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Spruce budworm (SBW; Choristoneura fumiferana (Clem.)) is the primary forest 

defoliator in North America. SBW defoliation has affected tens of millions ha of forests during its 

periodic outbreaks and caused severe growth reduction and mortality of spruce-fir (Picea-Abies) 

species.  Evaluating these damaging effects of SBW defoliation requires understandings of the 

variation and dynamics of defoliation, as well as trees' variable responses to defoliation in 

consideration of various tree- stand-, and site-level factors. In this dissertation, we developed 

statistical models to 1) evaluate influences of SBW defoliation on spruce-fir stand dynamics of 

annual volume net growth, mortality, and ingrowth, 2) quantify effects of SBW defoliation on 

annualized diameter and height increment, crown recession, and mortality, and 3) assess 

patterns and temporal development of SBW defoliation on individual trees. Measurements of 

individual trees and their defoliation collected from 560 permanent sample plots in Maine and 

New Brunswick during the last SBW outbreak in the 1970s-1980s, which covered > 40 000 km2 

as well as 10 years of varying ranges of defoliation and forest conditions were used in the 

analyses. Our results strongly demonstrated that 1) even relatively low levels of cumulative 

defoliation were significantly related to stand-level mortality and ingrowth, while net growth 

was more competition driven, 2) effects of defoliation on diameter increment, crown recession, 

and mortality were highly significant but relatively moderate depending on species, and 3) 



 
 

variation in individual tree defoliation was predominantly dependent on species. In addition, 

defoliation of each host species analyzed developed towards their respective converged 

trajectories. Based on these findings, we developed annualized modifiers for the Acadian variant 

of the Forest Vegetation Simulator (FVS-ACD) to account for effects of SBW defoliation on forest 

development, which consistently had smaller biases and prediction errors than FVS-ACD refined 

by STAMAN (a Canadian growth model) SBW modifiers. Overall, our findings highlight the high 

variability in SBW defoliation and trees' responses to defoliation, which were consistent 

between Maine and New Brunswick despite varying forest management history and species 

composition. We believe the developed modeling framework should also be extendable to 

analyzing other forms of defoliation in broader regions.
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CHAPTER 1 

THE ACADIAN FOREST AND THE SPRUCE BUDWORM: A PROLOGUE 

1.1. The Acadian Forest 

From a broad point of view, the Acadian forest covers the inland parts of New England states of 

the United States along with the Maritime Provinces and southern Quebec of Canada by the 

demarcation of the World Wildlife Fund (Davis et al. 2018), which is similar to the northeastern 

highlands ecoregion in the classification of Omernik (1987). This region is a transition zone from 

the maple-beech-birch (Acer-Fagus-Betula) characterized northern hardwood forest in the south 

to the spruce-fir (Picea-Abies) characterized boreal softwood forest in the north. While the 

spruce-fir forest is the subject of this dissertation, its geographical extent thus reflects a 

historical perspective of the Acadian region that contains northern Maine, southern Quebec, 

and the Maritime Provinces of Canada (Williamson 1832), where spruce-fir dominates the 

forest. 

Although the Acadian region includes thousands of km of coastline, the region does not 

experience a typical oceanic climate because the prevailing winds are from the west and blow 

off the continent (Loo and Ives 2003). Nevertheless, the Atlantic Ocean has a significant 

humidifying and moderating effect on both precipitation and temperature regimes. 

Consequently, this region has warm and moist summers along with cold and snowy winters, 

which are milder than those in the middle of the continent (Simmons 1984). Mean annual 

precipitation is generally above 1 000 mm in this region (Seymour 1995). Mean annual 

temperature is 6.8 ºC in Bangor, Maine and 5.2 ºC in Fredericton, New Brunswick, while mean 

frost-free days are 141 and 125 days in these two respective locations. 

The Acadian region is a part of the Appalachian Mountain Range with elevations ranging from 

sea level to 1 605, 807, and 560 m in Maine, New Brunswick, and Nova Scotia, respectively. 
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Erosion and glaciation have shaped the characteristic topography of mountains, plateaus, and 

valleys, and also determined the mosaic of soil and forest types of this region. The mountains 

and plateaus are thinly covered by glacial till underlain by granite and metamorphic rocks, which 

is acidic and low in fertility. In comparison, valleys are relatively more fertile but poorly drained 

with large numbers of swamps and lakes. The way that glacial drift was deposited has largely 

determined that the best soils for forest development are often found on mid-slopes of hills and 

mountains (Degraaf 1991). 

Forest dominates the Acadian landscape and covers about 90%, 85%, and 73% of the lands of 

Maine, New Brunswick, and Nova Scotia, respectively (Seymour 1995, Loo and Ives 2003). Forest 

species distribution was more even before the large-scale exploitation of the Acadian forest in 

the past centuries than it is today (Lutz 1997). Lorimer (1977) states that much of the northern 

Maine forest was tolerant mixedwood mainly consisting of spruce (Picea spp.), American beech 

(Fagus grandifolia Ehrh.), balsam fir (Abies balsamea L.), white cedar (Thuja occidentalis L.), and 

yellow birch (Betula alleghaniensis Britt.) about 200 years ago. However, spruce and balsam fir 

have large increases in abundance, e.g., from being about 25% of the forest 200 years ago to 

about 50% today in New Brunswick (Loo and Ives 2003), and dominate the softwood inventory 

(Seymour 1995). In the meantime, red maple (Acer rubrum L.) and sugar maple (Acer saccharum 

Marshall) become increasingly common among hardwood in this region (Seymour 1995). These 

changes in species distribution have been attributed to a number of courses including: 1) 

agricultural clearing and subsequent abandonment, 2) waves of removal of individual species 

such as white pine (Pinus strobus L.) and spruce, and 3) changes in the regimes of natural 

disturbances such as fire and insect outbreaks. 

Major natural disturbance agents in the Acadian region include wind, fire, and insect. While red 

spruce (Picea rubens Sarg.) and balsam fir are both shallow-rooted, wind damage becomes a 
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chronic phenomenon but is generally limited to small scales (Seymour 1992). On the other hand, 

stand-replacing wind damages occur at intervals from hundreds to thousands of years similar to 

those of fire (Lorimer 1977, Seymour et al. 2002). In addition, continued fire suppression will 

likely further reduce the frequency and extent of fire (Wein and Moore 1977). In comparison, a 

number of insects like spruce bark beetle (Dendroctonus rufipennis Kirby), balsam fir sawfly 

(Neodiprion abietis Harris), and spruce budworm (Choristoneura fumiferana (Clem.); SBW) are 

known to have influenced the Acadian forest for as long as records have been kept. Among the 

above mentioned disturbances, SBW outbreaks are more important in that they have a larger 

spatio-temporal scale, shorter return interval, and greater influence on forest productivity. In 

addition, Periodic SBW outbreaks have not been suppressed while appear to be better 

synchronized and increasing in extent and severity (Blais 1983). 

1.2. The Spruce Budworm and Its Outbreaks 

SBW is endemic to broad areas of eastern North America ranging from Yukon, Canada to the 

Atlantic coast, where spruce-fir forest presents (Webb et al. 1961, Irland et al. 1988). SBW has a 

life cycle of one year. Its Moths emerge from July to August and lay eggs mainly on the foliage of 

spruce-fir trees over several days. These moths lay an average of 200 eggs at a number of places 

with each egg-mass containing an average of 20 eggs. After these eggs hatch in about 10 days, 

the first-instar larvae hanging on silken threads disperse by wind within and between trees 

without feeding. Surviving larvae spin hibernacula, within which they molt to the second instars 

that emerge in April or May of the following year. The second to sixth instar larvae feed on 

current-year shoots of a number of conifers with balsam fir, white spruce (Picea glauca 

(Moench) Voss), red spruce, and black spruce (Picea mariana (Mill.) B.S.P.) being the major 

hosts. This feeding lasts for 6-7 weeks, and only occurs on older foliage when current-year 
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shoots are depleted. Finally, Pupation of SBW normally takes place on the foliage in early July 

(Talerico 1984). 

An important feature of SBW, which probably has contributed to the widespread outbreaks of 

defoliation, is its ability of dispersal. In addition to the dispersal of young larvae by wind, SBW 

moths normally fly 50-100 km downwind and as far as 450 km from mainland Canada to 

Newfoundland (Greenbank et al. 1980). After laying a part of their egg complements at places of 

emergence, female moths take obligatory flights and deposit their eggs where they land over 

several nights. These dispersal flights are governed by meteorological conditions such that they 

only take place when temperature is at 14-30 ºC (Royama 1984). 

SBW outbreak is a predominant natural disturbance of the spruce-fir forest distributed over 

broad areas of eastern North America. Three SBW outbreaks in these areas in the 20th century 

starting in the 1910s, 1940s, and 1970s have been well documented. On the other hand, 

reconstruction of outbreak history has been based on the comparison of radial growth patterns 

between non-host and host trees that survived SBW defoliation (Blais 1962). For example, 

outbreaks began about 1770, 1806, and 1878 have been identified in New Brunswick (Webb et 

al. 1961); Blais (1965) found evidence of outbreaks in the Laurentide Park region of Quebec 

beginning about 1710, 1755, 1812, and 1838; and Fraver et al. (2007) identified outbreaks 

beginning about 1709, 1762, and 1808 but found little or no evidence for the 1830s and 1870s 

outbreaks. Consequently, Fraver et al. (2007) concluded return interval of SBW outbreaks to be 

about 60 years. However, Royama (1984) argued that the missing indications of outbreaks in 

dendrochronological analyses were possibly because defoliation did not reach levels high 

enough to affect tree rings at places. Therefore, return interval of SBW outbreaks is close to 30 

years. 
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SBW outbreaks starting in the 1910s, 1940s, and 1970s each lasted for about 15 years and had 

extents of about 10, 25, and 57 million ha, respectively (Blais 1983). An estimated 55 million m3 

of timber was lost due to defoliation in eastern Canada during the 1910s-1920s (Swaine and 

Craighead 1924), while this timber loss during the same period in Maine was estimated to be 8.3 

million m3 by McLintock (1955) and 98 million m3 by Seymour (1992). As these outbreaks 

extending over increasingly larger areas in the 20th century, timber losses also increased to 32-

43 million m3 year-1 in Canada during 1978-1987, which accounted for 41-53% of Canada's total 

annual timber losses (Sterner and Davidson 1982, Power 1991). However, the 1940s outbreak 

caused little tree mortality in Maine, which resembles a hidden outbreak outlined by Royama 

(1984). 

Two important features of SBW population dynamics have limited our understandings of 

influences of SBW defoliation and management options to control it. First, SBW populations 

fluctuate between extreme levels (e.g., from <5 to 20 000 larvae per tree; Irland et al. 1988) 

among trees, stands, and forests over the durations of outbreaks. On the other hand, SBW 

populations have been changing in synchrony at a regional scale over the 30-60 year outbreak 

cycles (Royama 1984). Three major hypotheses of SBW population dynamics have been 

postulated over the 20th century (Royama 1984, Pureswaran et al. 2016), and likely will affect 

how findings of this dissertation are interpreted and utilized. 

The silviculture hypothesis considers that outbreaks were driven by forest management 

practices. Specifically, SBW's major host balsam fir was little utilized and its regeneration was 

promoted by the harvesting of competing species, which consequently accumulated food 

sources for large populations of SBW. The double-equilibria hypothesis suggests that warm 

weather conditions released SBW populations from the low density equilibrium at epicenters 

(hot spots). These populations subsequently dispersed to large areas and finally reached the 
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high population density equilibrium. Finally, the second-order oscillation hypothesis argues that 

SBW population dynamics follow a second-order density-dependent process such that SBW 

populations reached outbreak levels because the density-dependent survival of larvae was high. 

Outbreaks were synchronized by independent but highly correlated weather conditions, which 

governed the ratio of all eggs laid to the number of locally emerged moth (a measure of 

immigration and emigration). 

1.3. Structure of This Dissertation 

This dissertation focuses on the dynamics of SBW defoliation and its influence on the 

development of spruce-fir forest. Consequently, the rest of this dissertation is divided into the 

following four chapters: Chapter 2 — assessing the influence of SBW defoliation on forest stand 

dynamics, Chapter 3 — evaluating the influence of SBW defoliation on individual tree growth 

and mortality, Chapter 4 — modeling variation and temporal dynamics of individual tree 

defoliation caused by SBW, and Chapter 5 — refining the Forest Vegetation Simulator (FVS) for 

projecting the effects of SBW defoliation. 

Many studies have evaluated the influence of SBW defoliation on the growth and mortality of 

trees by species (e.g., Blais 1958; MacLean 1980; Reams et al. 1988; MacLean and Ostaff 1989; 

Piene 1989; MacLean et al. 1996; Solomon et al. 2003; Pothier et al. 2012). These evaluations 

have been conducted at cumulative defoliation levels ranging from 336% to 840% (Blais 1958; 

MacLean and Ostaff 1989; Piene 1989; MacLean et al. 1996), and have not explicitly assessed 

the potential compounding effects of stand structure and composition, site potential 

productivity, and topography. Consequently, Chapter 2 aims to comprehensively assess the 

influence of SBW defoliation on stand dynamic variables of net growth, mortality, and ingrowth 

under cumulative defoliation levels mainly below 300%, which were typical during the 1970s-
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1980s outbreak in Maine and New Brunswick. In addition, Chapter 2 will also try to identify the 

most important stand and site factors on the above variables of stand dynamics. 

While the stand-level assessment of Chapter 2 provides useful information for making forest 

management decisions at large scales to mitigate the influence of SBW defoliation, it is unable 

to provide information on the intrinsic differences in responses of individual trees to defoliation, 

which are the theoretical basis of cyclic SBW outbreaks (Holling 1973) and silvicultural methods 

proposed to alleviate influences of defoliation (Baskerville 1975, Blais 1983). However, previous 

studies as those identified above have performed evaluations mostly by species (i.e., 

aggregating trees of the same species over a large spatial and temporal extent) with a few by 

size-class (e.g., Steinman and MacLean 1994, MacLean 1996). In addition, these evaluations 

have been primarily focused on mortality caused by defoliation. Therefore, the primary 

objective of Chapter 3 is to develop a rather comprehensive set of individual tree models of 

diameter and height increments, crown recession (height to crown base increment), and 

mortality to quantify the effects of SBW defoliation, meanwhile evaluate their interplay with 

various stand and site factors. 

Host trees' capacities in supporting defoliator populations, i.e., the susceptibility of these trees 

(Mott 1963), partly decide the varying levels of defoliation these trees likely sustain. While such 

variations in SBW defoliation have long been observed (e.g., MacLean and Lidstone 1982, Gray 

et al. 2000, Doran et al. 2017), their patterns have been little examined or modeled. In Chapter 

4, we propose evaluations of the variation and temporal dynamics of SBW defoliation from a 

cross-scale approach, which would allow potential causal effects to be evaluated at suitable 

scales (e.g., specific effects may be better assessed at tree-level to separate structural and 

compositional effects of stands, while diversity can be analyzed at larger scales). As a result, 

coarse observations of defoliation obtained from remote sensing may potentially be leveraged 
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to provide detailed defoliation predictions of individual trees and consequently replace the 

costly and time-consuming on-site measurements of defoliation. 

