deficient intermediates. 32 

 

Phenolic compounds could be very strongly adsorbed on oxides. Adsorption of phenolic 

compounds over SiO2 and Al2O3 was studied. As seen in Figure 1.2, over silica the main interaction 

mechanism is H-bonding, while over alumina the main adsorption mode is chemisorption. 17 

Despite the fact that a hydroxyl on the surface could be beneficial for HDO processes, the strong 

interaction between the phenolic compounds and the alumina support could also generate severe 

catalyst poisoning. 33 
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Figure 1. 2 Mechanism of phenolic model compound adsorption over silica supports. Adapted 

from ref. 17 

The use of reducible metal oxides, like MoO3, WO3, Fe2O3, TiO2 and SnO2, leads to the Mars and 

Van Krevelen mechanism 34,35,37. On WO3, Thibodeau et al. 38 demonstrated the HDO of acrolein, 

while Moberg and Thibodeau et al. 39 provided DFT calculations of the potential energy surfaces 

(PES) and calculations of the proposed mechanism over MoO3. Here, the lattice oxygen reacts 

with H2, thereby generating oxygen vacancie; after the catalytic cycle, the oxygen vacancies are 

filled with the oxygen removed from the oxygenated feedstock. The presence of metal 

nanoparticles may facilitate hydrogen dissociation and contribute to the overall activity of metal 

catalysts. For active supports, the mechanism is proposed in Figure 1.3. 33,36 

 

  

Figure 1. 3 Hydrodeoxygenation mechanism of oxygenated compounds over metallic catalysts 

with active supports. Extracted from. 33,36 8  
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Ru/TiO2 demonstrated an outstanding performance: unusual and high selectivity towards the direct 

deoxygenated product, without hydrogenation of the aromatic ring 40. This is due to the active 

nature of the support TiO2 and requires small (<2nm) Ru nanoparticles. Different groups 40,41 have 

investigated the catalytic conversion on different model compounds over this catalyst.  It has been 

demonstrated that the direct deoxygenation pathway of phenol and guaiacol on titania involves a 

bifunctional catalyst, where the metal-support interface is participating in the reaction, while there 

is no apparent support, pore size, or morphology effects for the HYD pathway 19.  

 

For the DDO pathway, the overall activity and selectivity is higher for catalysts with 

moreinterfacial sites. 40,41 The following research 19,42 demonstrates the interfacial direct 

deoxygenation mechanism.  

 

Under this mechanism, it has been proposed that the presence of a water molecule in close 

proximity to the interface avoids the formation of oxygen vacancy sites and generates the surface 

hydroxyl groups that favor acidic direct deoxygenation pathway, lowering the activation barrier of 

the process. Water acts as a co-catalyst for the reaction, favoring the hydrogen spillover and 

stabilizing the adsorbed molecule of phenol at the interface 42.  

 

The enhancement in DDO activity of TiO2 was also proposed for other metals, even if the reaction 

mechanism is not demonstrated to happen at the interface. The use of gold supported on TiO2 

shows a preferential activation of C-O bond. Oxigenated aromatics form activated complexeswith 

this catalyst, proposed by transition state theory. The kinetics studies led these authors to propose 
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that phenol hydrogenolysis and hydrogenation are the respective rate‐limiting steps for DDO and 

HYD pathways respectively. 43 

 

Physical mixtures of Ni on different supports were investigated for HDO of guaiacol. High 

selectivities to C-O hydrogenolysis were obtained only for Ni over TiO2 anatase because of the 

appearance of strong interactions between them. 44 Here, two types of Ni species are present. One 

type consisted of a cluster of Ni atoms affected by strong metal-support interactions (SMSI) after 

the reduction pretreatment, leaving a TiO2 overlayer making the Ni particles completely inactive. 

Conversely, small amounts of Ni migrates onto the support, forming highly dispersed Ni, 

generating a new type of catalytic site that was highly selective for hydrodeoxygenation. 44  

 

Other studies on oxophilic supports have shown that direct deoxygenation mechanism is favored 

through tautomerization of phenolics. 14,15,21 Pd/ZrO2 and Pd/TiO2 catalysts exhibit high selectivity 

to deoxygenated products that can be explained by a mechanism that involves a keto-intermediate 

tautomer favored by oxophilic sites on the support. 21 Over Pd/SiO2, m-cresol is tautomerized to 

an unstable ketone intermediate and then the carbonyl group is hydrogenated, leading to C-O bond 

cleavage. This mechanism also competes with the ring hydrogenation mechanism. 21 

 

For Pd/ZrO2 catalysts, the oxophilic sites are incompletely coordinated Zr4+ cations (Lewis acid 

sites) near the perimeter of the metal. These sites favor the interaction of the tautomer oxygen 

group with the catalyst surface favoring the hydrogenation of the C=O bond. Therefore, carbonyl 

group hydrogenation is favored on the metal particles at the interface. 15,21 The mechanism of 

phenol as a model compound is shown in Figure 1.4.  
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Figure 1. 4 Hydrodeoxygenation of phenol over Pd/SiO2 or Pd/ZrO2 via the tautomerization 

method, Adapted from. 21  

In zeolites, this same tautomerization mechanism was proposed. It was suggested that the 

formation of a pool of oxygenated intermediates adsorbed on the surface may influence the 

reaction pathway. Here, m-cresol and other phenolic compounds are trapped inside the zeolite. 

These trapped species can undergo several reaction paths, including condensation to heavier 

products (deactivation), decomposition to other aromatics, hydrogenolysis, and formation of 

molecular aggregates. 23 H2 plays an important role in this reaction, because it keeps Ga species in 

its reduced form and stabilizes GaH2+ species, promoting hydride transfer to the C-C and C-O 

bond of the condensation product, generating lighter aromatics. 23  

 

Tautomerization mechanism was also proposed in a more recent study 45. Reaction of different 

model compounds over Ru/C in acetic acid shows that C–O bond cleavage does not proceed via a 

direct hydrogenolysis reaction of C–O bonds, but occurs due to side-reactions of the highly 
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reactive intermediates formed during hydrogenation such as cyclohexadiene- and cyclohexene-

based enols, enol ethers, and allyl ethers. The hydrogenation of anisole with metallic Ru/C 

catalysts proceeds in a stepwise fashion via cyclohexadiene and cyclohexene intermediates as 

shown in Figure 1.5. 45 

 

Figure 1. 5 Hydrodeoxygenation mechanism of anisole and the formation of the tautomer 

cyclohexadienes to further conversion into benzene. Adapted from. 45 

 

In conclusion, it is important to notice that many different mechanisms have been proposed for 

direct deoxygenation of aromatic oxygenates. Some of them are in close agreement with each 

other, like the presence of an oxygen vacancy site that favors the adsorption of the oxygenated 

group. Other groups 14,46–48 have proposed the tautomerization mechanism as a different point of 

view for this reaction. This mechanism it still catching the attention of researchers, and it is 

expected that new insights will appear in upcoming publications. 
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CHAPTER 2: PHENOL HYDRODEOXYGENATION 

 Introduction 

While petroleum is currently the principal source of fuels and chemicals on the world stage, recent 

changes in global policy and concerns about sustainability have driven research focused on 

biobased fuels and chemicals. 49,50 Biomass is forecasted to comprise between 8 and 35%, under 

mitigation scenarios, of total primary energy supply by 2050. 51 This shift in focus has coincided 

with a change in the distribution of petroleum resources in the United States, where the shale gas 

boom has led to an abundance of light hydrocarbons, making biomass particularly useful as a 

source for liquid aromatics. 

 

Pyrolysis is a thermochemical process to upgrade lignin into bio-oil and biochar, heating it up to 

300 to 800°C in absence of oxygen. The feedstock, heating temperature, and rate of heat transfer 

determine the composition of the pyrolyzed product 52. Bio oil production is still in a developing 

stage 50 and pyrolysis oil upgrading is desired. Fast pyrolysis at medium temperature (400 to 

650°C) will lead to the higher content of bio-oils; unfortunately those bio-oils are highly 

oxygenated aromatic mixtures, diminishing its properties as a biofuel and having a low heating 

value of 16–18 MJ/kg.53 Future efforts are needed to develop new feasible technology and methods 

for pyrolysis oil upgrading. 54 Finding a way to efficiently remove oxygen, without hydrogenating 

the aromatic ring, will increase the applicability of biomass for biofuels production.  

 

Hydrodeoxygenation (HDO) is one of the most common processes for removal of oxygen from 

biomass 55,56, whereby hydrogen is added to the molecule, reacting with oxygen atoms to release 
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water. Phenol can be used as a model compound to represent the complex mixture of oxygenated 

aromatics present in bio-oils, because cleavage of the last hydroxyl group in these molecules has 

been reported to be the most challenging 8. 

  

Nelson and coworkers have shown that phenol can undergo deoxygenation via two different 

mechanisms. One possible reaction pathway is called direct deoxygenation (DDO), which is a 

direct C-O hydrogenolysis reaction that converts phenol to benzene in a single step, as seen in 

Figure 2.1. Conversely, the catalytic step with the lower activation energy is the hydrogenation of 

the aromatic ring to yield cyclohexanol and cyclohexanone. Subsequent dehydration of 

cyclohexanol generates cyclohexene, which is rapidly reduced to cyclohexane. This overall 

sequence of steps is called hydrogenation (HYD), as shown in Figure 2.1. 42  

 

  

Figure 2. 1 Reaction pathways for phenol hydrodeoxygenation. In the direct deoxygenation 

pathway (DDO) phenol is converted directly to benzene. In the hydrogenation pathway (HYD), 

phenol is hydrogenated and dehydrated into cyclohexanone, cyclohexanol, cyclohexene, and 

cyclohexane. 42 
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That the ring is not reduced in the DDO pathway makes this process much more efficient in terms 

of hydrogen consumption, 40 although it is also possible that benzene hydrogenates into 

cyclohexane under some conditions. Therefore, catalysts that favor the DDO pathway into benzene 

are desired. Newman and coworkers have demonstrated Ru/TiO2 to achieve unusually high 

selectivity for DDO 40. This has been hypothesized to be due the amphoteric nature of the TiO2 

support and its participation in metal-support interfacial sites 19.  

 

For the DDO pathway, the overall activity and selectivity is higher for catalysts with lower particle 

size related to more interfacial sites. 40,41 Subsequent publications from Nelson et al. and Omotoso 

et. al. 19,42 have proposed the interfacial direct deoxygenation mechanism.  

 

 

         A               B         C          D 

Figure 2. 2 Proposed molecular mechanism of DDO pathway for phenol over Ru/TiO2. 
57 

 

The mechanism shown in Figure 2.2. starts with a hydroxyl on the TiO2 surface in the vicinity of 

the Ru nanoparticle that acts as a Brønsted base. This hydroxyl helps facilitate the heterolytic 

cleavage of H2 (A in Figure 2.2). This step forms a Brønsted acid on the support in close proximity 

to the interface, while the Ru hydride remains mobile in the metal (B in Figure 2.2). The DDO of 

phenol begins with its adsorption at the interfacial site as shown in C of Figure 2.2. Here the surface 
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hydroxyl protonates the phenolic oxygen, thereby weakening the C-O bond. Finally, the weakened 

C-O bond undergoes cleavage, while the released hydroxyl group leaves with a proton from the 

surface Ti-OH2
+ species generating a neutral water molecule. The adsorbed phenyl group is 

hydrogenated by the remaining hydride and subsequently desorbs as benzene (D in Figure 2.2). 

57,58  

 

Competing mechanisms in the literature suggest that the reaction occurs at oxygen vacancy sites 

in the TiO2 surface, generated by reduction with spilled-over hydrogen. 42  Indeed, calculations 

presented by Nelson and workers show that at near-zero water partial pressures, oxygen vacancies 

should exist and the reaction would occur at interface sites that incorporate these vacancies, rather 

than the hydroxyl groups described above.  However, the intrinsic activation barrier for this 

pathway is 0.24 eV higher than that for the pathway shown in Figure 2.2. 42  Moreover, at non-

zero water pressures, the oxygen vacancies will dissociate water, forming the active sites shown 

in Figure 2.2.      

 

The influence of water on the reaction mechanism suggests there could be a substantial effect of 

water on the reaction rates, and such an effect has been observed by several authors.  In particular, 

the selectivity for DDO of phenolic compounds can be increased by one order of magnitude when 

water is added. 42,57 This increase could be due to the competing mechanisms described above, 

although it could also be due to the presence of a water molecule in close proximity to the interface 

site, potential lowering the activation barrier for the reaction.  
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In this work, we haveperformed a rigorous kinetic study to obtain new and substantial evidence 

for the DDO mechanism. We show reaction orders with respect to water and phenol and use this 

information to define a consistent rate expression.  

 

 Objectives 

 General Objective  

Elucidate kinetics and effect of water in the hydrodeoxygenation of phenol over Ru/TiO2 catalyst. 

 Specific Objectives 

• Elucidate the influence of water on reactivity of phenol. 

• Elucidate the influence of the crystal structure of the support TiO2 on reactivity of phenol. 

• Determine the reaction mechanism of phenol HDO. 

 

 Methodology 

 Materials 

 

TiO2 P-25 was donated by Evonik, TiO2 rutile was purchased from US Research Nanomaterials 

and TiO2 anatase was purchased from Nanografi. RuCl3·3H2O, was purchased from Sigma-

Aldrich. Phenol (99.5%, extra pure, loose crystals, unstabilized, ACROS Organics™), and Decalin 

(Decahydronaphthalene, Mixture of cis + trans, 98%, Reagent Grade, Decalin™, Honeywell™) 

was purchased from Fisher Scientific. Fused silicon dioxide (4-20 mesh, 99.9% trace metals basis, 
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Aldrich) was used to fill the dead volume of the reactor column.  The H2 was Matheson, 99.999%.  

Also, for calibration purposes benzene (Sigma-Aldrich for HPLC ≥99.9%)  cyclohexane (Fisher 

Scientific HPLC grade), cyclohexene (Acros, 99% pure), cyclohexanol (Sigma Aldrich, Reagent 

Plus 99%) and cyclohexanone (Sigma Aldrich, Reagent Plus 99.8%) were used. D2O (Deuterium 

oxide, for NMR. 100.0 atom% D) was used for the kinetic isotope effect experiments. 

  

 Catalyst Preparation  

 

The catalysts used consisted of a 1.5 wt. % Ru on TiO2, with different TiO2 structures, P25 (particle 

size of 1.8 +/- 0.5 nm), rutile (particle size of 2.0 +/- 0.5 nm) and anatase (particle size of 1.7 +/- 

0.6 nm). Catalysts were synthesized and characterized by our collaborators. 57 Catalysts were 

prepared by co-precipitation on a 5 g scale. The metal precursor was RuCl33H2O and the mixtures 

were dried overnight at 90°C. The catalyst were further crushed and diluted in a 9:1 ratio with 

fused silica for more than 30 min. 

 High Pressure Flow Reactor Experiments 

 

The liquid phase reactor design was based on that published by  Roman-Leshkov et al. 59 The 

design is shown in Figure 2.3 and some pictures of the actual reactor are presented in Figures 2.4 

and 2.5. The liquid flow reactor includes a liquid delivery system, a gas delivery system, a reactor 

system with a separator, a manual sampling system and a pressure measurement system. 
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The gas delivery system consists of two Mass Flow Controllers to feed a constant flowrate of Ar 

(MFC#1) and/or H2 (MFC#2) into the system and to pressurize it with help of a back-pressure 

regulator located downstream of the reactor and a safety relief valve.  

 

A constant liquid flowrate of phenol, water and decalin as a solvent is sent to the reactor through 

an HPLC pump and is mixed with the H2 flow before going to the reactor system.  Both reactants 

move in up flow mode through the reactor system, which consisted of a ¼” stainless steel column 

packed with catalyst. The reactor heater was a heat tape wrapped around a cylindrical aluminum 

block that covers the column connected to a temperature controller.  

 

The diluted catalysts were packed between two plugs of quartz wool in a quarter-inch outside 

diameter (OD) stainless steel tube.  Prior to the reaction kinetics measurements, the catalyst was 

reduced at 573 K (5 K min-1) for at least one hour in 40 sccm flowing H2. Gas flow was controlled 

by a mass flow controller (Brooks 5850E).  The reactor temperature was measured by a K-type 

thermocouple (Omega), and temperature control was provided by a PID controller (Automation 

Direct).  Following reduction, a 0.53 M stream of phenol diluted in decalin was introduced to the 

reactor using an HPLC pump (Chromtech M-1), and the production rate of benzene was measured 

(i.e., the rate of DDO).  The dead volume of the reactor was estimated to be 1.5mL before reaching 

the catalyst bed. 

