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EMBEDDINGS OF HARARY GRAPHS IN ORIENTABLE SURFACES

By Christopher Allen Smith

Thesis Advisor: Dr. Robert Franzosa

An Abstract of the Thesis Presented
in Partial Fulfillment of the Requirements for the

Degree of Master of Arts
(in Mathematics)

August 2019

The purpose of this thesis is to study embeddings of Harary graphs in orientable

surfaces. In particular, our goal is to provide a complete description of one method

of constructing a maximal embedding in an orientable surface for any Harary graph.

Rotation systems, which describe the ordering of edges around the vertices of a

graph, can be used to represent graph embeddings in orientable surfaces. Together

with the Boundary Walk Algorithm, this representation provides a method of

constructing a corresponding graph embedding. By switching adjacent edges in a

rotation system, we can control the genus of the constructed embedding surface. We

will explore how certain series of adjacent edge switches may be used to take

standard rotation systems (which will be defined) to rotation systems corresponding

to maximal embeddings of Harary graphs.
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CHAPTER 1

INTRODUCTION

1.1 Subject and Scope

A Harary graph, Hk,n, is a particular kind of k-connected graph that has the

smallest number of edges connecting n vertices. We describe them in more detail in

the next section. It will be our goal in the following work to provide a method of

constructing maximal embeddings of Harary graphs. In doing so, we will also

establish the upper embeddability of Harary graphs and provide a method of

calculating the genus of that maximal embedding.

It is noteworthy that the collection of Harary graphs contains the collection of

complete graphs on n vertices (Kn). In fact, complete graphs are Harary graphs of

the form Hn−1,n. In the second chapter, we will determine a method of constructing

maximal embeddings for complete graphs (Kn) via rotation systems (which encode

graph embeddings as cyclic orderings of the edges of the graph around each vertex

in the embedding). We begin with complete graphs because they are highly

symmetric, and because they have historically been a subject of great interest to

graph theorists. Then, modeling our approach to constructing maximal embeddings

for Harary graphs on the method that we will have established for complete graphs,

we will consider Hk,n with k even (another highly symmetric sub-collection). In the

final chapters of the thesis, we will extend the latter method separately to each of n

even and n odd for Hk,n with k odd. In each case, we identify a rotation system

corresponding to a maximal embedding. It should be noted that such an

identification also precisely describes the structure of that maximal embedding

when paired with a process called the Boundary Walk Algorithm. The details of

1



this construction process are covered in the following section, after establishing our

most basic definitions.

Remark Our result on the upper embeddability of Harary graphs is not new. In

fact, it is known that all k-connected graphs, with k ≥ 4, are upper embeddable

[Mohar and Thomassen, 2001]. While that powerful result asserts the upper

embeddability of all Harary graphs with k ≥ 4, it does not provide a direct means

for obtaining an embedding. Our results do so, by providing specific rotation

systems that yield a maximal embedding via the Boundary Walk Algorithm.

1.2 Preliminary Definitions

For the purposes of this thesis, the word graph will always refer to a simple

topological graph. A simple graph has at most one edge between each pair of

vertices and no edges which begin and end at the same vertex. A topological

graph is a quotient space constructed by gluing the endpoints of a finite set of

closed bounded intervals in R (edges) to elements in a finite set of points (vertices).

This definition allows us to consider objects from the field of graph theory as

topological spaces.

A graph is connected if there is at least one path of edges between any two

pairs of vertices in the graph, and disconnected otherwise. A graph is

k-connected if there does not exist a set of k − 1 vertices whose removal (along

with all edges incident to the vertices) disconnects the graph. Therefore, a

k-connected graph has at least k edges incident to every vertex.

The Harary graphs Hk,n (n ≥ 3, k ≤ n− 1) were introduced by Frank Harary in

[Harary, 1962] and can be constructed by first placing n vertices equally spaced

around a circle and labeling them counter-clockwise 1 to n, then

• If k is even, connect each vertex to the closest k
2
vertices on each side of it.

• If k is odd and n is even, connect each vertex to the closest k−1
2

vertices on each

2



side of it as well as the diametrically opposed vertex (by adding edges between

vertex j and vertex (j + n
2
) mod n for j = 1, 2, 3 . . . n

2
.

• If k and n are both odd, connect each vertex to the closest k−1
2

vertices on each

side of it. Then, add edges between vertex j and vertex (j + n−1
2
) mod n for

j = n, 1, 2, 3 . . . n−1
2
.

Each Harary graph, Hk,n, is k-connected and has the smallest number of edges

connecting n vertices. Figures 1.1 through 1.6 (shown on the following page) are

examples of Harary graphs which illustrate how the structures vary with the

number of vertices and degree of connectivity.

Harary graphs represent a particular example of the minimal case of

k-connectivity for a graph on n vertices. Furthermore, they generalize the collection

of complete graphs (Kn) into a larger collection of highly symmetric k-connected

graphs. Complete graphs are (n− 1)-connected graphs having the smallest number

of edges on n vertices. That is, every vertex of the complete graph on n vertices has

n− 1 edges incident to it, since each vertex is adjacent to every other vertex. The

collection of complete graphs is precisely the collection of all Harary graphs of the

form Hn−1,n.

In the following chapters we will always label the vertices of the Harary graphs

in a simple and consistent manner. Notice that, due to the construction process,

there is always an underlying regular n-gon structure for Hk,n with n > 2, to which

additional edges between vertices may be added to satisfy the degree of connectivity

specified by k. Then we can label adjacent vertices with integers from 1 to n

counter-clockwise along this regular n-gon. Moving forward then, we will always use

arithmetic modulo n when referring to vertex labels, and therefore vertex n may

also be referred to as vertex 0 in certain contexts.

3



Figure 1.1. H2,3

Figure 1.2. H3,5

Figure 1.3. H4,5
Figure 1.4. H4,7

Figure 1.5. H3,10 Figure 1.6. H5,8
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We will begin a discussion of graph embeddings by laying out some preliminary

results from elementary topology to which we will refer throughout the work. For

further information on topology, see [Adams and Franzosa, 2008]. Technically, a

surface S is orientable if there does not exist a subspace of S that is homeomorphic

to a Möbius band, and is compact if for every open cover of S there exists a finite

subcover. We will pass over the details and take for granted the result that any

compact orientable surface is homeomorphic to one of either the sphere or an n-hole

torus (for some n ∈ N).

Figure 1.7. Several Orientable Surfaces

We will also use the fact that the genus of a compact orientable surface is, put

simply, the number of holes in the surface. That is, a sphere has genus 0 and an

n-hole torus has genus n. Notably, a compact orientable surface of genus n ≥ 1 can

be represented as a 4n-gon with edges glued in pairs. For example, a torus can be

obtained by gluing the edges of a square as seen in Figure 1.8.

Figure 1.8. A Glued Torus

5



Furthermore, any collection of polygons with edges glued in pairs results in a

compact surface. To ensure that such a pairwise gluing results in a compact

orientable surface (as opposed to a compact non-orientable surface), we require

that each pair of glued edges be oriented in opposite directions with respect to the

clockwise orientation of the boundary of the corresponding polygon. A gluing that

satisfies this condition is referred to as orientation preserving. For example, the

polygon collection with vertices (and consequently, edges) labeled for gluing in

Figure 1.9, results in the 2-hole torus in Figure 1.10.

Figure 1.9. A Polygon Collection

Eventually we will introduce an algorithm to identify an orientation preserving

gluing of polygons corresponding to an embedding of a given graph, and this

requires that we first define graph embeddings and explore their structure.

An embedding of a graph G into a surface S is a function f : G→ S that maps

G homeomorphically onto the subspace f(G) in S. Thus, an embedding essentially

places a copy of G into S, that is, a copy of the graph is drawn on the surface in the

colloquial sense. Clearly, such an embedding partitions the surface into components

of the complement of the embedded graph. We say that f is a 2-cell embedding if

6



Figure 1.10. A Glued 2-hole Torus

these components are each homeomorphic to the open 2-disk. Note that the interior

of a polygon is homeomorphic to the open 2-disk, as depicted by the pentagon

under the homeomorphism f shown in Figure 1.11.

Figure 1.11. A Homeomorphism f of 2-d Interiors

We limit our study of Harary graph embeddings to those which are 2-cell

embeddings. This is because 2-cell embeddings decompose an orientable surface into

what should be considered the most topologically simple components.

Now, any embedding of a graph in an orientable surface naturally defines a

cyclic ordering of the edges around each vertex:

1. Choose an orientation for the surface (clockwise or counterclockwise)

2. At each vertex, take the order of the edges around the vertex in the

orientation direction

7



Figure 1.12 shows a 2-hole torus with an embedding of the complete graph on 5

vertices arising from the polygon gluing shown in Figure 1.9. Choose a

counter-clockwise orientation for the surface. Then, for example, we see that a

natural cyclic ordering of the edges around vertex 1 would be 12, 13, 14, 15. Around

vertex 2 it is 21, 23, 24, 25; around vertex 3 it is 31, 32, 34, 35; around vertex 4 it is

41, 42, 43, 45; and around vertex 5 it is 51, 52, 53, 54.

Figure 1.12. A 2-cell Embedding of K5 in a 2-hole Torus

It is natural to ask if the cyclic ordering of the edges around each vertex

necessarily provides enough information to identify the embedding. That is, can we

construct a graph embedding using only the knowledge of the ordering of the edges

in a given graph embedding such that the constructed graph embedding is

topologically equivalent to the original? In the case of 2-cell embeddings, it turns

out that the answer is yes, via a construction process involving what are known as

rotation systems and boundary walks. We describe that construction process in

what follows. For more on rotation systems, see [Mohar and Thomassen, 2001].

8



A rotation system for a graph is a cyclic ordering of the edges around each

vertex of the graph. For example, the complete graph on four vertices, K4, has a

rotation system written as follows.

1: 12, 13, 14

2: 21, 23, 24

3: 31, 32, 34

4: 41, 42, 43

We simplify this notation by just listing the vertices at the terminal end of the edge

directed away from the central vertex. We would write this rotation system more

concisely as

1: 234, 2: 134, 3: 124, 4: 123

Note that the ordering of the edges is cyclic, so that

1: 342, 2: 413, 3: 124, 4: 312

is the same rotation system. It will be helpful to visualize a rotation system as the

cyclic ordering which exists in the corresponding embedding as seen in Figure 1.13.

Note that we label the vertices of a graph with integer values, and define an edge

between two vertices, say 1 and 2, by either the concatenation 12 or 21. Now, by

considering directed edges, that is, 12 as the edge directed from 1 to 2 and vice

versa, we can remove this ambiguity. A path in a graph is any sequence of directed

edges p = (12, 23, 34...(n− 1)n) transversing vertices and edges of the graph such

that each directed edge after the first directed edge begins at the vertex at which

9



Figure 1.13. A Rotation Sytem for K4

the previous directed edge ended. We will denote paths as concatenated strings of

vertex labels which describe the order of the directed edges in the path. For

example, the path p above is written as the string 1234...(n− 1)n. A closed path

is a path that ends at the same vertex where it begins. For example, the path

p0 = 1234...(n− 1)n1 is a closed path beginning and ending at vertex 1.

Any 2-cell embedding of a graph in an orientable surface can be seen as a

collection of polygons with edges glued in pairs. Given such a 2-cell embedding of a

graph, we can always do the following:

1. Label the vertices of the graph in the embedding and identify the glued

polygons corresponding to the embedding.

2. Identify the boundary of each polygon as a closed path by listing the directed

edges of its boundary in the clockwise direction.

3. List the order in which the edges directed away from each vertex appear in the

counter-clockwise direction around each vertex.

The choice of clockwise in step 2 and counter-clockwise in step 3 is arbitrary, in

the sense that we could choose different orientations. We only make this particular

choice to be consistent with the construction process to come.

10



We define the closed paths in step 2 as boundary walks. We will show below

that a given rotation system, as in step 3, corresponds to a boundary walk

collection, as in step 2.

Definition Given a rotation system ordering around a vertex v (as in Figure 1.14)

and a directed edge v′v, the succeeding edge to v′v is the directed edge vv′′

immediately following the undirected edge vv′ in the rotation system ordering at v.

Similarly, the preceding edge to a directed edge vv′′′ is the directed edge v′′v

where vv′′ is the undirected edge immediately preceding vv′′′ in the rotation system

ordering at v.

Figure 1.14. A Rotation Sytem at Vertex V

In particular, we can show that by making a path uv′vv′′w... of succeeding edges

in the rotation system of an embedded graph, we actually trace out a cyclic path

along the boundary of a polygon (see Figure 1.15) that bounds a component of the

complement of the embedded graph.