Based on the findings in previous chapters, influences of SBW defoliation on individual tree 

diameter and height increments, crown recession (height to crown base increment), and 

mortality, as well as stand dynamic variable of ingrowth will be synthesized with predictions of 

individual tree defoliation and its temporal dynamics to generate projections of forest growth 

and yield in Chapter 5. Specifically, annualized modifiers that adjust annual predictions of the 

above mentioned growth and mortality variables will be developed to be used in the Acadian 

variant of FVS (FVS-ACD; Weiskittel et al. 2017), which offers flexibility in accounting for the 

specific effects of management activities and disturbance agents on individual trees at an annual 

resolution, and better represents forests in the Acadian region. Consequently, the work of 

Chapter 5 will potentially provide the well-established FVS with the capability of accounting for 

the potential effects of SBW defoliation on forest development and provide information for 

forest management and protection planning. 

Overall, we believe that our work will be a valuable complement to previous studies on the 

influences of SBW defoliation, which have been focused on higher levels of severe defoliation. 

The large spatial and temporal extents of our work will make it extendable to larger areas, while 

the findings of the underlining relationships between SBW defoliation and tree as well as stand 

dynamic variables may also help evaluate the influences of defoliation on landscapes. Besides 

predictions of forest growth and yield, the refined FVS-ACD may also be used to provide variable 

information on the forest ecosystem such as changes in carbon storage as well as fire and wind 

hazards. Finally, our work has the potential of providing a flexible modeling framework for 

extensions to other forms of defoliation.
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CHAPTER 2 

EVEN LOW LEVELS OF SPRUCE BUDWORM DEFOLIATION AFFECT MORTALITY AND INGROWTH 

BUT NET GROWTH IS MORE DRIVEN BY COMPETITION1 

2.1. Introduction 

Loss of photosynthetic material through insect defoliation results in reduced growth and survival 

of trees, and is one of the most important natural disturbances influencing forests (e.g., Kulman 

1971, MacLean 2016). Spruce budworm (SBW; Choristoneura fumiferana (Clem.)) is the primary 

defoliating insect in North America and has affected over 58 million ha of forests during its last 

major outbreak in 1970s and 1980s (Blais 1983, USDA Forest Service 2009). Consequently, 

approximately 44 million m3 of timber was lost annually during this outbreak period in Canada 

alone (Sterner and Davidson 1982). On the other hand, SBW has co-evolved with spruce-fir 

(Picea-Abies) forests for hundreds of years with periodic outbreaks 30-60 years apart (Fraver et 

al. 2007), and these forests are still abundant in the region (McWilliams et al. 2005, Power and 

Gillis 2006). Therefore, evaluating the influence of SBW defoliation on stand dynamics is critical 

in predicting future supply of forest products and in understanding stand dynamics and 

succession under varying disturbance regimes. 

SBW larval emergence is synchronized with the bud burst of its hosts balsam fir (Abies balsamea 

L.) and white spruce (Picea glauca (Moench) Voss), and these larvae feed primarily on current 

year foliage despite the species’ retention of multiple years of foliage (Irland et al. 1988). 

Additionally, SBW defoliation has cumulative effects on growth and mortality. For example, Blais 

(1958) noted that growth reduction was often observed after two years of defoliation, while 

MacLean (1980) suggested that trees usually started to die only after four or five years of severe 

                                                           
1
 This chapter previously appeared as an article as follows: Chen, C., Weiskittel, A., Bataineh, M., 

and MacLean, D.A. 2017. Even low levels of spruce budworm defoliation affect mortality and 
ingrowth but net growth is more driven by competition. Canadian Journal of Forest Research 47: 
1546-1556. 
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defoliation. Consequently, cumulative sums of the defoliation of current-year foliage 

(cumulative defoliation) have long been considered a suitable metric in measuring the severity 

of SBW defoliation. 

There is a vast literature on the influence of SBW defoliation on forest development (e.g., Blais 

1958, MacLean 1980, Osawa et al. 1986, Reams et al. 1988, MacLean and Ostaff 1989, Piene 

1989, MacLean et al. 1996, Solomon et al. 2003, Pothier and Mailly 2006, Pothier et al. 2012), 

with reported tree mortality between 73-100% for balsam fir and between 27-66% for spruce 

(Picea spp.) and growth reductions in balsam fir  up to 83%. The cumulative defoliation that 

caused the above mortality and growth reductions have largely ranged between 336-840% (Blais 

1958, MacLean and Ostaff 1989, Piene 1989, MacLean et al. 1996). Obviously, the influence of 

SBW defoliation on forest development has generally been assessed at rather high levels of 

defoliation, and was largely overlooked for cumulative defoliation levels below 300%.  

Furthermore, studies on SBW defoliation have often been confined in space (1-73 sample plots; 

Blais 1958, MacLean 1980, Reams et al. 1988, MacLean and Ostaff 1989, Piene 1989, MacLean 

et al. 1996, and Solomon et al. 2003) or rather coarse in temporal resolution (~ 10 years 

between measurements; Pothier and Mailly 2006, Pothier et al. 2012). Hence, their 

representativeness of the dynamic process of defoliation hinged on the premise that this 

process was comparable at various spatial and temporal scales. However, defoliation is 

heterogeneous and varies greatly over space and time during a SBW outbreak (Supplemental 

Materials A.1, Baskerville and MacLean 1979, Irland et al. 1988, Hennigar et al. 2013). 

Consequently, the influence of SBW defoliation on forest development is also likely to be 

heterogeneous at different scales. For example, Osawa et al. (1986) was restricted to a portion 

of Baxter State Park (~ 800 km2) in Maine and recorded mortality for balsam fir from mid-1970s 

to 1982 of 74%, while Brann et al. (1985) summarized data from across northern Maine (> 40 



11 
 

000 km2) during the same period and reported such mortality of ~15%. Therefore, it is critical to 

evaluate whether this influence is an artifact of scaling of the defoliation process, or is 

consistent over large areas. 

Besides the high variation in defoliation, evaluating the influence of SBW defoliation on forest 

development is challenging because forest stand and site characteristics, which are indicators of 

resource availability (productivity) and competition, are also expected to vary considerably 

within the vast areas affected by SBW defoliation. While productivity and competition regulate 

forest development in the absence of disturbances, they most likely interact with defoliation 

and confound their effects on forest development. For example, while defoliation directly 

reduces tree growth, it may also cause mortality of the neighboring trees and hence reduce 

competition and promote growth of the surviving trees. On the other hand, some stand and site 

characteristics may be favorable to SBW, e.g., a higher content of a preferred host, thus 

intensifying the influence of defoliation. Therefore, evaluating the influence of SBW defoliation 

and its potential interactions with a variety of stand and site characteristics is necessary to 

provide a more comprehensive understanding of the influence of defoliation. Identifying the 

relative importance of productivity, competition, and defoliation in forest development is critical 

for prioritizing forest management activities to address the influence of defoliation. 

This study utilized comprehensive defoliation data collected at short time intervals (1-3 years) 

from extensive networks of permanent sample plots (PSP; 560 in total) that covered a 

longitudinal range of ~ 490 km and a latitudinal range of ~ 340 km. These data comprised a wide 

range of cumulative defoliation observations accompanied by detailed tree and site 

measurements, which provided opportunities to evaluate how varying levels of SBW defoliation 

(especially lower levels that have been largely overlooked in previous studies) influenced forest 

development, and to assess how the effects of defoliation on growth, mortality, and ingrowth 



12 
 

interacted with stand and site characteristics. The above data were used to quantify the 

influence of SBW defoliation on key forest stand dynamics since stand development is 

considered the linkage between pest incidence and forest development (Erdle and MacLean 

1999) and evaluating stand dynamics generally requires less information (Weiskittel et al. 

2011a). This analysis was applied separately to two rather distinct regions with contrasting 

forest management and SBW outbreak histories to test whether it was valid and consistent over 

a broad geographical area with varying stand, site, and defoliation conditions. 

Specific research objectives were to: 1) model annual stand volume net growth, mortality, and 

ingrowth using variables derived for SBW defoliation, stand structure and composition, potential 

productivity, and topography from long-term, remeasured permanent plots across both of the 

regions; 2) evaluate the varying influences of SBW defoliation and identify the most important 

stand and site factors on the above variables of stand dynamics; and 3) perform the above 

modeling and evaluation in Maine and New Brunswick, which differ in forest management and 

SBW outbreak histories, to better verify the robustness and consistency of our findings. It was 

expected that our findings would indicate that defoliation, even at relatively low levels, had an 

important role in all of the stand dynamic variables examined, but this effect would depend 

largely on stand structure and composition as well as important site factors like soil drainage. In 

addition, our models were expected to indicate these effects of defoliation, as well as its 

interaction with stand and site characteristics, were comparable between the two regions, 

despite differences in their forest management and SBW outbreak histories. This would provide 

support to the general robustness and consistency of the models.
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2.2. Material and Methods 

2.2.1. Study Area 

The combined study area (44°56'-48°00' N, 64°28'-70°44' W) in Maine and New Brunswick 

mainly belongs to the temperate broadleaf mixed forest biome (Figure 2.1). The most common 

forest types in Maine include maple-beech-birch (Acer-Fagus-Betula) of 2.9 million ha and 

spruce-fir of 2.4 million ha in 2003 (McWilliams et al. 2005). Growing stocks of SBW's major 

hosts of balsam fir, red spruce (Picea rubens Sarg.), black spruce (Picea mariana (Mill.) B.S.P.), 

and white spruce were 117, 146, 14, and 17 million m3, respectively, in 1982, and 65, 100, 15, 

and 17 million m3, respectively, in 2003 (McWilliams et al. 2005). New Brunswick had 2.5, 1.8, 

and 1.4 million ha of softwood, mixedwood, and hardwood forests, respectively, in 2001 (Power 

and Gillis 2006). Growing stock of balsam fir and spruce was 118 and 154 million m3, 

respectively, in 1981, and 91 and 174 million m3, respectively, in 2001 (Bonnor 1982, Power and 

Gillis 2006). Soils in Maine and New Brunswick are generally infertile, acidic, and low in 

permeability (Ferwerda et al. 1997; Rees et al. 2005). Maine has a humid continental climate 

with warm, humid summers, and cold, snowy winters. Annual precipitation varies from 909 to 1 

441 mm and is distributed evenly year-round. Climate in New Brunswick is similar to that of 

Maine with annual precipitation ranging from 889 to 1 143 mm, evenly distributed through the 

year. Elevation of the study areas in Maine and New Brunswick ranged from 41-691 m and 0-578 

m, respectively. These two areas have similar SBW outbreak histories as both experienced an 

outbreak in the 1970s-1980s. 
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Figure 2.1. Locations of the study area and sample plots included in this analysis with 

interpolated plot-level maximum cumulative defoliation. Cumulative defoliation is the 

cumulative sums of the percentage defoliation of current-year foliage from all previous years 

until current year (%). Data collected in Maine during 1975-1985 covered most of the temporal 

extent of the last SBW outbreak, while the New Brunswick analysis period of 1986-1991 was in 

the declining years of the SBW outbreak. 

2.2.2. Data 

The data used in this study came from the University of Maine Cooperative Forestry Research 

Unit Growth Impact Study data collected in northern Maine, USA (Solomon and Brann 1992) and 

Canadian Forest Service permanent sample plots data collected in New Brunswick, Canada 

(MacLean and Erdle 1986). The most significant difference between the two regions in the data 

was species composition, which Fraver et al. (2007) considered to be the reason behind the 
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differences in their SBW outbreak histories, in addition to the dynamics of SBW outbreaks. 

Specifically, balsam fir, red spruce, black spruce, white spruce, and hardwood accounted for 

37%, 23%, 2%, 3%, and 19% of all trees in stems, respectively, in Maine, and 37%, 21%, 11%, 9%, 

and 14% of all trees in stems, respectively, in New Brunswick. Each of the datasets used in this 

study is described in detail below. 

2.2.2.1. Growth Impact Study of Maine 

The Growth Impact Study was initiated in 1975 (after SBW activity reached epidemic level in 

1974) as a cooperative effort among federal and state forest agencies, as well as private forestry 

companies to document the impact of SBW on growth and mortality of the Maine forest. Data 

were collected at 424 ~0.2 ha circular plots including 8 762 trees ≥ 11.4 cm in diameter at breast 

height (DBH) throughout northern Maine during 1975-1985 (most of the temporal extent of the 

last SBW outbreak in Maine). The data included annual records of species, DBH, crown position, 

cause of death, total height, crown length, and degree of defoliation. Each year during the study 

period, current-year and previous-years foliage on each host tree within the plot were visually 

examined for the degree of defoliation, and categorized separately into one of five classes 

(before 1982; 0, 1-5%, 6-20%, 21-50%, and 51-100%) or eleven classes (after 1982; 0-10%, 11-

20%, 21-30%, 31-40%, 41-50%, 51-60%, 61-70%, 71-80%, 81-90%, 91-99%, and 100%) of 

defoliation. 

2.2.2.2. Permanent Sample Plots of New Brunswick 

Approximately 1 500 random PSPs were established between 1976-1979 as part of the New 

Brunswick Department of Forests, Mines and Energy Forest Inventory. Of these plots, 136 were 

selected for SBW related studies based on stratification by species, maturity, and degree of 

insecticide use for protection. Each PSP consisted of three permanent prism points (basal area 

factor = 2 m2 ha-1) located 40 m apart, on which species, DBH, crown class, year of death, initial 



16 
 

height, and degree of defoliation of each tree were recorded. The above data were collected 

during 1976-1993, with DBH initially measured between 1976 and 1979 and remeasured in 

1980, 1983, 1985, 1988, and 1991. Current year and total defoliation (defoliation on all age 

classes of foliage) were measured annually during 1984-1993 (when the SBW outbreak was 

declining), while height was measured once during 1976-1979. For all of the 6 316 sample trees 

in the PSP data set, only the 5 503 trees compatible in size with the Growth Impact Study 

dataset (i.e. DBH ≥ 11.4 cm) were included in this study. Both current-year and total defoliation 

in the New Brunswick PSPs was estimated for each host tree each year by scanning the crowns 

with binoculars. The results of both types of defoliation were separately put into seven 

percentage classes of 0-10%, 11-20%, 21-40%, 41-60%, 61-80%, 81-99%, and 100%. 

2.2.2.3. Data Compilation 

All measurements in the two datasets were converted to metric units. Since annual 

measurements of DBH were not available for the PSP dataset, spline and linear functions were 

used to impute DBH values for years between measurements. Height values for the PSP dataset 

were obtained through imputation using a species- and plot-specific mixed effects model 

outlined by Robinson and Wykoff (2004). Given the difficulty in accurately measuring heights on 

an annual basis, height increments of > 0.9 m yr-1 in the Growth Impact Study dataset (1.1% of 

the total observations) were replaced by values obtained using the above modeling approach. 