 

For experiments with water, mixtures of 90, 85, 80, and 75 wt.% phenol and respective 10 to 25 

wt.% water (18 MΩ) were fed to the reactor, and a second HPLC pump was used to co-feed decalin 

at a flowrate sufficient to keep the net phenol concentration constant (0.53 M).  for experiments 
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with respect to phenol, solutions of 0.53, 0.25, 0.12 and 0.05 M were fed to the reactor at different 

flowrates keeping constant the amount of phenol fed to the reactor and the volumetric ratio of 

hydrogen flowrate (sccm) vs liquid flowrate (ml/min) at a value of 250, the same ratio reached in 

the set of experiments described above. 

 

Figure 2. 3 Schematic diagram of the hydrogenation biphasic reactor. 

Phenol Solution 

HPLC Pump 

Reactor 

Column Sampling System 

Separator 

Backpressure Regulator 

MFC #2 MFC #1 
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Figure 2. 4 Picture of the Hydrogenation biphasic reactor built at UMaine Catalysis Laboratory, 

showing HPLC pumps, pressure gauges, aluminum block, mass flow controller and the pressure 

regulator.  

 

 

Figure 2. 5 Illustration of how the catalyst was packed, with a small bed of catalyst in the middle, 

quartz wool to keep it in place and silica chips to decrease the dead volume.  

Products are accumulated in the separator and periodically collected as a liquid batch sample 

through the sampling system. The sampling system consisted of a needle valve and a ball-valve 
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installed in series between the reactor and the separator. Liquid samples are further injected in a 

GC-FID. Concentrations of species in solution were measured using a gas chromatograph 

equipped with a flame ionization detector (Agilent 7820A).  Separation was achieved using an 

Agilent DB-WAX column (30 m × 0.53 mm, 1 μm) and an method defined as follow. Oven: 313K 

for 5 min, then 313 to 533K at 10K/min, and 533K for 3 min. Carrier of helium at 30cm/s at 313 

K. Injector: Split 1:10, 523K. Detector: FID, 573K. Retention times were 2.3 min for cyclohexane, 

3.2 min for cyclohexene, 5.7 min for benzene, 13.1 min for cyclohexanone, 14.7 min for 

cyclohexanol and 21.4 min for phenol. Calibration curves for each compound are shown in 

Appendix B.3.  

 

 Determination of Reaction Conditions 

 

The desired reactor configuration for this system is called a bubble flow reactor, 60 where the 

reaction happens in the liquid phase with bubbles of gas flowing through the liquid allowing proper 

dilution of H2 in the liquefied phenol. In terms of the gas delivery system, the gas flowrate was 

varied between 10 and 100 sccm and the H2 concentration was modified by co-feeding Ar through 

a second MFC. The goal was to find a condition where the liquid phase existed and the dilluted H2 

was in stoichiometric excess. 

 

In terms of the liquid delivery system, other parameters need to be taken into consideration. In the 

first instance, phenol is a solid crystal at ambient temperature; therefore, the use of a solvent is 

necessary. Since we were interested in evaluating the effect of water in the reaction, water was not 
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a possible solvent. Tetrahydrofuran (THF) appeared to be a suitable solvent but it reacts with the 

catalyst leading to rapid deactivation. Decalin (decahydronaphtalene) was observed to be inert 

during the reaction, but the solubility of phenol in it is low and it is not miscible with water. 

 

Therefore, a second pump was added for experiments where co-feeding water was needed. One 

pump supplied a mixture of phenol diluted in water and the other provided pure decalin to keep 

the desired total concentration in the final liquid phase. The total liquid flowrate should not 

influence the reaction rate, but it will modify the weight hourly space velocity (WHSV), defined 

as mass flowrate of reactant (usually pure phenol) per mass of Ru/TiO2 catalyst and is necessary 

to calculate the reaction rate. In addition, the gas flowrate needed to be set proportionally. Finally, 

different reactants and concentrations in the liquid phase were evaluated in this reactor.  

 

Regarding the catalyst itself, it has been demonstrated that the crystal structure of  TiO2 has a 

significant affect on the DDO rate,61 therefore different catalysts were evaluated. A proper packing 

of the columns will prevent external mass transfer limitations. We evaluated different ways to pack 

the column and dilute the catalyst to enlarge the catalyst bed. (See appendix C for details)  

 Pretreatment 

 

The catalyst pretreatment was performed by in situ reduction under hydrogen, as expected. The 

catalyst was heated under flowing H2 at atmospheric pressure until the reduction temperature was 

reached. After 4 h of reduction time, the system was pressurized and the liquid reactant was fed to 

the reactor, which is referred to as zero time-on-stream. 
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The rate of benzene production was also measured using a catalyst (Ru/P25) that was soaked in 

phenol to mimic the pretreatment used in the batch reactor experiments performed by our 

collaborators. 57  The catalyst was first reduced at 573 K, then cooled to room temperature in 

flowing H2.  The sweep gas was switched to Ar (Matheson, 99.5%), and a stream of 90 wt.% 

phenol and 10 wt.% water was fed to the reactor while the temperature was increased to 573 K (5 

K min-1).  Once the reactor reached 573 K, the sweep gas was switched back to H2 (40 sccm) and 

the rate of DDO was again measured.  No significant difference was observed in the rate of DDO 

following this pretreatment: DDO rates were 0.380 ± 0.032 mol/gcat/min for the soak in phenol 

pretreatment and 0.400 ± 0.004 mol/gcat/min for the clean surface pretreatment, while HYD rates 

were 0.172 ± 0.05 mol/gcat/min for the soak in phenol pretreatment and 0.162 ± 0.004 

mol/gcat/min for the clean surface pretreatment.  

 Non-Ideality 

 

Because the liquid phase contains both alkanes and water, it is expected to see two liquid phases 

and one gas phase, all in chemical equilibrium. 62 Biphasic liquid systems arise from significant 

thermodynamic non-ideality, and by definition, 63 reaction rate expressions are proportional to 

activities (ai) or fugacities (fi) as shown in Equations 2.1 and 2.2.  Thus, we must account for the 

influence of thermodynamic non-ideality on our reaction system.  

 

𝑟 = 𝑘 ∗ 𝑎𝐴
𝑥 ∗ 𝑎𝐵

𝑦
∗ 𝑎𝐶

𝑧    (2.1) 
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  𝑎𝑖 =
𝑓𝑖

𝑓𝑖
0     (2.2) 

 

Fugacities in the liquid phase f̂i
L can be expressed as functions of liquid mole fractions, xi, activity 

coefficients, γi, and fugacities of pure components, fi. Conversely, fugacities in the vapor phase, 

f̂i
V, can be expressed in terms of the vapor mole fraction, fugacity coefficient ϕ and total pressure 

P. 
62

 At chemical equilibrium, the liquid and vapor fugacities are equivalent, as shown in Equation 

2.3. 

 

𝑓�̂�
𝐿
= 𝑥𝑖 𝛾𝑖

𝐿𝑓𝑖
𝐿 = 𝑓�̂�

𝑉
= 𝑦𝑖ϕ�̂�

𝑉
𝑃  (2.3) 

 

The expression in Equation 2.3 can be simplified for ease of use.  First, it is a good approximation 

to express fugacities of pure components in the liquid phase with respect to saturation parameters, 

as shown in Equation 2.4. Correspondingly, the fugacity coefficient for species i, ϕi, can be 

combined with the saturation fugacity coefficient, ϕi
sat, and expressed as a ratio, Φi, (Equation 2.5), 

which leads to the so-called gamma-phi formulation 62 of vapor-liquid equilibrium (Equation 2.6). 

 

𝑓𝑖
𝐿 ≈ ϕ𝑖

𝑠𝑎𝑡𝑃𝑖
𝑠𝑎𝑡    (2.4) 

 

Φ𝑖 =
ϕ�̂�
𝑉

ϕ𝑖
𝑠𝑎𝑡     (2.5) 

 

𝑓�̂� = 𝑦𝑖Φ𝑖𝑃 = 𝑥𝑖𝛾𝑖𝑃𝑖
𝑠𝑎𝑡   (2.6) 
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This formulation can be further simplified for our system.  It is possible to assume that for our 

conditions (650 psi and 300°C) the vapor phase behaves as an ideal gas, and Φi = 1, even though 

the liquid is highly non-ideal. So, from Equation 2.6, we see that the fugacities in this system 

reduce to the vapor-phase partial pressures (Equation 2.7): 

 

𝑓�̂� =  𝑦𝑖𝑃 =  𝑥𝑖 𝛾𝑖
𝐿𝑃𝑖
𝑠𝑎𝑡   (2.7) 

 

 

It could be the case that the vapor phase is indeed non-ideal. In this case, Equation (2.5) will strictly 

need to be applied.  

 

 Mass Transfer Limitations 

 

Different parameters were calculated to assure the absence of mass and heat transfer limitations, 

for gas and liquid phase. The parameters and relevant criteria are as follows 64: 

 

Weiss-Prater (WP) criteria for intraparticle mass transfer: 

 

𝑟′′′𝑟𝑃
2

𝐶𝑆𝐷𝑒𝑓𝑓
<

1

|𝑛|
     (2.8) 

 

Interphase mass transfer criteria: 
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𝑟′′′𝑟𝑃

𝐶𝐵𝑘𝑐
<

1

|𝑛|
     (2.9) 

 

Mears criteria for intraparticle heat transfer:  

 

|∆𝐻|𝑟′′′𝑟𝑃
2

𝜆𝑇𝑠
<

𝑇𝑆𝑅

𝐸𝑎𝑝𝑝
    (2.10) 

 

Combined criteria for intraparticle heat and mass transfer:  

 

|
𝑛𝑟′′′𝑟𝑃

2

𝐶𝑆𝐷𝑒𝑓𝑓
−
(−∆𝐻)𝑟′′′𝑟𝑃

2 𝐸𝑎𝑝𝑝

𝜆𝑅𝑇𝑠
2 | < 1   (2.11) 

 

 

Where  

r’’’ = reaction rate per volume of catalyst (mol/m3s) 

rP = particle radius (m) 

n = reaction order per each component 

CS = component concentration at the surface of the pore in the respective phase (mol/m3) 

CB = component concentration at the bulk phase in the respective phase (mol/m3) 

Deff = effective diffusivity in the porous catalyst (m2/s) 
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kc = mass transfer coefficient between gas and solid particle (cm/s) 

ΔH = heat of chemical reaction (J/mol) 

λ = thermal conductivity of particle (J/msK) 

TS = Absolute temperature at the surface of the particle (K) 

R = Gas constant (J/molK) 

Eapp = Apparent activation energy (J/mol) obtained from DFT calculations 42  

 

 Thermodynamic equilibria analysis 

 

In order to do a thermodynamic analysis of the reaction pathways, a Gibbs reactor in Aspen was 

used to obtain the equilibrium conditions for respective reactant and products. Empirical molar 

flowrates for phenol, water, decalin and H2 were introduced, 650 psi and 300°C were set as reaction 

conditions for the Gibbs reactor. Decalin was defined as an inert.  

 

Also, an equilibrium reactor was used to determine what would be the maximum possible 

conversion for DDO and HYD pathway as they were two independent mechanism and as both 

reaction pathways happen in parallel in a mixed mechanism. This calculation was made to 

elucidate if both reactions are energetically favorable under our current conditions. 

 Benzene and Cyclohexane interconversion 

 

Independent experiments were done to elucidate if benzene and cyclohexane were interconverted 

under current conditions. In one experiment, 0.1 M benzene solution in decalin was fed to the 
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reactor at a 1 mmol/h, at 573K and 4482kPa. Here, we looked for the production of cyclohexane 

and cyclohexene through GC-FID. Analogously, a second experiment was carried out in the same 

defined conditions but by feeding a solution of 0.1M of cyclohexane.  

 

 Kinetic isotope effect (KIE) 

 

In order to get more information about the influence of water, an experiment was run by co-feeding 

D2O instead of water. This data was compared with an experiment with co-fed of H2O under the 

same reaction conditions. Kinetic isotope effect correspond be the ratio of the regular DDO 

reaction rate with respect to the reaction rate performed in presence of the isotope.  

 

 Results 

 Data Treatment 

 

The catalysts used in this work exhibited first-order deacivation, defined in Equation 2.12. 

 

𝑟𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 = 𝑟𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑒
−𝑘𝑑𝑡  (2.12) 

 

Figure 2.6 shows DDO and HYD observed rates as a function of time-on-stream. DDO 

corresponds to the rate of benzene produced in moles per grams of catalyst per hour, and HYD 
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rate corresponds to the sum of cyclohexane plus cyclohexene, cyclohexanol and cyclohexanone 

produced in the same units.  

 

a)  b)  

Figure 2. 6 DDO (a) and HYD (b) rates in moles per gram of catalyst per minute as a function of 

time-on-stream in h. DDO is the amount of benzene produced and HYD is the amount of 

cyclohexane plus cyclohexene, cyclohexanol and cyclohexanone produced in the same units. 

Reaction conditions: 573K and 4482kPa Ru/TiO2-Anatase NG 57. WHSV of 235h-1 of phenol 0.5M 

in decalin, GHSV of 970 h-1 hydrogen. Conversion < 15%. 

Figure 2.7 shows the natural logarithm of the DDO rates as a function of time-on-stream. From 

the figure, it is apparent that the system deactivates in a first-order fashion with respect to time-

on-stream.It is possible to see a decrease in catalytic activity over time because of deactivation 

artifacts. Since the data are linear on a semi-log plot, then by definition the data exhibit first-order 

deactivation, as seen in Figure 2.7. By doing this mathematical treatment it is possible to calculate 

something that will be called the “initial rate”, which be the extrapolation at time zero. This value 

would correspond with good accuracy to a reaction rate that is not influenced by any deactivation 
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mechanism. Further results will only report initial reaction rates extrapolated from independent 

experiments conducted for at least 2h of time-on-stream. 

 
Figure 2. 7 Natural logarithm of DDO rates in moles per gram of catalyst per minute shown as a 

function of time-on-stream in h. The intercept obtained from extrapolation to time zero 

corresponds to the natural logarithm of the initial rate, in absence of deactivation mechanisms. 

The slope obtained from the trend line corresponds to the deactivation constant with respect to 

time, this value will not be reported on this thesis. Reaction conditions: 573K and 4482kPa 

Ru/TiO2-Anatase NG 57. WHSV of 235h-1 of phenol 0.5M in decalin, GHSV of 970 h-1 hydrogen. 

Conversion < 15%. 

Some analyses were done over our deactivated catalyst in order to understand our deactivation 

mechanism. Our TEM and TGA analyses are consistent with a deactivation mechanism governed 

by carbon deposition (See Appendix B). 

 

Also, it is possible to obtain a deactivation constant, which will be the slope of the reaction rates 

on a semi-logarithmic plot. This will represent the exponential deactivation factor that governs the 

deactivation reaction over time as shown in Equation 2.12. 
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Since the goal of this project is elucidating the kinetics of DDO mechanism and there is not enough 

kinetic data to elucidate the conversion mechanism between all the HYD products, the sum of all 

possible products coming from the hydrogenation pathway will be reported as the HYD rate.  

 

 Differential Conditions 

 

The mass balance for a packed bed reactor can be reduced to Equation 2.13. For packed bed 

reactors operating under differential conditions, the fractional conversion should depend inversely 

on WHSV as  discussed extensively in the literature 65.   Phenol conversion (extrapolated to zero 

time-on-stream) was measured at several values of WHSV and, as shown in section 2.5.1, the 

reactor behaved according to the differential approximation at conversions as high as 20%. 

Consequently, all of the reaction kinetics data presented below were measured at phenol 

conversions of less than 20%. 

 

−𝑟𝐴
′ (

𝑔

ℎ∗𝑔𝑐𝑎𝑡
) =  

1

𝑀𝑀𝐴

𝑑𝑋𝐴

𝑑(
𝑊

𝑚𝐴0
)
~

∆𝑋𝐴

∆(
1

𝑊𝐻𝑆𝑉
)
 (2.13) 

 

Reaction conditions at different combinations between phenol flowrate and mass of catalyst were 

tested leading to different values of 1/WHSV and obtaining its respective phenol total conversion 

based on the amount of product formed, which is justified because mass balance closed to within 

7%. 
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Figure 2. 8 Initial conversion at different values of inverse WHSV. WHSV (h-1) values were 

reached by varying the amount of Ru/TiO2-P25 catalyst between 2 and 3 mg, and by choosing 

different liquid flowrates for every point showed. A linear trend within uncertainties showed that 

differentiality is reached under reactor conditions. Reaction conditions: 573K and 4482kPa 

Ru/TiO2-P25. 0.5Mphenol in decalin, GHSV of 970 h-1 hydrogen. 