For further illustration, refer back to Figure 1.10, which depicts an embedding of

K5 in an orientable surface of genus 2. The rotation system 1: 2345, 2: 1345, 3:

1245, 4: 1235, 5: 1234 describes the ordering of the edges around each vertex in the

embedding. Notice that the boundaries of the polygons may be read clockwise as

11



Figure 1.15. A Polygonal Boundary Formed with Succeeding Edges

the closed paths 123451, in the case of the orange pentagon, 531425 for the maroon

pentagon, and 54152132435 for the blue decagon. Moreover, the succeeding edge to

12 at vertex 2 is 23, the succeeding edge to 23 at vertex 3 is 34, and so on. Notice

that the list of succeeding edges we are forming, p = (12, 23, 34, 45, 51), is precisely

the boundary walk corresponding to the orange pentagon. The following algorithm

lays out the general method of determining the boundary walk collection associated

to a rotation system for a graph, so that the boundary walk collection corresponds

to the polygons to be glued to obtain an embedding of the graph in an orientable

surface. It will follow that the resulting 2-cell embedding of the graph has the edges

ordered around the vertices according to the rotation system. This latter fact is

straightforward to prove, but we omit the proof.

Definition The Boundary Walk Algorithm takes a rotation system for a graph

and generates a corresponding boundary walk collection, and it proceeds as follows:

1. Begin a walk with any directed edge of the graph, say vv′, and append the

succeeding edge to vv′ in the rotation system of v′, say v′v′′, to obtain a path

vv′v′′.

12



2. Consider the last directed edge designated by the walk, in this case, v′v′′ and

continue appending the succeeding edge in the rotation system of the last

vertex, in this case v′′. The process terminates at the directed edge

immediately preceding the first directed edge to repeat (each boundary walk

will end at the preceding edge to the directed edge from which it departed, as

in Theorem 1.1 below).

3. If every directed edge of the graph is contained in some boundary walk in the

collection, then the algorithm ends. Otherwise, the previous steps are

repeated beginning with any directed edge which is not contained in some

boundary walk already in the collection.

Notice that in addition to each boundary walk being finite, the boundary walk

collection will also be finite, since there is a finite number of directed edges in any

graph. Thus, given any rotation system, the Boundary Walk Algorithm eventually

terminates.

Theorem 1.1 (The Boundary Walk Theorem) Given a rotation system, every

boundary walk ends at the preceding edge to the directed edge from which it departed,

and every directed edge in the walk is distinct.

Proof Begin a walk from a directed edge g0g1. There is a finite number of directed

edges in any graph. Therefore, after a finite number of concatenations, some

directed edge g must be the first to appear for a second time. Since the rotation

system is fixed, the preceding edge to any directed edge is also fixed. Therefore, the

first directed edge to repeat is that which has no preceding edge listed in the path.

Therefore, g = g0g1. The Boundary Walk Algorithm terminates the walk at the

preceding edge to g0g1, and thus every directed edge included in the walk is distinct.

13



Example Consider the complete graph on five vertices, K5. Take a rotation system

at K5 given by following orderings:

1: 2345, 2: 1345, 3: 1245, 4: 1235, and 5: 1234.

Apply the Boundary Walk Algorithm, beginning a walk with directed edge 12. We

obtain the first boundary walk in the list below. Then begin a walk with a directed

edge not contained in the first boundary walk, directed edge 54. We obtain the

second boundary walk in the list. Finally, begin a walk with another directed edge

not already contained in the first two boundary walks, directed edge 53. We obtain

the third boundary walk.

123451

54152132435

531425

We can see that this boundary walk collection contains 20 distinct directed

edges, and we know that K5 has 10 edges. Therefore, each directed edge of K5 is

contained in a boundary walk listed in the collection, and the Boundary Walk

Algorithm was terminated. Notice that these boundary walks correspond to the

boundary of the polygons in Figure 1.9, which glue to give the embedding of K5 in a

2-hole torus shown in Figure 1.10.

Now, since the Boundary Walk Algorithm acts together with a rotation system

to generate the polygons associated to an embedding, and the rotation system

ordering at any vertex is a cyclic ordering of the edges appearing in the embedding

that result from gluing these polygons, it will be natural to consider how the corners

of the polygons appear relative to vertices in the embeddings.

14



Definition A corner of a boundary walk (polygon) is a path consisting of exactly

two directed edges contained in the boundary walk.

Take an unspecified graph and consider a rotation system ordering around a

vertex, say 1, given by 1 : 234. The boundary walk algorithm will generate boundary

walks, one of which will necessarily include the corner 213. The same is true of 314

and 412. For the time being, assume each corner belongs to a distinct boundary

walk. Then we may color the interior of each corresponding polygon a different color

to represent each boundary walk. Say we color that of 213 red, 314 green, and 412

blue. Then we can represent each of these three corners in a diagram of the rotation

system ordering at vertex 1 in the corresponding embedding shown in Figure 1.16.

Figure 1.16. A Rotation System at Vertex 1 with Coloring

Notice that this precisely represents the corners of the polygonal faces of the

boundary walks as as they actually meet in the embedding in the orientable surface.

It could also be the case that two or more corners in Figure 1.16 are in the same

boundary walk, such as in Figure 1.17. Such diagrams will be of great use as a

visual aid to the thesis.

To recap, we may assign a cyclic ordering of the edges adjacent to each vertex in

a graph as a rotation system. This assignment describes an embedding of the graph

15



Figure 1.17. Rotation Systems at Vertex 1 with Colorings

in an orientable surface in which the cyclic ordering of the edges around the

embedded vertices is identical to the cyclic ordering of the rotation system.

Furthermore, the embedding corresponding to the rotation system is found by gluing

the edges of the collection of polygons generated via the Boundary Walk Algorithm

acting on the rotation system. Each boundary walk generated by the algorithm is a

closed path, which, given a fixed orientation to preserve the relationship of interior

to the exterior, transverses the boundary of a polygon. Therefore, the embedding of

the graph corresponding to a particular rotation system can be seen as the seams of

the glued polygons. In turn, each polygon can be seen as a geometric face of the

embedding surface. Together, the embedding and its complement decompose a

surface into various polygons, or two-dimensional surfaces. Hence, faces, polygons,

and boundary walks are considered to be synonymous terms in further discussions.

Many readers will be familiar with Euler’s Formula for convex polyhedra. The

formula asserts that for any convex polyhedron, the sum of the vertices and faces is

exactly two more than the number of edges (V − E + F = 2). The octahedron

(Figure 1.18, for example, has 6 vertices, 12 edges, and 8 faces, giving

6− 12 + 8 = 2. Notice that the octahedron, or any polyhedron for that matter, is

homeomorphic to the sphere.
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Figure 1.18. A Homeomorphism f of the Octahedron to the Sphere

Euler’s Formula applies more generally to topological surfaces of genus other

than 0. For orientable surfaces, a more general form of Euler’s Formula is given by

V − E + F = 2− 2g (1.1)

where g is the genus of the surface, and the vertices, edges, and faces are those

corresponding to a 2-cell embedding of a graph in the surface. This is important for

us because in Formula 1.1, V and E are fixed by the graph, while F may vary

across embeddings (that is, we may glue together various numbers of different

polygons to embed the same graph in different surfaces).

Example We will pick up from the previous example with the same rotation

system for K5. Notice that Euler’s Formula for the embedding surface formed by

gluing the polygons in Figure 1.9 gives the following:

V − E + F = 2− 2g

5− 10 + 3 = 2− 2g

g = 2

(1.2)

Thus g=2, confirming that the gluing of the polygons does in fact result in a 2-hole

torus.

A maximal embedding is a 2-cell embedding of a graph into a surface of the

largest possible genus. Therefore, to identify a maximal embedding, we must
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minimize F . Given a graph, by Formula 1.1, F is either always odd or always even

across all 2-cell embeddings. Therefore, the maximal embedding will theoretically

have either 1 or 2 faces. A graph is called upper embeddable if this maximum

can be realized.

Example Now, consider K5 with the rotation system given by the orderings:

1: 2345, 2: 1345, 3: 1245, 4: 1235, and 5: 2134.

Apply the Boundary Walk Algorithm beginning with directed edge 12 to obtain the

boundary walk:

123452132435415314251

This boundary walk contains every directed edge of K5. By gluing the edges of the

polygon we obtain a maximal embedding of K5 in an orientable surface, since we

have minimized the number of faces F in Formula 1.1. We may now compute the

genus of the maximal embedding surface:

V − E + F = 2− 2g

5− 10 + 1 = 2− 2g

g = 3

(1.3)

It is with the tools described in this section that we will establish methods of

constructing a maximal embedding for any Harary graph. That is, in the chapters

that follow, our goal will be to determine a rotation system corresponding to a

maximal embedding for various sub-collections of Harary graphs. We will begin with

the case Hn−1,n (complete graphs Kn) to model the approach for Hk,n with k even.
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CHAPTER 2

A STANDARD ROTATION SYSTEM FOR Kn

In order to analyze embeddings of the family of complete graphs (Kn) in

orientable surfaces, we will define a standard rotation system for Kn. We will

assume that n > 2, and assign integer labels 1 through n to the vertices of Kn as

specified in Chapter 1. For each vertex, we will choose a rotation system which

orders the edges counter-clockwise around the vertex in numerical order. It is

important to remember that all arithmetic is done modulo n. In what follows then,

equivalence is to be understood as modular equivalence.

Definition The standard rotation system for the complete graph Kn is

1 : 234 . . . n

2 : 134 . . . n

3 : 124 . . . n

...

n : 123...n− 1

The standard rotation system gives an associated boundary walk collection

generated by the Boundary Walk Algorithm. By gluing the corresponding collection

of polygons, we obtain an associated embedding of Kn into an orientable surface.

We will use Lemma 2.1 to determine the structure of these boundary walks in

Theorem 2.3.

Lemma 2.1 (The First Boundary Walk Lemma) Assume the standard

rotation system for Kn. Then in any boundary walk in the corresponding collection,

the succeeding edge to a directed edge pq is

1. q(p+ 1) if q 6= p+ 1

2. q(p+ 2) if q = p+ 1.
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Proof

1. Assume that q = p+ 1. Then the standard rotation system orders q(p+ 1)

after edge qp at vertex q. Therefore, the succeeding edge to pq in this case is

q(p+ 1).

2. The standard rotation system orders p(p+ 2) after p(p+ 1) at vertex p.

Therefore, (p+ 1)(p+ 2) is the succeeding edge to p(p+ 1).

Corollary 2.2 (The First Boundary Walk Corollary) For the standard rotation

system, a boundary walk with initial directed edge p(p+ 1) has the form

p(p+ 1)(q + 1)(p+ 2)(q + 2)...(p− 1)(q − 1)p,

and every directed edge xy of Kn such that y − x = q − p or y − x = p+ 1− q is

contained in the boundary walk.

Proof Assume that initial directed edge pq is such that q 6= p+ 1. Then it follows

from the lemma that pq is followed by q(p+ 1) in the boundary walk beginning pq.

Note that q 6= p since no edge of the graph is a loop. Then p+ 1 6= q + 1, and

q(p+ 1) is thus a directed edge of the form pq above. Let k ∈ Z+. By repeating the

same argument, p+ k 6= q + k. Also, q + k 6= p+ 1 + k since q 6= p+ 1. So, any

directed edge (q + k)(p+ k + 1) or (p+ k)(q + k) is a directed edge of the form pq

above. Thus, beginning a boundary walk with directed edge pq results in the form

pq(p+ 1)(q + 1)(p+ 2)(q + 2)...(p− 1)(q − 1)p.

Now, consider the boundary walk

pq(p+ 1)(q + 1)(p+ 2)(q + 2) . . . (p− 1)(q − 1)p.

Notice that

{p, p+ 1, p+ 2 . . . p− 1} = {1, 2, 3 . . . n} = {q, q + 1, q + 2 . . . q − 1},
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so that every directed edge (q + k)(p+ k + 1) or (p+ k)(q + k) with k ∈ Z+ appears

in the walk. Any directed edge xy such that y − x = q − p or y − x = p+ 1− q is of

the form (q + k)(p+ k + 1) or (p+ k)(q + k) with k ∈ Z+. Therefore, every directed

edge xy such that y − x = q − p or y − x = p+ 1− q appears in the boundary

walk.

Theorem 2.3 (The Standard Collection for Kn) The boundary walk collection

associated to the standard rotation system for Kn is:

BW0 : 123 . . . n1

BW1 : 1n2132 . . . (n− 2)n(n− 1)1

BW2 : 2n3142 . . . (n− 3)n(n− 2)1(n− 1)2

BW3 : 3n4152 . . . (n− 4)n(n− 3) . . . (n− 1)3

...

BWdn
2
−1e : (n− dn

2
e)n(n− dn

2
− 1e)1(n− dn

2
e)2 . . . (n− 1)(n− dn

2
e)

The length of the final boundary walk, BWdn
2
−1e, is n if n is odd, and 2n if n is

even.