All individual tree total volumes were estimated using a species-specific taper equation for the 

region (Li et al. 2012; Weiskittel and Li 2012). As SBW prefers sun foliage and hence causes 

frequent top-kill (Ostaff and MacLean 1989), tree height increment was greatly reduced and 

nearly ceased from the beginning of our data. Therefore, top-kill was an implicit factor in 

consecutive measurements of height, which were inputs to the taper equation that was used to 
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predict consecutive volumes. Consequently, top-kill likely had a minimal effect in predicting 

volume growth, which was derived by subtracting these consecutive predictions of volume. 

At the plot-level, several attributes describing structure and composition were derived. Stand 

density index was estimated using the additive method and relative density values were 

computed using an equation proposed by Woodall et al. (2005) that predicts maximum stand 

density index using average species specific gravity (USDA 2010). Preliminary analysis indicated 

that this measure of relative density outperformed more traditional stand structural metrics like 

stem density and total basal area. Additionally, stand species composition was represented by 

the proportions of balsam fir (BF), black spruce (BS), red spruce (RS), white spruce (WS), and 

hardwood species (HW). Site productivity was estimated through dominant height and several 

other metrics including biomass growth index (Hennigar et al. 2017), climate site index 

(Weiskittel et al. 2011b), topographic wetness index, and other site attributes like slope, aspect, 

and elevation as well as their transformations (Stage 1976). 

A variety of defoliation metrics were evaluated including those presented in Hennigar et al. 

(2013). For this analysis, severity of defoliation was presented as cumulative sums of the 

percentage defoliation of current-year foliage from all previous years until current year, which 

was rather commonly used in previous studies and the most effective metric indicated by our 

preliminary analysis. The observed cumulative defoliation varied between 0-586% and averaged 

85 ± 86% (mean ± SD) and 64 ± 53 % in Maine and New Brunswick, respectively. Cumulative 

defoliation was primarily concentrated towards the lower end of the above range in the data. 

Specifically, there were 3 250, 935, 295 and 119 stand-level observations of 0-100%, 101-200%, 

201-300%, and >300% defoliation, respectively.  Although the defoliation levels were generally 

lower than reported in previous studies, a large range of defoliation values observed and the 
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wider geographic region examined may explain these trends. In addition, as described below, 

both areas had varying levels of aerial spraying of insecticide. 

During the last outbreak, portions of both regions underwent aerial spraying of insecticide 

against SBW. This protection activity included most of New Brunswick's forested areas in certain 

years (MacLean et al. 1984). From 1970 to 1974, an average of 160 000 ha of forests was 

sprayed annually in Maine. This resulted in nearly 17% of the Growth Impact Study plots being 

sprayed at least once during this period. As the spraying extended to over 400 000 ha year-1 

through the outbreak, and peaked at 1.6 million ha in 1976 (Seegrist and Arner 1982), it is 

reasonable to assume that the majority of these plots received some spraying. However, 

preliminary analysis found no identifiable relationships between spraying and the examined 

stand dynamics, so additional analyses using information on spraying were not explored further 

(Supplemental Materials A.2). Likely, the effects of spraying are implicitly accounted for in the 

observed cumulative defoliation values, which would have been probably higher without 

spraying.  

For this analysis, several components of stand dynamics, namely, annual volume net growth, 

mortality, and ingrowth were included. Values of standing volume, mortality, and ingrowth were 

derived by summing the per ha volumes of each tree at each measurement period by status 

(live, dead, or ingrowth). Ingrowth was defined as all (host and non-host) trees ≥ 11.4 cm DBH 

that were not present in the previous measurement. Since trees in the understory are more 

sensitive to defoliation and often die first during an outbreak (Blais 1958), defoliation was 

expected to directly affect ingrowth, while the plot-level cumulative defoliation was considered 

a suitable representation of understory defoliation severity. The response variable of annual 

volume net growth was obtained by subtracting subsequent standing volume from the previous 

one (volume increment of surviving trees); and the response variables for annual volume 
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mortality and ingrowth were taken as the percentage of corresponding standing volume. For the 

variable-radius plots in the NB PSP dataset, tree expansion factors at the first measurement 

were fixed for subsequent measurements to ensure compatibility as suggested by Myers and 

Beers (1968). A summary of the attributes derived from the data used in this analysis is 

presented in the Supplemental Materials A.3. 

2.2.3. Analysis 

The above response variables were related to various stand structure, species composition, site 

productivity, and defoliation variables, and fitted with nonlinear mixed effect models by setting 

a random effect across plots. Model selections (of suitable model formulations and predictors) 

were based on a combined consideration of biological interpretability, Akaike Information 

Criterion (AIC), coefficient of determination (R2), and mean bias (predicted - observed). The 

selected models best depicting stand dynamics in response to defoliation are all described in 

more detail below. All analyses were conducted in R v3.2.2 (R Development Core Team 2015). In 

particular, the R package "nlme" (Pinheiro et al. 2016) was used for constructing the nonlinear 

mixed effect models. 

2.2.3.1. Net Growth 

In general, the growth of trees likely exhibits a sigmoidal behavior, which both logistic and 

Gompertz functions are suitable to model this expected trend. A major difference between 

these two functions lies in that logistic and Gompertz functions reach their inflection points 

(maximum acceleration in growth) at K/2 (K is the asymptote in yield) and K/e, respectively. The 

latter better matches the relatively short period of accelerated growth of trees in their early 

stage, and can be parameterized as follows: 
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where y(t) is the yield at time t; K, y(0), and r are parameters, of which K is the asymptote of 

yield, y(0) is the initial volume, and r is the growth rate. 

Differentiating Equation (1) on t, substituting functions of t with Equation (1) so to avoid 

explicitly including time t as a covariate (since its relationship with growth may be distorted by 

forest management activities and disturbances like SBW), and expanding K and r such that the 

former is density dependent and the latter is affected by potential productivity (β4), species 

composition (β3, β5, and β7), and defoliation (β5 and β7) generates the following growth 

function: 
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where y'(t) is net growth at time t (m3 ha-1 yr-1); RD is relative density; BF, BS, RS, WS, and HW 

are proportions of balsam fir, black spruce, red spruce, white spruce, and hardwood in terms of 

volume, respectively; HTDOM is dominant height (m); CDEF is cumulative defoliation (%); β1 - β7 

are parameters for fixed effects (β7 was not applied to the New Brunswick data); γ1 is a 

parameter for plot-level random effect; and ε is the error of the model. Since considerable 

variation was found in K and the standard deviation of r was less than 0.01% of its mean in both 

datasets, only random effects for the intercept of K (β1) were considered in the models. 

2.2.3.2. Mortality 

Zero-inflated models have been used for modeling rare events like tree mortality, and were 

tested in this analysis in both frequentist and Bayesian settings assuming a beta distribution for 

mortality/ingrowth (as the ratio between mortality/ingrowth volume and standing volume 

expressed as a percentage through this analysis; Supplemental Materials A.4). It was found that 
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these models yielded fewer close-to-zero predictions for actual zero observations and smaller 

predicted values for over-dispersed observations than the models proposed below. 

Consequently, to address both excessive zeros and over-dispersion in the observations, a model 

of % mortality in volume of the following form, which had a goodness-of-fit at least as good as 

the zero-inflated models, was used: 
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where VOL is standing volume (m3 ha-1); β1 - β6 are parameters for fixed effects (β4 - β6 were 

not applied to the New Brunswick data); γ1 is a parameter for random effect; and the other 

notations are the same as defined above. Equation (3) can be considered as a modification of 

the zero-inflated model in that   ⁄     ( (              )) can be treated as the 

probability of belonging to the distribution of actual mortality values in a zero-inflated model. 

However, the mass of zeros were removed from the parameter estimation of a zero-inflated 

model (so mortality estimated using Equation (3) would not be reduced by a < 1 probability of 

not being zero) to allow for more dispersed estimates. Preliminary analysis showed significant 

effect of VOL on mortality independent of stand development stage, such that mortality rate 

monotonously decreased over the increase of various formulations of VOL, of which the one 

used in Equation (3) was highly significant and most parsimonious. 

 2.2.3.3. Ingrowth 

The ingrowth data and the modeling approach for it shared common features with mortality. 

However, an even greater number of zeros was observed in ingrowth (87% of plot 

observations), which also exhibited a higher level of variability than mortality. In this case, the 

probability of belonging to the distribution of actual ingrowth values as in Equation (3) 
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practically went to zero in the modeling process. For this reason, % ingrowth in volume was 

modeled using a single logistic function as follows: 

( )   
 

     ( (
   (     )                  

 (     )         (        )
*)

   

where β1 - β5 are parameters for fixed effects (β3 and β5 were not applied to the New 

Brunswick data); γ2 and γ4 are parameters for random effects; and the other notations are the 

same as defined above. Similar to the mortality model, ingrowth rate monotonously decreased 

over the increase of various formulations of VOL, of which the one used in Equation (4) was 

highly significant and most parsimonious. 

2.3. Results 

2.3.1. Net Growth 

Models for annual volume net growth (volume increment of surviving trees) as well as mortality 

and ingrowth were built using 3 846 and 753 observations for Maine and New Brunswick, 

respectively. The fixed effects of the net growth models explained 64 and 64% (79 and 88% 

when random effects were also considered) of its variation for Maine and New Brunswick, 

respectively. The mean predicted net growth was 3.79 and 5.43 m3 ha-1 yr-1 with mean biases 

(predicted - observed) of +0.09 and +0.07 m3 ha-1 yr-1 for Maine and New Brunswick, 

respectively. All parameter estimates were significant at p < 0.05 level (except for β5 in the New 

Brunswick model), and strictly in accordance in direction, comparable in magnitude and relative 

importance, and ecological interpretability for the two regions (Table 2.1).
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Table 2.1. Parameter estimates with corresponding standard errors (SE) and p-values, and 

model fit statistics of the annual volume net growth models (m3 ha-1 yr-1) by region. RD is 

relative density; BF, BS, RS, WS, and HW are proportions of balsam fir, black spruce, red spruce, 

white spruce, and hardwood in volume, respectively; HTDOM is dominant height (m); CDEF is 

cumulative defoliation (%). 

 
Parameter 
and Fit Statistic 

Maine 

(n = 3 846) 

New Brunswick 

(n = 753) 

Value SE p-value Value SE p-value 
 

β1 (Intercept) 4.95690 0.03553 < 0.0001 4.69726 0.06315 < 0.0001 
 

β2 (RD) 2.77830 0.07094 < 0.0001 3.09574 0.15507 < 0.0001  
β3 (exp(BS+RS+WS)∙HW) -0.01351 0.00305 < 0.0001 -0.03197 0.01253 0.0110  
β4 (HTDOM) 0.00234 0.00013 < 0.0001 0.00363 0.00046 < 0.0001  
β5 ((BS+RS+WS)∙CDEF) -0.00007 0.00001 < 0.0001 -0.00013 0.00008 0.0984  
β6 (BF) 0.01919 0.00414 < 0.0001 0.04738 0.01107 < 0.0001  
β7 (BF∙CDEF) -0.00011 0.00001 < 0.0001 -- -- --  
γ1 (Random effects on β1)  0.1524   0.1617   

R2 
(Fixed effects) 

0.64   0.64   
 

R2 
(Incl. random effects) 

0.79   0.88   
 

Mean bias (m3 ha-1 yr-1) 
(Fixed effects) 

-0.06   -0.32   
 

Mean bias (m3 ha-1 yr-1) 
(Incl. random effects) 

+0.09   +0.07   
 

Our analysis showed an inverse relationship between net growth and defoliation, and this 

relationship was dependent on the proportion of host species in that net growth was 

significantly lower with higher spruce and balsam fir content (Table 2.1). Specifically, when 

cumulative defoliation increased from 100 to 200%, net growth decreased from 3.43 to 3.00 m3 

ha-1 yr-1 (equivalent to a relative decrease of 13%), while a 0.1 increase in the proportion of 

spruce and hardwood content decreased net growth by 0.03 and 0.15 m3 ha-1 yr-1, respectively, 

without the influence of defoliation (cumulative defoliation equals zero) in Maine. In addition, 

none of the site factors tested significantly affected net growth. Net growth was predominantly 
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controlled by stand density (indicated by relative density and standing volume) and potential 

productivity (indicated by dominant height), while moderately influenced by defoliation and 

species composition during a SBW outbreak (Figure 2.2). 

 

Figure 2.2. Relative importance of various variables (at their mean values; Achen 1982) on 

different stand dynamic components examined in this analysis (net growth, mortality, ingrowth) 

by region. 

Similar results were found in New Brunswick, where the same specific growth reductions as 

shown above were from 4.89 to 4.52 m3 ha-1 yr-1 (equivalent to a relative decrease of 8%) due to 

the increase in defoliation as well as 0.04 and 0.34 m3 ha-1 yr-1 related to the increases in spruce 

and hardwood content. Furthermore, the above relationships were presented at the mean 

values of the other variables in these nonlinear models, and consistent between the two 

regions, although both the observed and predicted net growth was generally higher in New 

Brunswick than in Maine (Supplemental Materials A.3 and Figure 2.3). 
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Figure 2.3. Predictions of annual volume net growth (m3 ha-1 yr-1) as a function of standing 

volume (m3 ha-1) under different levels of cumulative defoliation and spruce species content by 

region. All the other covariates were set at their mean values except relative density was set 

based on its correlation with standing volume. The observed net growth was closest to that 

shown in the lower-left graph. Dashed lines that pass the maxima of the curves in the first 

column from left are used to help show the differences in growth under different levels of 

defoliation. The shaded areas are the 95% confidence interval of the predictions. 



26 
 

2.3.2. Mortality 

A total of 28% (47%) and 34% (54%) of the variation in annual volume mortality rate was 

explained by the fixed effects (and random effects) in the models for Maine and New Brunswick, 

respectively. The mean predicted annual volume mortality rate was 2.32% and 1.83% with mean 

biases of -0.10 and +0.14% for Maine and New Brunswick, respectively. All parameter estimates 

were significant at p < 0.01 level, and consistent in direction, magnitude, relative importance, 

and ecological interpretability between the two regions (Table 2.2). 

Table 2.2. Parameter estimates with corresponding standard errors (SE) and p-values, and 

model fit statistics of the annual volume mortality rate models (% yr-1) by region. BF, BS, RS, and 

WS are proportions of balsam fir, black spruce, red spruce, and white spruce, respectively; VOL 

is standing volume (m3 ha-1); HTDOM is dominant height (m); CDEF is cumulative defoliation (%). 