 

Figure 2.8 shows a plot of initial conversion at different values of inverse WHSV. Those values 

were obtained by varying the amount of catalyst and by choosing different liquid flowrates for 

every point shown. From the figure we determined a linear trend that, within uncertainties, showed 

that differentiality was reached under all conditions shown in the plot, reaching under 20% 

conversion. All further results lie along this line, assuring that all the measured reaction rates are 

properly determined under differential conditions and in a kinetically controlled regime. 
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By choosing a combination of mass of catalyst and liquid flowrates that lies under this linear trend, 

it can be assured that the reactor was run in a differential mode. Here it is possible to see that 

differential conditions are reached under different masses of catalysts as long as the liquid flowrate 

is high enough. At lower flowrates (i.e., larger inverse WHSVs), deviation from the ideal flow 

regime was seen, possibly due to channeling into the catalyst bed.  

 Mass Transfer Limitations 

 

Table 2.1 calculated values of the parameter needed for the calculation of the mass and heat 

transfer limitation criteria for all the possible reactants and phases in the system. Table 2.2 shows 

the final values of those criteria. All the values in Table 2.2 were below the upper limit transfer 

limitation, meaning that the experimental data were collected in a kinetically controlled regime. It 

is noticeable that for water in the liquid phase the Weiss-Prater criteron was relatively large, being 

right at the limit, this is mostly because the very low water concentration reached under 

experimental conditions. A Madon-Boudart test needs to be done in future work to discard any 

possible internal mass transfer limitation.  

 

The possibility of interfacial mass transfer limitations was also evaluated, laying far away from 

the limit. Mears’ criterion for intraparticle heat transfer was calculated to discard any heat effect. 

The last combined parameter is a mixture of the WP and Mears criteria, and the value for water in 

the liquid phase is again relatively large because of the low water concentration reached.  
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Unit Particle radio (m) 2.25x10ˆ05 

rate (mol/m3/s) 135 

Mole concentration liquid (mol/m3) 

H2 968.00 

PHENOL 104.56 

WATER 6.63 

DECALIN 2499.00 

Mole concentration gas (mol/m3) 

H2 799.20 

PHENOL 33.77 

WATER 45.08 

DECALIN 59.99 

Diffusivity phenol mixture (m2/s) 

H2 5.95 x10ˆ-08 

PHENOL 1.14 x10ˆ-08 

DECALIN 8.62 x10ˆ-09 

WATER 3.88 x10ˆ-08 

Thermal conductivity (m/s) 

H2 24.72 

PHENOL 8.21 

DECALIN 6.82 

WATER 18.61 

Diffusivity liquid (m2/s) 

H2 2.89 x10ˆ-08 

PHENOL 2.89 x10ˆ-08 

DECALIN 1.21 x10ˆ-06 

WATER 7.28 x10ˆ-08 

Diffusivity gas (m2/s) 

H2 1.93 x10ˆ-06 

PHENOL 5.59 x10ˆ-07 

DECALIN 1.16 x10ˆ-06 

WATER 1.77 x10ˆ-06 

Table 2.1 Intermediate parameter calculated for mass and heat transfer limitation parameters, for 

phenol, hydrogen and water in both liquid and gas phase.  

Test 
Intraparticle Mass 

Weiss-Prater 
Intephase Mass 

Intraparticle Heat 

Mears 

Intraparticle Heat + 

Mass 

 Liquid Gas Liquid Gas Liquid Gas Liquid Gas 

Phenol 5.7E-02 9.2E-04 4.3E-05 1.9E-05 4.0E-06 4.0E-06 0.18 2.8E-02 

H2 1.2E-03 1.7E-05 1.0E-06 1.8E-07 4.0E-06 4.0E-06 1.3E-02 2.8E-04 

Water 0.27 1.6E-04 1.6E-04 3.3E-06 4.0E-06 4.0E-06 0.6 3.5E-03 

Target < 0.3 < 0.3 < 0.15 < 0.15 < 0.075 < 0.075 < 1 < 1 

Equation 11 12 13 14 

Table 2.2 Results for calculation of mass and heat transfer parameters for phenol, hydrogen and 

water in both liquid and gas phase. All of the parameters meet the criteria but it is also noticeable 

that water in the liquid phase presents a significant value of the Weiss-Prater number that needs 

to be considered. 
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Considering the absence of any heat and mass transfer limitations, it is reasonable to assume that 

catalyst pores are filled with liquid and that the reaction happens in the liquid phase that is in 

equilibrium with the vapor phase.  

 Benzene and cyclohexane interconversion 

 

From Table 2.3 it is possible to see that by feeding pure benzene and pure cyclohexane through 

the reactor, less than 10% of each is converted into cyclohexane and benzene, respectively, 

demonstrating that under current reaction conditions interconversion between cyclohexane and 

benzene is insignificant and will not be affecting our kinetics measurements.   

 

Experiment 
Flow rates per catalyst (mol/h*gcat) 

Benzene in Benzene out Cyclohexane in Cyclohexane out 

0.1M Benzene 0.57 0.415  0.034 

0.1M Cyclohexane  0.002 0.358 0.305 

Table 2.3 Benzene and cyclohexane flowrates, out of a reactor fed by a solution of 0.1 M of benzene 

or cyclohexane in decalin. Reaction conditions: 573K and 4482kPa Ru/TiO2-Rutile. WHSV of 

19530 h-1 for benzene and 12620 h-1 for cyclohexane respectively, GHSV of 970 h-1 hydrogen. 

Conversion < 15%. 

 Thermodynamics equilibria analysis 

 

Table 2.4 shows the results of the thermodynamics equilibria analysis from Aspen’s Gibbs reactor. 

At equilibrium, phenol hydrodeoxygenation is exergonic for DDO and HYD, leading to a 100% 

conversion of phenol for all cases, i.e. both reaction pathways are thermodynamically downhill. 
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Considering the mixed scenario, where DDO and HYD happen is parallel, the product distribution 

favors cyclohexane production, which is reasonable considering the hydrogenation of benzene. 

Current reaction rates indicated that from a thermodynamic standpoint the residence time is not 

enough to reach equilibrium.  

 

Mechanism Phenol → Benzene Phenol → Cyclohexane Phenol → DDO + HYD 

H2 Conversion 5.5% 5.5% 5.5% 

Phenol Conversion 100% 100% 100% 

DDO Selectivity 100% - 0.005% 

HYD Selectivity - 100% 99.995% 

Table 2. 4 Results of energy analysis estimates with Aspen Plus™. Conversion and selectivity from 

a Gibbs reactor estimated for just benzene, just cyclohexane and both DDO and HYD pathway.  

Reaction conditions: 573K and 4482kPa. WHSV of 235h-1 of phenol 0.5M in decalin, GHSV of 

970 h-1 hydrogen.  

Table 2.5 shows the product distribution at equilibrium. Results shows that at equilibrium the 

reaction is 99% selective for cyclohexane, being different than current results that produce an even 

distribution of all possible products. That means that under current conditions, the product 

distribution is not governed by thermodynamics but rather reaction kinetics.   

 

Component Mol Fr. Selectivity (%) 

BENZENE 1.29E-07 0.01% 

CYCLOHEXANE 0.002179 99.99% 

CYCLOHEXENE 3.85E-08 0.00% 

CYCLOHEXANOL 8.43E-16 0.00% 

CYCLOHEXANONE 1.20E-15 0.00% 

Products 2.18E-13 
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Table 2. 5 Results of energy analysis estimates with Aspen Plus™. Product distribution from a 

Gibbs reactor estimated for a mixture of DDO and HYD pathway.  Reaction conditions: 573K and 

4482kPa. WHSV of 235h-1 of phenol 0.5M in decalin, GHSV of 970 h-1 hydrogen.  

The analysis presented in sections 2.5.1 to 2.5.5 demonstrates from both experimental and 

theoretical aspects of reactor design, that at the conditions used here the flow reactor was running 

in a kinetically controlled regime. High pressure (650 psi) and high flowrate of pure H2 was chosen 

(between 40 to 170 sccm), in accordance with a high liquid flowrate allowing the collection of 

samples in a convenient way (between 0.15 to 1.50 mL/min). 

 

Phenol concentration in the liquid feed was varied between 0.5M and 0.05M, and the water 

concentration was varied by using two pumps in parallel.  Different catalysts were evaluated, 

presenting in this work the results of Ru/TiO2-Anatase (Nanografi), Ru/TiO2-Rutile USR and 

Ru/TiO2-P25. 57  

 Effect of water on DDO kinetics 

 

Previously, our collaborators determined experimental evidence for enhancement in DDO activity 

in presence of water. By switching to a 10% wt. water condition, they saw a 10-fold enhancement 

in DDO/HYD activity data. 42 

 

 In addition, Omotoso et al. 19 saw the same enhancement effect of water using different Ru 

loadings and different TiO2 supports. They evaluated the conversion of m-cresol in the gas phase 

at 400°C. By having a high ratio of active sites with respect to water, they saw a bigger 
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enhancement effect on P25 and anatase, they also reported no significant influence of the crystal 

structure of the support.  

 

For this project, experiments in absence and in presence of water for Ru/TiO2 rutile, anatase and 

P25 were evaluated. Here a positive enhancement in DDO rates for the three catalyst was seen, 

under similar conditions as shown in Figure 2.9.  

 

 

Figure 2. 9 Initial DDO rates evaluated at similar condition with and without co-feed of water, 

for different Ru/TiO2 catalysts. DDO is the amount of benzene produced in moles per grams of 

catalyst per hour. Reaction conditions: 573K and 4482kPa Ru/TiO2-Rutile, Anatase NG and P25 

57. WHSV of 235h-1 of phenol 0.5M in decalin, GHSV of 970 h-1 hydrogen. Co-feed 60h-1 of water. 

Conversion < 15%. 

Figure 2.10 shows rates of DDO as a function of the inlet liquid water composition, for Ru/rutile 

and Ru/anatase, both on a log-log scale; there is no clear mechanistically-interpretable trend in the 

data analyzed in tis way. Therefore, it was necessary to account for the thermodynamically non-

ideal phase separation inside the reactor.  
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a)  b)  

Figure 2. 10 Rates of direct deoxygenation of phenol with respect to the initial liquid composition 

of water on a log-log scale for (a)  Ru/TiO2-Anatase 57 and (b) 4482kPa Ru/TiO2-Rutile 57.  

Reaction conditions: 573K and 4482kPa Ru/TiO2-Rutile  57. WHSV of 235h-1 of phenol 0.5M in 

decalin, GHSV of 970 h-1 hydrogen. Co-feed between 27 and 80h-1 of water. Conversion < 15%. 

After defining the correct method to determine the liquid and gas phase distribution, results were 

presented with respect to the newly calculated water partial pressure. 

  

From Figure 2.11 it is possible to see rates of DDO (a) and HYD (b) as a function of water partial 

pressure, in the gas phase both on a logarithmic scale. The water partial pressure was calculated as 

defined in section 2.4.2. For Ru/rutile, as expected, an increase in the DDO pathway with respect 

to water is found, suggesting that at higher concentrations of water the number transition states 

available on the surface increased. The same trend was found for the HYD pathway.  
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a) b)  

Figure 2. 11 Rates of direct deoxygenation (a) and hydrogenation (b) of phenol with respect to 

partial pressure of water on a log-log scale. Reaction conditions: 573K and 4482kPa Ru/TiO2-

Rutile  57. WHSV of 235h-1 of phenol 0.5M in decalin, GHSV of 970 h-1 hydrogen. Co-feed between 

27 and 80h-1 of water. Conversion < 15%. 

 

Surprisingly, for Ru/Anatase, the results follow an opposite trend, and for the current set of 

experiments shown, co-feeding a higher concentration of water decreased the activity for both 

DDO and HYD pathway, as seen in Figure 2.12. 

a) b) 

Figure 2. 12 Rates of direct deoxygenation (a) and hydrogenation (b) of phenol with respect to 

partial pressure of water on a log-log scale. Reaction conditions: 573K and 4482kPa Ru/TiO2-
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Anatase NG 57. WHSV of 235h-1 of phenol 0.5M in decalin, GHSV of 970 h-1 hydrogen. Co-feed 

between 27 and 80h-1 of water. Conversion < 15%. 

 

 Effect of phenol for rutile and anatase  

 

To get more information for the reaction pathway, experiments were done at different 

concentrations of phenol keeping the same vapor/liquid ratio. Reaction orders with respect to 

phenol are significantly different between Ru/TiO2 rutile and anatase, as seen in Figures 2.13 and 

2.14. 

 

For DDO pathway, reaction order shifts with respect to phenol for rutile, but it is constant for 

anatase. On the other hand, reaction orders of HYD rates with respect to phenol comparable for 

the DDO trend on rutile and fractional order for anatase. 

a) b)  

Figure 2. 13 Rates of direct deoxygenation (a) and hydrogenation (b) of phenol with respect to 

partial pressure of phenol on a log-log scale. Reaction conditions: 573K and 4482kPa Ru/TiO2-
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Rutile  57. WHSV of 235h-1 of phenol 0.05 to 0.5M in decalin, GHSV of 970 to 9700 h-1 hydrogen. 

Conversion < 15%. 

a)  b)  

Figure 2. 14 Rates of direct deoxygenation (a) and hydrogenation (b) of phenol with respect to 

partial pressure of phenol on a log-log scale. Reaction conditions: 573K and 4482kPa Ru/TiO2-

Anatase NG.  57 WHSV of 235h-1 of phenol 0.05 to 0.5M in decalin, GHSV of 970 to 9700 h-1 

hydrogen. Conversion < 15%. 

 

 Kinetic isotope effect (KIE) 

 

In order to get more information about the influence of water, an experiment was run by co-feeding 

D2O (Deuterium oxide, for NMR. 100.0 atom% D) instead of water. This data was compared with 

an experiment with co-fed of H2O under the same reaction conditions. Kinetic isotope effect 

correspond be the ratio of the regular DDO reaction rate with respect to the reaction rate performed 

in presence of the isotope. The values are presented in Table 2.6. 

 

  KIE DDO 
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Anatase 10% H2/D2O 1.00 

Anatase 10% regular 1 

Rutile 10% H2/D2O 2.51 

Rutile 10% regular 1 

Table 2. 6 KIE for direct deoxygenation of phenol diluted with D2O instead of water.. Reaction 

conditions: 573K and 4482kPa Ru/TiO2-Rutile  57. WHSV of 235h-1 of phenol 0.5M in decalin, 

GHSV of 970 h-1 hydrogen. Co-feed of 27 h-1 of water and D2O. Conversion < 15%. 

 

 Discussion 

 Effect of water and crystal structure of the support 

 

We discovered significant differences with the crystal structure of our supports that were related 

to the amount of water adsorbed in the support, and to the enthalpy of adsorption of those water 

molecules in the support. 66  

 

Based on kinetics experiments and results of isotopic trace experiments, we propose an updated 

mechanism where adsorbed water will favor proton shuttling in a mechanism consistent with the 

Ru/rutile trend instead of the one proposed by Nelson et al. 42  

 

The updated mechanism is shown in Figure 2.15. We propose that weakly adsorbed water at the 

surface participates in the transition state for C-O bond scission. Those molecules stabilized by 

hydrogen bonding with other water molecules act as Brønsted acids, transfer a proton to the 

phenolic hydroxyl, facilitating C-O cleavage, in one elementary step (corresponding to the RDS). 
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In the meantime, water is re-protonated by spilled-over hydrogen, reconstructing the interfacial 

active sites.   

 

Figure 2. 15 Updated molecular mechanism of DDO pathway for phenol over Ru/TiO2, with a 

mechanism consistent with isotopic trace experiments and kinetic results. Mechanism is proposed 

for experiments in presence of water as a co-reactant. 