Proof Begin the Boundary Walk Algorithm with directed edge 12. By Lemma 2.1,

the next directed edges are 23, 34, etc. The walk ends when the algorithm

encounters the preceding edge to 12. Directed edge n1 is the preceding edge to

directed edge 12, again by Lemma 2.1. Then the first boundary walk is of the form

BW0 : 123 . . . (n− 1)n1.

Every directed edge xy such that y − x = 1 (modulo n) is contained in BW0 by

construction. Therefore, directed edge 1n is not included in BW0, since n− 1 6= 1,

and the Boundary Walk Algorithm may begin a new walk with directed edge 1n.

By Lemma 2.1, the boundary walk beginning with directed edge 1n is of the form
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BW1 : 1n2132 . . . (n− 2)n(n− 1)1.

BW1 contains every directed edge xy of Kn such that y − x = n− 1 or

y − x = 2− n = 2 by Corollary 2.2. More generally, the Boundary Walk Algorithm

may begin a new walk with directed edge jn (so long as jn is not included in a

boundary walk already listed) giving

BWj : jn(j + 1)1(j + 2)2 . . . (n− j − 1)n(n− j) . . . (n− 1)j.

BWj contains every directed edge xy of Kn such that y − x = n− j or

y − x = j + 1− n = j + 1 by Corollary 2.2.

Assume that j ≥ dn
2
e. Then n− j ≤ j. It follows that for each j ≥ dn

2
e, one of

BW0 through BWdn
2
−1e already contains every directed edge xy such that y − x = j.

Thus, every directed edge of the graph is already contained in some boundary walk

in the collection, and the Boundary Walk Algorithm terminates after listing

BWdn
2
−1e.

It should be clear from the construction that BW0 contains n directed edges,

while BW1 through BWdn
2
−2e each contain 2n directed edges. However, notice that

n− j = j + 2 when j = n
2
− 1 = dn

2
− 1e and n is even, but that n− j = j + 1 when

j = n−1
2

= dn
2
− 1e and n is odd. By extension, n− j − 1 = j in the odd case as well.

Then, the boundary walk terminates at the preceding edge to directed edge

(n− j − 1)n, since it is the same as the initial directed edge of the boundary walk,

jn. Then, when n is odd, BWdn
2
−1e is of half the length of each of BW1 through

BWdn
2
−2e.

Observe that BW0 contains corner (n− 1)n1, and that for 1 ≤ j ≤ dn
2
− 1e, it is

the case that BWj contains corners jn(j + 1) and (n− j − 1)n(n− j), except in the

particular case j = n
2
− 1 and n is odd, where the two corners are equivalent (as
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shown above). This nicely illustrates the relationship between the form of the

boundary walks and how the corresponding polygons are glued together around

vertex n (see Figures 2.1-2.5 below). We see that BW0 glues to BW1 in edge n1,

with BW0 to the right of directed edge n1 and BW1 to the left (relative to the edge

direction). Likewise, BW1 glues to BW2 in edge n2, with BW1 to the right of n2

and BW2 to the left, and so on. . . until BWdn
2
−2e glues to BWdn

2
−1e in edge ndn

2
− 1e

with BWdn
2
−2e to the right of ndn

2
− 1e and BWdn

2
−1e to the left.

Furthermore, BW0 glues to to BW1 in edge n(n− 1) with the former to the left

and the latter to the right. Likewise, BW1 glues to to BW2 in edge n(n− 2) with the

former to the left and the latter to the right, and so on. . . until BWdn
2
−2e glues to to

BWdn
2
−1e in edge ndn

2
e if n is odd, and in edge n(n

2
+ 1) if n is even, with the former

BW to the left and the latter to the right of their respective gluing edges. This

completes the gluing process if n is odd. If n is even, then we also see that BWdn
2
−1e

glues to itself in edge nn
2
. As a result of these observations we have the following:

Theorem 2.4 For the standard rotation system on Kn, when the corresponding

BW polygons are glued together, the edges around vertex n appear in the rotation

system ordering:

n1, n2, n3 . . . n(n− 1)

and the boundary walk polygons appear in the ordering:

BW0 (between edges n(n− 1) and n1), BW1, BW2, . . . BWdn
2
−2e, BWdn

2
−1e,

BWdn
2
−1e (if n is even), BWdn

2
−2e, . . . BW2, BW1.

This theorem strongly informs our general method of determining a rotation system

associated to a maximal embedding for Kn to be discussed in the following chapter.

Remark The choice of vertex n here is not significant. In fact, by making the same

observations with regards to the gluing around any other vertex, we would see that

the ordering of the edges around that vertex in the gluing also appear in the
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rotation system ordering, and the corners of the boundary walks appear in the same

arrangement around that vertex as around vertex n in Theorem 2.4.

The standard collection for Kn gives an associated 2-cell embedding into an

orientable surface upon gluing. It is a small feat of calculation now to determine the

genus of this surface using Equation 1.1, since the number of vertices and edges are

fixed by the graph, and the number of faces in the standard collection is dn
2
e:

g =
V − E − F − 2

−2
=
n− n(n−1)

2
+ dn

2
e − 2

−2

Given any complete graph Kn, we now immediately know the genus of one

embedding surface, as well as the details contained in the Theorems of this chapter

regarding the structure of that embedding surface. Note that the genus of this

surface gives us a lower bound on the genus of the surface of a maximal embedding.

However, we can in fact precisely find the maximal genus by determining a rotation

system which gives a maximal embedding. This will be done in the next chapter.
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Figure 2.1. Vertex 5, K5

Figure 2.2. Vertex 6, K6

Figure 2.3. Vertex 7, K7
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Figure 2.4. Vertex 8, K8

Figure 2.5. Vertex 9, K9
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CHAPTER 3

A MAXIMAL EMBEDDING OF Kn

In order to construct maximal embeddings, we will control the number of faces

(i.e. boundary walks) in embeddings associated to rotation systems for Kn by

making switches in the ordering of edges at vertices in the standard rotation system.

The result of switching adjacent edges in a rotation system ordering at a vertex

depends on which of the boundary walks in the collection the switched edges belong

to. One such result is described in the following theorem. Note that we will use the

notation ωab→cd to denote a path in a boundary walk which is the list of directed

edges beginning with the succeeding edge to directed edge ab and ending at the

preceding edge to directed edge cd. For example, abωab→cdcdωcd→ab describes a

complete boundary walk starting at ab, including cd, and ending at the preceding

edge to ab.

Theorem 3.1 (The First Edge Switching Theorem) Assume a rotation

system includes the ordering

j : . . . x12y . . .

at vertex j and generates at least three distinct boundary walks

2jyωjy→2j, 1j2ωj2→1j, and xj1ωj1→xj.

Then, swapping edge j1 with j2 at j {see Figure 3.1} unites the three boundary

walks into a single boundary walk containing all of their distinct directed edges and

expressed as

j1ωj1→xjxj2ωj2→1j1jyωjy→2j2j.
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Figure 3.1. An Adjacent Edge Switch with 3 Distinct Boundary Walks

Proof The only boundary walks affected are those containing the directed edges j1,

1j, j2, or 2j. Swapping the vertices 1 and 2 at j, the rotation system ordering at

vertex j becomes

j : . . . x21y . . .

Let the Boundary Walk Algorithm act on the initial directed edge j1. Then we

follow from the succeeding edge to j1 through xj as before (since that part of the

boundary walk has not been impacted by the edge switch). Now, after edge xj,

according to the new ordering at vertex j, we follow j2. After j2 we follow from the

succeeding edge to j2 through 1j as before. In this way, the Boundary Walk

Algorithm determines that the boundary walk with initial directed edge j1 is

j1ωj1→xjxj2ωj2→1j1jyωjy→2j2j,

where the paths

ωj1→xj, ωj2→1j, and ωjy→2j

between affected directed edges are unchanged by the swap.

We may use Theorem 3.1 as a guide in reducing the number of boundary walks

by modifying rotation systems for a graph. This is equivalent to reducing F in

Equation 1.1, and thus making progress toward constructing a maximal embedding
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for a graph. Consider Figures 2.1-2.5 given at the end of the previous chapter. Each

figure details the arrangement of the corners of boundary walks in the standard

collection for Kn around the nth vertex for K5-K9, respectively. By Theorem 3.1,

we know that in each of these diagrams, switching edge n1 with n2 will unite BW0,

BW1, and BW2. This switch therefore reduces by two the number of boundary

walks in the associated collection for the standard rotation system of K5-K9. We

also see that in Figure 2.5 we may follow this swap with a second swap, n3 with n4,

in order to unite BW3 and BW4 with the single new boundary walk formed as a

result of the previous swap, and again reduce by two the number of boundary walks

in the collection for the rotation system of K9. In fact, the pattern that one may see

emerging here is sufficient information to write down a rotation system which

corresponds to a maximal embedding for Kn. In the following theorem we do just

that, essentially by swapping sufficiently many pairs of edges in the standard

rotation system ordering at vertex n.

Theorem 3.2 A maximal embedding for Kn is given by the rotation system:

1 : 234...n

2 : 134...n

3 : 124...n

...

n− 1 : 123...n

n : 214365...(j + 1)j(j + 2)(j + 3)...(n− 1)

where j = 2dn
4
e − 3. The number of boundary walks, F , for the resulting rotation

system is given by:
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1. F = 2 if 4|n or 4|(n+ 1).

2. F = 1 if 4|(n+ 2) or 4|(n+ 3).

The embedding surface has genus g = b (n−1)(n−2)
4

c.

Proof Note that this rotation system is obtained from the standard rotation

system for Kn by swapping pairs of edges at vertex n as follows:

n1 with n2, n3 with n4, n5 with n6... and nj with n(j + 1).

The number of boundary walks in the standard collection for Kn is dn
2
e, and the

boundary walks including the corners

(n− 1)n1, 1n2, 2n3, 3n4, . . . (n− dn
2
e)n(n− dn

2
− 1e)

are all distinct by Theorem 2.3. Therefore, by Theorem 3.1, each swap indicated

above reduces the number of boundary walks in the collection by 2, and there are
j+1
2

swaps made. Then the total number of boundary walks after the swaps is:

F =
⌈n
2

⌉
− 2
(j + 1

2

)
=
⌈n
2

⌉
− 1− j =

⌈n
2

⌉
− 1− 2

⌈n
4

⌉
+ 3 =

⌈n
2

⌉
− 2
⌈n
4

⌉
+ 2

Therefore,

Case 1: If 4|n, then dn
2
e = n

2
, and dn

4
e = n

4
, so F = n

2
− 2n

4
+ 2 = 2.

Case 2: If 4|(n+ 1), then dn
2
e = n+1

2
, and dn

4
e = n+1

4
, so F = n+1

2
− 2(n+1

4
) + 2 = 2.

Case 3: If 4|(n+ 2), then 2|n, so dn
2
e = n

2
, and dn

4
e = n+2

4
, so

F = n
2
− 2(n+2

4
) + 2 = 1.

Case 4: If 4|(n+ 3), then 2|n+ 3, so 2|n+ 1. Then dn
2
e = n+1

2
, and dn

4
e = n+3

4
, so

we have F = n+1
2
− 2n+3

4
+ 2 = 1.
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Then there is one boundary walk after the specified j+1
2

switches are made if

4|(n+ 3) or 4|(n+ 2), and two if 4|(n+ 1) or 4|n. Since the number of boundary

walks cannot be reduced further in either case, we must have a maximal embedding.

We may now confirm that the genus of the embedding surface is b (n−2)(n−1)
4

c. Recall

that V = n and E = n(n−1)
2

.

If 4|(n+ 1) or 4|n, then

V − E + F = n− n(n− 1)

2
+ 2 =

3n− n2

2
+ 2.

Then the genus of the embedding surface is

g =
V − E + F − 2

−2
=

3n− n2

−4
=
n2 − 3n

4
.

Also, n2−3n
4

is an integer, so

g =
n2 − 3n

4
=
⌊n2 − 3n

4

⌋
=
⌊n2 − 3n

4
+

1

2

⌋
=
⌊n2 − 3n+ 2

4

⌋
=
⌊(n− 2)(n− 1)

4

⌋
On the other hand, if 4|(n+ 3) or 4|(n+ 2), then

V − E + F = n− n(n− 1)

2
+ 1 =

3n− n2

2
+ 1.

Also, Then the genus of the embedding surface is

g =
V − E + F − 2

−2
=

3n− n2 − 2

−4
=
n2 − 3n+ 2

4
.