 
Parameter 
and Fit Statistic 

Maine 

(n = 3 846) 

New Brunswick 

(n = 753) 

Value SE p-value Value SE p-value 

β1 (Intercept) -5.1686 0.5095 < 0.0001 -2.6356 0.1863 < 0.0001 
β2 (BF∙CDEF) 0.0158 0.0018 < 0.0001 0.0088 0.0034 0.0095 
β3 (VOL) -0.0038 0.0006 < 0.0001 -0.0071 0.0010 < 0.0001 
β4 ((BS+RS+WS)∙CDEF) 0.0149 0.0017 < 0.0001 -- -- -- 
β5 (HTDOM) 0.1725 0.0273 < 0.0001 -- -- -- 
β6 (Intercept) -1.8256 0.1643 < 0.0001 -- -- -- 
γ1 (Random effects on 
β1) 

 0.7203   0.7269  

R2 
(Fixed effects) 

0.28   0.34   

R2 
(Incl. random effects) 

0.47   0.54   

Mean bias (%) 
(Fixed effects) 

-0.03   +0.05   

Mean bias (%) 
(Incl. random effects) 

-0.10   +0.14   

Both observed and predicted mortality rates were relatively low, even under the higher levels of 

defoliation observed across the regions (Supplemental Materials A.3 and Figure 2.4; defoliation 
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was generally lower in this study compared to previous studies). Besides decreasing with an 

increase in standing volume and reduction in host content, mortality rate was most sensitive to 

defoliation, especially in Maine (Figure 2.2). Specifically, when cumulative defoliation increased 

from 100 to 200%, annual mortality rate increased from 1.9 to 3.8% and from 1.7 to 2.1% in 

Maine and New Brunswick, respectively, which were equivalent to relative increases of 101 and 

23%, respectively. There was also a slight difference in the response of mortality rate to the 

increase of the various host species such that a 0.1 increase in the proportion of balsam fir and 

spruce content increased annual mortality rates by 0.27 and 0.26%, respectively, at 100% 

cumulative defoliation in Maine. Furthermore, the above relationships were presented at the 

mean values of the other variables in the nonlinear models, and consistent between the two 

regions (Supplemental Materials A.3 and Figure 2.4). 
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Figure 2.4. Predictions of volume mortality rate (% yr-1) as a function of standing volume (m3 ha-

1) under different levels of cumulative defoliation and balsam fir content by region. All the other 

covariates were set at their mean values. The observed mortality was closest to that shown in 

the lower-left graph. Dashed lines that pass the maxima of the curves in the third column from 

left are used to help show the differences in mortality rate under different levels of defoliation. 

The shaded areas are the 95% confidence interval of the predictions. 

2.3.3. Ingrowth 

Models for annual volume ingrowth rate accounted for 20% (33%) and 21% (37%) of its variation 

by the fixed effects (and random effects) for Maine and New Brunswick, respectively. The mean 
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predicted annual volume ingrowth rate was 0.42% and 0.59% with mean biases of ~ 0.00% and 

+0.13% for Maine and New Brunswick, respectively. All parameter estimates were significant at 

p < 0.01 level (except for β2 in the New Brunswick model). The effects of all of the covariates 

were comparable across the regions, and consistent with ecological expectations (Table 2.3). 

Table 2.3. Parameter estimates with corresponding standard errors (SE) and p-values, and 

model fit statistics of the annual volume ingrowth rate models (% yr-1) by region. BF, BS, RS, and 

WS are proportions of balsam fir, black spruce, red spruce, and white spruce respectively; HTDOM 

is dominant height (m); VOL is standing volume (m3 ha-1); CDEF is cumulative defoliation (%). 

 
Parameter 
and Fit Statistic 

Maine 

(n = 3 846) 

New Brunswick 

(n = 753) 

Value SE p-value Value SE p-value 

β1 (Intercept) -1.0239 0.1841 < 0.0001 -4.1678 0.2683 < 0.0001 
β2 (BF∙CDEF) -0.0063 0.0023 0.0063 -0.0062 0.0040 0.1251 
β3 (HTDOM) -0.1400 0.0171 < 0.0001 -- -- -- 
β4 (VOL) -0.0110 0.0015 < 0.0001 -0.0050 0.0017 0.0033 
β5 (BS+RS+WS) -0.6455 0.1977 0.0011 -- -- -- 
γ2 (Random effects on 
β2) 

 0.0085   < 0.0001  

γ4 (Random effects on 
β4) 

 0.0065   0.0039  

R2 
(Fixed effects) 

0.20   0.21   

R2 
(Incl. random effects) 

0.33   0.37   

Mean bias (%) 
(Fixed effects) 

-0.04   +0.07   

Mean bias (%) 
(Incl. random effects) 

~ 0.00   +0.13   

Both observed and predicted ingrowth rates were low across the regions, although consistently 

higher in New Brunswick than in Maine (Supplemental Materials A.3 and Figure 2.5). The factors 

of defoliation, proportion of host species, standing volume, and dominant height all appeared to 

negatively affect ingrowth rate (Table 2.3) with the first two factors being most influential 
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(Figure 2.2). In particular, when cumulative defoliation increased from 100 to 200%, annual 

ingrowth rate would decrease from 0.14 to 0.12% and from 0.48 to 0.39% in Maine and New 

Brunswick, respectively, which were equivalent to relative decreases of 15 and 18%, 

respectively. In addition, the above relationships were presented at the mean values of the 

other variables in the nonlinear models, and consistent between the two regions (Supplemental 

Materials A.3 and Figure 2.5). 

 

Figure 2.5. Predictions of volume ingrowth rate (% yr-1) as a function of standing volume (m3 ha-

1) under different levels of cumulative defoliation and balsam fir content by region. All the other 

covariates were set at their mean values. The observed ingrowth was closest to that shown in 
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the lower-left graph. Dashed lines that pass the maxima of the curves in the first column from 

left are used to help show the differences in ingrowth rate under different levels of defoliation. 

The shaded areas are the 95% confidence interval of the predictions. 

2.4. Discussion 

Defoliation, despite being generally lower in this study when compared to previous studies, was 

found to have a significant influence on all of the stand dynamic responses examined. Consistent 

with our initial expectations, these influences of defoliation were found to be most dependent 

on stand species composition, with balsam fir stands experiencing higher levels of growth 

reduction and mortality, and less ingrowth than spruce stands. As cumulative defoliation 

increased from 0 to 100%, net growth reduction averaged 0.90 and 0.67 m3 ha-1 yr-1 for stands 

with 75% balsam fir and 25% hardwood versus 75% spruce and 25% hardwood, respectively. 

Although these reductions in net growth were only moderate, it is a bit surprising that 

cumulative defoliation at such a low level had any significant effect. Since our models showed 

much higher normal growth rates of balsam fir than spruce or hardwood species, and the 

difference in net growth reduction influenced by defoliation between balsam fir and spruce 

stands was small, balsam fir dominated stands would likely maintain relatively higher rates of 

growth when compared to spruce dominated stands under the same levels of defoliation. This 

agreed with the higher growth rates of balsam fir mixed stands than spruce mixed stands 

following SBW defoliation reported by Colford-Gilks et al. (2012). However, both Hennigar et al. 

(2008) and our analysis indicated that balsam fir tended to experience higher levels of 

defoliation (i.e. more susceptible) than spruce species. 

Many studies mentioned above have reported the influence of defoliation on mortality of 

individual trees by species, which ranges from 73-100% for balsam fir and 27-66% for spruce 

species under 336-840% cumulative defoliation. There was no obvious way to directly compare 



32 
 

these tree-level statistics with our stand-level estimates that were conditional on a variety of 

characteristics. However, it was likely that our mean predicted annual volume mortality rates of 

2.32 and 1.83%, which are approximately equivalent to ten-year cumulative mortality rates of 

21 and 17% for Maine and New Brunswick, respectively, were below those reported by studies 

identified above. The relatively low mortality rates in this study were likely related to the mean 

observed cumulative defoliation of 85 and 64% for Maine and New Brunswick, respectively, 

which could also be a major cause behind the discrepancy in mortality between this study and 

some previous studies. It was also found in this study that both observed and predicted 

mortality rates decreased with the increase in standing volume. A test of the interaction 

between standing volume and relative density confirmed this effect of standing volume on 

mortality for a given relative density, as well as indicated that mortality rate and relative density 

were positively related for a given standing volume. 

Several limitations that influence interpretation of our findings should be recognized. First, the 

temporal extent of our data did not cover the full duration of the last SBW outbreak. SBW 

activity reached epidemic levels in 1974 in Maine (Irland et al. 1988), but the data began in 

1975. The New Brunswick SBW outbreak spanned 1965-1993 in different parts of the province, 

and the analysis period in this study was 1986-1991, which was when SBW populations and 

defoliation were declining. Second, the effect of insecticide spraying was tested based on 

spraying records of the sample plots in Maine during 1970-1974 and found to be highly 

insignificant in this analysis (Supplemental Materials A.2). MacLean et al. (1984) also found that 

spraying did not significantly change mortality rates of black and red spruce. Likely, the effects 

of spraying were essentially captured in our cumulative defoliation data, which would have been 

higher if spraying had not been conducted. Third, sampling differences occurred between the 

two datasets, such as the use of variable-radius sampling in New Brunswick versus fixed-area 
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plots in Maine. However, such sampling inconsistencies were likely small in comparison to the 

observed effects of defoliation as well as the broad spatial and temporal span of the sample 

plots. 

The stand dynamics examined in this study exhibited a large amount of variation, with 

coefficients of variation (CV) for annual volume mortality and ingrowth of 277 and 331% for 

Maine, and 188 and 329% for New Brunswick, respectively. This was much higher than the 11% 

CV of mortality from Cape Breton Island, Canada (e.g., MacLean and Ostaff 1989), which had 

uniformly high mortality (mean 87%) caused by severe defoliation. Observed variations in these 

stand dynamic responses were higher than those usually associated with typical stands. 

Consequently, relationships between these responses and site characteristics were not 

significant and none of the characteristics examined accounted for more than 1% of the 

variation in the response variables in either of the regions (Supplemental Materials A.5). This 

observation is in agreement with MacLean et al. (1984) and MacLean and MacKinnon (1997), 

who found spruce-fir growth and mortality were not related to site characteristics, and could 

suggest that the effects of site characteristics found on SBW defoliation caused growth 

reduction and mortality (e.g., Blais 1958, Osawa et al. 1986) may have been location specific as 

in reflecting local limiting factors on growth and mortality. 

A considerable amount of variations in stand dynamics was accounted for by random effects 

among sample plots in our models. This could be an indication of important factors affecting 

stand dynamics not being included in the models. However, this is less likely given that many 

common stand and site factors were tested and failed to show statistically significant 

relationships. It therefore was more likely that the random effects reflected autocorrelation in 

stand dynamics. Spatial clustering of mortality over a small extent found in this study and 

reported by Baskerville and MacLean (1979) could reflect this autocorrelation. Inclusion of a 
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spatial or temporal autocorrelation error structure did not improve model fit significantly. Likely, 

a complex and dedicated research effort involving a denser sample plot network over a broader 

area and a longer time series would be necessary to fully investigate this potential 

autocorrelation. 

The same models fit the data from both Maine and New Brunswick well, with parameter 

estimates of all covariates strictly in accordance in signs, and comparable in magnitudes and 

relative importance. These consistent effects of SBW defoliation and its interaction with stand 

characteristics across a broad region provide support for the models' general applicability. 

However, the models also showed some regional differences such that predictions of net 

growth, regular mortality (without the influence of SBW defoliation), and ingrowth were 

generally higher, while predictions of irregular mortality (under the influence of SBW 

defoliation) were generally lower for New Brunswick. These differences could reflect general 

differences in age, composition, and productivity of forests between these regions. More 

variation in stand dynamics tended to be explained by the models for New Brunswick, which 

may be related to the stratification applied in its sampling process such that differences in stand 

dynamics were likely to be more substantial among strata of more distinct stand, site, and 

defoliation conditions. 

Overall, our results strongly demonstrated that even relatively low levels of cumulative 

defoliation were significantly related to mortality and ingrowth, while net growth was primarily 

competition driven. Defoliation level and species composition largely determined differences in 

mortality and ingrowth between Maine and New Brunswick, while site potential productivity 

and topographic characteristics had little influence. This study clearly highlights the variability in 

net growth, mortality, and ingrowth following SBW defoliation and suggests that an improved 

understanding at the individual tree-level may be necessary to fully understand this variability 
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(e.g., Chen et al. 2017). Fully evaluating the developed models from this analysis during the next 

SBW outbreak will be an important test of their overall representativeness.
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CHAPTER 3 

EVALUATING THE INFLUENCE OF VARYING LEVELS OF SPRUCE BUDWORM DEFOLIATION ON 

ANNUALIZED INDIVIDUAL TREE GROWTH AND MORTALITY IN MAINE, USA AND NEW 

BRUNSWICK, CANADA1 

3.1. Introduction 

Of all the major natural disturbances in forests in northeastern North America, spruce budworm 

(Choristoneura fumiferana (Clem.); SBW) outbreaks are more important than fire or wind in that 

they have a larger spatio-temporal scale (Blais 1983), shorter return interval (40-60 years; Fraver 

et al. 2007), and greater influence on forest productivity (Morin et al. 2007). Periodic SBW 

outbreaks have occurred for hundreds of years in northeastern North America (Fraver et al. 

2007). In particular, over 58 million ha of forests were defoliated in one year during the last 

outbreak between the 1970 and 1980s (Blais 1983, USDA Forest Service 2009) with 

approximately 44 million m3 of timber lost annually in Canada alone (Sterner and Davidson 

1982). Forty years since the last outbreak, the spruce-fir (Picea-Abies; major host species of 

SBW) forests are still abundant in the region with high economic and ecological importance 

(McWilliams et al. 2005; Erdle et al. 2008). 

Interplaying with SBW, spruce-fir (Picea-Abies) forests are considered an example of highly 

unstable yet enormously resilient ecosystems such that a SBW outbreak kills mature balsam fir 

(Abies balsamea L.) and leads to the development of new mature balsam fir stands, which favors 

another SBW outbreak to perpetuate this cycle (Holling 1973). This resilience is conditional on 

the premise that balsam fir tends to out-regenerate and outgrow spruce (Picea) in the absence 

of SBW, which compensates for its higher mortality caused by SBW (Baskerville 1975) and 

                                                           
1
 This chapter previously appeared as an article as follows: Chen, C., Weiskittel, A., Bataineh, M., 

and MacLean, D.A. 2017. Evaluating the influence of varying levels of spruce budworm 
defoliation on annualized individual tree growth and mortality in Maine, USA and New 
Brunswick, Canada. Forest Ecology and Management 396: 184-194. 
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implies intrinsic differences in the growth and mortality of SBW's host species. Blais (1983) 

considered that the frequency, extent, and severity of SBW outbreaks were on the rise in the 

20th century, and attributed this to the high rates of red spruce (Picea rubens Sarg.) harvesting 

for pulpwood among other factors. Therefore, it is ecologically important to quantify such 

differences in species growth and mortality in order to better understand the resilience of 

spruce-fir forests and to improve the prediction of future ecosystem dynamics given ongoing 

changes in environment and disturbance regimes. 

Control of SBW has largely relied on the application of insecticide in the past. Meanwhile, 

various silvicultural methods have been proposed and tested as long-term solutions to 

alleviating the influence of SBW on forest development (Baskerville 1975; Blais 1983). These 

methods largely depend on the perceived differences in various host species' responses to SBW 

in relation to stand structure and composition, as well as site conditions. For example, balsam fir 

is widely recognized as more vulnerable to SBW defoliation than spruce (e.g., Osawa et al. 1986; 

Pothier et al. 2012), hence the influence of defoliation on forest development may be mitigated 

by reducing balsam fir through stand conversion and thinning. Thinning targeting balsam fir has 

also been thought to reduce vulnerability of remaining hosts by stimulating their growth and 

improving their vigor (Irland et al. 1988). Similarly, increasing the non-host hardwood species is 

considered to reduce the influence of SBW on host trees due to increased dispersal and 

migration losses of SBW (Mott 1963; Baskerville 1975). 