 

Our mechanism account on C-O scission step as rate determining. Based on DFT calculations 

generated from our collaborators, it was concluded that even since the activation energy for C-O 

bond scission (0.48 eV) was not the highest in the sequence, its corresponding Gibbs free energy 

under moderate reaction conditions resulted in negligible values for the adsorption and desorption 

steps. 42  

 

Water can be easier adsorbed on protonated hydroxyls groups at the interface rather than metal 

hydrides. 67 The proton shuttling effect was proposed in Saavedra’s work, for CO oxidation over 

Au/TiO2, where water molecules adsorbed on the protonated hydroxyls groups from the support 

act as amphoteric site in a similar way as the way proposed by earlier work. 42 

 

 

We believe that under this mechanism the surface hydroxyls do not play a direct role in the 

reaction, but they help in anchoring water to the support surface through hydrogen bonding and 
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transferring protons from the support through water as proposed by Saavedra’s work. 68 Water 

participates in the transition state; changing the water concentration changes the number of 

transition states, and therefore the reaction rates. Saavedra’s kinetics studies showed that water did 

not affect the rate constant, but it affected the coverage of weakly adsorbed water at the MSI 

affecting the rate expression. 66,68–70 Based on our previous premises the type of support will not 

be directly important for the mechanism, and it will only influence the amount of adsorbed water 

available. 

 

 

Besides CO oxidation, other C-O bond cleavage reactions were reported with consistent evidence 

to our proposed reaction mechanism. For furfural liquid hydrodeoxygenation 47  over a Pd catalyst, 

it was proposed a water-mediated protonation mechanism favoring C-O bond hydrogenolysis, 

which was the kinetically relevant step under water-rich environments. Their work proposed a 

stabilization effect of water.  

 

The negative reaction order with respect to water for DDO over Ru/anatase is more difficult to 

explain, but we believe that the originally proposed mechanism (Figure 2.2) should govern the 

reaction performance under this case. 

 

The negative effect of water can be related to the hydrophilicity of anatase and therefore water 

could be a MASI for this mechanism. Anatase surface is more hydrophilic than rutile surfaces, and 

it would lead to higher water adsorption at the catalyst interface. Stone and coworkers 1 performed 

microcalorimetry measurements of water adsorption on anatase and rutile powders indicating that 
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water adsorbed more strongly on anatase surfaces (heat of reversible adsorption = -60 kJ/mol) than 

on rutile surfaces (heat of reversible adsorption = -44 kJ/mol). Further studies of IR spectroscopy 

of the hydroxyls in the surfaces of these materials showed substantial hydrogen bonding in the 

anatase hydroxyls, consistent with more hydrophilic surface and less hydrogen bonding for anatase 

hydroxyls than for rutile. 71 

 

Studies in CO oxidation demonstrated that water could also be a most abundant surface 

intermediate. Saavedra’s work showed a similar trend, reaching a maximum in conversion, at 2 

monolayers of water (600 Pa), and then a decrease in activity with higher water concentration. 72 

It was suggested that weakly adsorbed water can inhibit other reaction, like CO oxidation by 

blocking sites at the metal-support interface that could suppress CO adsorption at the gold 

nanoparticle. 70 66
 
72 67 The presence of water affecting the RDS was also observed in Pt clusters 70 

and phenol conversion over ReS2/SiO2. 
73 The activation of H2 at the metal support interface, via 

heterolytic cleavage could also be suppressed by water adsorption on the hydroxyls groups 66  

 

A negative effect with respect to water for Ru/anatase also suggest that water cannot play an 

important role in the rate determining step to reach the observed -1 order. 57  

 Effect of phenol  

 

For Ru/rutile, DDO and HYD followed a first order trend at lower phenol concentration, and a 

negative order at higher concentration. To the other side, while reaction rates for Ru/anatase were 

zero order for DDO, HYD presented a fractional order with respect to phenol.  
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Those trends are also consistent with C-O bond cleavage being the rate-determining step and it 

suggest that two active sites are involved in this step. The C-O scission requires the existence of 

an adjacent metal site, where the phenyl group will remain adsorbed, and further hydrogenated, 

therefore we accounted for one interfacial and one metal site in the mechanism. 

 

It is worth noticing that phenol can also be adsorbed at the metal nanoparticle only, leading to the 

HYD pathway. Therefore, phenol can be a MASI for the metal sites under certain conditions. 

Water may stabilize adsorbed phenol, increasing the coverage of phenolic species at high phenol 

concentrations and leading to the decrease in activity shown in the rutile trend at higher water 

concentration in in Figure 2.13. In this case, phenol could become as a site blocking agent by itself.  

 Derivation of the rate expression 

 

We propose a sequence of elementary steps as follows.  This sequence accounts for the existence 

of two different types of active sites for DDO pathway. The first one is the interfacial site (*) 

between the metal and the support, where adsorption of phenol and C-O bond cleavage takes place. 

The second active site is the metallic site (Δ) that facilitates two different types of hydrogen 

adsorption, and hydrogenation of the phenyl group into benzene. The existence of two active sites 

was also considered for the CO oxidation mechanism. 66 All of those assumptions are illustrated 

in Figure 2.16. 
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Figure 2. 16 Schematic representation of all the possible active sites used in the derivation for the 

rate expression. Pictures based on Figure 2.2. 

We propose the following sequence of elementary steps valid for both catalysts rutile and anatase, 

although the RDS will be different for each case. 

 

1. 𝐻2(𝑙) + ∆ +  ∗  
K1
↔𝐻Δ + 𝐻∗ 

2. 𝐻3𝑂
∗ 
K2
↔ 𝐻2𝑂 (𝑙) +  𝐻∗ 

3. A) 𝑃ℎ𝑂𝐻 (𝑙) +  𝐻∗ 
K3B
↔  𝑃ℎ𝑂𝐻2

∗ 

3. B) 𝑃ℎ𝑂𝐻 (𝑙) +  𝐻3𝑂
∗ 
K3A
↔  𝑃ℎ𝑂H2 − 𝑂𝐻2

∗ 

4. A) 𝑃ℎ𝑂𝐻2
∗ + ∆  

𝑘4B
→  𝑃ℎ∆ +  𝐻2𝑂 (𝑙) +  ∗ 

4. B) 𝑃ℎ𝑂H2 −𝑂𝐻2
∗ + ∆  

𝑘4A
→   𝑃ℎ∆ +  𝐻2𝑂

∗ +  𝐻2𝑂 (𝑙) 

5. 𝐻2𝑂
∗ 
K5
↔ 𝐻2𝑂 (𝑙) +  ∗ 

6. 𝑃ℎ∆ +  𝐻Δ 
K6
↔ 𝐵𝑧∆ + ∆ 

* = Interface  

v = Vacancy  

Δ = Metal site      

H* = Hydrogenated interface  

H3O* = wH2O = weekly adsorbed water   



 

 

 

50 

7. 𝑃ℎ𝑂𝐻 (𝑙) +  ∆ 
K7
↔ 𝑃ℎ∆𝑂H  

8. 𝐻2(𝑙) + 2∆ 
K8
↔ 2𝐻Δ 

9. 𝐵𝑧∆ 
K9
↔ 𝐵𝑧 (𝑙) +  ∆ 

      T.  𝐻2 + 𝑃ℎ𝑂𝐻 →  𝐵𝑧 + 𝐻2𝑂 

 

As mentioned earlier, the rate-determining step for DDO involves the C-O bond scission for each 

catalyst, although the corresponding transition state is different in each case.  

 

For Ru/anatase, the negative order with respect to water and zero order with respect to phenol can 

be explained considering that step 4.A is the RDS. The derivation of the rate expression is 

presented as follow, and it accounts for the coverages over two different active sites; the interfacial 

site (θ*) and the metal site (σΔ). 

𝑟 = 𝑟4A = 𝑘4A𝜃𝑃ℎ𝑂𝐻2𝜎
∆ 

Considering that all the other elementary steps (1-3, 5-10) are quasi-equilibrated, it is possible to 

express coverage as a function of the partial pressures of phenol (PPhOH), hydrogen (PH2), benzene 

(PBz), and water (PH2O).  

For the interfacial site: 

𝜃𝐻 =
𝐾1

𝐾8
0.5 𝑃𝐻2

0.5𝜃∗ 

𝜃𝑃ℎ𝑂𝐻2 =
𝐾1𝐾3A

𝐾8
0.5 𝑃𝐻2

0.5𝑃𝑃ℎ𝑂𝐻𝜃
∗ 

𝜃𝐻2𝑂 =
1

𝐾5
𝑃𝐻2𝑂𝜃

∗ 
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𝜃𝑃ℎ𝑂𝐻2−𝑂𝐻2 =
𝐾1𝐾2

𝐾9𝐾8
0.5 𝑃𝐻2

0.5𝑃𝑃ℎ𝑂𝐻𝑃𝐻2𝑂𝜃
∗ 

𝜃𝐻3𝑂+ =
1

𝐾2
𝑃𝐻2𝑂𝜃

∗ 

 

and for the metal site: 

𝜎𝐻 = 𝐾8
0.5𝑃𝐻2

0.5𝜎∆ 

𝜎𝑃ℎ =
1

𝐾6𝐾8
0.5𝐾9

𝑃𝐻2
0.5𝑃𝐵𝑧𝜎

∆ 

𝜎𝑃ℎ𝑂𝐻 = 𝐾7𝑃𝑃ℎ𝑂𝐻𝜎
∆ 

𝜎𝐵𝑧 =
1

𝐾9
𝑃𝐵𝑧𝜎

∆ 

therefore, 

𝑟 = 𝑟4A = 𝑘4A𝐾1𝐾3A𝐾8
−0.5𝑃𝐻2

0.5𝑃𝑃ℎ𝑂𝐻𝜃
∗𝜎∆ 

 

A site balance for interfacial sited leaded to: 

 

1 =  𝜃∗ + 𝜃𝐻 + 𝜃𝑃ℎ𝑂𝐻2 + 𝜃𝐻2𝑂 + 𝜃𝐻3𝑂+ 

therefore, 

𝜃∗ =
1

1 +
𝐾1
𝐾8
0.5 𝑃𝐻2

0.5 +
𝐾1𝐾3A
𝐾8
0.5 𝑃𝐻2

0.5𝑃𝑃ℎ𝑂𝐻 +
1
𝐾5
𝑃𝐻2𝑂 +

1
𝐾2
𝑃𝐻2𝑂

 

 

Correspondingly, a site balance for metal sites leaded to: 

1 = 𝜎∆ + 𝜎𝐻 + 𝜎𝑃ℎ + 𝜎𝑃ℎ𝑂𝐻 + 𝜎𝐵𝑧 
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Therefore, 

𝜎∆ =
1

1 + 𝐾8
0.5𝑃𝐻2

0.5 +
1

𝐾6𝐾8
0.5𝐾9

𝑃𝐻2
0.5𝑃𝐵𝑧 + 𝐾7𝑃𝑃ℎ𝑂𝐻 +

1
𝐾9
𝑃𝐵𝑧

 

 

𝑟 = 𝑟4A =
𝑘4A𝐾1𝐾3A𝐾8

−0.5𝑃𝐻2
0.5𝑃𝑃ℎ𝑂𝐻

(1 +
𝐾1
𝐾8
0.5 𝑃𝐻2

0.5 +
𝐾1𝐾3A
𝐾8
0.5 𝑃𝐻2

0.5𝑃𝑃ℎ𝑂𝐻 +
1
𝐾5
𝑃𝐻2𝑂 +

1
𝐾2
𝑃𝐻2𝑂)(1 + 𝐾8

0.5𝑃𝐻2
0.5 +

1

𝐾6𝐾8
0.5𝐾9

𝑃𝐻2
0.5𝑃𝐵𝑧 +𝐾7𝑃𝑃ℎ𝑂𝐻 +

1
𝐾9
𝑃𝐵𝑧)

 

This expression could be further simplified, considering current experimental conditions. Since all 

the experiments were done at constant H2 partial pressure and at differential conditions, the partial 

pressure of H2 can be absorbed into the apparent rate constant and the partial pressure of benzene 

should be negligible, leading to the simplified expression in Equation 2.14.  

𝑟 = 𝑟4A =
𝑘′𝑃𝑃ℎ𝑂𝐻

(𝐾′+𝐾PhOH𝑃𝑃ℎ𝑂𝐻+KH2𝑂𝑃𝐻2𝑂)(K′′+𝐾𝐻𝑌𝐷𝑃𝑃ℎ𝑂𝐻)
   (Equation 2.14) 

 

where, 

k′ = 𝑘4A𝐾1𝐾3A𝐾8
−0.5𝑃𝐻2

0.5 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝐾′ = 1 +
𝐾1

𝐾8
0.5 𝑃𝐻2

0.5  = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝐾PhOH =
𝐾1𝐾3A

𝐾8
0.5 𝑃𝐻2

0.5 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

KH2𝑂 =
1

𝐾5
+
1

𝐾2
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

K′′ = 1 + 𝐾8
0.5𝑃𝐻2

0.5 +
1

𝐾6𝐾8
0.5𝐾9

𝑃𝐻2
0.5𝑃𝐵𝑧 +

1

𝐾9
𝑃𝐵𝑧 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝐾𝐻𝑌𝐷 = 𝐾7 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 
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Equation 2.14 can be fitted to all the experimental trends related with Ru/anatase, considering 

different magnitudes of the apparent equilibrium constants and partial pressures. 

 

Since anatase was highly hydrophilic, KH2O is expected to be a very large number. At constant 

phenol concentration, and assuming that water is a MASI the trend is consistent with the negative 

order with respect to water. Here: 

KH2𝑂𝑓𝐻2𝑂 ≫ 𝐾′ + 𝐾PhOH𝑓𝑃ℎ𝑂𝐻 

 

Neglecting the terms with lower magnitudes, the rate expression becomes as follow. 

𝑟 =
𝑘′𝑓𝑃ℎ𝑂𝐻

(KH2𝑂f𝐻2𝑂)(K′′ + 𝐾𝐻𝑌𝐷𝑓𝑃ℎ𝑂𝐻)
= 𝑘′𝑓𝐻2𝑂

−1  

 

To explain the reaction order with respect to phenol (n=0), phenol should be a MASI in one of the 

two different active sites. With our data, it is not possible to elucidate which one. On the first case, 

phenol can be MASI on the interfacial site, therefore: 

𝐾′′𝑓𝑃ℎ𝑂𝐻 ≫ 𝐾′ + KH2𝑂𝑓𝐻2𝑂 

K′′ ≫ 𝐾𝐻𝑌𝐷𝑓𝑃ℎ𝑂𝐻 

 

Neglecting the terms with lower magnitudes, the rate expression becomes as follow, consistent 

with the observed zero order with respect to phenol. 

𝑟 =
𝑘′𝑓𝑃ℎ𝑂𝐻

(𝐾′′𝑓𝑃ℎ𝑂𝐻)(K′′)
=  k′′ 
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On the other case, phenol can be a MASI on the metal site, leading to the following expression: 

𝐾′′𝑓𝑃ℎ𝑂𝐻 ≪ 𝐾′ + KH2𝑂𝑓𝐻2𝑂 

K′′ ≪ 𝐾𝐻𝑌𝐷𝑓𝑃ℎ𝑂𝐻 

 

Analogously, the rate expression becomes as follow 

𝑟 =
′𝑓𝑃ℎ𝑂𝐻

(𝐾′ + KH2𝑂𝑓𝐻2𝑂)(𝐾𝐻𝑌𝐷𝑓𝑃ℎ𝑂𝐻)
= k′′′ 

 

For Ru/rutile the proposed sequence of elementary step is the same, but the rate determining step 

is different. This one accounted for the presence of the previously described weakly adsorbed water 

that favors the phenol adsorption and generated a proton shuttling effect as described in the CO 

oxidation literature. The positive order with respect to water and the volcano shape trend with 

respect to phenol can be explained considering that step 4.B is the RDS. The derivation of the rate 

expression is very similar that the one for the Ru/anatase case and also accounts for the coverages 

over two different active sites; the interfacial site (θ*) and the metal site (σΔ). The rate expression 

is defined by: 

𝑟 = 𝑟4B = 𝑘4B𝜃𝑃ℎ𝑂𝐻2−𝑂𝐻2𝜎
∆ 

𝑟 = 𝑟3 = 𝑘4B𝐾1𝐾2𝐾9
−1𝐾8

−0.5𝑃𝐻2
0.5𝑃𝑃ℎ𝑂𝐻𝑃𝐻2𝑂θ

∗𝜎∆ 

 

Considering that the sites coverages are the same as expressed before, the rate expression becomes 

as follow. 