But also, n2−3n+2
4

is an integer, so

g =
n2 − 3n+ 2

4
=
⌊n2 − 3n+ 2

4

⌋
=
⌊(n− 2)(n− 1)

4

⌋
.
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CHAPTER 4

A STANDARD ROTATION SYSTEM FOR Hk,n WITH k EVEN

We will begin by assigning integer labels 1 through n to the vertices of the

Harary graph Hk,n as specified in Chapter 1. Recall that for k even, each vertex is

connected to the k
2
vertices on each side of it (as in Figure 1.4). Then, considering

vertex labelings modulo n, we can define the standard rotation system as ordering

the edges around each vertex j as follows:

Definition The standard rotation system for Hk,n with k even orders the edges

around any vertex j as

j : (j − k

2
)(j − k

2
+ 1) . . . (j − 1)(j + 1) . . . (j +

k

2
− 1)(j +

k

2
).

This standard rotation system gives a standard boundary walk collection and

standard embedding, just as in the case of complete graphs. However, the general

structure of some of the boundary walks in the collection is slightly different. There

are boundary walks of the same form as BW0, BW1, . . . BW k
2
−1 from the standard

collection for Kn. However, boundary walks including a directed edge p(p− k
2
) have

a new form. Therefore, we require a second boundary walk lemma to describe the

structure of this additional boundary walk form. Before that, we will give an

example to clarify these ideas.

Example Consider the Harary graph H8,12. The standard rotation system for H8,12

is as follows:

1: 9(10)(11)(12)2345

2: (10)(11)(12)13456

3: (11)(12)124567
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4: (12)1235678

5: 12346789

6: 2345789(10)

7: 345689(10)(11)

8: 45679(10)(11)(12)

9: 5678(10)(11)(12)1

10: 6789(11)(12)12

11: 789(10)(12)123

12: 89(10)(11)1234

Then the boundary walk collection generated via the Boundary Walk Algorithm,

and labeled in the same manner as the standard collection for Kn, is:

BW0 : 123456789(10)(11)(12)1

BW1 : 1(12)2132435465768798(10)9(11)(10)(12)(11)1

BW2 : 2(12)31425364758697(10)8(11)9(12)(10)1(11)2

BW3 : 3(12)415263748596(10)7(11)8(12)91(10)2(11)3

BW4 : 4(12)84

BW5 : 3(11)73

BW6 : 2(10)62

BW7 : 1951

Notice that BW0 through BW3 have the same form as those in the standard

collection for Kn, as claimed. Also notice that k
2
= 4, and that BW4 through BW7

all take a different, shorter, form than any seen in the standard collection for Kn. In

fact, consider the cyclic group Z/12Z. In particular, consider the subgroup

generated by the element 4, with corresponding set {4, 8, 12}. Notice that BW4 is
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simply a concatenation of the elements of this set in descending order. Likewise,

BW5 can be seen as a concatenation of the elements of the set

{4− 1, 8− 1, 12− 1} = {3, 7, 11} in descending order, BW6 as that of

{4− 2, 8− 2, 12− 2} = {2, 6, 10}, and BW7 as that of

{4− 3, 8− 3, 12− 3} = {1, 5, 9}. Each of these sets corresponding to BW5 through

BW7 are cosets of the set {4, 8, 12} corresponding to BW4. The relevance of the

subgroup structure of Z/nZ = Z/12Z arises due to to the fact that the rule

(governed by the standard rotation system) which determines the succeeding edge

to a directed edge p(p− k
2
) is essentially given by subtraction of k

2
from the terminal

vertex, as we will see in the following Lemma. It is again important to remember

that all arithmetic is done modulo n. In what follows then, equivalence is to be

understood as modular equivalence.

Lemma 4.1 (The Second Boundary Walk Lemma) Assume the standard

rotation system for Hk,n. Then in any boundary walk, the succeeding edge to edge pq

is

1. q(p+ 1) if q 6= p+ 1 and q 6= p− k
2

2. q(p+ 2) if q = p+ 1

3. q(p− k) if q = p− k
2
n

Proof Both 1 and 2 follow the same argument as Lemma 2.1.

For 3, assume that q = p− k
2
. The standard rotation system orders edge

(p− k
2
)(p− k) after edge p(p− k

2
) at vertex p− k

2
, since p = p− k

2
+ k

2
and

p− k = p− k
2
− k

2
.

Corollary 4.2 (The Second Boundary Walk Corollary)

Assume the standard rotation system for Hk,n. Then
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1. A boundary walk with initial directed edge pq such that q 6= (p+ 1) and q 6= p− k
2

has the form

pq(p+ 1)(q + 1)(p+ 2)(q + 2)...(p− 1)(q − 1)p,

and every directed edge xy of Kn such that y − x = q − p or y − x = p+ 1− q is

contained in the boundary walk.

2. A boundary walk with initial directed edge pq such that q = p− k
2
has the form

p(p− k

2
)(p− k)(p− 3k

2
) . . . (p+ k)(p+

k

2
)p

Proof Part 1 follows the same argument as Corollary 2.2. For part 2, notice that

any directed edge of the form (p− mk
2
)(p− (m+1)k

2
) with m ∈ Z has a succeeding

edge of precisely the same form, (p− (m+1)k
2

)(p− (m+2)k
2

), by Lemma 4.1. Likewise,

then, the preceding edge to (p− mk
2
)(p− (m+1)k

2
) is (p− (m−1)k

2
)(p− mk

2
). The form

of the boundary walk follows.

Definition A k-gap boundary walk is any boundary walk of the form

p(p− k

2
)(p− k)(p− 3k

2
) . . . (p+ k)(p+

k

2
)p

This definition captures the new form of the boundary walks mentioned earlier

(those that arise due to the subgroup structure of Z/nZ). The term "k-gap

boundary walks" is used because each corner in the boundary walk includes edges of

the form p(p− k
2
), which arise due to the ordering of q(q − k

2
) after q(q + k

2
) in the

rotation system ordering at vertex q. Note that the difference between the terminal

vertex labels is k. This is a unique feature of the ordering, since otherwise the

difference between any two successive terminal vertex labels in the ordering is

always 1. The structure of these k-gap boundary walks will be described

algebraically in the proof of the following theorem. That description will rely on the
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use of the elementary result from group theory given in the following lemma, see

[Gallian, 2013] for its proof.

Lemma 4.3 Let a be an element of order n in a group and b be a positive integer.

Then |ab| = n
gcd(n,b)

.

Theorem 4.4 (The Standard Collection for Hk,n, k Even) The standard

boundary walk collection associated to the standard rotation system for Hk,n with k

even is given as follows (where d = gcd(n, k
2
)):

BW0 : 123 . . . n1

BW1 : 1n2132 . . . (n− 2)n(n− 1)1

...

BWj : jn(j + 1)1(j + 2)2 . . . (n− j − 1)n(n− j) . . . (n− 1)j

...

BW k
2
−1 : (k

2
− 1)n(k

2
)1(k

2
+ 1)2 . . . (n− k

2
)n(n− k

2
+ 1) . . . (n− 1)(k

2
− 1)

and

BW k
2
: (k

2
)n(n− k

2
)(n− k) . . . k(k

2
)

BW k
2
+1 : (k

2
− 1)(n− 1)(n− k

2
− 1) . . . (k − 1)(k

2
− 1)

BW k
2
+2 : (k

2
− 2)(n− 2)(n− k

2
− 2) . . . (k − 2)(k

2
− 2)

...

BW k
2
+d−1 : (k

2
− d+ 1)(n− d+ 1)(n− k

2
− d+ 1) . . . (k − d+ 1)(k

2
− d+ 1)

The associated embedding is in the surface of genus g = 2(1−d)+(1−n)(2−k)
4

.

Proof Begin the Boundary Walk Algorithm with directed edge 12. By The Second

Boundary Walk Lemma, the next directed edges are 23, 34, etc. The walk ends

when the algorithm encounters the preceding edge to 12. Directed edge n1 is the

preceding edge to directed edge 12, again by Lemma 4.1. Then the first boundary

walk is of the form
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BW0 : 123 . . . (n− 1)n1.

Every directed edge xy such that y − x = 1 is contained in BW0 by construction.

Therefore, directed edge 1n is not included in BW0, since n− 1 6= 1, and the

Boundary Walk Algorithm may begin a new walk with directed edge 1n. By Lemma

4.1, the boundary walk beginning with directed edge 1n is of the form

BW1 : 1n2132 . . . (n− 2)n(n− 1)1

and contains every directed edge xy of Hk,n such that y − x = n− 1 or

y − x = 2− n = 2 by Corollary 4.2. More generally, the Boundary Walk Algorithm

may begin a new walk with directed edge jn for j ≤ k
2
− 1 since n− j > k

2
≥ j + 1

for all j ≤ k
2
− 1 (because k < n by definition). This boundary walk has the form

BWj : jn(j + 1)1(j + 2)2 . . . (n− j − 1)n(n− j) . . . (n− 1)j

and contains every directed edge xy of Hk,n such that y − x = n− j or

y − x = j + 1− n = j + 1 by Corollary 4.2. The collection now contains every

directed edge xy of Hk,n such that 1− k
2
< y − x < k

2
, and the only directed edges

xy not yet included in these boundary walks are those such that y − x = n− k
2
. All

of these directed edges belong to the k-gap boundary walks.

The Boundary Walk Algorithm may begin a new walk with directed edge

n(n− k
2
). By Corollary 4.2 the next directed edge in the walk is (n− k

2
)(n− k),

then (n− k)(n− 3k
2
), and so on, until the boundary ends at the preceding edge to

the initial directed edge n(n− k
2
), which would be directed edge (k

2
)n.

Now, consider the set of vertices {1, 2, 3, ...n} as the cyclic group Z/nZ, since we

generate subsequent vertices in our boundary walk via addition modulo n. Then

this boundary walk is simply an ordered concatenation of the elements in the

subgroup 〈k
2
〉 of Z/nZ, that is, the subgroup generated by k

2
. It follows that we can
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easily determine the number of edges in the boundary walk (which is equal to the

number of the vertices) by applying Lemma 4.3.

Since 1 is an element of order n in Z/nZ and k
2
is a positive integer, we have

|1 k
2 | = |k

2
| = |〈k

2
〉| = n

gcd(n, k
2
)
. That is, the order of the subgroup generated by k

2
is

n
gcd(n, k

2
)
, so there are n

gcd(n, k
2
)
directed edges in the boundary walk n(n− k

2
) . . . (k

2
)n.

The value d = gcd(n, k
2
) will be heavily referenced in the remainder of the thesis, and

any further use of the character d should be taken as gcd(n, k
2
). Note that if n and k

2

are relatively prime, then every directed edge is included in a boundary walk after

listing this one. Otherwise, there are boundary walks that remain to be identified.

Notice that the boundary walk (n− 1)(n− k
2
− 1) . . . (k

2
− 1)(n− 1) has the same

number of directed edges as n(n− k
2
) . . . (k

2
)n, with each vertex labeling in the

concatenation reduced by one. Clearly, the same is true for

(n− j)(n− k
2
− j) . . . (k

2
− j) with a vertex labeling reduced by j. Each of these

boundary walks may be seen as a concatenation of the vertices in the coset 〈k
2
〉+ j

of the subgroup 〈k
2
〉. We see that we may form d distinct boundary walks, since

{1, 2, 3 . . . n} is partitioned into d cosets of size n
gcd(n, k

2
)
. Furthermore, the cosets

〈k
2
〉+ j are distinct for 1 ≤ j ≤ d− 1. Then we can be certain that every directed

edge of the form v(v − k
2
) for every vertex v is contained in one of the distinct

boundary walks associated to each of the distinct cosets. It follows that we have

accounted for every directed edge of Hk,n after sequentially generating the boundary

walks BW k
2
through BW k

2
+d−1 (the boundary walks corresponding to the cosets).

Then the Boundary Walk Algorithm terminates after listing BW k
2
+d−1.

Notice that we have k
2
+ d boundary walks in total. Then we have that

V − E + F = n− nk

2
+
k

2
+ d

since for Hk,n with k even there are clearly nk
2

edges. Consequently, by applying
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Equation 1.1 we find that we have a standard embedding of Hk,n for k even into an

orientable surface of genus

g =
(n− nk+k

2
+ d− 2)

−2

or equivalently,

g =
2(1− d) + (1− n)(2− k)

4

Notice that one consequence of this construction, that follows directly from

Corollary 4.2, is that we can identify the boundary walk BWj in the standard

collection to which any directed edge xy belongs.

Corollary 4.5 Given a directed edge xy of Hk,n, the boundary walk in the standard

collection to which xy belongs can be determined by the following rules:

1. If y − x = 1, then xy is a directed edge of BW0.

2. For 1 ≤ j ≤ k
2
− 1, if y− x = j + 1 or y− x = n− j, then xy is a directed edge of

BWj.