However, observations on the potential of these silvicultural strategies to reduce host 

vulnerability and mitigate SBW impacts during the last outbreak in Maine suggested a less than 

optimum outcome (Irland et al. 1988), especially under severe defoliation pressure. Irland et al. 

(1988) reported that 10 out of 14 of their expert respondents felt that balsam fir and spruce 

were equally vulnerable. Budworm-caused mortality (i.e., total minus natural) was similar (31-
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49% and 11-32%) in spaced and un-spaced young balsam fir plots, respectively, but reached 94-

100% in severely defoliated spaced plots (MacLean and Piene 1995). Irland et al. (1988) 

indicated that mortality appeared to be higher in spaced and thinned stands where more 

crowns were exposed. All of these past studies indicate that a large amount of variation existed 

in tree response to defoliation such that more comprehensive data are necessary to show the 

full range of this response. Furthermore, tree response to defoliation interacts with various 

stand and site factors, which further complicates the observed relationships. 

Forest growth models that consider the influence of SBW defoliation are limited. Chen et al. (in 

review) evaluated the influence of SBW defoliation on forest stand dynamics and indicated that 

defoliation, in connection with species composition and other stand and site conditions, 

modified both stand-level net growth and mortality in Maine and New Brunswick, with some 

regional differences. By aggregating individual trees, these models provided useful information 

for making forest management decisions at large scales aimed to mitigate the influence of SBW 

defoliation. However, they were unable to provide detailed information on the intrinsic 

differences in individual tree as well as host species' responses to defoliation. Such a limitation 

commonly exists in the few studies that have examined the influence of SBW defoliation, e.g., 

the cohort model employed by the SBW decision support system (SBW-DSS), which is widely 

used in Canada (MacLean 1996) and the conceptual diameter-class model proposed by 

Steinman and MacLean (1994), which both update growth projection at 5-year intervals across a 

range of size classes. 

While forest growth models may be constructed at hierarchical levels of tree, stand, and 

landscape, models with less bias constructed at one level are more useful in prediction at a 

higher level in that accurate predictions can be achieved with increasingly small errors as sample 

size increases. Therefore, an individual-tree model capable of utilizing detailed information for 
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individual trees is not only more likely to better characterize impacts of damaging agents, but to 

better predict stand responses to management practices (Weiskittel et al. 2011a). In particular, 

an individual tree approach may be necessary for depicting differences in host species' growth 

responses to the complex and variable influence of SBW defoliation interplaying with various 

stand and site factors. Unfortunately, previous studies on the influence of SBW defoliation were 

primarily focused on mortality (e.g. MacLean 1979, 1988, Osawa et al. 1986, Reams et al. 1988, 

MacLean and Ostaff 1989, Solomon et al. 2003), except for a limited number of stand-level and 

size-class models such as those mentioned above. 

For this analysis, our goal was to develop a set of species- and region-specific individual-tree 

growth and mortality models that quantify the effects of SBW defoliation. Specific objectives of 

this study were to: 1) model annual diameter and height increment, crown recession (height to 

crown base increment), and mortality of major host species using key site, stand, and tree 

variables; 2) evaluate the influence of SBW defoliation on these attributes; and 3) compare 

differences in these attributes and the influence of SBW defoliation between Maine and New 

Brunswick. 

3.2. Material and Method 

3.2.1. Study Area 

The combined study area (44°56'-48°00' N, 64°28'-70°44' W) in Maine and New Brunswick 

mainly belongs to the temperate broadleaf mixed forest biome (Figure 3.1). The most common 

forest types in Maine include maple-beech-birch (Acer-Fagus-Betula) of ca. 2.9 million ha and 

spruce-fir of ca. 2.4 million ha (McWilliams et al. 2005). In New Brunswick, the public forest is 

55% spruce-fir, 14% other softwood species, and 32% hardwood species. Black spruce (Picea 

mariana (Mill.) B.S.P.) and balsam fir are the two most abundant species, each making up 20% of 

the forest (Erdle and Ward 2008). Soils in Maine and New Brunswick are generally infertile, 
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acidic, and low in permeability (Ferwerda et al. 1997; Rees et al. 2005). Maine has a humid 

continental climate with warm, humid summers, and cold, snowy winters. Annual precipitation 

varies from 909 to 1 441 mm and is distributed evenly year-round. Climate in New Brunswick is 

similar to that of Maine with annual precipitation ranging from 889 to 1 143 mm, evenly 

distributed through the year. Elevation of the study areas in Maine and New Brunswick ranged 

from 41-691 m and 0-578 m, respectively. These two areas have a similar SBW outbreak history 

and both experienced a severe outbreak in the 1970s-1980s. 

 

Figure 3.1. Locations of the study area and sample plots included in this analysis with 

interpolated plot-level mean cumulative defoliation (cumulative sums of the percentage 

defoliation of current-year foliage from all previous years until current year; %). Data collected 

in Maine during 1975-1985 covered most of the temporal extent of the last SBW outbreak, while 
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the New Brunswick analysis period of 1986-1991 was either in the declining years or after the 

end of the SBW outbreak. 

3.2.2. Data 

The data used in this study came from the University of Maine Cooperative Forestry Research 

Unit Growth Impact Study data collected in northern Maine, USA (Solomon and Brann 1992) and 

Canadian Forest Service permanent sample plots (PSP) data collected in New Brunswick, Canada 

(MacLean and Erdle 1986). Each of the datasets used in this study is described in detail below. 

3.2.2.1. Growth Impact Study of Maine 

The Growth Impact Study was initiated in 1975 (after SBW activity reached epidemic level in 

1974) as a cooperative effort among federal and the State of Maine forest agencies, as well as 

private forestry companies to document the impact of SBW on growth and mortality of the 

Maine forest. Data were collected at 424 ~0.2 ha circular plots including 8 762 trees ≥ 11.4 cm in 

diameter at breast height (DBH) throughout northern Maine during 1975-1985 (most of the 

temporal extent of the last SBW outbreak in Maine). The data included annual records of 

species, DBH, crown position, cause of death, total height, crown length, and degree of 

defoliation. Each year during the study period, current-year and previous-years foliage on each 

host tree within the plot were visually examined for the degree of defoliation, and categorized 

separately into one of five (before 1982) or eleven (after 1982) classes representing 0-100% 

defoliation of current-year and previous-years foliage. 

3.2.2.2. Permanent Sample Plots of New Brunswick 

About 1 500 random PSPs were established between 1976-1979 as part of the New Brunswick 

Department of Forests, Mines and Energy forest inventory. Of these plots, 136 were selected for 

SBW related studies based on stratification by species, maturity, and degree of insecticide use 

for protection. Each PSP consisted of three permanent prism points (basal area factor = 2 m2 ha-
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1) located 40 m apart, on which species, DBH, crown class, year of death, initial height, and 

degree of defoliation of each tree were recorded. The above data were collected during 1976-

1993, with DBH initially measured between 1976 and 1979 and remeasured periodically in 1980, 

1983, 1985, 1988, and 1991. Current year and total defoliation (defoliation on all age classes of 

foliage) were measured annually during 1984-1993 (when the SBW outbreak was declining), 

while height was measured once during 1976-1979. For all of the 6 316 sample trees in the PSP 

data set, only the 5 503 trees compatible in size with the Growth Impact Study dataset (i.e. DBH 

≥ 11.4 cm) were included in this study. Both current-year and total defoliation in the New 

Brunswick PSPs was estimated for each host tree each year by scanning the crowns with 

binoculars. The results of both types of defoliation were separately put into seven percentage 

classes ranging from 0-100%. 

3.2.2.3. Data Compilation 

For this analysis, several components of individual-tree growth, namely annual diameter 

increment, height increment, crown recession (height to crown base increment), and mortality 

rate (including blowdown, which is a major secondary impact from SBW defoliation) were 

modeled using covariates derived from a variety of attributes of the measurements. DBH, 

height, and crown ratio were used as measures of tree and crown size (hence vigor); basal area 

of larger trees; and ratio between tree height and the mean height of softwood trees in a plot 

was used to represent tree social status; and dominant height was considered as an indicator of 

site productivity. Other measures of site conditions such as biomass growth index (Hennigar et 

al. 2017), climate site index (Weiskittel et al. 2011b), and topographic attributes were not 

considered due to their general lack of appreciable relationship with growth and mortality under 

the influence of SBW defoliation (Chen et al. In review). The primary hardwood species in this 

analysis were red maple (Acer rubrum L.) and white birch (Betula papyrifera Marsh.) accounting 
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for 7% and 3% of all trees, respectively, in Maine, and 5% and 3% of all trees, respectively, in 

New Brunswick. 

The severity of defoliation was presented as cumulative sums of the percentage defoliation of 

current-year foliage from all previous years until current year for each individual tree, which 

averaged 136 ± 139% (mean ± SD) and 82 ± 89% in Maine and New Brunswick, respectively. This 

is a relatively moderate cumulative defoliation level, equivalent to the removal, on average, of 

about one to one and one-half age classes of foliage. All above mentioned models accounted for 

specific differences in growth and mortality of the major host species of balsam fir, red spruce, 

black spruce, and white spruce (Picea glauca (Moench) Voss) by including interactions between 

species and key covariates. Natural hybridization between red and black spruce may have 

caused identification problems during the data collection (Gordon 1976; Bobola et al. 1992), and 

the sample size of black spruce in Maine was relatively small, so red and black spruce were 

combined into one species group in this analysis. In this analysis, presence of broken tops was 

noted and these observations were not included in the analysis. All measurements were 

converted to metric units. Summaries of the data for individual-tree measurements by species 

as well as stand and site characteristics are shown in Supplemental Materials B.1. 

During the last outbreak, portions of both regions underwent aerial spraying of insecticide 

against SBW. This protection activity included most of New Brunswick's forested areas in certain 

years (MacLean et al. 1984). From 1970 to 1974, an average of 160 000 ha of forests was 

sprayed annually in Maine. This resulted in nearly 17% of the Growth Impact Study plots being 

sprayed at least once during this period. As the spraying extended to over 400 000 ha year-1 

through the outbreak, and peaked at 1.6 million ha in 1976 (Seegrist and Arner 1982), it is 

reasonable to assume that the majority of these plots received some spraying and it was a 

variable included in the original dataset. However, previous analysis found no identifiable 
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relationships between spraying and the examined stand dynamics, so additional analyses using 

information on spraying were not explored further (Chen et al. 2017b). 

3.2.3. Model Development 

3.2.3.1. Model fitting and Validation 

Individual-tree growth components of annual diameter increment, height increment, crown 

recession (height to crown base increment), and mortality rate were related to various variables 

representing individual-tree measurements, stand structure and species composition, site 

productivity, and defoliation, and fitted with nonlinear mixed effect models by setting random 

effect across plots and by using a recursive annualization technique similar to that used by 

Weiskittel et al. (2007). Model selections (of suitable model formulations and predictors) were 

based on a combined consideration of biological interpretability, Akaike Information Criterion 

(AIC), and coefficient of determination (R2). The annualization technique and the selected 

models best depicting individual-tree growth response to defoliation are described in detail 

below. All analyses were conducted in R v3.2.2 (R Core Team 2015). In particular, the R package 

"nlme" (Pinheiro et al. 2016) was used for constructing the nonlinear mixed effect models. 

Systematic deviation of these developed estimators from the observed mean values was also 

monitored in the model fitting process for diameter and height increments and crown recession, 

and presented as the statistic of percentage bias: 
∑( ̂  )

∑ 
    . Percentage form of this statistic 

was taken to ensure their comparability to other studies using different units or under 

contrasting conditions. This statistic was not applied to the mortality model since it was of no 

practical meaning in such context, and was largely decided by the proportions of observations in 

the two categories (dead or alive). 
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3.2.3.2. Annualization 

To reduce cost and measurement error, sample plots are often measured on periodic intervals 

instead of annually. This however hinders the development of growth and yield models, which 

are built as functions of these primary measurements, at a finer resolution than the 

measurement interval. A conventional method to convert interval measurements to annual 

measurements is to average the former over the interval (linear interpolation), which likely 

produces linear increments contradicting the results from the growth model being developed. 

Instead, a recursive annualization technique proposed by Cao (2000) and Weiskittel et al. (2007) 

in the form of Equation [1] was used to make annual growth and mortality predictions in this 

study: 

[ ]        ∑ (    )

   

   

 

where     is the value of the variable of interest (e.g., DBH, height, or status of being dead or 

alive) at the end of the measurement cycle (year j);     is the corresponding value at the 

beginning of the cycle (year i);  (    ) is the growth models developed in this study, which 

utilizes x along with some other variables w as predictors. 

Obviously, this procedure generates interpolated (annualized) values of variables in close 

agreement with their predicted values. It also provides an additional advantage of increased 

model validity with its ability to utilize data of various intervals to increase sample size. Instead 

of modeling growth based on successive measurements, measurements of all possible intervals 

were used as preliminary results indicated a significant improvement in model behavior. Overall, 

a total of 191 277 and 7 161 measurements from Maine and New Brunswick, respectively, were 

available for this analysis. Approaches used for each attribute examined are further described 

below. 
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3.2.3.3. Diameter Increment 

Two general approaches of model formulation, namely potential growth multiplied by a 

modifier and a single unified equation, have been used to predict individual tree growth 

(Weiskittel et al. 2011a). However, it can be difficult to estimate such potential growth, 

especially under the influence of SBW defoliation, and the unified approach generally 

outperforms the potential by modifier approach (e.g., Russell et al. 2014). Based on this, unified 

equations for diameter increment in the form of Equation [2] and [3] with components from 

equations proposed by Holdaway (1984), Weiskittel et al. (2011b), and Garcia et al. (2012) were 

developed for Maine and New Brunswick, respectively: 

[ ]                     (
(     )                   (      ⁄ )

                    (      )    (  )
*    

[ ]                     (
(     )            

           (      )    
*    

where DBH and ∆DBH are initial diameter at breast height (cm) and annual DBH increment (cm 

yr-1), respectively; SPP is species (balsam fir, red/black spruce, or white spruce); BAL is basal area 

of trees larger than the subject tree in DBH (m2 ha-1); BA and BASW are basal area and that of 

softwood trees (m2 ha-1), respectively; HTDOM is dominant height (m); CR is crown ratio; CDEF is 

cumulative defoliation (%); β1-β6 are model parameters; γ2 is a parameter for plot-level random 

effects; and ε is the error of the model. 

3.2.3.4. Height Increment 

For the same reasons given above, height increment was modeled using Equation [4] in a similar 

form to the diameter increment model, as height itself was sufficiently expressed as a function 

of DBH based on a fairly clear relationship between them. This model was not developed for 

New Brunswick due to the lack of available repeated height measurements. 