1 = 𝜎∆ + 𝜎𝐻 + 𝜎𝑃ℎ + 𝜎𝑃ℎ𝑂𝐻 + 𝜎𝐵𝑧 

 



 

 

 

55 

Therefore, 

𝜎∆ =
1

1 + 𝐾8
0.5𝑃𝐻2

0.5 +
1

𝐾6𝐾8
0.5𝐾9

𝑃𝐻2
0.5𝑃𝐵𝑧 + 𝐾7𝑃𝑃ℎ𝑂𝐻 +

1
𝐾9
𝑃𝐵𝑧

 

𝑟 = 𝑟4B =
𝑘4B𝐾1𝐾2𝐾9

−1𝐾8
−0.5𝑃𝐻2

0.5𝑃𝑃ℎ𝑂𝐻𝑃𝐻2𝑂

(1 +
𝐾1
𝐾8
0.5 𝑃𝐻2

0.5 +
𝐾1𝐾3A
𝐾8
0.5 𝑃𝐻2

0.5𝑃𝑃ℎ𝑂𝐻 +
1
𝐾5
𝑃𝐻2𝑂 +

1
𝐾2
𝑃𝐻2𝑂)(1 + 𝐾8

0.5𝑃𝐻2
0.5 +

1

𝐾6𝐾8
0.5𝐾9

𝑃𝐻2
0.5𝑃𝐵𝑧 + 𝐾7𝑃𝑃ℎ𝑂𝐻 +

1
𝐾9
𝑃𝐵𝑧)

 

 

The same simplifications can be done, considering constant partial pressures of H2 and benzene: 

𝑟 = 𝑟4B =
𝑘′𝑃𝑃ℎ𝑂𝐻𝑃𝐻2𝑂

(𝐾′+𝐾𝑃ℎ𝑂𝐻𝑃𝑃ℎ𝑂𝐻+KH2𝑂𝑃𝐻2𝑂)(K′′+𝐾𝐻𝑌𝐷𝑃𝑃ℎ𝑂𝐻)
  (Equation 2.15) 

 

Where 

k′ = 𝑘4B𝐾1𝐾2𝐾9
−1𝐾8

−0.5𝑃𝐻2
0.5 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝐾′ =  1 +
𝐾1

𝐾8
0.5 𝑃𝐻2

0.5 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝐾PhOH =
𝐾1𝐾3A

𝐾8
0.5 𝑃𝐻2

0.5 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

KH2𝑂 =
1

𝐾5
+
1

𝐾2
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

K′′ =  1 + 𝐾8
0.5𝑃𝐻2

0.5 +
1

𝐾6𝐾8
0.5𝐾9

𝑃𝐻2
0.5𝑃𝐵𝑧 +

1

𝐾9
𝑃𝐵𝑧 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝐾𝐻𝑌𝐷 = 𝐾7 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 

For Ru/rutile water did not play an important role in the site-blocking effect, consistent with the 

positive order in Figure 2.11.a:  

𝐾′ + 𝐾′′𝑓𝑃ℎ𝑂𝐻 ≫ KH2𝑂𝑓𝐻2𝑂 
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Neglecting the small terms the rate expression becomes as follow 

𝑟 =
𝑘′𝑓𝐻2𝑂𝑓𝑃ℎ𝑂𝐻

(𝐾′ + 𝐾′′𝑓𝑃ℎ𝑂𝐻)(K′′ + 𝐾𝐻𝑌𝐷𝑓𝑃ℎ𝑂𝐻)
= 𝑘IV𝑓𝐻2𝑂  

 

For the trend in phenol at lower concentration, this was not an important site-blocking term, 

consistent with Figure 2.13.a: 

𝐾′′𝑓𝑃ℎ𝑂𝐻 ≪ 𝐾′ + KH2𝑂𝑓𝐻2𝑂 

𝐾𝐻𝑌𝐷𝑓𝑃ℎ𝑂𝐻 ≪ K′′ 

 

Analogously the rate expression becomes: 

𝑟 =
𝑘′𝑓𝑃ℎ𝑂𝐻𝑓𝐻2𝑂

(𝐾′ + KH2𝑂𝑓𝐻2𝑂)(K′′)
=  kV𝑓𝑃ℎ𝑂𝐻 

 

At higher concentration of phenol, phenol becomes an important site-blocking term, for the 

interfacial and the metal site, also consistent with Figure 2.13.a: 

𝐾′′𝑓𝑃ℎ𝑂𝐻 ≫ 𝐾′ + KH2𝑂𝑓𝐻2𝑂 

K′′ ≫ 𝐾𝐻𝑌𝐷𝑓𝑃ℎ𝑂𝐻 

 

Finally, this rate expression leads to the following form: 

𝑟 = 𝑟3 =
𝑘′𝑓𝑃ℎ𝑂𝐻𝑓𝐻2𝑂

(𝐾′′𝑓𝑃ℎ𝑂𝐻)(𝑓𝑃ℎ𝑂𝐻)
= 𝑘𝑉𝐼𝑓𝑃ℎ𝑂𝐻

−1  
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 Conclusions 

Those results show significant differences for hydrodeoxygenation of phenol over Ruthenium 

supported on anatase and rutile. We obtained clear trends of the effect of water in reaction rates 

for direct deoxygenation and hydrogenation pathways. Here, water plays an enhancement effect 

for Ru/rutile. The increase in rates with respect to water for Ru/rutile was consistent with water 

molecules in close proximities to the interface, as a weakly adsorbed molecule that could act as a 

co-catalyst for direct C-O bond scission, lowering the activation energy for this step by playing as 

a proton transfer agent. We believed that water can be adsorbed at the interfacial site generating a 

different adsorbed phenol species than the one proposed previously by our collaborators. This 

water-assisted mechanism is consistent with our kinetic data, but we need more evidences to prove 

if this mechanism is possible and favorable.  

 

For Ru/anatase, concentration of water plays an opposite role providing a negative trend for all our 

experimental conditions. We believe that under this condition the proposed water assisted 

mechanism is not favorable due the differences in adsorption energies between rutile and anatase, 

that favors the previously proposed mechanism (DDO1) because of the reduction of the energy 

barriers for this RDS. 

 

 To the other side, the effect of phenol in DDO rates is first order in Ru/rutile at lower phenol 

concentrations, while is zero order in Ru/anatase and negative order for Ru/rutile at higher phenol 

concentration. A similar trend is observed for the HYD pathway.   
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Those results are consistent with both proposed rate expression considered C-O scission as the rate 

determining step, and assuming that phenol can be adsorbed at the interfacial site and in the metal 

site leading to the HYD pathway. Under current experimental conditions is proposed that phenol 

is a MASI for just one of these sited over Ru/Anatase, while those effects are not significant for 

Ru/rutile under lower phenol concentrations. We believe also that at higher phenol concentration 

for Ru/phenol is a MASI in both metal and interfacial sites.  
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CHAPTER 3: FUTURE WORK 

 

The phenol HDO project can be expanded I many different ways. In first instance, it is important 

to point out that kinetic data is not enough to prove a mechanism but it is a very useful tool to get 

consistent hints that endorse one mechanism over other. Additional experiments are needed to 

provide more convincing evidence for what is described above. 

 

Since current information is not enough to elucidate the reaction mechanism more reaction rates 

can be calculates at a wider concentration range, especially data with respect to water 

concentration. Here it will possible to see if at higher water concentration the reaction order with 

respect to water over Ru/rutile would transition to zero order, meaning that water is also a MASI 

in those conditions. If at even higher reaction orders, the reaction order become negative for 

anatase, this would mean that we are in under a much more complex mechanism. If so, it would 

mean that water can become a site blocking agent in for two different active sites, following a 

similar trend than for order with respect to phenol over rutile catalysts. 

 

Following the same thinking process it would be ideal (and also hard to reach experimentally) to 

run experiments at lower water concentration for Ru/Anatase to determine if at some point the 

reaction order here becomes positive. If at a more extended water concentration follows the same 

trend, if would mean that reaction mechanism is the same for these two different catalysts, as 

expected initially. Following isotope experiments can also be done to elucidate more information 

about the effect of water.  
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To complement this information, it would be recommended to perform a kinetic monte carlo 

modelling. To do that it is necessary to obtain values of enthalpy, entropy, Gibbs free energy, 

equilibrium constant and binding energy of all the possible intermediates for those particular 

catalysts. 

 

Sometimes it is possible to obtain binding energies from literature and equilibrium constant based 

on current reaction conditions. If not, DFT calculations are useful tools to get those desired values. 

Also it is possible to get accurate values from similar components or same components over a 

similar catalyst. It is important to consider that in our case, TiO2 is an active support for this 

reaction, so another Ru catalyst would probably not have the same catalytic performance over this 

reaction.  

 

Once all of this information is obtained, it is necessary to get a working kinetic model that will 

predict the catalytic behavior, and verify if this behavior match with current experimental data at 

defined reaction conditions. If not, other modifications and optimization needs to be done in order 

to find the best fit for the experimental data.  

 

Also, in order to finish this work for publication, kinetics data will be compared with DFT 

calculations performed by our collaborators. Here it will be possible to see if the computational 

predictions will match with experimental data, meaning that our current conclusions are correct. 
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APPENDIX A: 5-HYDROXYMETHYLFURFURAL HYDROGENOLYSIS 

A.1 Introduction 

The increasing global energy demand in the current years, have led to major scientific interest in 

the conversion of renewable resources into alternative sources of energy. This research was 

focused in finding alternative sources of fuels and chemicals, that were also sustainable, renewable 

and environmentally friendly.  

 

Transportation sector, accounts for around 20% of the global energy consumption and is the 

biggest consumer of oil in the world. 74 In this context, production of Biofuels has reached high 

importance, in order to release petroleum dependency and alleviate environmental concerns.75 

 

Countries without petroleum sources needs to import all of their oil resources from other countries 

being affected by political regulations, and increasing the commercial price due transportation 

costs, taxes and variations of the dollar price. Those variations are evidenced in Table and Figure 

A.1. 
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Figure A. 1 Gasoline price distribution around the world. 76 

Position Country Gasoline price ($/gal) 

1 Venezuela 0.02 

3 Saudi Arabia 0.91 

4 Iran 1.49 

8 Russia 2.15 

12 United States 2.57 

14 Mexico 2.77 

18 Canada 3.45 

24 Chile 4.19 

30 Lithuania 4.55 

37 Spain 4.93 

50 France 5.62 

53 Sweden 5.94 

60 Norway 6.53 

Table A. 1 Gas price in some countries of the world in dollars per gallon. 76 

Biofuels are fuels produced from living organisms or from metabolic by-products with more than 

80% renewable materials. Transportation fuels must have also specific physical properties for 

efficient distribution, storage and combustion.  
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Bio-ethanol is the most important 1st generation biofuel nowadays, but research have being to 

incorporate other generations of biofuels in the market. Round wood products and forest residues 

have the potential to serve as a competitive renewable feedstock for the chemical industry. 75 

 

Particularly, state of Maine and south-central Chile have the natural resources to develop a biofuels 

industry. Maine is the most forested state of the united states, with 89% of its land forested. If 

Maine’s forest residues are retrieved, 2.6 million dry tons of forest residues could potentially 

contribute up to one-third of Maine’s transportation fuel supply 77. On the other hand, the BioBio 

region in Chile has out of 2 million forested acres has 55% available for industry use. 78 

 

A.2 Theoretical Background 

A.2.1 HMF Hydrodeoxygenation 

 

Production of 2,5-Dimethylfuran can be very valuable for biofuel production, because of its similar 

properties as gasoline. In this project, the hydrodeoxygenation (HDO) of HMF to DMF on Ni-

Co3O4 and Ru-Co3O4 catalysts was studied in a batch Parr reactor. This part of the project included 

measurements of the activity and selectivity of the catalysts. The results showed the reaction 

pathway of HMF into DMF and its intermediate products elucidating the existence of a byproduct 

that was not detected. Other results were consistent with previous researches. 

 

Similar to ethanol, 2,5-Dimethylfuran (DMF) is considered a promising new generation of 

alternative transportation fuels. DMF needs no major modifications to produce similar engine 
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performance and emission levels to gasoline. Their boiling point is in a value suitable for liquid 

fuels, with a comparable water solubility and a higher research octane number (RON) than 

gasoline; while preserving a high energy density (30 kJ/cm3). A more detailed comparison is 

shown in Table 3.2. The limited information available suggests that DMF is not more toxic than 

current fuel components. 59 

Properties from literature DMF Ethanol 1-Butanol Gasoline 

Oxygen content 16.7 34.8 21.6 100-105 

Lower heat value (MJ/kg) 33.7 26.9 33.2 42.9 

Boiling point (°C) 93.0 77.3 117.3 27-225 

Water solubility (wt%, 20°C) 0.26 Miscible 7.7 Negligible 

Kinematic viscosity (cSt, 20°C) 25.9 22.3 24.6 20.0 

Research Octane Number 119 110 98 90-100 

Table A. 2 Properties from popular biofuels compared to gasoline. 79 

2,5-dimethylfuran (DMF) can be obtained out of a catalytic reaction from the compound 5-

Hydroxymethylfurfural (HMF).  HMF is an organic molecule considered as a furan. Furans are 

intermediate chemicals, readily obtained from biomass 46 and have been identified as ‘‘key 

substances” because of the wide range of chemical intermediates and end-products that they can 

produce 75.  Figure A.2 shows some of the most important end-products derived from HMF: 2,5 

furandicarboxylic acid (FDCA) is used to produce polyesters that could replace PET compounds. 

Lactic acid has great importance in the pharmaceutical industry and for food, solvents and 

detergent production. Formic acid is used as a preservative and antibacterial agent in livestock 

feed, and is also significantly used in the production of leather and cleaning products and 

caprolactam is the basic unit of Nylon-6.80 
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Figure A. 2 Range of end products derived from HMF. Extracted from. 80  

HMF can be obtained from the dehydration of fructose from lignocellulosic material, making it a 

renewable material. Fructose may react in solution through many different simultaneous reactions 

to produce HMF. The fructose dehydration is shown in Figure A.3. The first step, the dehydration 

of fructose to an intermediate, is considered an elementary reaction and the rate limiting step. The 

second step constitutes the intermediate reaction to HMF, the hydride transfer, considered 

irreversible and kinetically controlled. 
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Figure A. 3 Reduced two-step fructose dehydration to HMF reaction scheme. 46 

 

Yang et al. and Zu et al. 79,81 investigated this reaction pathway over different cobalt supported 

catalysts. For their two different catalysts, they proposed a main reaction pathway for the 

hydrodeoxygenation of HMF into DMF, as shown in Figure A.4. HMF is first hydrogenated to 

bis(hydroxymethyl)furan (BHMF) and then deoxygenated to 2-hydroxymethyl-5-methylfuran 

(HMMF or MFA) and DMF.They also found a small amount of 5-Methylfurfural (5-MF), some 

of which was hydrogenated to MFA, while the rest was converted into the main by-product (2,2’-

(1,2-ethanediyl)bis [5-methylfurfural]). 

 

 

Figure A. 4 Proposed reaction pathway for HMF HDO over Ru-C o3O4 catalyst. 82 
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Figure A. 5 Proposed reaction pathway for HMF HDO over Ni/Co3O4 catalyst 83. 

 

 

Figure A. 6 Proposed reaction pathway for further HMF hydrodeoxygenation, including 

hydrogenation and hydrogenolysis reactions. 84  

For a better understanding, most common chemical abreviations are summarized in Table 3.3 

Keyword Definition 

WHSV Weight hourly space velocity 

HMF 5-(hydroxymethyl)furfural 

DMF 2,5-Dimethylfuran 

BHMF 2,5-Bis(hydroxymethyl)furan 

MFA 2-hydroxymethyl-5-methylfuran 

5-MF 5-methylfurfural 

DMTHF 2,5-Dimethyltetrahydrofuran 

DHMTHF 2,5-Di(hydroxymethyl)tetrahydrofuran 

Table A. 3 Chemical abbreviations for HMF hydrodeoxygenation products. 
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This reaction could be done in a flow or batch reactor. In order to elucidate the first approximation 

of the reaction mechanism, a flow reactor was used. 

 

A.2.2 Definition of concepts 

 

• Weight hourly space time: Employed as an indicator of similar conditions in different 

catalytic runs, allows comparison between catalytic runs. 