3. If y − x = n− k
2
, then xy is a directed edge of one of BW k

2
-BW k

2
+d−1,

corresponding to the coset of the subgroup generated by k
2
in Z/nZ to which x and y

belong.
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CHAPTER 5

A MAXIMAL EMBEDDING OF Hk,n WITH k EVEN

Now, as we did for Kn in Chapter 3, we are going to obtain a rotation system for

a maximal embedding of Hk,n, k even, by making adjacent edge switches in the

standard rotation system. The standard collection in the previous chapter includes

more complicated boundary walk structures than the standard collection for Kn,

and we will require an additional edge switching theorem in order to describe a

series of edge switches which takes the standard rotation system for Hk,n, k even, to

a rotation system for its maximal embedding. For the remainder of the chapter, we

will assume that k is even, and Hk,n will refer exclusively to the k even case.

Figure 5.1. An Adjacent Edge Switch with 2 Distinct Boundary Walks

Suppose, as in Figure 5.1, that there are 3 consecutive corners in the corner

diagram at vertex j such that, reading counterclockwise, one belongs to one

boundary walk (green) while the other two both belong to another (blue). Then

switching the edges j1 and j2 in the rotation system around j changes the

arrangement of the corners so that the first two corners are in the same boundary

walk (pink), and the third is in a separate one (gray). We can see further details of
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the effect of the swap on the corners and the boundary walks by carefully examining

Figure 5.1. The total effect will be captured in the presentation of the following

theorem.

Theorem 5.1 (The Second Edge Switching Theorem) Assume a rotation

system includes

j : . . . x12y . . .

and generates at least two boundary walks

1j2ωj2→2j2jyωjy→1jand xj1ωj1→xj.

Then swapping edge j1 with j2 at vertex j replaces the above two boundary walks

with boundary walks

xj2ωj2→2j2j1ωj1→xjand 1jyωjy→1j,

leaving the remainder of the boundary walks unchanged. Consequently, this switch

causes no change in the total number of boundary walks.

Proof (The Second Edge Switching Theorem)

The only boundary walks affected are those containing the directed edges

j1, 1j, j2, or 2j. Swapping the vertices 1 and 2 in the rotation system ordering

around j, we have

j : . . . x21y . . .

Then, in the same manner as in the First Edge Switching Theorem, the

Boundary Walk Algorithm determines that the boundary walk with initial directed

edge xj is xj2ωj2→2j2j1ωj1→xj. This walk includes directed edges 2j, j1, and j2.

The only remaining affected directed edge is 1j, and the Boundary Walk Algorithm

also determines that the boundary walk with initial edge 1j is 1jyωjy→1j.
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While this theorem doesn’t directly help us reach a maximal embedding by reducing

the number of boundary walks via a rotation system edge switch, as we will see in

the next example (and theorem) it helps us by rearranging the boundary walks in

such a way that the First Edge Switching Theorem can be used to obtain a maximal

embedding. In order to use the First and Second Edge Switching Theorems as

guides, it will be helpful to visualize the entire rotation system as an array of

vertices with the edge orderings corresponding to the rotation system as well as the

corners around the vertex colored according to the corresponding boundary walks.

We will refer to the diagram representing the edge orderings and corner colorings at

any particular vertex v as the corner diagram at v. First, let’s extend Example 4,

regarding H8,12 from the previous chapter.

Example We may pick various colors to represent each of the 8 boundary walks in

the standard collection. Let’s pick orange for BW0, a light blue for BW1, dark red

for BW2, dark green for BW3. In the future, we will pick these same colors for

consistency, choosing additional colors as needed for any further boundary walks

BWi with i < k
2
. Let’s pick pink for BW4, blue for BW5, red for BW6, and dark

purple for BW7. Again, in the future we will pick these same colors for the k-gap

boundary walks, BW k
2
, BW k

2
+1, BW k

2
+2, BW k

2
+3, choosing additional colors as

needed for any further k-gap boundary walks. Then the corner diagram at vertex 1

will appear as shown in the first row and column in the array in Figure 5.2. The

corner diagram at vertex 2 appears in the first row and second column, with most of

the terminal vertices of its edges unlabeled (in order to reduce visual clutter).

However, the edges which are labeled are enough to establish the arrangement of the

remaining edges as described by the rotation system ordering at vertex 2. After a

pattern has been established by the first 4 corner diagrams, all terminal vertex

labels are left off to reduce visual clutter without losing information about the

ordering of the edges.
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Figure 5.2. A Corner Diagram Array for H8,12
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To motivate the general edge-switching process that we follow to obtain a

maximal embedding for Hk,n (k even), we will work through an example with H8,12.

The primary challenge is to obtain a collection of switches that unites the k-gap

boundary walks.

Example Consider H8,12 and the first row of the corner array diagram

corresponding to the standard collection, as in Example 5. The first row is shown

below in Figure 5.3, along with the standard boundary walk collection with

boundary walk colors identified.

Figure 5.3. First Row Corner Diagram Array for H8,12

First, consider the effect of swapping edges 19 and 1(10) in the rotation system

ordering at vertex 1, so that the ordering is 1 : (10)9(11)(12)2345. By the First

Edge Switching Theorem, BW7 is united with BW2 and BW3 to form a new

boundary walk, which we will call boundary walk θ. The resulting boundary walk

collection and associated corner diagrams are as shown in Figure 5.4.
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Figure 5.4. First Row Corner Diagram Array for H8,12 After 1 Adjacent Edge Swap

Then swap edges 2(10) and 2(11) in the rotation system ordering at vertex 2, so

that the ordering is 2 : (11)(10)(12)13456. By the Second Edge Switching Theorem,

BW6 and θ are modified, resulting in two new boundary walks consisting of their

directed edges, θ1 and θ2. The resulting boundary walk collection and associated

corner diagrams are as shown in Figure 5.5.

We will continue this process of swapping edges at successive vertices,

alternately applying the First Edge Switching Theorem and the Second Edge

Switching Theorem. Notice that the total effect of each pair of swaps is to first

reduce the total number of boundary walks in the collection by 2 by uniting k-gap

boundary walks, and then to prepare the next corner diagram for another

application of the First Edge Switching Theorem. Now, to continue, swap edges

3(11) and 3(12) in the rotation system ordering at vertex 3, so that the ordering is
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Figure 5.5. First Row Corner Diagram Array for H8,12 After 2 Adjacent Edge Swaps

3 : (12)(11)124567. The resulting boundary walk collection and associated corner

diagrams are as shown in Figure 5.6.

Figure 5.6. First Row Corner Diagram Array for H8,12 After 3 Adjacent Edge Swaps
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Now swap edges 4(12) and 41 in the rotation system ordering at vertex 4, so

that the ordering is 4 : 1(12)235678. The resulting boundary walk collection and

associated corner diagrams are as shown in Figure 5.7.

Figure 5.7. First Row Corner Diagram Array for H8,12 After 4 Adjacent Edge Swaps

At this point, all boundary walks in the collection are present in the corner

diagrams at all vertices. Then at one vertex we can make a sequence of swaps all of

which satisfy the conditions of the First Edge Switching Theorem, as in the Kn

case. We will choose to make those swaps (only one in this case) at vertex

d = gcd(n, k
2
) = 4, where we left off with our last swap. Swap edges 43 and 42 in the

rotation system ordering at vertex 4, so that the ordering is 4 : 1(12)325678. By the

First Edge Switching Theorem, BW0, BW1, and θ4 unite to form a single boundary

walk. The resulting boundary walk collection is as shown in Figure 5.8, where we

also see the effect on the arrangement of the remaining boundary walks in the

corner diagram at vertex 4.

Notice that there are two boundary walks remaining in the collection, so we have

reached a maximal embedding of H8,12 via the specified swaps. Also note that the

genus of the embedding surface is
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Figure 5.8. First Row Corner Diagram Array for H8,12 After 6 Adjacent Edge Swaps

g =
V − E + F − 2

−2
= (12− 12(8)

2
+ 2− 2)/− 2 = 18.

Thus, it follows that we have an embedding of H8,12 in an 18-hole torus via the

rotation system:

1 : (10)9(11)(12)2345

2 : (11)(10)(12)13456

3 : (12)(11)124567

4 : 1(12)325678

5 through 12 : The Standard Rotation System Ordering for Hk,n with k even.

Next we will see that the edge switching strategy employed here can be used

generally to obtain a maximal embedding for Hk,n.
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We will move forward with a visualization of the boundary walks of Hk,n, for

general values of k and n via general corner diagrams. We will demonstrate

generally how we can obtain a rotation system for a maximal embedding by making

a set of edge switches on the standard rotation system. Fix the standard rotation

system for Hk,n. Consider the corner diagrams at the first and second vertices with

arbitrary n, k and d = gcd(n, k
2
), shown below in Figure 5.9. For simplicity and

consistency of representation, we will assume that k ≥ 8 and d ≥ 4.

Figure 5.9. Corner Diagrams for Hk,n, k Even, Vertices 1 and 2

Notice the similarities in the arrangement of the corners belonging to the same

boundary walks around each vertex. In fact, the only difference with regard to this

arrangement is that the corner (1 + k
2
)1(1− k

2
) in the rotation system of vertex 1

belongs to a different k-gap boundary walk than the corner (2 + k
2
)2(2− k

2
) in the

same position in the corner diagram at vertex 2, as long as n and k
2
are not

relatively prime. Recall that there are d = gcd(n, k
2
) of these k-gap boundary walks

in the standard collection for Hk,n. We also know that the k-gap boundary walk

with corner (1 + k
2
)1(1− k

2
) also contains the corner (1 + d+ k

2
)(1 + d)(1 + d− k

2
),

the k-gap boundary walk with corner (2 + k
2
)2(2− k

2
) also contains the corner
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(2 + d+ k
2
)(2 + d)(2 + d− k

2
), and so on. Furthermore, note that for i ≤ d, the

corners (i+ k
2
)i(i− k

2
) each belong to distinct k-gap boundary walks.

Now we may consider an entire generalized array of corner diagrams representing

the standard rotation system for Hk,n with k, n, and d arbitrary (Figure 5.10). We

will leave off the terminal vertex labels of the edges on each corner diagram to

reduce visual clutter.

Figure 5.10. Corner Diagram Array for Hk,n, k even

Notice that, apart from the vertex labels, each row of the array has corner

diagrams identical to those of the first row. Therefore, we can focus our attention at

any row without losing information about the form of the entire array. Figure 5.11

shows the first row, on which we focus in the proof of Theorem 5.2.
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Figure 5.11. Rotation System Array, First Row

This visualization will inform our choices for a series of swaps which takes the

standard rotation system to a rotation system corresponding to a maximal

embedding of Hk,n. The reader may find it useful to review Example 5 to put the

generalizations in the proof of the following theorem into context. There, one can

see the details of each swap and its effect on the first row of the corner diagram

array for H8,12. The following theorem will assume that k > 2. This is because if

k = 2, then k
2
= 1, and d = 1. Then the total number of boundary walks is

k
2
+ d = 2, and the standard rotation system is already a maximal embedding.

Another way to see this is to note that if k = 2, then the graph is topologically a

circle, and therefore clearly has a maximal embedding in the sphere.

Theorem 5.2 The Rotation System of a Maximal Embedding of Hk,n (k Even)

A maximal embedding of Hk,n, k > 2 even, is given by the rotation system obtained

from the standard rotation system with swaps of adjacent edges:

• i(i− k
2
) with i(i− k

2
+ 1) at vertex i for all i ∈ Z+ such that i ≤ d

• If k ≥ 8, then also swap d(d− 1) with d(d− 2), d(d− 3) with d(d− 4), . . .

d(d− j + 1) with d(d− j) at vertex d = gcd(n, k
2
), with

j =


k
2
− 3, if k

2
is odd.

k
2
− 2, if k

2
is even.
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The number of boundary walks, F , for the resulting rotation system is given by

1. F=2, if d and k
2
share the same parity.

2. F=1, if d is odd and k
2
is even.

We refer to the edge switches listed after the first bullet in the theorem

statement as Type 1 switches. Making all of the specified Type 1 switches results in

one or two new boundary walks that contain all of the directed edges in the k-gap

boundary walks. As a result of these edge switches, all boundary walks are present

at (i.e. pass through) each vertex.

We refer to the edge switches listed after the second bullet as Type 2 switches.

They are akin to the edge switches in Theorem 3.2 and reduce the number of

boundary walks to one or two, resulting in a maximal embedding. A set of edge

switches of this type could be done at any of the vertices to obtain a maximal

embedding.

Proof Theorem (5.2)

Assume we have the standard rotation system for Hk,n, k even. By Corollary

6.2, we know that corners (1 + k
2
)1(1− k

2
), (1− k

2
)1(2− k

2
), and (2− k

2
)1(3− k

2
) are

contained in distinct boundary walks (see Figure 5.12).