[ ]                    (
(     )              

           (      )    (  )
*    
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where ∆HT is annual height increment (m yr-1); β1-β4 are model parameters; γ2 is a parameter 

for plot-level random effects; and the other notations are as defined above. 

3.2.3.5. Crown Recession 

Crown recession was modeled as annual height to crown base increment by Equation [5] in a 

mixed form of the incremental and static equations proposed by Russell et al. (2014) such that it 

was modeled directly by using initial height instead of predicted height increment. Since height 

increment was predicted in part as a function of defoliation in this analysis, using predicted 

height increment as a predictor would artificially separate and reduce the effect of defoliation 

on crown recession.  This model was also not developed for New Brunswick due to the lack of 

available crown measurements. 

[ ]       
  

     (
             (     )       ⁄        

                      (      )    (  )
*

   

where ∆HCB is annual height to crown base increment (m yr-1); HT is initial height (m); β1-β5 are 

model parameters; γ2 is a parameter for plot-level random effects; and the other notations are 

as defined above. 

3.2.3.6. Mortality 

Logistic and probit (specifically on the cumulative distribution function of a standard normal 

distribution) models are widely used to model binary variables such as tree mortality (e.g., Liang 

et al. 2005; Maguire et al. 2011). In our data, mortality was a relatively low-probability event 

(mortality on stem counts in general never exceeded 8% in any given year for both Maine and 

New Brunswick). Consequently, the more flexible and asymmetric cumulative distribution 

function of an extreme value distribution (i.e. complementary log-log function) was used to 

model individual tree mortality to account for the fact that most trees lived through wide ranges 
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of conditions such as defoliation and competition. Equations [6] and [7] were used to model 

mortality in Maine and New Brunswick, respectively: 

[ ]            (    (

(     )            (   )          
           ⁄               (      ⁄ )

                    (      )    (  )
))    

[ ]            (    (
(     )          ⁄          

           (      )          
**    

where MORT is the annual probability of mortality; MHTSW is mean height of softwood trees (m); 

β1-β8 are model parameters; γ1 is a parameter for plot-level random effects; and the other 

notations are as defined above. 

3.3. Results 

3.3.1. Diameter Increment 

A total of 89 976, 92 147, and 9 154 observations for balsam fir, red/black spruce, and white 

spruce, respectively, from Maine, and 2 819, 3 497, and 845 observations, respectively, from 

New Brunswick were available for this analysis. The observed mean annual diameter increments 

were 0.13 ± 0.13 (mean ± SD), 0.14 ± 0.14, and 0.15 ± 0.16 cm yr-1 for balsam fir, red/black 

spruce, and white spruce, respectively, in Maine, and 0.27 ± 0.19, 0.21 ± 0.17, and 0.29 ± 0.19 

cm yr-1, respectively, in New Brunswick (Supplemental Materials B.1). The annual diameter 

increment models explained 61% (77%) and 68% (78%) of the variation (including random 

effects) in the Maine and New Brunswick data, with percentage mean biases (including random 

effects) of -9.28% (+2.72%) and -2.90% (+1.34%), respectively (Table 3.1). Most parameter 

estimates were highly significant (p < 0.0001) and logical in their direction and magnitude. 

Parameter estimates were also consistent between the two regions.
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Table 3.1. Parameter estimates with corresponding standard errors (SE) and p-values, and 

model fit statistics of the annual diameter increment models (cm yr-1) by region. BF, BS, RS, and 

WS are balsam fir, black spruce, red spruce, and white spruce, respectively; DBH is initial 

diameter at breast height (cm); BAL is basal area of trees larger than the subject tree in DBH (m2 

ha-1); BA and BASW are basal area and that of softwood trees (m2 ha-1), respectively; HTDOM is 

dominant height (m); CR is crown ratio; CDEF is cumulative defoliation (%). 

 
Maine 

(n = 191 277) 

New Brunswick 

(n = 7 161) 

Parameter 
and Fit Statistic Value SE p-value Value SE p-value 

β1 (DBH∙BF)   0.0465 0.0015 < 0.0001 0.1364 0.0135 < 0.0001 
β1 (DBH∙BS/RS)   0.0376 0.0012 < 0.0001 0.1284 0.0140 < 0.0001 
β1 (DBH∙WS)   0.0420 0.0014 < 0.0001 0.1467 0.0183 < 0.0001 
β2 (DBH) -0.0639 0.0015 < 0.0001 -0.0780 0.0032 < 0.0001 
β3 (BAL)   -0.0293 0.0003 < 0.0001 -0.0353 0.0019 < 0.0001 
β4 (exp(BASW/BA)) -0.2473 0.0076 < 0.0001 -- -- -- 
β5 (HTDOM)  0.0330 0.0015 < 0.0001 -- -- -- 
β6 (log(CDEF+1)/exp(CR)∙BF) -0.1834 0.0054 < 0.0001 -- -- -- 
β6 
(log(CDEF+1)/exp(CR)∙BS/RS) 

-0.0057 
0.0052 0.2708 -- -- -- 

β6 
(log(CDEF+1)/exp(CR)∙WS) 

-0.3094 
0.0940 0.0010 -- -- -- 

β6 (log(CDEF+1)/DBH∙BF) -- -- -- -1.2271 0.2161 < 0.0001 
β6 (log(CDEF+1)/DBH∙BS/RS) -- -- -- -1.8329 0.3160 < 0.0001 
β6 (log(CDEF+1)/DBH∙WS) -- -- -- -2.1061 0.3879 < 0.0001 
γ2 (Random effects on β2)  0.0292   0.0177  
R2 (Fixed effects) 0.61   0.68   
R2 (Incl. random effects) 0.77   0.78   
%Bias (Fixed effects) -9.28   -2.90   
%Bias (Incl. random effects) +2.72   +1.34   

As shown in Figure 3.2, diameter increment increased, soon peaked, and decreased over initial 

DBH, and was at much higher rates in New Brunswick. In both regions, diameter increment 

displayed an inverse relationship with defoliation, which varied among species. In particular, 

diameter increment of balsam fir was significantly more sensitive to defoliation than that of 

red/black spruce in Maine, while such sensitivity to defoliation among different species was less 
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distinguishable in New Brunswick. Specifically, when comparing no and relatively high 

defoliation (200% cumulative defoliation, equivalent to removal of two age classes of foliage), 

predicted mean diameter increments for balsam fir, red/black spruce, and white spruce 

decreased from 0.13, 0.09, and 0.09 cm yr-1 to 0.06, 0.09, and 0.03 cm yr-1, equivalent to 54, 2, 

and 68%, respectively, in Maine, while decreased from 0.21, 0.21, and 0.17 cm yr-1 to 0.15, 0.13, 

and 0.11 cm yr-1, equivalent to 29, 36, and 37%, respectively, in New Brunswick. In addition, 

larger BAL and proportion of softwood trees both led to reduced diameter increment, which 

was otherwise enhanced with higher dominant tree height (potential productivity). 
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Figure 3.2. Predictions of annual diameter increment (ΔDBH; cm yr-1) as a function of initial DBH 

(cm) under 0, 100% (moderate), and 200% (relatively high) cumulative defoliation with all the 

other covariates set at their mean values by species for Maine and New Brunswick. Shaded 

areas represent 95% confidence intervals of these predictions. 
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3.3.2. Height Increment 

The observed mean annual height increments for balsam fir, red/black spruce, and white spruce 

were 0.07 ± 0.21 (mean ± SD), 0.05 ± 0.15, and 0.06 ± 0.18 m yr-1, respectively, for Maine 

(Supplemental Materials B.1). The height increment model for Maine explained 26% (40%) of 

the variation (including random effects) in the data, with mean bias (including random effects) 

averaging -16.85% (-1.21%). Most parameter estimates were highly significant (p < 0.0001) and 

logical in their direction and magnitude, except the influence of defoliation on white spruce 

height increment was quite variable (Table 3.2). 

Table 3.2. Parameter estimates with corresponding standard errors (SE) and p-values, and 

model fit statistics of the annual height increment model (m yr-1) for Maine. BF, BS, RS, and WS 

are balsam fir, black spruce, red spruce, and white spruce, respectively; DBH is initial diameter 

at breast height (cm); HTDOM is dominant height (m); CR is crown ratio; CDEF is cumulative 

defoliation (%). 

Parameter 
and Fit Statistic Value SE p-value 

β1 (DBH∙BF)   0.0053 0.0003 < 0.0001 
β1 (DBH∙BS/RS)   0.0045 0.0003 < 0.0001 
β1 (DBH∙WS)   0.0037 0.0003 < 0.0001 
β2 (DBH)   -0.0514 0.0024 < 0.0001 
β3 (HTDOM) 0.0171 0.0031 < 0.0001 
β4 (log(CDEF+1)/exp(CR)∙BF) -0.0204 0.0150 0.1719 
β4 (log(CDEF+1)/exp(CR)∙BS/RS) -0.0638 0.0176 0.0003 
β4 (log(CDEF+1)/exp(CR)∙WS) -0.7062 0.3134 0.0242 
γ2 (Random effects on β2)  0.0433  
R2 (Fixed effects) 0.26   
R2 (Incl. random effects) 0.40   
%Bias (Fixed effects) -16.85   
%Bias (Incl. random effects) -1.21   

Height increment exhibited the same pattern as diameter increment over initial DBH, but was 

rather insensitive to changes in DBH, and remained low regardless of the levels of defoliation 

(Figure 3.3). Unlike the generally more significant reduction of diameter increment in response 
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to defoliation, such reduction from the already low baseline height increment was minimal at 

both absolute and relative scales (Figure 3.3). Although improved site productivity (as indicated 

by dominant height) appeared to improve height increment, this effect was negligible in 

quantity. 

 

Figure 3.3. Predictions of annual height increment (ΔHeight; m yr-1) as a function of initial DBH 

(cm) under 0, 100% (moderate), and 200% (relatively high) cumulative defoliation with all the 

other covariates set at their mean values by species for Maine. Shaded areas represent 95% 

confidence intervals of these predictions. 

3.3.3. Crown Recession 

The observed mean annual height to crown base increments for balsam fir, red/black spruce, 

and white spruce were 0.22 ± 0.69 (mean ± SD), 0.14 ± 0.50, and 0.19 ± 0.59 m yr-1, respectively, 

for Maine (Supplemental Materials B.1). The crown recession model for Maine explained 37% 

and 23% of the variation in the data, with percentage bias averaging -7.56% and -25.91% with 

and without accounting for random effects in the data, respectively (Table 3.3). Most parameter 

estimates were highly significant (p < 0.0001) and logical in their direction and magnitude.
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Table 3.3. Parameter estimates with corresponding standard errors (SE) and p-values, and 

model fit statistics of the annual crown recession model (changes in height to crown base; m yr-

1) for Maine. BF, BS, RS, and WS are balsam fir, black spruce, red spruce, and white spruce, 

respectively; DBH is initial diameter at breast height (cm); HT is initial height (m); BAL is basal 

area of trees larger than the subject tree in DBH (m2 ha-1); BA and BASW are basal area and that 

of softwood trees (m2 ha-1); CR is crown ratio; CDEF is cumulative defoliation (%).  

Parameter 
and Fit Statistic Value SE p-value 

β1 (DBH2∙BF)  -0.0013 < 0.0001 < 0.0001 
β1 (DBH2∙BS/RS) -0.0015 < 0.0001 < 0.0001 
β1 (DBH2∙WS)  -0.0016 < 0.0001 < 0.0001 
β2 (HT/DBH) -4.8643 0.0776 < 0.0001 
β3 (BAL) -0.0029 0.0009 0.0017 
β4 (BASW/BA) -0.0331 0.0040 < 0.0001 
β5 (log(CDEF+1)/exp(CR)∙BF)   -0.0394 0.0148 0.0079 
β5 (log(CDEF+1)/exp(CR)∙BS/RS)  -0.4541 0.0159 < 0.0001 
β5 (log(CDEF+1)/exp(CR)∙WS)  -0.3540 0.1151 0.0021 
γ2 (Random effects on β2)  1.3117  
R2 (Fixed effects) 0.23   
R2 (Incl. random effects) 0.37   
%Bias (Fixed effects) -25.91   
%Bias (Incl. random effects) -7.56   

The crown recession model exhibited a similar behavior as the height increment model over 

initial diameter, but peaked at larger diameters and showed greater reduction in response to 

defoliation (Figure 3.4). Specifically, when comparing no and relatively high defoliation (200% 

cumulative defoliation), predicted mean annual height to crown base increments for balsam fir, 

red/black spruce, and white spruce decreased from 0.15, 0.19, and 0.20 m yr-1 to 0.13, 0.03, and 

0.05 m yr-1, respectively, in Maine. In addition, higher height to DBH ratio, BAL, and proportion 

of softwood trees all reduced the rate of crown recession, while greater crown ratio was related 

to increased rate of crown recession. 
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Figure 3.4. Predictions of annual crown recession (ΔHeight to crown base; m yr-1) as a function 

of initial DBH (cm) under 0, 100% (moderate), and 200% (relatively high) cumulative defoliation 

with all the other covariates set at their mean values by species for Maine. Shaded areas 

represent 95% confidence intervals of these predictions. 

 3.3.4. Mortality 

Observed annual mortality rate changed considerably over the duration of the SBW outbreak, 

and averaged 5.8, 1.3, and 0.4% for balsam fir, red/black spruce, and white spruce, respectively, 

in Maine, and 2.8, 1.2, and 1.1%, respectively, in New Brunswick (Supplemental Materials B.1). 

Cumulative mortality rates for balsam fir, red/black spruce, and white spruce were 40.5, 11.3, 

and 3.3% (over 10 years), respectively, in Maine, and 8.9, 4.9, and 4.7% (over 6 years), 

respectively, in New Brunswick. The mortality models had maximum classification accuracy of 

95% and 99% regardless of the inclusion of random effects, and areas under the receiver 

operating characteristic curve were 0.76 and 0.65 (0.84 and 0.80 including random effects) for 

Maine and New Brunswick, respectively. Most parameter estimates were highly significant (p < 

0.0001) and logical in their direction and magnitude. Parameter estimates were also largely 

consistent between the two regions, and in agreement with the diameter increment models 

(Table 3.4).
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Table 3.4. Parameter estimates with corresponding standard errors (SE) and p-values, and model fit statistics of the annual mortality rate 

models by region. BF, BS, RS, and WS are balsam fir, black spruce, red spruce, and white spruce, respectively; DBH is initial diameter at 

breast height (cm); MHTSW is mean height of softwood trees (m); HT is initial height (m); BAL is basal area of trees larger than the subject 

tree in DBH (m2 ha-1); BA and BASW are basal area and that of softwood trees (m2 ha-1), respectively; HTDOM is dominant height (m); CR is 

crown ratio; CDEF is cumulative defoliation (%). 