 

𝑊𝐻𝑆𝑇(ℎ−1) =
𝑚𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡(𝑔𝑟𝑎𝑚𝑠)

𝑚𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡(𝑔𝑟𝑎𝑚𝑠)∙𝑡 (ℎ𝑜𝑢𝑟𝑠)
  (A.1) 

 

• Conversion: Indicates how much of the initial reactant has converted into products. 63 On 

a constant volume reaction, with no variations of moles, conversion can be described as 

𝑋 =
𝐶𝑓𝑖𝑛𝑎𝑙(

𝑚𝑜𝑙

𝑚𝐿
)

𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙(
𝑚𝑜𝑙

𝑚𝐿
)−𝐶𝑓𝑖𝑛𝑎𝑙(

𝑚𝑜𝑙

𝑚𝐿
)
    (A.2) 

 

• Selectivity: Indicates how much of the product of interest was obtained from the converted 

reactant. 63 Again, on a constant volume reaction, with no variations of moles, it can be 

described as 

𝑆 =
𝐶𝑝𝑟𝑜𝑑𝑢𝑐𝑡 (

𝑚𝑜𝑙

𝑚𝐿
)

𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡(
𝑚𝑜𝑙

𝑚𝐿
)−𝐶𝑓𝑖𝑛𝑎𝑙 𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡(

𝑚𝑜𝑙

𝑚𝐿
)
  (A.3) 
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A.2.3 Preliminary results 

 

The following studies 82,83,85, were of particular interest. Table 3.4 shows the most important results 

extracted from Yang et al. publication. 
83 the catalyst evaluated was a Ni/Co3O4 synthesized by a 

hydrothermal method. After 24h of reaction they saw complete conversion and a 76% of selectivity 

towards DMF.  

Reduction T (°C) t (min) Conversion (%) YDMF (%) WSHT (h-1) 

550 1,440 >99 76 0.1042 

- 120 - 28 1.25 

- 180 - 37 0.833 

- 360 - 34 0.416 

Table A. 4 Reaction conditions extracted from bibliography 83, with respective values of yield and 

conversion if reported. Reaction performed at 130°C and 1 MPa with a Ni/Co3O4 synthesized by 

an hydrothermal method, using THF as a solvent. 

Conversely, Table 3.5 shows the most important results extracted from Zu et al. publication. 
82 the 

catalyst evaluated was a Ru-Co3O4 synthesized by a coprecipitation method. After 24h of reaction 

they saw complete conversion and almost total selectivity towards DMF.  

Reaction T (°C) t (min) Pressure (MPa) Conversion (%) YDMF (%) WSHT (h-1) 

130 1,440 1 >99 94.7 0.1042 

130 180 1 - 12 0.833 

130 360 1 - 60 0.4165 

Table A. 5 Reaction conditions extracted from bibliography 82, with respective values of yield and 

conversion if reported. Reaction performed at 130°C and 1 MPa with a Ru-Co3O4 synthesized by 

a co-precipitation method using THF as a solvent. 

 



 

 

 

77 

Later on, students from University of Concepcion 85 were working on reproduce the same Ru-

Co3O4 and synthesized a Ni-Co3O4 catalyst by the same coprecipitation method as Zu et al. 82 

Reaction were tested on THF and 1-butanol at an intermediate WHST. From Table 3.6 it is possible 

to see that catalyst performance were not comparable to the literature, and that much lower values 

of yield were obtained. Even though, Ru catalysts showed better performance for DMF production. 

 

Catalyst Solvent T (min) 
Reaction T 

(°C) 

Pressure 

(MPa) 

Conversion 

(%) 

YDMF 

(%) 

WHST 

(h-1) 

Ru- Co3O4 THF 240 130 1 ∽ 22 ∽ 12 0.625 

Ru- Co3O4 Butanol 240 130 1 ∽ 99 ∽ 19 0.625 

Ni- Co3O4 THF 240 130 1 ∽ 16 0 0.625 

Ni- Co3O4 Butanol 240 130 1 ∽ 88 0 0.625 

Table A. 6 Reaction conditions extracted from bibliography82,83,85, with respective values of yield 

and conversion if reported. Reaction performed at 130°C and 1 MPa with a Ru-Co3O4 synthesized 

by a co-precipitation method using THF as a solvent. 

It was also of interest seeing the effect of water over the reaction. In a study of the conversion of 

HMF to certain products over a Cu/g-Al2O3 at 175°C, it was shown that in absence of water, HMF 

was converted to hydrogenolysis products 5-methylfuran and 2,5-dimethylfuran (DMF). In 

reactions carried out with water mixtures, (THF/H2O = 95:5 wt.) selective production of BHMF 

was achieved, while hydrogenolysis step was inhibited 86. Since water was a common side product 

in biofuel production, reactions that were favored by the addition of water were of significant 

interest. 

 



 

 

 

78 

A.3 Objectives 

Understanding the hydrodeoxygenation (HDO) reaction of HMF into DMF over catalyst of Ru 

and Ni prepared by coprecipitation. 

A.3.1 Specific goals 

 

1. Properly quantify and determine all of the components involved the the HMF HDO 

reaction. 

2. Learn how to use a Parr reactor. 

3. Explore the steps implicated in the reaction. 

4. Compare results with bibliographic and previous results 82,83 and 85. 

5.  Evaluate effect of water in the reaction. 

 

A.4 Materials & Methods 

A.4.1 Materials 

 

The chemicals bought for the reaction performance were HMF (Across Organics, 98%), DMF 

(TCI American, 98%), BHMF (Synquest Laboratories), MFA (Across Organics, 97%), 5-MF 

(Alfa Aesar, 98%). Tetrahydrofuran (Fisher, HPLC grade) and 1-butanol as a solvent (Fisher, 

ACS) were used as solvents and phenol (Fisher, 91%) and Formic Acid (Sigma Aldrich, ≥ 95%) 

were used as internal standards. 
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Hydrogenation reactions were done with molecular hydrogen gas (Matheson, 99.999%). Helium 

(Matheson, 99.999%) and argon (Matheson, 99.999%), were used to passivate catalysts. 

𝐶o(𝑁𝑂3)2∙6𝐻2𝑂 (Across Organics, 99%), 𝑁𝑖(𝑁𝑂3)2∙6𝐻2𝑂 (Sigma Aldrich, pure crystal) or 

Ru(Cl3)2∙3𝐻2𝑂 (Aldrich Chemistry, pure crystal) were the precursors for catalyst synthesis. 

A.4.2 Principal equipment 

 

• 25 mL Parr batch reactor model 4561.  

• Parr 4857 process controller and a Parr 4875 power controller. 

• Omega Thermocouple attached to SOLO temperature controller and Variac 

• Acquitity UPLC H-Class equipment for data acquisition 

• Glass calcination cell and setup 

 

A.4.3 Catalyst preparation 

 

In previous work, expensive catalysts were used to convert HMF into DMF. Yang et al. 79 

discovered a non-noble metal catalysts (Ni/Co3O4) that was efficient and showed good stability. 

Also Zu et al. 81 presented a bulk Ru-Co3O4 catalysts synthesized by co-precipitation. The 

motivation of Sandoval et al. 85 was to reproduce a Ni catalyst by a co-precipitation method 

proposed by Zu et al. switching the metal between Ni and Ru.  

 

The Ni-Co3O4 and Ru-Co3O4 precursor was prepared by adding 45 mmol of 𝐶o(𝑁𝑂3)2∙6𝐻2𝑂 and 

1mmol of 𝑁𝑖(𝑁𝑂3)2∙6𝐻2𝑂 or Ru(Cl3)2∙3𝐻2𝑂 respectively into 50mL of deionized water. The 
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solutionswere added dropwise into deionized water at room temperature under vigorous stirring 

keeping the pH value between 10.7 and 11.2. Then the mixture was heated to 80°C for 24 h under 

magnetic stirring. After cooling down to room temperature, the solid precipitate was filtered and 

washed with deionized water until the pH of the filtrate was around 7. The filtrate was dried at 

100°C in air for 12 h. The precursor was calcined in a Thermo Scientific muffle furnace 

(Lindberg/Blue M) at 500°C for 4 h with a ramp of 2°C min−1 in air. After that, the calcined 

solution was pressedand sieved to obtain a powder between 90 and 180 um particle size.  

A.4.4 Catalyst reduction 

 

This method consisted on reducing the recently prepared catalyst at 200°C with H2 flowing through 

a calcination cell for 2 hours with a ramp of 2°C min−1 before used as a catalyst, argon was then 

flown for 30 minutes to passivate the reduced catalysts. 

 

Another reduction method evaluated was reducing the catalyst inside the reactor, following the 

same previous heating pattern, and then pumping the reaction solution into the reactor with an 

attached HPLC pump, Chromtech M1. 

A.4.5 Reaction procedure 

 

The reactor used was a batch Parr reactor. Temperature was measured by two omega 

thermocouples, one located inside the reactor and the over temperature thermocouple located by 

the outside walls of the vessel. The temperature was kept constant with a heating tape surrounded 

the vessel and properly isolated, attached to the temperature controller system. Samples were 
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agitated with a magnetic stirrer and a Parr agitator model 4848. The reactor also included a upper 

outlet valve, that was used as a sampling system for intermediate points during the reaction. The 

reactor was connected to a helium and a hydrogen tank for high pressure hydrogenation reactions.  

 

Previously reduced and passivated catalyst (0.001g), was poured to the reactor. Then, the solvent 

previously measured was emptied into the reactor with 0.025 grams of HMF. If needed, also water 

was added to the solution. Once the reactor head is closed and adjusted, it was pressurized in 

helium and the proper leak check was done by pressurizing the reactor and making sure that this 

pressure was kept constant over time.  

 

Under low pressure of helium, the reactor was located in the support with the thermocouple and 

the magnetic agitator properly located. A ramp rate of 5 °C/min was used to bring the reaction up 

to the reaction temperature, around 105, 120, 135 and 150°C, where it was held for 4 hours with 

500 rpm stirring. Once the desired temperature was reached, the reactor was pressurized up to 500 

psi with hydrogen to start the reaction time. Reaction temperatures were maintained during the 

reaction times ranged from 1 h to 48 hours to achieve the desired HMF conversions. Amount of 

catalyst, reactant and reaction time were defined in order to get a proper inverse weight hourly 

space time WHST.  

 

Once the reaction time was reached, a sample was taken and filtered with a 0.45 μm syringe filter. 

Samples were then analyzed via high performance liquid chromatrography (HPLC). Reaction 

products were quantified using a Waters Acquity UPLC H-Class equipment with liquid 

autosampler injection. Selectivity was measured based on the HPLC calibration curves, assuming 
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a 100% mass balance. Separation was achieved using an Acquity UPLC (BEH C18 1.7 μm) 

column.  

A.5 Results 

A.5.1 Reaction mechanism 

 

In order to elucidate the reaction pathway between the reaction intermediates, experiments were 

analyzed in function of time. A mixture of equal amount of HMF and catalyst was poured into the 

reactor for these experiments. Experiments were carried out at 105, 120 and 135°C. 

 

 

Figure A. 7 HMF hydrodeoxygenation over time. Reaction conditions: 0.04g HMF with 0.04g 

catalyst diluted in 10g of butanol. Reaction temperature 105°C, and 3.4 MPa. 

From the experiments at lower temperatures, it was possible to determine that HMF is slowly 

consumed as long as BHMF is produced. At higher reaction times MFA was slowly produced 

while BHMF is consumed. This was consistent with reaction scheme in Figure A.4 where BHMF 

was converted into MFA. 
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Figure A. 8 HMF hydrodeoxygenation over time. Reaction conditions: 0.04g HMF with 0.04g 

catalyst diluted in 10g of butanol. Reaction temperature 120°C, and 3.4 MPa. 

At 120°C it was possible to see that HMF was consumed faster and more BHMF was produced. 

Also, a small amount of MFA is produced over time, consistent with BHMF deoxygenation. 

 

Figure A. 9 HMF hydrodeoxygenation over time. Reaction conditions: 0.04g HMF with 0.04g 

catalyst diluted in 10g of butanol. Reaction temperature 135°C, and 3.4 MPa. 

Higher temperature leaded to higher reaction rates, but keeping the same reaction scheme. From 

last experiments it is clear that MFA was produces in more considerable amounts, while BHMF 
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and HMF were almost totally consumed at 12h reaction time. Interestingly, WHSH was not low 

enough in any condition to produce DMF. 

 

A.5.2 Effect of temperature 

 

Data after 12h reaction time was showed in function of reaction temperature. Results were 

presented in Figure A.10. 

 

Figure A. 10 Effect of temperature in HMF hydrodeoxygenation. Reaction conditions: 3.4 MPa 

and 0.08 h-1 WHST. 

Trends presented in Figure A.10 were mostly consistent with previously reported. Besides the poor 

mole balance at higher temperatures, it was possible to see that while BHMFdecreased at higher 

temperature more MFA was produces, consistent with reaction scheme. The poor mole balance at 

higher temperature was an indicator that a side product was generated not possible to quantify.  
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Results suggest that BHMF was transformed into another byproduct, not identified in this research. 

This behavior was not consistent with what was proposed for Yang et al. and Zu et al. 82,83  

Different catalytic behaviors could exist because of reproducibility issues in making the catalyst 

with the co-precipitation technique. 

 

A.5.3 Catalysts screening 

 

3 new catalyst were synthesized for the desired reaction: 

• Ru-Co3O4 (1 - first batch) 

• Ru- Co3O4 (2 - second batch)  

• Ni- Co3O4 

 WHSV 

(h-1) 

Conversion 

(%) 

Selectivity 

BHMF (%) 

Selectivity 

MFA (%) 

Selectivity 

DMF (%) 
Exp. 

Ru-Co3O4 (1) 0.1193 100 69.69 13.7 0 1 

Ru- Co3O4 (2) 0.1154 38.26 79.04 10.7 0 2 

Ru- Co3O4 (2) 0.0538 100 29.32 17.70 0 3 

Ru- Co3O4 (2) 0.0052 100 0 0 34.27 4 

Ru- Co3O4 (2) 0.0026 100 0 0 14.64 5 

Ni-Co3O4 0.0053 100 13.86 9.2653 41.114 6 

Table A. 7 Summary of general catalytic runs results. Reaction conditions with respective values 

of yield and conversion. Reaction performed at 130°C and 3.4 MPa with catalysts synthesized by 

a co-precipitation method using THF as a solvent. 

Regarding Ru-Co3O4(1) catalyst (exp 1), the reactions were performed in order to get similar 

WHSV as previous studies 81, but the catalyst did not perform as expected. It was possible that the 

catalyst was not well synthesized, therefore another catalyst was prepared (Ru-Co3O4(2)). 
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The second batch of catalyst was even less active than the first one; At a similar WHST as Ru-

Co3O4(1), less conversion of HMF was obtained, but a similar selectivity towards BHMF. As the 

WHST decreased, DMF was obtained but no other species were found. DMF was obtained for Ru-

Co3O4(2) at very low WHST (exp. 4 and 5), making this catalyst a non-viable option. 5-MF was 

not detected in our experiments, indicating that its production is not significant or that it was a 

very reactive intermediate, which is further transformed info MFA or another non-detected 

byproduct. 

A.5.4 Carbon balance 

 

According to the proposed reaction pathway, carbon balance should be proportional to the furan 

balance. Here, those values were calculated to determine the reliability of the results. Surprisingly 

experiments with the second Ru catalyst presented very poor carbon balance at lower WHST.  

 WHSV 
(h-1) 

HMF in 
(mol/mL) 

Furans out 
(mol/mL) 

output/input 
(%) 

Exp. 

Ru-Co3O4 (1) 0.1193 8.60E-06 7.13E-06 82.88 1 

Ru-Co3O4 (2) 0.1154 8.67E-06 8.33E-06 96.14 2 

Ru-Co3O4 (2) 0.0538 7.78E-06 3.68E-06 47.24 3 

Ru-Co3O4 (2) 0.0052 7.07E-06 2.44E-06 34.45 4 

Ru-Co3O4 (2) 0.0026 1.12E-05 1.64E-06 14.64 5 

Ni- Co3O4 0.0053 4.84E-06 3.14E-06 64.82 6 
Table A. 8 Concentrations in input and output. Reaction performed at 130°C and 3.4 MPa with 

catalysts synthesized by a co-precipitation method using THF as a solvent. 

 
Assuming a proper quantification of the products, without experimental errors, it was possible that 

other byproducts were produced and were not detected. Especially at lower WHST, intermediate 

products were more likely to react, due to the increase of available active sites. According to 82 Zu 
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et al. MFA could react into (5,5-(oxybis(methylene))bis(2-methylfuran)), which was not possible 

to identify. Even though, previous results showed a minimal amount of this product in comparison 

to DMF, other possible product of MFA hydrogenation, not being consistent with current results. 