In fact, (1− k
2
)1(2− k

2
) is contained in BW k

2
−1 and (2− k

2
)1(3− k

2
) is contained

in BW k
2
−2. Swap edge 1(1− k

2
) with edge 1(2− k

2
) in the rotation system ordering

at vertex 1. By Theorem 3.1 (The First Edge Switching Theorem), the three

boundary walks unite to form one boundary walk,

θ : 1(1−k
2
)ω1(1− k

2
)→(1+ k

2
)1(1+

k

2
)1(2−k

2
)ω1(2− k

2
)→(1− k

2
)1(1−

k

2
)1(3−k

2
)ω1(3− k

2
)→(2− k

2
)1(2−

k

2
)1
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Figure 5.12. Corner Diagram at Vertex 1 of Hk,n, k Even

containing all of their edges, with the ordering of edges in each ωab→cd unchanged.

Figure 5.13 details the affect on the corner diagram at vertex 1.

Figure 5.13. Corner Diagram at Vertex 1 of Hk,n, k Even, After Swap At Vertex 1

This means that boundary walk θ contains the corners (2− k
2
)2(3− k

2
) and

(3− k
2
)2(4− k

2
), originally contained in BW k

2
−1 and BW k

2
−2. If d = 1, then this is
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the only Type 1 swap performed. On the other hand, if d ≥ 2, then we note that the

corner (2 + k
2
)2(2− k

2
) is contained in BW k

2
+1 and thus not contained in θ.

Therefore, as we can see in Figure 5.14 detailing the corner diagram at vertex 2

after the swap at vertex 1, the corners (2 + k
2
)2(2− k

2
), (2− k

2
)2(3− k

2
), and

(3− k
2
)2(4− k

2
) satisfy the necessary conditions to apply Theorem 5.1 (The Second

Edge Switching Theorem).

Figure 5.14. Corner Diagram at Vertex 2 of Hk,n, k Even, After Swap At Vertex 1

Make a second swap, edge 2(2− k
2
) with 2(3− k

2
) in the rotation system ordering

around vertex 2. By the Second Edge Switching Theorem, the swap results in the

boundary walks

θ1 : (2−
k

2
)2(4− k

2
)ω2(4− k

2
)→(2− k

2
)2

and

θ2 : (2 +
k

2
)2(3− k

2
)ω2(3− k

2
)→(3− k

2
)2(3−

k

2
)2(2− k

2
)ω2(2− k

2
)→(2+ k

2
)2

The corner diagram at vertex 2 is arranged as shown in Figure 5.15 after the

swap at vertex 2.
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Figure 5.15. Corner Diagram at Vertex 2 of Hk,n, k Even, After Swap At Vertex 2

If d = 2 then we perform only these two Type 1 swaps. If d ≥ 3, note that

boundary walks θ1 and θ2 contain only corners in the same order as they appear in

the boundary walks from the standard collection, or contain the corners created by

a previous swap (one of the corners (1 + k
2
)1(2− k

2
), (1− k

2
)1(3− k

2
), and

(2− k
2
)1(1− k

2
) from the first swap). Then θ1 contains corner (3− k

2
)3(4− k

2
) and θ2

contains corner (4− k
2
)3(5− k

2
), which are each distinct from the boundary walk

containing corner (3 + k
2
)3(3− k

2
), which belongs to one of BW k

2
through BW k

2
+d−1

from the standard collection. The corner diagram at vertex 3 in Figure 5.16 shows

the new corner arrangement at vertex 3 after both swaps.

Notice that the First Edge Switching Theorem may be applied to the swap of

edges 3(3− k
2
) and 3(4− k

2
). Note that the overall effect of the pair of swaps

1(1− k
2
) with 1(2− k

2
) and 2(2− k

2
) with 2(3− k

2
) was to reduce the total number of

boundary walks by 2 by incorporating the directed edges of a k-gap boundary walk

into a boundary walk also containing the directed edges of BW k
2
−1 and BW k

2
−2 via
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Figure 5.16. Corner Diagram at Vertex 3 of Hk,n, k Even, After Swap At Vertex 2

the former, and to rearrange the corners at vertex 3 in order to apply the First Edge

Switching Theorem again via the latter.

The pair of consecutive swaps (at vertex 1 and 2) comprises a base case to prove

by induction that the First and Second Edge Switching Theorems may be applied

alternately as above. That is, we may continue this process by successively

swapping edges i(i− k
2
) and i(i+ 1− k

2
) for all i ≤ d, incorporating the directed

edges of the k-gap boundary walks into boundary walks also containing the directed

edges of BW k
2
−1 and BW k

2
−2. We claim that after j such steps, if j is odd, then all

of the directed edges of BW k
2
−1, BW k

2
−2, and of the first j k-gap boundary walks

are now contained in a single boundary walk, while the remaining directed edges

(and thus, corners) are unaffected. On the other hand, if j is even, then all of the

directed edges of BW k
2
−1, BW k

2
−2, and of the first j k-gap boundary walks are now

contained in two boundary walks, while the remaining directed edges (and thus,

corners) are unaffected. In each case, the arrangement of corners in the corner

diagram at vertex j + 1 is such that the First or Second Edge Switching Theorem

will apply again as before. That is, if j is odd, then the two directed edges
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(j + 1)(j + 2− k
2
) and (j + 2− k

2
)(j + 1) belong to the same boundary walk. If j is

even, then the two directed edges (j + 1)(j + 2− k
2
) and (j + 2− k

2
)(j + 1) belong to

two distinct boundary walks.

To continue the argument by induction, we will first assume we have made an

even number, s− 1 < d, of consecutive swaps (as we had after completing the base

case). This means that we had continued with a third swap 3(3− k
2
) with 3(4− k

2
) in

the rotation system ordering at vertex 3 and a fourth swap 4(4− k
2
) with 4(5− k

2
) in

the rotation system ordering at vertex 4, and so on, until swapping (s− 1)(s− 1− k
2
)

with (s− 1)(s− k
2
) in the rotation system of vertex s− 1. We assume that the

corners (s+ k
2
)s(s− k

2
), (s− k

2
)s(s+1− k

2
), and (s+1− k

2
)s(s+2− k

2
) are contained

in distinct boundary walks. That is, the corner diagram at vertex s ≤ d (the next

smallest vertex at which no swap has yet been made) appears as in Figure 5.17.

Figure 5.17. Corner Diagram at Vertex s of Hk,n, k even

Then we may swap edge s(s− k
2
) with s(s+ 1− k

2
) in the rotation system

ordering around vertex s ≤ d and apply the First Edge Switching Theorem. The

three distinct boundary walks are united into a single boundary walk containing all

of their directed edges (and no other boundary walks are affected):
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θa : s(s−
k

2
)ωs(s− k

2
)→(s+ k

2
)s(s+

k

2
)s(s+ 1− k

2
)ωs(s+1− k

2
)→(s− k

2
)s . . .

(s− k

2
)s(s+ 2− k

2
)ωs(s+2− k

2
)→(s+1− k

2
)s(s+ 1− k

2
)s

Observe the corresponding change in the corner diagram at vertex s from Figure

5.17 to Figure 5.18:

Figure 5.18. Corner Diagram at Vertex s of Hk,n, k even

If s = d, then all boundary walks in the collection are present at vertex s, and

we are done. If s < d, then we note that the boundary walk θa contains only corners

in the same order as they appear in the boundary walks from the standard

collection other than the previously swapped corners, one of (i+ k
2
)i(i+ 1− k

2
),

(i+ 1− k
2
)i(i− k

2
), or (i− k

2
)i(i+ 2− k

2
), for 1 ≤ i ≤ s. Then θa contains corner

(s+ 1− k
2
)(s+ 1)(s+ 2− k

2
) in the path ωs(s+1− k

2
)→(s− k

2
)s and corner

(s+ 2− k
2
)(s+ 1)(s+ 3− k

2
) in the path ωs(s+2− k

2
)→(s+1− k

2
)s. Also, corner

(s+ 1 + k
2
)(s+ 1)(s+ 1− k

2
) in the corner diagram at vertex s+ 1 ≤ d shown in

Figure 5.19 is contained in one of BW k
2
through BW k

2
+d−1 from the standard

collection, which is distinct from boundary walk θa above.
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Then we may apply the Second Edge Switching Theorem by swapping edges

(s+ 1)(s+ 1− k
2
) and (s+ 1)(s+ 2− k

2
) in the rotation system ordering around

vertex s+ 1 ≤ d. After the swap we have two boundary walks (and no other

boundary walks are affected):

θb : (s+ 1− k

2
)(s+ 1)(s+ 3− k

2
)ω(s+1)(s+3− k

2
)→(s+1− k

2
)(s+1)

and

θc : (s+ 1 +
k

2
)(s+ 1)(s+ 2− k

2
)ω(s+1)(s+2− k

2
)→(s+2− k

2
)(s+1) . . .

(s+ 2− k

2
)(s+ 1)(s+ 1− k

2
)ω(s+1)(s+1− k

2
)→(s+1+ k

2
)(s+1)

Figure 5.19. Corner Diagram at Vertex s+ 1 of Hk,n, k Even Before Swap

Observe the corresponding change in the corner diagram at vertex s+ 1 ≤ d

from Figure 5.19 to Figure 5.20. If s+ 1 = d, then all boundary walks are present at

vertex s+ 1 and are prepared for Type 2 swaps, so we stop. On the other hand, if

s+ 1 < d, we note that θb and θc contain only corners in the same order as they

appear in the boundary walks from the standard collection, other than the
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Figure 5.20. Corner Diagram at Vertex s+ 1 of Hk,n, k Even After Swap

previously swapped corners (i+ k
2
)i(i+ 1− k

2
), (i+ 1− k

2
)i(i− k

2
), or

(i− k
2
)i(i+ 2− k

2
), for 1 ≤ i ≤ s+ 1. Then θc contains corner

(s+ 2− k
2
)(s+ 2)(s+ 3− k

2
) in the path ω(s+1)(s+2− k

2
)→(s+2− k

2
)(s+1) and θb contains

corner (s+ 3− k
2
)(s+ 2)(s+ 4− k

2
) in the path ω(s+1)(s+3− k

2
)→(s+1− k

2
)(s+1). We have

assumed that we have made fewer than d swaps, so we also know that corner

(s+ 2 + k
2
)(s+ 2)(s+ 2− k

2
) is still contained in one of BW k

2
-BW k

2
+d−1 from the

standard collection, which is distinct from boundary walks θb and θc above. Then

we have made s+ 1 total swaps, where s+ 1 is an even number, and have the three

distinct boundary walks containing the specified corners above. This completes the

argument by induction.

By making d such consecutive swaps i(i− k
2
) and i(i− k

2
+ 1) at vertex i for

1 ≤ i ≤ d, we have reduced the number of boundary walks in the collection by d if d

is even, or d+ 1 if d is odd. Notice that the only boundary walks affected by the

above swaps are BW k
2
-BW k

2
+d−1 as well as BW k

2
−1 and BW k

2
−2.

We claim now that if k = 4 or k = 6 then the Type 1 swaps result in a maximal

embedding and no Type 2 swaps are needed. Recall that if a rotation system yields
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either exactly one boundary walk or exactly two, then it results in a maximal

embedding. Suppose that k = 4. Then k
2
= 2, and d = 1 or d = 2. If d = 1, then the

total number of boundary walks, F , is k
2
+ d = 3, and is reduced by 2 by the above

swaps, leaving exactly one boundary walk. If d = 2, then F = 4, and F is reduced

by 2 by the above swaps, leaving exactly two boundary walks. Now suppose that

k = 6. Then k
2
= 3, and d = 1 or d = 3. If d = 1, then F = 4, and F is reduced by 2

by the above swaps, leaving exactly two boundary walks. If d = 3, then F = 6 and F

is reduced by 4 by the above swaps, leaving exactly two boundary walks once more.

In all of these cases, a maximal embedding has been reached by the above swaps.

To continue in full generality, we assume that k ≥ 8 and consider the following

cases where the Type 2 swaps are also carried out.

Case 1: d and k
2
are both even.

Since every odd numbered Type 1 swap follows the First Edge Switching

Theorem and every even numbered Type 1 swap follows the Second Edge Switching

Theorem, it follows that we employ each theorem d
2
times to make d total swaps,

and with the Type 1 swaps we have reduced the number of boundary walks in the

standard collection by 2
(

d
2

)
, leaving

k

2
+ d− 2

(d
2

)
=
k

2

total boundary walks in the collection. The remaining boundary walks are arranged

around vertex d according to Figure 5.21.

Now consider the Type 2 swaps. After swapping d(d− 1) with d(d− 2), d(d− 3)

with d(d− 4), . . . d(d− (k
2
− 3)) with d(d− (k

2
− 2)), we have made (k

2
− 2)/2 Type 2

swaps and thus further reduced the number of boundary walks by k
2
− 2, leaving

61



Figure 5.21. Corner Diagram at Vertex d = gcd(n, k
2
) of Hk,n, k even

exactly 2 boundary walks in the collection.

Case 2: d and k
2
are both odd.