 
Maine 

(n = 191 277) 

New Brunswick 

(n = 7 161) 

Parameter 
and Fit Statistic Value SE p-value Value SE p-value 

β1 (Intercept)  -5.2900 0.2364 < 0.0001  -13.9284 1.1494 < 0.0001 
β2 (log(DBH)∙BF)   -0.0400 0.0541 0.4601 -- -- -- 
β2 (log(DBH)∙BS/RS)   -0.9416 0.0624 < 0.0001 -- -- -- 
β2 (log(DBH)∙WS) -0.9899 0.1434 < 0.0001 -- -- -- 
β3 (MHTSW)  0.1716 0.0128 < 0.0001 -- -- -- 
β4 (HT/MHTSW)   1.0121 0.0478 < 0.0001 -- -- -- 
β5 (BAL)  0.0256 0.0014 < 0.0001 -- -- -- 
β6 (exp(BAHW/BA))  -0.1882 0.0702 0.0073  -- -- -- 
β6 (HT/DBH) -- -- -- 9.8633 0.5438 < 0.0001 
β7 (HTDOM) -0.1977 0.0060 < 0.0001 -0.1887 0.0361 < 0.0001 
β8 (log(CDEF+1)/exp(CR)∙BF) 0.3889 0.0073 < 0.0001 -- -- -- 
β8 (log(CDEF+1)/exp(CR)∙BS/RS) 0.5366 0.0234 < 0.0001 -- -- -- 
β8 (log(CDEF+1)/exp(CR)∙WS) 0.9257 0.0770 < 0.0001  -- -- -- 
β8 (log(CDEF+1)∙HT/MHTSW∙BF) -- -- -- 0.7026 0.1243 < 0.0001 
β8 
(log(CDEF+1)∙HT/MHTSW∙BS/RS) 

-- -- -- 
0.3676 

0.1502 0.0144 

β8 (log(CDEF+1)∙HT/MHTSW∙WS)  -- -- -- 0.3174 0.1378 0.0213 
γ1 (Random effects on β1)  1.3602   2.5955  
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(Table 3.4. continued) 

 
Maine 

(n = 191 277) 

New Brunswick 

(n = 7 161) 

Parameter 
and Fit Statistic Value SE p-value Value SE p-value 

Max. classification accuracy (%) 
(Fixed effects) 

95   99   

Max. classification accuracy (%) 
(Incl. random effects) 

95   99   

Area under curve 
(Fixed effects) 

0.76   0.65   

Area under curve 
(Incl. random effects) 

0.84   0.80   
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Mortality rates generally remained low over the observed DBH range, and were most strongly 

influenced by the severity of defoliation, even at the relatively moderate defoliation levels (two 

age classes of foliage removed) observed in the sample plots (Figure 3.5). Mortality decreased 

with increased DBH, and this decrease was much sharper in New Brunswick where mortality was 

mainly observed among small trees. The highest mortality rates were observed and predicted 

for balsam fir, although mortality rates of white spruce in Maine tended to be as sensitive to 

these increases in defoliation as balsam fir, which resulted in relatively large amount of variation 

in their mortality (Figure 3.6). In addition, higher mortality rate was attributed to both larger 

BAL and trees with advantageous social status (as identified by Reams et al. 1988; indicated by 

the ratio of tree height to mean tree height in a plot), while better site productivity (indicated by 

dominant height), higher proportion of hardwood trees (as identified by Reams et al. 1988), and 

improved tree vigor (indicated by crown ratio) all lowered mortality rates. 
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Figure 3.5. Predictions of annual mortality probability (%) as a function of initial DBH (cm) under 

0, 100% (moderate), and 200% (relatively high) cumulative defoliation with all the other 

covariates set at their mean values by species for Maine and New Brunswick. Shaded areas 

represent 95% confidence intervals of these predictions 
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3.4. Discussion 

Overall, the fit of our models was generally sufficient and on par with expectations from 

previous growth modeling in the region (e.g. Weiskittel et al. 2011b, Russell et al. 2014). In 

particular, all of our models had relatively small biases, and were consistent with biological 

expectations despite the large underlying variation in the data. 

Nevertheless, considerable amount of variation remained unexplained by our models. This could 

be due largely to the inherently high variability in tree growth as well as the large range in stand 

and site conditions present in our data, particularly with respect to observed defoliation levels. 

Defoliation is typically variable both temporally and spatially when at low-moderate SBW 

population levels, but is more uniformly severe at high SBW population levels (Zhao et al. 2014). 

In addition, sampling issues such as the difficulty in obtaining reliable annual height and height 

to crown base measurements, the use of variable radius sample plots in New Brunswick, and the 

degree of training of crews in defoliation assessment might also be potentially influential. 

Regardless, the data used are extensive, long-term, and representative so the developed models 

should be relatively robust to these sampling issues and predicted behavior was consistent with 

expectations.  

Generally, it was found that the effects of SBW defoliation on diameter and height increment, 

crown recession, and mortality were all highly significant, but relatively moderate in magnitude. 

For example, mean relative diameter growth reduction for balsam fir between no noticeable 

defoliation and 200% cumulative defoliation (equivalent to removal of two age classes of 

foliage) was estimated to be 54 and 29% for Maine and New Brunswick, respectively. These 

values are in the range of the 20-60% reduction reported for years 3-5 of a SBW outbreak by 

MacLean (1979) and the maximum 50% reduction estimated by Pothier et al. (2005). In contrast, 

under more severe cumulative defoliation levels of 400-600%, increment reduction was about 
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80% or more (Ostaff and MacLean 1995). In absolute terms, MacLean (1988) reported balsam fir 

annual diameter increment ranged from 0.06 to 0.17 cm, while Steinman and MacLean (1994) 

showed annual diameter increment for balsam fir, black spruce, and white spruce to be 0.10-

0.28, 0.10-0.24, and 0.10-0.36 cm, respectively, which all overlap with our predictions (Figure 

3.3). 

Interestingly, there was relatively little reduction in both observed and predicted height 

increment due to SBW defoliation. Unfortunately, limited quantitative information on the effect 

of defoliation on height increment was found from previous studies. Ostaff and MacLean (1989) 

suggested that severe defoliation resulted in the cessation of height growth as leaders were 

repeatedly destroyed, while Van Sickle (1987) stated that height growth dropped abruptly under 

moderate and severe defoliation due to the destroyed terminal buds not producing annual 

internodes and consequent top-kill affected up to 63% of the Douglas-fir (Pseudotsuga menziesii 

(Mirbel) Franco) trees with defoliation from western spruce budworm. In this analysis, 76% of 

the observations had no observable height increment and their consequent low predicted 

values likely confirmed the findings of Van Sickle (1987). In addition, observed and predicted 

height increment in this analysis were also much lower than those reported by Russell et al. 

(2014), which suggests the effect of SBW was already implicit in the underlying data. For 

example, Russell et al. (2014) reported a mean annual height increment for balsam fir, black 

spruce, red spruce, and white spruce of 0.32, 0.17, 0.25, and 0.28 m yr-1, respectively, while 

observed and predicted mean values in this analysis never exceeded 0.1 m yr-1.  

In this analysis, presence of broken tops was noted and these observations were not included in 

the analysis so this would be an unlikely reason for the low predicted height increments. When 

the reductions due to 200% cumulative defoliation (equivalent to removal of two age classes of 

foliage) in both diameter and height increments for the average sized tree were combined to 
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estimate annual volume increment reduction using a species-specific taper function (Li et al. 

2012), values of 28, 16, and 54% were observed for balsam fir, red/black spruce, and white 

spruce, respectively. This volume increment reduction was obviously influenced more by the 

reduction in diameter increment rather than height increment. In comparison, MacLean et al. 

(1996) reported an 83% reduction in annual specific volume increment for balsam fir that 

sustained about 550% cumulative defoliation over 7 years.  

Observed and predicted mean crown recession rates in this study were much lower than those 

of 0.42, 0.23, 0.31, and 0.27 m yr-1 for balsam fir, black spruce, red spruce, and white spruce, 

respectively, reported by Russell et al. (2014). Our models indicated such a strong effect of 

defoliation in reducing crown recession that practically halted it for the spruce species. This 

could be a result of more light penetrating through the defoliated crown and allowing lower 

branches to remain on trees longer. However, crown recession rates of different species are in 

the same order (i.e. balsam fir > red/black spruce > white spruce) in these two studies, which 

means the much higher levels of defoliation of balsam fir compared to the spruce species did 

not slow crown recession proportionally, but likely indicates that other physiological or 

environmental factors other than light availability also considerably affected crown recession 

under the influence of SBW defoliation. 

In contrast, some important differences in terms of observed and predicted mortality patterns 

between this study and previous ones exist. For example, MacLean (1979) reported balsam fir 

mortality between 1977 and 1978 in Cape Breton Island to be <1-17% by stem number, while a 

20% annual mortality rate (and 87% cumulative mortality rate) by volume was reported by 

MacLean and Ostaff (1989). The cumulative mortality rates of 92-100% and 32-59% by basal 

area were reported for balsam fir and spruce species, respectively, in Maine (Solomon et al. 

2003). However, all of these figures were significantly higher than both observed and predicted 
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values in our study (Supplemental Materials B.1 and Figure 3.5), which is likely explained by 

differences in defoliation level. Mean cumulative defoliation was 136% and 82% in Maine and 

New Brunswick, respectively, while that in severe outbreaks was typically 400-600% or higher, 

equivalent to removal of four to six age classes of foliage. Most of the studies that indicated 

heavier influences of defoliation were conducted in uncontrolled severe SBW outbreaks either 

on Cape Breton Island, Nova Scotia, Canada (e.g. MacLean 1979, 1988, MacLean and Ostaff 

1989) or in Baxter State Park, Maine (e.g. Osawa et al. 1986, Solomon et al. 2003), and probably 

reflect the upper boundary of observed mortality rates due to defoliation during a severe 

outbreak (MacLean 1980). Although the observations in this analysis were conducted after the 

start of the last major SBW outbreak, they were taken across a larger geographic area and 

longer temporal period than most of these previous studies. 

Our study showed that the examined species responded to defoliation differently in Maine such 

that greatest diameter growth reductions and higher mortality rates were observed for balsam 

fir than for those spruce species under the same level of defoliation. However, these species 

were unlikely to be equally susceptible to defoliation. Hennigar et al. (2008) and Chen et al. 

(2017b) both indicated that balsam fir sustained higher levels of defoliation than other host 

species at the same location. Balsam fir and black and red spruce were significantly more 

susceptible than white spruce in Maine such that the latter species was unlikely to experience 

high levels of defoliation (Supplemental Materials B.1). This finding is partially contrary to what 

was observed in New Brunswick and previous studies that have suggested that white spruce was 

more susceptible than black and red spruce (e.g. MacLean and Erdle 1986, Hennigar et al. 2008). 

Interestingly, all of our estimated model parameters for white spruce in this analysis had larger 

amount of variation, which may indicate less representative samples from both regions. 
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Defoliation also likely altered the relationship between competition and growth such that 

relative growth rates declined with decreased social status (Perry 1985). Specifically, improved 

tree social status, measured as the ratio between a tree's height and the mean height of 

softwood trees in a plot, was related to decreased diameter increment and increased mortality 

when the other factors were held constant. This finding agrees with Turner (1952) that mortality 

generally increased with the relative height of balsam fir and Reams et al. (1988) that 

suppressed trees were more likely to survive, which could be the result of lower energy reserve, 

reduced wind-firmness, and higher crown exposure to SBW of these larger trees (Mott 1963). 

Although some studies suggested that understory trees were extremely vulnerable to 

defoliation (e.g. Irland et al. 1988), it was rather difficult to relate this to either the effect of 

defoliation or the generally low vigor of these trees. 

It had long been observed that SBW host species received protection from defoliation by 

hardwood trees in stands and forests due to increased dispersal and migration losses of SBW 

(Mott 1963; Baskerville 1975). In this study, a similar potential effect was noted as diameter 

increment increased (i.e. was less reduced compared to average stand conditions) and mortality 

rate decreased (i.e. was less increased compared to average stand conditions) in stands with 

higher hardwood content under the influence of defoliation (Tables 3.1 and 3.4). This effect on 

decreased mortality rate has also been reported by Turner (1952) and Reams et al. (1988), while 

Su et al. (1996) showed that defoliation of balsam fir significantly decreased with increases in 

hardwood content, which obviously would result in less reduced tree growth. 

Differences in mortality rate were observed between Maine and New Brunswick, but these 

differences did not follow the same pattern across species. In general, mortality rates among 

trees of different sizes were less distinctive in Maine, but much higher among smaller trees in 

New Brunswick. Mortality of balsam fir was most sensitive to defoliation in both regions, while 
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red/black spruce was least sensitive to defoliation both in terms of mortality and diameter 

increment in Maine. The high variation in white spruce's response to defoliation in terms of 

mortality as well as diameter and height increment, and crown recession was likely an effect of 

extrapolation of a less representative sample. Considering balsam fir, on average, experienced 

higher level of defoliation than the other subject species, it indicated the dominant effect of 

defoliation on host tree mortality during a SBW outbreak. In addition, higher levels of 

defoliation of balsam fir and red/black spruce in Maine could be a cause for their much lower 

diameter growth when compared to New Brunswick. Other factors such as management history, 

age, composition, and productivity of forests, and the fact that data were collected in New 

Brunswick more towards the end of the SBW outbreak could also have contributed to these 

regional differences. 

In each of our models, considerable variation was accounted for by random effects among 

sample plots. Our previous stand-level analysis (Chen et al. 2017b) indicated that these random 

effects likely reflected spatio-temporal autocorrelation in individual tree growth and mortality 

as well as in the dynamics of SBW outbreak. The fact that models constructed for New 

Brunswick (where stratification was applied in the sampling process) tend to explain relatively 

large amount of variation of the data with the inclusion of fewer predictors likely confirms such 

autocorrelation. However, preliminary analysis indicated that the inclusion of a spatial or 

temporal autocorrelation error structure did not significantly improve model fit. Modeling 

spatial autocorrelation would require a denser sample plot network over a broad area, while 

addressing temporal autocorrelation would require data of longer time series than most SBW 

outbreaks last. Despite these limitations, the developed equations in this analysis represent one 

of the most comprehensive assessments of the effects of SBW individual tree growth and 
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mortality, but their performance will need to be assessed during the next SBW outbreak to 

evaluate their representativeness. 
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CHAPTER 4 

MODELLING VARIATION AND TEMPORAL DYNAMICS OF INDIVIDUAL TREE DEFOLIATION 

CAUSED BY SPRUCE BUDWORM IN MAINE, US AND NEW BRUNSWICK, CANADA1 

4.1. Introduction 

Insect defoliation reduces the growth and survival of trees. Variability in these effects on trees 

has been defined as trees' vulnerability to defoliation by Mott (1963) and has been rather 

intensively studied for a variety of forest insect defoliators (e.g., Muzika and Liebhold 1999, 

Anstey et al. 2002, Chen et al. 2017a). In contrast, trees vary in their capacity in supporting 

insect defoliator population, i.e., trees tend to be defoliated to various levels depending on a 

number of possible factors like their species, size, and crown position. This variation in 

defoliation has been defined as trees' susceptibility to defoliation caused by a defoliator (Mott 

1963). Although the damaging effects of defoliation are the result of both the vulnerability and 

susceptibility of trees, these effects are often evaluated at defoliation levels predetermined by 

investigators (scenarios; e.g., Pothier et al. 2005, Hennigar et al. 2013) such that the variation in 

defoliation has been largely ignored. 