This implied that more side product were presented in this pathway. Since Ru and Ni catalyst 

shows similar behaviors, it was possible that 5-MF was also produced and rapidly converted into 

2,2′-(1,2-ethanediyl)bis[5-methylfurna], which was also non possibly to quantify.  Open ring 

product should also not be discarded, as proposed by Lup et al. 3 

 

A.5.5 Observed reaction pathway with Ru-Co3O4 

 

It is observed that as the weight space hour time decreased conversion of HMF increased reaching 

100%. BHMF decreased while MFA increased, indicating its conversion according to the reaction 

scheme. At lower WHST, no more BHM, nor MFA was detected but so does DMF, indicating that 

is was a later product in the reaction scheme, also consisted with previous research.  
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Figure A. 11 Reaction pathway with respect to WHSV for Ru-Co3O4(2) catalyst. Reaction 

performed at 130°C and 3.4 MPa with catalysts synthesized by a co-precipitation method using 

THF as a solvent. 

 

The small decrease in DMF at the lowest WHST could be attributed to DMF further hydrogenation 

into DMTHF, as proposed by 84. It was also expectable some variation in reaction rates because of 

the lower HMF concentration used in this experiment. Further analysis in GC-MS detected the 

presence of DMTHF in samples at lower WHST, validating that DMF was further hydrogenated.   

 

A.5.6 Comparison of ruthenium and nickel-based catalysts 

 

Two catalyst were tested at the same conditions of weight hourly space time, temperature, pressure 

and time. Even that WHST was kept the same, amount of catalysts and concentration were 

different, making reaction rates determination not accurate.  
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Figure A. 12 Effect of catalyst metal for HMF hydrodeoxygenation. Ru-Co3O4 and Ni-Co3O4 

catalysts are compared. Reaction conditions: 3.4 MPa and. 0.0053 h-1 WHST. 

 
Even though experiments with Ni catalyst were done at lower HMF concentration, selectivity 

towards DMF was higher, therefore reaction rates were higher. It was expected that lower 

concentration leaded to lower reaction rates, assuming a first order trend with respect to HMF. 

This implies that Ni catalysts synthesized by co-precipitation was more active towards DMF than 

the Ru one. This was the opposite trend than the one observed in the literature and current results 

were not concise enough to make a conclusion out of those results. 

 

A.6 Preliminary conclusions 

 

Synthesized catalysts shows lower performances than the ones proposed by the literature. 

Unexpectedly, Ni catalysts shows higher selectivity towards DMF with respect to Ru catalyst. Poor 

carbon balance at lower WHST was an indicator of side-products formation or experimental errors. 

Experimental errors could be attributed to evaporation of the sample or solvent during reaction 

run, affecting the concentrations of reactant and products, poor mixing inside the reactor, 

quantification issues, or sampling issues.   

 

The reaction pathway for HMF hydrodeoxygenation behave as expected with the exception of 5-

MF production, which was not detected in any of the experiments. Product distribution was 

different than what proposed from literature. 5-MF could be an active intermediate product react 
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instantly to form 2,2′-(1,2-ethanediyl)bis[5-methylfurna] or MFA. Hydrogenation of the furan ring 

was established, due to the detection of DMTHF at lower WHST, unfortunately it was not 

quantified. 

 

A.7 Future Work 

In order to expand the HMF project several suggestions will be given. In first instance it is 

important to notice that the catalyst chosen is not highly efficient, considering the fact of the very 

low values of WHSV that it is necessary to use in order to get complete conversion or a reasonable 

yield. It is recommended to update the literature review in order to find a new catalyst to test. Other 

efficient way to determine the proper catalyst for this reaction is referring to the Norskov 87 

database to find the optimal combination metal-support considering calculated values of Gibbs 

free energy of adsorption, desorption, and reaction at normal conditions. 

 

After chosen the right catalyst, a deeper kinetic analysis should be done to get a more detailed 

insight about the mechanism. Considering that HMF conversion into DMF presents many reaction 

intermediates it is necessary to do a deeper analysis for every step in order to determine which 

steps are actually kinetically relevant and requires a higher activation energy to fight with help of 

a catalysts. It is also recommended to do this analysis in a flow reactor to address deactivation 

issues and obtain kinetic data. 

 

Knowing that Ru/TiO2 is an active catalyst for C-O bond cleavage it would be interesting to see 

this performance for HMF HDO. If the activity is favorable it would imply that Ru/TiO2 would 
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perform in the same interfacial mechanism than for aromatics. Also, elucidate the effect of water 

is desired. As mentioned before, biofuel production tends to be aqueous reactions, where avoiding 

the necessity of remove water is highly favorable from an operational standpoint. If the co-catalytic 

effect of water is also seen in furans, it is expected that all previous conclusions about the 

mechanism are also applicable for this reaction. If so, the same considerations can be applied to 

determine optimal reaction conditions.   
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APPENDIX B: CATALYTIC STABILITY, SOLVENT SELECTION, AND OTHER 

PRELIMINARY WORK 

B.1 CO Chemisorption 

CO chemisorption data was performed in an Altamira Micromeritics instrument over a Ru/TiO2-

P25 (UM) catalyst synthesized at the UMaine catalysis laboratory. Particle size and dispersion 

were calculated assuming a 1-1 coordinative adsorption on the Ru site. Adsorption isotherm was 

shown in Figure B.1 and calculated results were presented in Table 1.5. 

 

Figure B. 1 Adsorption isotherm data for Ru/TiO2-P25, UM catalyst.  

 

 

 

Table B. 1 Results for the CO chemisorption analysis over Ru/TiO2-P25, UM catalyst. 
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B.2 Deactivation Analysys 

Thermogravimetric analysis was performed over a spent catalyst, Ru/TiO2-P90, in order to 

determine which deactivation mechanism was applied on our catalyst. From Figure B.2 it is 

possible to see that the steady state of weight loss is reached at 850K, consistent with carbon 

deposition calcination. At this temperature it was not possible to regenerate the catalyst without 

being affected by internal structure modifications.  

 

 

Figure B. 2 Thermogravimetric analysis performed in 117.218 mg Ru/TiO2 –P90 catalyst, after 

being deactivated by a phenol HDO reaction, in decalin. Insrument TGA Q500 V20. Ramp of 

10K/min up to 1073K.  
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Figure B. 3 TEM analysis performed in a Ru/TiO2 catalyst, before (a) and after (b) being calcined 

in a phenol HDO reaction. Insrument JEOL 2010 Advanced High Performance TEM.  

Also transmission electron microscopy (TEM) pictures were taken from a uncalcined (a) and 

calcined (b) sample. From Figure B.3 it was possible to see that the internal structure of the catalyst 

was not modified after a calcination treatment, indicating that sintering is not a deactivation 

mechanism under our reaction condition. 

 

High resolution TEM was carried out at the MIT Center for Material Science and Engineering 

(CMSE) using the JEOL 2010 Advanced High Performance TEM. The catalysts were dispersed 

in isopropanol, and a drop of this suspension was placed on a lacey carbon Cu grid. 

B.3 Calibration Curves 

The calibration curves for the reactant and product involved in the phenol hydrodeoxygenation is 

shown in Figure B.4. 
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a)  b)   

c)  d)  

e)      f)  

Figure B. 4 Calibration curves obtained for (a) cyclohexane at 2.3 min, (b) cyclohexene at 3.2 min 

(c) benzene at 5.7 min (d) cyclohexanone at 13.1 min (e) cyclohexanol at 14.7 min and (f) phenol 

at 21.4 min. Method DB-624 used in a Agilent DB-WAX column (30 m × 0.53 mm, 1 μm). 
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B.4 Aspen Simulations 

Table 2.5 shows the result of this reactant distribution obtaining by simulating the vapor-liquid 

equilibrium at a given set of reactor inlet conditions. 

 

Table B. 2 List of all the experiments analyzed by Aspen Plus™, given the input of total moles 

(mol/h) in, the output of the simulation is the distribution of all the reactants flowrates in the gas 

and liquid phase in kmol/h going through the reactor column.  

Figure B.5 is another way to represent the data from Table 2.6. The slope of each graphic 

corresponds to the activity coefficient for water and phenol respectively, according to Equation 

2.7. It is possible to see that both values were very different than one, showing the big deviation 

to ideality. 

 

Experiments Total mol in (mol/h)  Total mol in, liquid phase (kmol/h)  Total mol in, gas phase (kmol/h) 

 Phenol Water Decalin H2  H2 Phenol Water Decalin  H2 Phenol Water Decalin 
               

Anatase 10% 0.01053 0.00611 0.08836 0.0974  3.25E-05 5.81E-06 3.53E-07 8.30E-05  6.49E-05 4.72E-06 5.76E-06 5.39E-06 
Anatase 15% 0.00630 0.00581 0.05722 0.0974  1.97E-05 2.45E-06 1.73E-07 5.11E-05  7.77E-05 3.85E-06 5.64E-06 6.10E-06 
Anatase 20% 0.00621 0.00810 0.05409 0.0974  1.79E-05 2.20E-06 2.10E-07 4.74E-05  7.95E-05 4.01E-06 7.89E-06 6.65E-06 

Anatase 20% 0.00419 0.00547 0.05573 0.0974  1.88E-05 1.58E-06 1.50E-07 4.97E-05  7.86E-05 2.61E-06 5.32E-06 6.07E-06 
Anatase 20% 0.00476 0.00622 0.05312 0.0974  1.77E-05 1.70E-06 1.59E-07 4.68E-05  7.97E-05 3.06E-06 6.06E-06 6.29E-06 
Anatase 25% 0.00457 0.00796 0.05359 0.0974  1.74E-05 1.58E-06 1.95E-07 4.69E-05  8.00E-05 2.99E-06 7.76E-06 6.67E-06 

               

Rutile 10% 0.01044 0.00606 0.10680 0.0974  3.95E-05 6.52E-06 4.61E-07 1.02E-04  5.79E-05 3.92E-06 5.60E-06 4.87E-06 
Rutile 15% 0.00466 0.00429 0.04427 0.0974  1.48E-05 1.47E-06 9.13E-08 3.82E-05  8.26E-05 3.19E-06 4.20E-06 6.10E-06 
Rutile 20% 0.00464 0.00606 0.05202 0.0974  1.73E-05 1.63E-06 1.51E-07 4.57E-05  8.01E-05 3.01E-06 5.91E-06 6.28E-06 
Rutile 25% 0.00338 0.00589 0.05037 0.0974  1.64E-05 1.14E-06 1.36E-07 4.40E-05  8.10E-05 2.24E-06 5.75E-06 6.33E-06 
Rutile 25% 0.00446 0.00777 0.05285 0.0974  1.71E-05 1.53E-06 1.87E-07 4.62E-05  8.03E-05 2.93E-06 7.58E-06 6.65E-06 

               

P25 5% 0.00514 0.00141 0.12099 0.0974  4.61E-05 3.62E-06 1.41E-07 1.17E-04  5.13E-05 1.52E-06 1.27E-06 3.49E-06 
P25, 10% 0.01100 0.00638 0.10280 0.0974  3.79E-05 6.69E-06 4.58E-07 9.77E-05  5.95E-05 4.31E-06 5.92E-06 5.05E-06 
P25 15% 0.00513 0.00473 0.04597 0.0974  1.54E-05 1.67E-06 1.06E-07 3.98E-05  8.20E-05 3.46E-06 4.62E-06 6.15E-06 
P25 20% 0.00445 0.00582 0.05293 0.0974  1.77E-05 1.59E-06 1.49E-07 4.67E-05  7.97E-05 2.86E-06 5.67E-06 6.21E-06 
P25 20% 0.00474 0.00619 0.05671 0.0974  1.91E-05 1.79E-06 1.73E-07 5.05E-05  7.83E-05 2.95E-06 6.02E-06 6.19E-06 
P25 25% 0.00425 0.00740 0.05752 0.0974  1.89E-05 1.58E-06 2.00E-07 5.11E-05  7.85E-05 2.67E-06 7.20E-06 6.46E-06 

               

Anatase, 0% 0.00499 0.00000 0.05486 0.0974  2.03E-05 2.09E-06 4.99E-05   7.71E-05 2.90E-06  4.93E-06 
Rutile 0% 0.00507 0.00000 0.05564 0.0974  2.06E-05 2.15E-06 5.07E-05   7.68E-05 2.92E-06  4.91E-06 
P25, 0% 0.00596 0.00000 0.05394 0.0974  2.00E-05 2.47E-06 4.89E-05   7.74E-05 3.49E-06  5.01E-06 

P25 300 chips 0.00521 0.00000 0.05637 0.0974  2.09E-05 2.23E-06 5.15E-05   7.65E-05 2.98E-06  4.90E-06 
P25 300 chips 0.00509 0.00000 0.04482 0.0974  1.61E-05 1.79E-06 3.96E-05   8.13E-05 3.30E-06  5.22E-06 
P25 300 chips 0.00509 0.00000 0.05631 0.0974  2.09E-05 2.18E-06 5.14E-05   7.65E-05 2.91E-06  4.90E-06 
P25 300 QW 0.00493 0.00000 0.05394 0.0974  1.99E-05 2.03E-06 4.90E-05   7.75E-05 2.90E-06  4.95E-06 

               

P25 0% 292 0.00484 0.00000 0.05658 0.0974  2.17E-05 2.33E-06 5.26E-05   7.57E-05 2.51E-06  3.96E-06 
Rutile 0% 292 0.00491 0.00000 0.05626 0.0974  2.16E-05 2.36E-06 5.23E-05   7.58E-05 2.55E-06  3.97E-06 
Anat. 0% 292 0.00486 0.00000 0.05535 0.0974  2.12E-05 2.31E-06 5.14E-05   7.62E-05 2.55E-06  3.99E-06 
Anat. 0% 284 0.00480 0.00000 0.05292 0.0974  2.08E-05 2.46E-06 4.96E-05   7.66E-05 2.34E-06  3.29E-06 
Rutile 0% 284 0.00504 0.00000 0.05731 0.0974  2.27E-05 2.72E-06 5.41E-05   7.47E-05 2.32E-06  3.21E-06 
P25 0% 284 0.00486 0.00000 0.05510 0.0974  2.18E-05 2.56E-06 5.19E-05   7.56E-05 2.30E-06  3.25E-06 
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a) b)  

Figure B. 5 Partial pressure of (a) water and (b) phenol with respect to their respective liquid 

phase composition, times their saturation pressure. The slope represents the activity coefficient 

for each case. 

 

B.5 Preliminary Work 

In 2017, different experiments were done to elucidate the performance of the Ruthenium Nitrosyl 

Nitrate Catalyst supported on TiO2-P25 over a flow reactor in comparison with the already 

analyzed batch reactor. In first instance, experiments with diluted phenol were done. Here, the 

amount of phenol was kept at 5% wt. in three different water concentrations (5 – 10 – 20% wt.) 

and the corresponding amount of tetrahydrofuran (THF) as a solvent. The purpose of this 

experiment (Experiment 1) was to elucidate the effect of water in favoring the direct deoxygenation 

(DDO) pathway into benzene.  

 

The first set of results leaded to the conclusion that increasing water concentration favored the 

DDO pathway in first instance until a peak was reached and after that, higher amount of water led 
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to an activity and selectivity decrease. Those results suggest that previous publications 88, based 

on computational modelling over Ru/TiO2-Rutile were not consistent with experimental data.  

 

To determine the cause of catalyst deactivation, different experiments were done. A second 

reduction treatment after fully deactivation did not show any reactivation sign, indicating that 

adsorbed water or oxygen were not responsible for deactivation of the sites. A further recalcination 

of the packed catalyst at 300 and 400°C did not show reactivation either, meaning that the 

deactivation was not caused by carbon deposition. Finally, some TEM images of the spent catalyst 

were taken, but those images were not enough information to determine sintering of the catalyst.  

 

In compliment to previous results, more experiments were done to determine values of reaction 

rates in terms of turnover frequencies (TOF). For that, the weight hourly space velocity (WHSV) 

used was increased by 10 times to obtains conversion closest to 20%. Those ranges allowed to 

model the reactor as a differential reactor and obtained values of reaction rates (Experiment 2).  

 

Five different concentration of water were tested, increasing the range of water concentration. For 

these experiments, water concentrations of 0 – 5 – 10 – 15 and 20% wt. were tested. Values of 

initial TOF, initial selectivity and deactivation constants in function of water concentration does 

not show any clear influence of water, in discrepancies with previous results. Still confused with 

previous data, new efforts were added to determine the effect of the temperature over the reaction 

and try to elucidate activation barriers.  
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Newer sets of experiments were done under the same water concentration values at 350 and 400°C. 

those results led to a very low activity of the catalyst, turned out to be because of a phenomenon 

called strong metal support interaction (SMSI effect). 

 

To obtain accurate values of TOF, the active sites presented in the catalysts must be known. For 

that, characterization of the catalyst was doing by CO chemisorption (Experiment 4), where the 

isotherm of adsorption data led to a 59% dispersion. This catalyst was made in the University of 

Maine facilities, by incipient wetness impregnation.  