We make d+1
2

Type 1 swaps at odd numbered vertices since d is odd, and thus

reduce the total number of boundary walks in the standard collection by d+ 1,

leaving k
2
− 1 boundary walks, which are arranged around vertex d according to

Figure 5.22.

Figure 5.22. Corner Diagram at Vertex d = gcd(n, k
2
) of Hk,n, k even
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Now consider the Type 2 swaps. After swapping d(d− 1) with d(d− 2), d(d− 3)

with d(d− 4), . . . d(d− (k
2
− 4)) with d(d− (k

2
− 3)), we have made (k

2
− 3)/2 Type 2

swaps and thus further reduced the number of boundary walks by k
2
− 3, leaving

exactly 2 boundary walks in the collection.

Case 3: d is odd and k
2
is even.

Again, we make d+1
2

Type 1 swaps at odd numbered vertices since d is odd, and

thus reduce the total number of boundary walks in the standard collection by d+ 1,

leaving k
2
− 1 boundary walks, which are arranged around vertex d according to

Figure 5.21 again. After Type 2 swaps d(d− 1) with d(d− 2), d(d− 3) with

d(d− 4), . . . d(d− (k
2
− 3)) with d(d− (k

2
− 2)), we have made (k

2
− 2)/2 Type 2

swaps and thus further reduced the number of boundary walks by k
2
− 2, leaving

exactly 1 boundary walk in the collection.

Corollary 5.3 The maximal genus of Hk,n with k even is:

g =


(n− nk

2
− 1)/− 2, if d and k

2
do not share the same parity

(n− nk
2
)/− 2, if d and k

2
share the same parity

Proof The genus of the embedding surface corresponding to the rotation system

specified in the Theorem can be computed via Formula 1.1. We have that

V − E + F = n− nk

2
+ 1

or
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V − E + F = n− nk

2
+ 2

if there are 1 or 2 boundary walks in the corresponding boundary walk collection,

respectively. The result of the corollary follows from the fact that

V − E + F = 2− 2g.
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CHAPTER 6

EXTENDING RESULTS TO Hk,n WITH k ODD, n EVEN

We will extend the results of the previous chapter, with minor alterations, to

cover the remaining Harary graphs, Hk,n with k odd. In this chapter, we consider

the case of Hk,n with k odd and n even. Recall that we construct Hk,n with k odd

and n even by taking Hk−1,n and adding an edge between each pair of diametrically

opposed vertices. That is, we add n
2
edges of the form j(j + n

2
) with j = 1, 2, 3 . . . n

2
.

In Figure 6.1, the 4 additional edges added to H4,8 to construct H5,8 are shown in

red.

Figure 6.1. Drawing H5,8 by adding edges to H4,8

Notice that each vertex is then connected to the k−1
2

vertices to the left and to

the right due to the structure inherited from H4,8 as well as the diametrically

opposed vertex. Note that diametrically opposed vertex labels will differ by n
2
. Then

there is a straightforward choice of definition for a standard rotation system for Hk,n
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with k odd and n even. This choice will preserve most of the boundary walk

structure associated to Hk−1,n that has been detailed in the previous chapter.

Definition The standard rotation system for Hk,n with k odd and n even orders

the edges around any vertex j as

j : (j − k − 1

2
)(j − k − 1

2
+ 1) . . . (j − 1)(j +

n

2
)(j + 1) . . . (j +

k − 1

2
− 1)(j +

k − 1

2
).

It follows from the definition that the new succeeding edge to (j − 1)j is

j(j + n
2
), and the new preceding edge to j(j + 1) is (j + n

2
)j. We will take this fact

as the Third Boundary Walk Lemma.

Lemma 6.1 (The Third Boundary Walk Lemma) Assume the standard

rotation system for Hk,n with k odd and n even. Then,

1. The succeeding edge to directed edge (j − 1)j is j(j + n
2
).

2. The succeeding edge to (j + n
2
)j is j(j + 1).

Corollary 6.2 (The Third Boundary Walk Corollary)

For the standard rotation system, the boundary walk with initial edge (j − 1)j has

the form

(j−1)j(j+
n

2
)(j+1+

n

2
)(j+1)(j+2)(j+3+

n

2
)(j+4+

n

2
) . . . (j−2+

n

2
)(j−1+

n

2
)

and contains every directed edge xy of Hk,n with k odd and n even such that

y − x = 1 and x has the same parity as j − 1, as well as every directed edge xy such

that y − x = n
2
with x of the same parity as j is included in the boundary walk.

Proof The succeeding edge to (j − 1)j is j(j + n
2
) by the Third Boundary Walk

Lemma (1). The succeeding edge to j(j + n
2
) is (j + n

2
)(j + 1 + n

2
) by the Third

Boundary Walk Lemma (2). The succeeding edge to (j + n
2
)(j + 1 + n

2
) is

(j + 1 + n
2
)(j + 1) again by the Third Boundary Walk Lemma (1). The succeeding
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edge to (j + 1 + n
2
)(j + 1) is (j + 1)(j + 2), again by the Third Boundary Walk

Lemma (2).

Notice that (j + 1)(j + 2) is another edge of the form (j − 1)j, and that

(j + 1)− (j − 1) = 2. By repeatedly iterating the above argument, we see that the

boundary walk consists of concatenations of paths of the form

(j − 1)j(j + n
2
)(j + 1 + n

2
), with j increased by 2 at each iteration. The boundary

walk ends with the preceding edge to (j − 1)j, which is (j − 1 + n
2
)(j − 1).

Suppose that a directed edge xy is such that y − x = 1, and x shares the same

parity as j − 1. Then x = j − 1 + 2m for some smallest integer m and thus appears

for the first time in the boundary walk after m iterations of the argument above.

The same argument also ensures that a directed edge xy such that y − x = n
2
with x

of the same parity as j is included in the boundary walk, since (j + n
2
)− j = n

2
.

Theorem 6.3 (The Standard Collection for Hk,n, k odd, n even) The

standard boundary walk collection associated to the standard rotation system for

Hk,n with k even and n odd is identical to the standard boundary walk collection

associated to the standard rotation system of the related graph Hk−1,n, except for

BW0, which has the following form if n
2
is even:

BW0 :

12(2+n
2
)(3+n

2
)34(4+n

2
)(5+n

2
) . . . n1(1+n

2
)(2+n

2
)23(3+n

2
)(4+n

2
) . . . (n−1)n(n

2
)(1+n

2
)1,

and is split into two distinct boundary walks with the following forms if n
2
is odd:

BW01 : 12(2 + n
2
)(3 + n

2
)34(4 + n

2
)(5 + n

2
) . . . (n− 1)n(n

2
)(1 + n

2
)1

BW02 : 23(3 + n
2
)(4 + n

2
)45(5 + n

2
)(6 + n

2
) . . . n1(1 + n

2
)(2 + n

2
)2.

Proof Parts 1 and 3 of the Second Boundary Walk Lemma applied to Hk−1,n give

us the same boundary walks BW1 through BW k−1
2

+gcd(n, k−1
2

)−1 for Hk,n with k odd
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and n even, as the argument for the boundary walk structures use the same rotation

system ordering. However, part 2 of the Second Boundary Walk Lemma no longer

applies since j(j+1) no longer succeeds (j− 1)j. Instead, the Third Boundary Walk

Lemma describes the structure of boundary walks including edges of this form. The

only such boundary walk in the standard collection containing (the affected)

directed edges of the form j(j + 1) and (j − 1)j in Hk−1,n, k − 1 even, is BW0.

Assume the Boundary Walk Algorithm applied to the standard rotation system

for Hk,n with k odd and n even has generated BW1 through BW k−1
2

+gcd(n, k−1
2

)−1.

The collection contains every directed edge of the graph, except those of the form xy

such that y − x = 1 or y − x = n
2
. The algorithm may begin a new walk with edge

12, the initial directed edge of BW0 in the standard collection for Hk−1,n, k− 1 even.

Case 1: If n
2
is even, then the boundary walk beginning with directed edge 12

begins

BW0 : 12(2 +
n

2
)(3 +

n

2
)34(4 +

n

2
)(5 +

n

2
) . . .

By the Third Boundary Walk Corollary, we see that every directed edge xy such

that y − x = 1 with x odd is included in the walk. Then the boundary walk includes

directed edge (n
2
− 1)(n

2
), and continues

. . . (
n

2
− 1)(

n

2
)n1(1 +

n

2
)(2 +

n

2
)23 . . .

and by the same argument as above, the boundary walk must include every directed

edge xy such that y − x = 1 with x even, and boundary walk continues:

. . . (
n

2
− 2)(

n

2
− 1)(n− 1)n(

n

2
)(1 +

n

2
)1

The boundary walk ends at directed edge (1 + n
2
)1 as above, since it is the

preceding edge to the initial directed edge 12. By the Third Boundary Walk

Corollary, BW0 contains every directed edge xy such that y − x = 1 or y − x = n
2
.
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Case 2: If n
2
is odd, then the boundary walk beginning with directed edge 12 has

the form

BW01 : 12(2 +
n

2
)(3 +

n

2
)34(4 +

n

2
)(5 +

n

2
) . . . (

n

2
− 2))(

n

2
− 1)(n− 1)n(

n

2
)(1 +

n

2
)1.

By the same argument as Case 1, this boundary walk includes every directed

edge xy such that y − x = 1 and x is odd, or y − x = n
2
and x is even, but does not

contain the directed edge 23. Then the Boundary Walk Algorithm may begin a new

boundary walk with directed edge 23:

BW02 : 23(3 +
n

2
)(4 +

n

2
)45 . . . (

n

2
− 1)(

n

2
)n1(

n

2
+ 1)(

n

2
+ 2)2.

Again, by the same argument as Case 1, this boundary walk includes every

directed edge xy such that y− x = 1 and x is even, or y− x = n
2
and x is odd. Then

together, BW01 and BW02 contain every directed edge xy such that y − x = 1 or

y − x = n
2
.

It follows from the above that the number of boundary walks in the standard

collection is gcd(n, k−1
2
) + k−1

2
if n

2
is even, and gcd(n, k−1

2
) + k−1

2
+ 1 if n

2
is odd. It

also follows that the arrangement of the corners of the boundary walks around

vertices are the same as the Hk−1,n case, except for at BW0. Now, if n
2
is even, then

we have the arrangement at any vertex i for the standard boundary walk collection

shown in the corner diagram at i in Figure 6.2. Notice the addition of the

diametrically opposed edge i(i+ n
2
), ordered between i(i− 1) and i(i+ 1), and

whose directed edges are included in the new BW0, shown in the color orange.

On the other hand if n
2
is odd, then we have the arrangement at any vertex i for

the standard boundary walk collection shown in the corner diagram at i in Figure

6.3. Notice the addition of the diametrically opposed edge i(i+ n
2
), ordered between

i(i− 1) and i(i+ 1). Further, the directed edge (i+ n
2
)i is included in BW01 (shown

in the usual color orange), and directed edge i(i+ n
2
) is included in BW02 (shown in

a lighter colored orange).
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Figure 6.2. Corner Diagram at Vertex i of Hk,n, k odd, n even

Figure 6.3. Corner Diagram at Vertex i of Hk,n, k odd, n even

Theorem 6.4 The Rotation System of a Maximal Embedding of Hk,n (k odd, n

even)

A maximal embedding of Hk,n, k odd, n even, is given by the rotation system

obtained from the standard rotation system with the following swaps:
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1. The same swaps made for Hk−1,n if n
2
is even, with the same outcomes.

2. If n
2
is odd, then the same Type 1 swaps to unite the k-gap boundary walks as for

Hk−1,n, but with a new set of Type 2 swaps, that is,

• i(i− k−1
2
) and i(i− k−1

2
+ 1) at vertex i for all i ∈ Z+ such that i ≤ d

• d(d+ n
2
) with d(d− 1), d(d− 2) with d(d− 3), . . . d(d− j + 1) with d(d− j) at

vertex d = gcd(n, k−1
2
) if k − 1 ≥ 8, with

j =


k−1
2
− 3, if k−1

2
even,

k−1
2
− 2, if k−1

2
odd,

as well as the single additional swap d(d− k−1
2

+ 2) with d(d− k−1
2
) at vertex d, if

k−1
2

is even and gcd(n, k−1
2
) is also even.

The number of boundary walks, F , for the resulting rotation system is given by

1. F = 2, if k−1
2

even, gcd(n, k−1
2
) odd.

2. F = 1, if k−1
2

and gcd(n, k−1
2
) share the same parity.

Proof For 1, we may use the same argument as Theorem 5.2. For 2, we may use

the argument from Theorem 5.2 for the first set of swaps uniting the k-gap

boundary walks. We continue the argument with the new arrangement of boundary

walks around vertex d = gcd(n, k−1
2
) in the cases that follow.

Case 1: k−1
2

is even and gcd(n, k−1
2
) is odd.