B.5.1 Experiment 1: Effect of water at high conversion (80 – 40%)  

 

Reaction Conditions: 

• Temperature: 300°C 

• Liquid Feed 

• 0.05 mL/min 

- 5% wt. phenol 

- 5 – 10 – 20% wt. H
2
O 

- 90 – 85 – 75% wt. THF 

• Gas Flow: 60 sccm hydrogen, 420 psi 

• WHSV = 4.770 h
-1

 

• 25 mg Ru/TiO2-P25 

• Ruthenium Nitrosyl Nitrate/TiO2-P25 by Incipient Wetness Impregnation 

• Reduction under 60 sccm flowing H2: 420 psi, 300°C for 1h 
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Figure B. 6 Initial Benzene selectivity for phenol hydrodeoxygenation at different water 

concentrations.  

 

   

Figure B. 7 Deactivation constant for phenol hydrodeoxygenation at different water 

concentrations.  
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Figure B. 8 Initial Site time yield (STY) for phenol hydrodeoxygenation at different water 

concentrations.  

 

B.5.2 Experiment 2: Low Conversion, TOF, and Reproducibility 

 

Reaction Conditions

• Liquid flow: 0.15 mL/min 

- 5% wt. Phenol 

- 0 – 20% wt. Water  

- 95 – 75% wt. THF 

• Gas Flow: 60 sccm hydrogen, 420 psi 

• WHSV: 35.8 h-1 

• Reaction Temperature: 300°C 

• Heating ramp of 1.5°C/min 

• 10 mg Ru/TiO2-P25 Catalyst  

• Ruthenium Nitrosyl Nitrate/TiO2-P25 by Incipient Wetness Impregnation 
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• Reduction under 60 sccm flowing H2: 420 psi, 300°C for 1h 

 

 

Figure B. 9 Initial Benzene selectivity for phenol hydrodeoxygenation at different water 

concentrations.  

 

Figure B. 10 Deactivation constants for phenol hydrodeoxygenation at different water 

concentrations.  
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Figure B. 11 Estimated initial TOF for phenol hydrodeoxygenation at different water 

concentrations.  

 

B.5.3 Experiment 3: New Temperature Test 

 

Reaction Conditions 

• Liquid flow: 0.15 mL/min 

- 5% wt. Phenol 

- 0 – 5 – 10 – 15 – 20% wt. Water  

- 95 – 90 – 85  – 80 – 75% wt. THF 

• Gas Flow: 60 sccm Hydrogen, 420 psi 

• WHSV: 35.8 h-1 

• Reaction Temperatures: 350°C 

• Heating ramp of 1.5°C/min 

• 10 mg Ru/TiO2-P25 Catalyst 

• Ruthenium Nitrosyl Nitrate/TiO2-P25 by Incipient Wetness Impregnation 
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• Reduction under flowing H2: 420 psi, 300°C for 1h 

 

 

Figure B. 12 Initial Benzene selectivity for phenol hydrodeoxygenation at different water 

concentrations at 350°C.  

 

 

Figure B. 13 Deactivation constants for phenol hydrodeoxygenation at different water 

concentrations at 350°C.  
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Figure B. 14 Estimated initial TOF for phenol hydrodeoxygenation at different water 

concentrations at 350°C.  
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Figure B. 15 Initial Benzene selectivity for phenol hydrodeoxygenation at different water 

concentrations at 400°C.  

 

Figure B. 16 Deactivation constants for phenol hydrodeoxygenation at different water 

concentrations at 400°C.  
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Figure B. 17 Estimated initial TOF for phenol hydrodeoxygenation at different water 

concentrations at 400°C. 
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APPENDIX C: TROUBLESHOOTING GUIDE 

 

This guide is made to troubleshooting liquid-phase flow reactors, based on the flow reactor located 

in lab 203, Jenness Hall, University of Maine 2017-2019. Problems are organized by principal 

equipment and then some recommendations are given for proper reaction condition determination 

will be given. 

 

C.1. HPLC Pump 89 

C.1.1 Start-up procedure 

 

• Once the pump is properly connected, prime the outlet of the seal wash (upper part) with a 

syringe to fill the whole line with solvent mixture (IPA/water mixture) 

• Then, connect the outlet of the pump to an open line and use this opening to prime some 

fluid through the pump, start with a safe solvent, with similar properties to the solvent that 

you will be firther flow in this pump 

• Make sure that the pump is pumping, do not worry about the flowrate yet 

• Use the liquid back-pressure regulator to condition the pump for about 30 min 

• Connect the outlet of the pump to a line that can be isolated and has a pressure gauge in it 

• Flush some liquid to the outlet of the system 

• Pump the liquid to the closed line and watch the pressure build up 

• If the system is smoothly building pressure, even at very low flowrates, and hold it once 

the pump stops, then the pump is working correctly 
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• Chromtech guys are really helpful and nice, try to call them if you need further assistance 

C.1.2 Reasons for not building pressure 

 

• The fittings might be leaking, make sure that there is no liquid coming out of the unions 

• It could be an air bubble in the line; air can be compressed, affecting the measurement of 

the pressure. To fix that, open the line in the most upper part (sometimes the gauge itself 

needs to be disconnected) and let the liquid flush the line 

• The seals could not be properly set, try to condition the pump for a longer time 

Make sure you are using the right seal for your mixture: aqueous is yellow and organic is black, 

check the Chromtech manual to see how to replace the seals 

C.1.3 Reasons for not pumping  

 

• Check if the inlet is full with liquid and that the inlet tube is actually submerged in fluid 

• Make sure that there is no bubbles in the line, if so, prime the liquid again and try to restart. 

If that does not work try to recondition the pump 

 

 

C.2. Mass flow controller 90 

C.2.1 Reasons for having none or different flowrate out of the MFC 
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• Check the pressure of the gas cylinders, if the pressure is lower or the same as the system 

you are flowing to, gas is not going to flow through 

• Check that the mass flow transmitter 91 is properly set 

• Always check your lines to avoid risk of overflowing, if the valve underneath the reactor 

column is closed while the pump in flowing through the system, the liquid is going to start 

flowing upstream the reactor and can go into the mass flow controller (the check valve is 

not capable to hold high pressures of liquid back) 

• If the liquid get into the mass flow controller, it will damage the sensors and the MFC will 

stop controlling properly, it is possible to clean it up if there is not much liquid in it 

• Remove MFC out of the line and remove the outlet fittings connections to see how much 

liquid can come out of it, if liquid is something that can solidifies (like phenol) once dry, 

immediate actions needs to be taken. Try to flush this solid out with solvent, usually 

acetone or IPA works fine 

• Flush as much as possible making sure to not wet even more the system. Then let it sit for 

a long time (overnight is a good idea), before trying to reinstall it and see if it works 

• If that doesn’t work try to set the MFC to 100% (higher possible flowrate) and let it there 

for a while 

• Afterwards try to see if it is controlling properly, by setting up a lower flowrate in the mass 

flow transmitter. Sometimes increasing or decreasing the pressure upstream and 

downstream the MFC helps, try many times 

• If you feel confident it is a good idea to open this equipment and try to clean up all the 

parts that looks dirty or damaged, if the material allows it (check compatibility online) sink 

it in solvent (IPA or acetone) and let it sonicate for a while. Always refer to the proper 
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manual to do that and take picture of every step so you know how to reassemble it properly. 

Be always very careful and ask for help to someone that has done that before 

 

C.2.1 Reasons for not seeing gas coming out of the bubble meter 

 

• Not seeing gas coming out is not always because the MFC is not working 

• Check that the line is actually going to the bubble meter, check that the proper valves are 

open/closed 

• Check that the reactor outlet is connected to the panel board and that the panel board is 

connected properly to the bubble meter 

• Check that the outlet of the bubble meter is properly connected to the vent, and that the 

vent is not over suction 

• It is expectable to see differences in flowrates before and during reaction. This is because 

you could be either consuming or producing more gas products 

• If you need to extract only liquid samples, make sure you cover your separator with ice 

packs to condense all your product, larger flowrates will make it more difficult to cool the 

solution out 

• You can also check what gases are coming out the reactor by sending the outlet to a gas 

phase GC-FID 
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C.3. Temperature controller 92 

C.3.1 Operation suggestions 

 

• Set up the proper ramp/soak patterns, instruction are available in the SOLO manual, or 

through the SOLO software installed to our computers 

• Always use two (2) thermocouple attached to the temperature controller, one is the over 

temperature controller and the other one is the temperature controller 

• Temperature controller will be set to follow the ramp/soak pattern, and should be as close 

as possible to the catalyst 

• Over temperature controller is set for safety reasons, and should stay so, It will make the 

system to shut off if the temperature is higher than the alarm limit (usually 500C) 

• check that the alarms are properly set, alarm level should remain higher than operation 

temperature, if not the temperature controller would stop heating  

• Check that the thermocouple type is the right one: K type, is a y type in the screen 

• Check that the TC is connected to the VARIAC and this is connected to the heating tape 

C.3.2 Reasons for not seeing temperature rise 

 

• Thermocouple might not be properly connected or broken. Put the thermocouple in a hot 

surface (even your hands are at 36C) and see if temperature rise 

• Heating tape might not be working. Connect the heating tape to a regular plug and check 

if it is warming up. Watch out because it gets really hot quickly 
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• Variac might me too low, check the value of the VARIAC and increase it if it is too low, 

usually we operate them at 80% 

• Variac fuses might be blown out, connect a lamp to it and see it the lamp is lighting. If is 

not check and change the fuses if needed 

• TC might not be sending the right signal, connect a lamp direct to the TC outlet, while the 

ramp/soak pattern is running and check is the lamp is lighting. If not, check the ramp/soak 

patterns, alarms and make sure that the TC is “ON” and “Enable” 

• If nothing works check with Amos Cline if something electrical is wrong with the TC 

 

C.4. Back pressure regulator 93 

C.4.1 Operation suggestions 

 

• Always check your lines to avoid risk of overflowing, if valve underneath the reactor is 

closed, liquid is going to start flowing upstream the reactor and can go into the back 

pressure regulator 

• If liquid get into the BPR, it will damage the diaphragm, and it will not control the pressure 

properly. It is possible to clean it up if there is not much liquid in it 

• Remove BPR out of the line and open the bottom part to see how much liquid can come 

out of it, if liquid is something that can solidifies (like phenol) once dry, immediate actions 

needs to be taken, try to flush this solid out with solvent, usually acetone works fine.  

• Flush as much solvent as possible through it, making sure to not wet even more the system 



 

 114 

• Then, let it sit for a long time (overnight is a good idea), before trying to reinstall it and see 

if it works 

• If that doesn’t work try to set the BPR to 100% open valve (lower possible pressure) and 

let it flow for a while 

• Afterwards try to see if it is controlling flow, by setting up a lower flowrate. Sometimes 

increasing or decreasing the pressure upstream and downstream helps, try many times 

• If you feel confident it is a good idea to open this equipment and try to clean up parts that 

looks dirty or damaged, if the material allows it (check compatibility online) sink it in 

solvent (IPA or acetone) and let it sonicate for a while. Always refer to the proper manual 

to do that and take picture of every step so you know how to reassembly properly. Be 

always very careful and ask for help to someone that has done that before 

 

C.5. GC-FID 94 

C.5.1 Operation tips 

 

• Check proper use of vials, if they are the reduce volume ones, make sure that the bottom 

of the vials doesn’t contain bubbles 

• Check that all the needed gas cylinders are open and with enough pressure. GC-FID only 

needs about 10 psi to work 

• Check the hydrogen lines to make sure that they are not leaking 

• If hydrogen comes from a hydrogen generator far away from it, the pressure drop along the 

lines in the lab could be huge 
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• Redo your standard every two month to double check that your sensitivity hasn’t change 

• Always double check the retention time of your standards, sometimes you might not be 

seen the component you think you are 

• If you are collecting samples over time, and catalyst deactivates, it is expectable to see 

smaller concentrations over time. If concentrations are not decreasing consistently, then 

the peak is not the right one 

• Always dilute your experimental samples in THF or other solvent before injecting. 

Recommended peaks areas are between 100 – 1000. Too low is not reproducible, and too 

high might damage the column 

 

C.6. Balance 95 

C.6.1 Operation suggestions 

 

• Do not weight solutions lower that 0.002 g in the balance, if you need less material consider 

dilute a larger amount and then weight out the diluted material 

• Always check if the balance is properly centered 

• Be aware of static problems, especially in dry seasons like winter. Do not leave material in 

the balance for a longer period of time, you will see that the weigh will start changing 

progressively 

• Use a working static gun to avoid this problem, in only require one shot and the handle 

needs to be moved very slow 
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• Use a starting weighing vial with cap, weigh it until you get here time the same value to 

assure reproducibility. Then, add the materials one by one and weigh the vial with the 

material again three times. Calculate the difference. 

• Always use caps to avoid evaporation of components, while preparing solutions 

• Make sure that all your glassware is clean and free of contamination 

 

C.7. Packing the column 

• Reactions can have reproducibility problems for bad practices in packing the column 

• Dilute the catalyst in crushed fused silica, in a 1/9 or 1/99 ratio, that will avoid hot spots 

inside the bed 

• Try to get a bed length of at least 1 mm 

• Use always diluted solutions, so the heat of reaction will be small and avoid heat transfer 

limitation problems 

• Crush and sieve it to get an homogeneous particle diameter, try to get a size close to mesh 

50 and 70 

• Make sure that you dump all the catalyst inside the column, weigh the weighing vial 

afterwards to double check that the initial value match 

• Use a funnel for dumping the catalyst and make sure that catalyst doesn’t stay in it 

• Be consistent in the way to pack the column, try to apply the same pressure every time and 

to locate the catalyst in the same position every time, channeling problems are real 

• Put a mark with a sharpie of the actual position of the catalyst in the column so you can 

then match the position of the thermocouple to it later 
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C.8. Reactor operation 

• Safety: Make sure that reactor is free of hydrogen and depressurized before open it. Flush 

some inert gas to the system for at least 30 min before open 

• Before connecting a new column, drain the reactor out as much as you can, be careful, and 

open all the possible drain valves. You can also flush it out with some inert gas but be 

aware of not vaporizing chemicals to the environment 

• Once connected the column, make sure to do a proper leak test by pressurizing the system 

and watch for any pressure drop after at least 30 min 

• Also wet the connections with soapy water and watch for any bubbles that indicates a leak 

• Run some blank tests with just the solvent and the catalyst, or solvent and crushed fused 

silica, to make sure that all the innerts actually are 

• Repeat two experiments with the same conditions in a row to address reproducibility 

problems. Be as consistent as you can and DO NOT CHANGE anything 

• If the first reproducibility test works, repeat the same experiment a week and a month later, 

to calibrate yourself and look for differences 

 

C.9. Damaged Catalysts  

• It doesn’t get reduced under hydrogen, check is hydrogen was flowing upwards trough the 

catalyst overnight, if upper valve remained opened, then catalyst is damaged 
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• Check if temperature ramp is smooth enough to not sintering the catalyst. At least keep a 

heating ramp of 2K/min or slower 

• Make sure that the temperature of the catalyst is actually properly measured, check position 

of thermocouples 

 

C.10. Reaction Condition 96 

• Get a proper weight hourly space velocity (WHSV) by defining concentration, mass of 

catalyst and flowrates; consider the trade-off of modifying each of them  

• You will need small conversions to get differential conditions 

• Reaction rates are independent of WHSV but conversion is dependent of it 

• As a rule of thumbs, higher WHSV leads to lower conversion 

• More catalyst leads to lower WHSV and therefore higher conversion, no influence in TOF 

• Higher flowrate leads to higher WHSV, and therefore lower conversion. Be aware that if 

you are co-feeding gas, your sample can be vaporized so your concentration is affected by 

the gas/liquid ratio. If you increase the liquid flowrate, increase the gas flowrate 

proportional to it 

• Also higher flowrates are harder to control and samples needs to be taken more frequently, 

they are also harder to cool it down in the separator 

• Reactant concentration will modify reaction rates according to the rate expression (except 

the ones that are zero order). Most likely lower concentration will lead to lower reaction 

rates 
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• Lower concentrations will lead to lower WHSV if keeping the same flowrates, and 

therefore a higher conversion is reached, if rates doesn’t change 

• Lower concentrations and lower conversions will make it very difficult to see products in 

the GC-FID 

 

 

 

If nothing works cry, take a break, and start over at the next day ☺ 

… 

Lab work can be hard but it will give you results as some point, do not give up! 
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