We have made gcd(n, k−1
2

)+1

2
Type 1 swaps at odd numbered vertices since

gcd(n, k−1
2
) is odd, and thus reduce the total number of boundary walks in the

standard collection by gcd(n, k−1
2
) + 1, leaving k−1

2
boundary walks, which are

arranged around vertex d = gcd(n, k−1
2
) according to Figure 6.4.
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Figure 6.4. Corner Diagram at Vertex d = gcd(n, k−1
2
) for Cases 1 and 2

After new Type 2 swaps d(d+ n
2
) with d(d− 1), d(d− 2) with d(d− 3), . . .

d(d− k−1
2

+ 4) with d(d− k−1
2

+ 3) at vertex d = gcd(n, k−1
2
), we have made

(k−1
2
− 2)/2 total swaps and thus reduced the number of boundary walks by k−1

2
− 2,

leaving exactly 2 boundary walks in the collection.

Case 2: k−1
2

is odd.

We have made gcd(n, k−1
2

)+1

2
Type 1 swaps at odd numbered vertices since

gcd(n, k−1
2
) is odd, and thus reduce the total number of boundary walks in the

standard collection by gcd(n, k−1
2
) + 1, leaving k−1

2
boundary walks, which are

arranged around vertex d = gcd(n, k−1
2
) according to Figure 6.4 again. After new

Type 2 swaps d(d+ n
2
) with d(d− 1), d(d− 2) with d(d− 3), . . . d(d− k−1

2
+ 3) with

d(d− k−1
2

+ 2) at vertex d = gcd(n, k−1
2
), we have made (k−1

2
− 1)/2 total swaps and

thus reduced the number of boundary walks by k−1
2
− 1, leaving exactly 1 boundary

walk in the collection.

Case 3: k−1
2

is even and gcd(n, k−1
2
) is even.

We have made gcd(n, k−1
2

)

2
Type 1 swaps at odd numbered vertices since

gcd(n, k−1
2
) is even, and thus reduce the total number of boundary walks in the
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standard collection by gcd(n, k−1
2
), leaving k−1

2
+ 1 boundary walks, which are

arranged around vertex d = gcd(n, k−1
2
) according to Figure 6.5.

Figure 6.5. Corner Diagram at Vertex d = gcd(n, k−1
2
) for Case 3

After new Type 2 swaps d(d+ n
2
) with d(d− 1), d(d− 2) with d(d− 3), . . .

d(d− k−1
2

+ 4) with d(d− k−1
2

+ 3) as well as the single additional swap

d(d− k−1
2

+ 2) with d(d− k−1
2
) at vertex d = gcd(n, k−1

2
), we have made (k

2
)/2 total

swaps and thus reduced the number of boundary walks by k−1
2
, leaving exactly 1

boundary walk in the collection.
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CHAPTER 7

EXTENDING RESULTS TO Hk,n WITH k AND n BOTH ODD

Finally, we will consider the case of Hk,n with k odd and n odd. Recall that we

construct Hk,n with k and n both odd by taking Hk−1,n and adding n+1
2

edges of the

form j(j + n−1
2
) with j = n, 1, 2, 3 . . . n−1

2
. In Figure 7.1, the 4 additional edges

added to H4,7 to construct H5,7 are shown in red.

Figure 7.1. Drawing H5,7 by adding edges to H4,7

Notice that both edges n(n−1
2
) and n−1

2
(n− 1) have vertex n−1

2
as an endpoint,

while no other pair of added edges share common endpoints. Then any rotation

system must have one additional edge in the ordering around n−1
2
, edge (n−1

2
)n,

while the remaining vertices are free to order the k−1
2

+ 1 edges as in the same

manner as the previous chapter. Then there is again a straightforward choice of

definition for a standard rotation system for Hk,n with k and n both odd. This

choice will again preserve most of the boundary walk structure associated to Hk−1,n.
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Definition The standard rotation system for Hk,n with k and n both odd orders

the edges around any vertex j 6= n−1
2

as

j : (j− k − 1

2
)(j− k − 1

2
+1) . . . (j−1)(j+

n− 1

2
)(j+1) . . . (j+

k − 1

2
−1)(j+

k − 1

2
),

and around vertex n−1
2

as

n− 1

2
: (
n− 1

2
− k − 1

2
)(
n− 1

2
− k − 1

2
+ 1) . . . (

n− 1

2
− 1)(n− 1)n(

n− 1

2
+ 1) . . .

. . . (
n− 1

2
+
k − 1

2
− 1)(

n− 1

2
+
k − 1

2
).

It follows from the definition that the new succeeding edge to (j − 1)j is

j(j + n−1
2
), and the new preceding edge to j(j + 1) is (j + n−1

2
)j. We will take this

fact as the Fourth Boundary Walk Lemma.

Lemma 7.1 (The Fourth Boundary Walk Lemma) Assume the standard

rotation system for Hk,n with k and n both odd. Then,

1. The succeeding edge to directed edge (j − 1)j is j(j + n−1
2
).

2. The succeeding edge to (j + n−1
2
)j is j(j + 1).

Corollary 7.2 (The Fourth Boundary Walk Corollary)

For the standard rotation system, the boundary walk with initial edge (j − 1)j has

the form

(j − 1)j(j +
n− 1

2
)(j + 1 +

n− 1

2
)(j + 1)(j + 2)(j + 3 +

n− 1

2
)(j + 4 +

n− 1

2
) . . .

. . . (j − 2 +
n− 1

2
)(j − 1 +

n− 1

2
)

and contains every directed edge xy of Hk,n with k odd and n even such that

y − x = 1 and x has the same parity as j − 1, as well as every directed edge xy such

that y − x = n−1
2

with x of the same parity as j is included in the boundary walk.

The proof of the corollary follows the same argument as the Third Boundary

Walk Corollary, so it is omitted here.
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Theorem 7.3 (The Standard Collection for Hk,n, k and n both odd) The

standard boundary walk collection associated to the standard rotation system for

Hk,n with k even and n odd is identical to the standard boundary walk collection

associated to the standard rotation system of the related graph Hk−1,n, except for

BW0, which has the following form if n−1
2

is odd:

BW0 : 12(2 + n−1
2
)(3 + n−1

2
)34(4 + n−1

2
)(5 + n−1

2
) . . . (n− 2)(n− 1)(n−1

2
)n1(1 +

n−1
2
)(2 + n−1

2
)23 . . . (n− 1)n(n−1

2
)(1 + n−1

2
)1,

and is split into two distinct boundary walks with the following forms if n−1
2

is even:

BW01 :

12(2 + n−1
2
)(3 + n−1

2
)34(4 + n−1

2
)(5 + n−1

2
) . . . (n−1

2
− 1)(n−1

2
)(n− 1)n(n−1

2
)(1 + n−1

2
)1

BW02 :

23(3 + n−1
2
)(4 + n−1

2
)45(5 + n−1

2
)(6 + n

2
) . . . (n− 2)(n− 1)(n−1

2
)n1(1 + n−1

2
)(2 + n−1

2
)2.

Proof The argument is the same as for Theorem 6.3, except where the details are

altered here. Assume the Boundary Walk Algorithm applied to the standard

rotation system for Hk,n with k and n both odd has generated BW1 through

BW k−1
2

+gcd(n, k−1
2

)−1. The collection contains every directed edge of the graph, except

those of the form xy such that y − x = 1 or y − x = n−1
2
. The algorithm may begin

a new walk with edge 12, the initial directed edge of BW0 in the standard collection

for Hk−1,n, k − 1 even.

Case 1: If n−1
2

is odd, then the boundary walk beginning with directed edge 12

begins

BW0 : 12(2 +
n− 1

2
)(3 +

n− 1

2
)34(4 +

n− 1

2
)(5 +

n− 1

2
) . . .

By the Fourth Boundary Walk Corollary, we see that every directed edge xy such

that y − x = 1 with x odd is included in the walk. Then the boundary walk includes
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directed edge (n−1
2
− 1)(n−1

2
), and continues

. . . (n− 2)(n− 1)(
n− 1

2
)n1(1 +

n− 1

2
)(2 +

n− 1

2
)23 . . .

and by the same argument as above, the boundary walk must include every directed

edge xy such that y − x = 1 with x even, and boundary walk continues:

. . . (n− 1)n(
n− 1

2
)(1 +

n− 1

2
)1

The boundary walk ends at directed edge (1 + n−1
2
)1 as above, since it is the

preceding edge to the initial directed edge 12. By the Fourth Boundary Walk

Corollary, BW0 contains every directed edge xy such that y − x = 1 or y − x = n−1
2
.

Case 2: If n
2
is even, then the boundary walk beginning with directed edge 12 has

the form

BW01 : 12(2 +
n− 1

2
)(3 +

n− 1

2
)34(4 +

n− 1

2
)(5 +

n− 1

2
) . . .

. . . (
n− 1

2
− 1)(

n− 1

2
)(n− 1)n(

n− 1

2
)(1 +

n− 1

2
)1.

By the same argument as Case 1, this boundary walk includes every directed

edge xy such that y − x = 1 and x is odd, or y − x = n−1
2

and x is even, but does

not contain the directed edge 23. Then the Boundary Walk Algorithm may begin a

new boundary walk with directed edge 23:

BW02 : 23(3 +
n− 1

2
)(4 +

n− 1

2
)45(5 +

n− 1

2
)(6 +

n

2
) . . .

. . . (n− 2)(n− 1)(
n− 1

2
)n1(1 +

n− 1

2
)(2 +

n− 1

2
)2.

Again, by the same argument as Case 1, this boundary walk includes every

directed edge xy such that y− x = 1 and x is even, or y− x = n
2
and x is odd. Then

together, BW01 and BW02 contain every directed edge xy such that y − x = 1 or

y − x = n−1
2
.
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It follows from the above that the number of boundary walks in the standard

collection is gcd(n, k−1
2
) + k−1

2
if n−1

2
is odd, and gcd(n, k−1

2
) + k−1

2
+ 1 if n−1

2
is even.

It also follows that the arrangement of the corners of the boundary walks around

vertices are the same as the Hk−1,n case, except for at BW0. Now, if n−1
2

is odd,

then we have the arrangement at any vertex i and the special vertex n−1
2

for the

standard boundary walk collection shown in the corner diagrams in Figure 7.2 on

the following page. Notice the addition of the edge i(i+ n−1
2
), ordered between

i(i− 1) and i(i+ 1), and whose directed edges are included in the new BW0, shown

in the color orange in the general case. Also notice the addition of the extra edge

(n−1
2
)n in the special case, whose directed edges are also included in the new BW0.
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Figure 7.2. Corner Diagrams at Vertex i and n−1
2

of Hk,n, n−1
2

On the other hand if n−1
2

is even, then we have the arrangement at any vertex i

for the standard boundary walk collection shown in the corner diagram at i in

Figure 7.3 on the following page. Notice that the directed edge (i+ n−1
2
)i is included

in BW02 (shown in the lighter colored orange), and directed edge i(i+ n
2
) is included

in BW01 (shown in the usual color orange). Also notice that directed edges n(n−1
2
)

and n−1
2
(n− 1) are included in BW01, while the directed edges (n− 1)n−1

2
and

(n−1
2
)n are included in BW02.
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Figure 7.3. Corner Diagrams at Vertex i and n−1
2

of Hk,n, n−1
2

even

Theorem 7.4 The Rotation System of a Maximal Embedding of Hk,n (k and n both

odd)

A maximal embedding of Hk,n, k and n both odd, is given by the rotation system

obtained from the standard rotation system with the following swaps:

1. The same swaps made for Hk−1,n if n−1
2

is odd, with the same outcomes.

2. If n−1
2

is even, then the same Type 1 swaps to unite the k-gap boundary walks as

for Hk−1,n, but with a new set of Type 2 swaps, that is,
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• i(i− k−1
2
) and i(i− k−1

2
+ 1) at vertex i for all i ∈ Z+ such that i ≤ d

• d(d+ n−1
2
) with d(d− 1), d(d− 2) with d(d− 3), . . . d(d− j + 1) with d(d− j) at

vertex d = gcd(n, k−1
2
) if k − 1 ≥ 8, with

j =


k−1
2
− 3, if k−1

2
even,

k−1
2
− 2, if k−1

2
odd.

The number of boundary walks, F , for the resulting rotation system is given by

1. F = 2, if k−1
2

is even.

2. F = 1, if k−1
2

is odd.

The proof follows the same argument as Theorem 6.4, with the arrangements of

boundary walks around all vertices (except n−1
2
) the same, except in that the

positions of BW01 and BW02 are swapped, as seen in Figure 7.3. The reader may

check to see that the slight difference in the arrangement of the boundary walks at

vertex n−1
2

seen in 7.3 does not affect the argument. Notice that we do not need to

specify an additional swap to be made if gcd(n, k−1
2
) is even (as we did in Theorem

6.4), because gcd(n, k−1
2
) must be odd when n is odd.
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