Overlooking the variation in defoliation is especially the case for the defoliation of spruce-fir 

(Picea-Abies) forests caused by spruce budworm (SBW; Choristoneura fumiferana (Clem.)), 

which is the primary forest defoliator in North America. SBW defoliation has affected over 58 

million ha of forests during its last major outbreak in the 1970s and 1980s (Blais 1983, USDA 

Forest Service 2009), and frequently shifted between conditions of low to almost complete 

defoliation over large temporal and spatial extents of outbreaks (Irland et al. 1988). Variation in 

SBW defoliation has long been observed among trees and over time (e.g., MacLean and Lidstone 

                                                           
1
 This chapter previously appeared as an article as follows: Chen, C., Weiskittel, A., Bataineh, M., 

and MacLean, D.A. 2018. Modelling variation and temporal dynamics of individual tree 
defoliation caused by spruce budworm in Maine, US and New Brunswick, Canada. Forestry 92: 
133-145. 



68 
 

1982, Gray et al. 2000, Doran et al. 2017). While many entomological studies have implicitly 

investigated this variation from the perspective of SBW population dynamics (e.g., birth and 

death, immigration and emigration, and SBW and host relationship; Greenbank 1963a, Royama 

1984, Nealis and Régnière 2004), patterns of this variation has been little examined or modelled 

for direct use in forest management, especially in the application of forest growth and yield 

models. Nevertheless, a few studies have looked into this variation at a relatively coarse scale of 

forest stands. For example, Alfaro et al. (2001) found old and less dense stands were more 

susceptible to SBW defoliation, while Hennigar et al. (2008) quantified defoliation of each 

spruce (Picea spp.) species relative to observed mean defoliation of balsam fir (Abies balsamea 

L.) in the same stand, where red spruce (Picea rubens Sarg.), black spruce (Picea mariana (Mill.) 

B.S.P.), white spruce (Picea glauca (Moench) Voss) and balsam fir were all present. 

However, the coarseness of analytical scales of defoliation may have limited our understanding 

of the variation in SBW defoliation. While tree-level models have been considered the new 

standard for modelling forest growth and survival (e.g., Crecente-Campo et al. 2010, Weiskittel 

et al. 2011a), variation in SBW defoliation has been predominantly evaluated at stand-level (e.g., 

Irland et al. 1988, Alfaro et al. 2001, Hennigar et al. 2008), which is potentially problematic in 

distinguishing the effects of various factors on susceptibility. For example, a pure stand being 

more susceptible may be attributed to either the susceptibility of the species or the lack of 

diversity of the stand. Likewise, susceptibility of mixed stands may also be affected by a variety 

of specific, compositional, and structural factors, which could all be evaluated as the possible 

influence of stand species composition. Therefore, the evaluation of susceptibility to SBW 

defoliation would benefit significantly from a cross-scale approach, which would allow potential 

effects to be evaluated at suitable scales (e.g., specific effects may be better assessed at tree-
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level to separate structural and compositional effects of stands, while diversity can be analysed 

at larger scales) by utilizing a variety of tree-, stand-, and site-level characteristics. 

An important potential application of this cross-scale approach, which utilizes information of 

forest at various scales, is to replace costly and time-consuming individual tree defoliation 

measurements with predictions based on defoliation measured through remote sensing at 

relatively large spatial scales. Measurements of SBW defoliation have been relied mainly on four 

methods: 1) egg-mass counting (Simmons 1974), 2) moth trapping (Irland et al. 1988), 3) on-site 

visual examination of defoliation (Solomon and Brann 1992), and 4) aerial sketch-mapping of 

defoliation (visual estimation of defoliation by an observer in an airplane; MacLean and 

MacKinnon 1996). While aerial sketch-mapping can be used to measure defoliation over large 

areas, it requires observers to make large area assessments in a limited time frame. It is also too 

coarse to be used to evaluate the variation in defoliation at a meaningful scale in forest 

management (e.g., a single defoliation category has been assigned to areas from several km2 to 

tens of thousands km2, within which defoliation levels as well as forest conditions and types 

varied greatly; Hennigar et al. 2013). In addition, the first three methods could be costly and 

time-consuming depending on sample size, and require conversion of indirect measurements of 

defoliation as well as spatial statistical techniques to infer defoliation over large areas. As forest 

measurements increasingly rely on remote sensing, SBW defoliation can potentially be 

measured at large spatial scales (e.g., at stand-level) using aerial or satellite imagery at a 

resolution of tens of meters or coarser (e.g., Rahimzadeh-Bajgiran et al. 2018). Consequently, it 

is desirable to create cross-scale models that are able to leverage these coarse observations of 

defoliation, while providing detailed defoliation predictions for individual trees where the 

effects of defoliation on the growth and survival of trees actually occur. 
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Our evaluation of the variation in individual tree defoliation was supported by over 47 000 

individual tree observations of SBW defoliation from an extensive network of 560 permanent 

sample plots (PSP), which covered a longitudinal range of ~ 490 km and a latitudinal range of ~ 

340 km, as well as 10 years of the last SBW outbreak in the 1970s-1980s in Maine and New 

Brunswick. These data comprised a wide range of forest conditions and defoliation observations 

(although mainly in relatively low levels of < 30% annually; Chen et al. 2017b) accompanied by 

detailed tree measurements, from which a variety of tree- and stand-level characteristics were 

derived and evaluated for their potential effects on individual tree defoliation dynamics. 

While considering the effects of tree-, stand-, and site-level characteristics on SBW defoliation, 

the primary relationship that our models evaluated was between individual tree- and stand-

level defoliation, which has the potential to be more efficiently measured through remote 

sensing (e.g., Rahimzadeh-Bajgiran et al. 2018). Regardless of measurement method, stand-level 

defoliation is the mean of individual tree defoliation of trees within a stand (weighted by their 

crown sizes). However, this exact measure of stand-level defoliation cannot be obtained through 

the inherently coarse aerial sketch-mapping, which is the only method that has been applied to 

measure SBW defoliation over large areas. For example, aerial sketch-mapping indicated 

defoliation of whole northern Maine to be 30%-70% in 1975 and 1976 (Hennigar et al. 2013), 

while stand-level defoliation calculated from on-site measurements of individual tree defoliation 

were actually out of this broad range in 88% of the cases (Chen et al. 2017b). In addition, future 

remote sensing measurements of stand-level defoliation likely are based on a trained 

relationship between this calculated exact stand-level defoliation and optical remote sensing 

signals of aerial or satellite imagery (e.g. Rahimzadeh-Bajgiran et al. 2018). Consequently, stand-

level defoliation was obtained as the mean of individual tree defoliation observations (weighted 

by volumes as a surrogate of crown sizes, which were not measured) in this study. In this way, 
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the underlining relationship between individual tree- and stand-level defoliation was evaluated 

without losing generality due to measurement errors inherent in remote sensing signals and 

errors in predicting stand-level defoliation from these signals. 

Chen et al. (2017b) showed that there was a large variation in observed SBW defoliation among 

a number of previous studies. Therefore, it is less intuitive to interpret these observations of 

defoliation from various studies as repeatable random samples generated by a set of fixed but 

unknown parameters. Instead, these parameters may be considered random and distributed 

over large ranges, which were consequently related to the significant spatial and temporal 

variation in observed SBW defoliation. This motivated this study to be the first to analyse SBW 

defoliation dynamics using a Bayesian method, which offers several key advantages. First, the 

results from this study have the potential of providing highly informative priors to similar 

studies. Second, these results may also be improved with the inclusion of increasingly available 

data. Third, this method will be able to better represent the observed variation in defoliation 

and partition it to the appropriate hierarchical levels.  

Our specific research objectives were to: 1) assess the relationship between individual tree 

defoliation and stand-level defoliation across multiple SBW host species; 2) evaluate the effects 

and relative importance of various tree-, stand-, and site-level factors on individual tree 

defoliation; 3) model the temporal dynamics of individual tree defoliation based on its initial 

observation; and 4) compare and evaluate the determined relationships across Maine and New 

Brunswick to better verify the robustness and consistency of our findings. Despite some 

previous studies that have emphasized the effects of stand structure and composition on the 

susceptibility to defoliation (e.g. MacLean 1979, Colford-Gilks et al. 2012), we expect these 

effects to be of much smaller magnitudes compared with differences among SBW host species' 

susceptibility to SBW defoliation. Moreover, we expect the temporal development of SBW 
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defoliation to follow similar trajectories regardless of initial differences in tree-, stand-, and site-

level factors.  

4.2. Methods 

4.2.1. Study Area 

The combined study area (44°56'-48°00' N, 64°28'-70°44' W) in Maine and New Brunswick 

mainly belongs to the temperate broadleaf mixed forest biome. The most common forest types 

in Maine include maple-beech-birch (Acer-Fagus-Betula) of 2.9 million ha and spruce-fir of 2.4 

million ha in 2003 (McWilliams et al. 2005). Growing stock of SBW's major hosts of balsam fir, 

red spruce, black spruce, and white spruce was 117, 146, 14, and 17 million m3, respectively, in 

1982, and 65, 100, 15, and 17 million m3, respectively, in 2003 (McWilliams et al. 2005). New 

Brunswick has 2.5, 1.8, and 1.4 million ha of softwood, mixedwood, and hardwood forests, 

respectively, in 2001 (Power and Gillis 2006). Growing stock of balsam fir and spruce was 118 

and 154 million m3, respectively, in 1981, and 91 and 174 million m3, respectively, in 2001 

(Bonnor 1982, Power and Gillis 2006).  

Soils in Maine and New Brunswick are generally infertile, acidic, and low in permeability 

(Ferwerda et al. 1997; Rees et al. 2005). Maine has a humid continental climate with warm, 

humid summers, and cold, snowy winters. Annual precipitation varies from 909 to 1 441 mm 

and is distributed evenly year-round. Climate in New Brunswick is similar to that of Maine with 

annual precipitation ranging from 889 to 1 143 mm, evenly distributed through the year. 

Elevation of the study areas in Maine and New Brunswick ranged from 41-691 m and 0-578 m, 

respectively. These two areas have generally similar SBW outbreak histories and both 

experienced a relatively severe one in the 1970s-1980s. 
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4.2.2. Data 

The data used in this study came from the University of Maine Cooperative Forestry Research 

Unit Growth Impact Study data collected in northern Maine, US (Solomon and Brann 1992) and 

Canadian Forest Service permanent sample plots data collected in New Brunswick, Canada 

(MacLean and Erdle 1986). There are two major differences between the two datasets: 

1) Species composition. Balsam fir, red spruce, black spruce, white spruce, and hardwoods 

accounted for 36%, 24%, 2%, 3%, and 18% of all trees, respectively, in Maine, and 32%, 23%, 

11%, 9%, and 14% of all trees, respectively, in New Brunswick at the offset of these data. 

2) Stage of the SBW outbreak. The Maine data covered most of the temporal extent of the 

outbreak in the 1970s-1980s, while New Brunswick data were at the declining stage of this 

outbreak. 

4.2.2.1. Growth Impact Study of Maine 

The Growth Impact Study was initiated in 1975 (after SBW activity reached epidemic level in 

1974) as a cooperative effort among federal and state forest agencies, as well as private forestry 

companies to document the impact of SBW on growth and mortality of the Maine forest. Data 

were collected at 424 ~ 0.02 ha circular plots including 8 762 trees ≥ 11.4 cm in diameter at 

breast height (DBH) throughout northern Maine during 1975-1985. The data included annual 

records of species, DBH, crown position, cause of death, total height, crown length, and degree 

of defoliation. Each year during the study period, current-year and previous-years foliage on 

each host tree within the plot were visually examined for the degree of defoliation, and 

categorized separately into one of five (before 1982; 0, 1-5%, 6-20%, 21-50%, and 51-100%) or 

eleven classes (after 1982; 0-10%, 11-20%, 21-30%, 31-40%, 41-50%, 51-60%, 61-70%, 71-80%, 

81-90%, 91-99%, and 100%) of defoliation. In addition, aerial spraying of insecticide has been 
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applied to a part of these plots during 1970-1974. More detailed descriptions of the data are 

provided in Chen et al. (2017a, 2017b). 

4.2.2.2. Permanent Sample Plots of New Brunswick 

Approximately 1 500 random PSPs were established between 1976-1979 as part of the New 

Brunswick Department of Forests, Mines, and Energy Forest Inventory. Of these plots, 136 were 

selected for SBW related studies based on stratification by species, maturity, and degree of 

insecticide use for protection. Each PSP consisted of three permanent prism points (basal area 

factor = 2 m2 ha-1) located 40 m apart where species, DBH, crown class, year of death, initial 

height, and degree of defoliation of each tree were recorded. The above data were collected 

during 1976-1993, with DBH initially measured between 1976 and 1979 and remeasured in 

1980, 1983, 1985, 1988, and 1991. Current-year and total defoliation (defoliation on all age 

classes of foliage) were both measured annually during 1984-1993, while height was measured 

once during 1976-1979. For all of the 6 316 sample trees in the PSP data set, only the 5 503 

trees compatible in size with the Growth Impact Study dataset (i.e. DBH ≥ 11.4 cm) were 

included in this study. Both current-year and total defoliation in the New Brunswick PSPs was 

estimated for each host tree each year by scanning the crowns with binoculars. The results of 

both types of defoliation were separately put into seven percentage classes of 0-10%, 11-20%, 

21-40%, 41-60%, 61-80%, 81-99%, and 100%. Again, more detailed descriptions of the data are 

provided in Chen et al. (2017a, 2017b). 

4.2.2.3. Data Compilation 

Since SBW defoliation primarily affects current-year foliage (Irland et al. 1988), response 

variable of individual tree defoliation was taken as the midpoints of current-year defoliation 

observations, which averaged 28% and 22% in Maine and New Brunswick, respectively. Stand-

level defoliation was calculated as the mean of individual tree defoliation of trees within a plot 
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weighted by their volumes (Chen et al. 2017b), which averaged 19% and 16% in Maine and New 

Brunswick, respectively. The SBW host species analysed in this study were balsam fir as well as 

red, black, and white spruce. Since natural hybridization between red and black spruce may 

have caused identification problems during the data collection (Gordon 1976, Bobola et al. 

1992), and the sample size of black spruce in Maine was relatively small, red and black spruce 

were combined into one species group in this study. Temporal development of individual tree 

defoliation (defoliation in future years) was analysed only for trees with more than two annual 

observations of defoliation to allow a little flexibility in model set-up. Also, because of the 

generally much shorter time series of defoliation observations in New Brunswick, this analysis 

for temporal development of defoliation was not applied. 

As shown in Chen et al. (2017a, 2017b), a variety of tree-, stand-, and site-level characteristics 

derived from the data were evaluated for their potential effects on individual tree defoliation. 

These characteristics included the following: 1) SBW host species (balsam fir, red/black spruce, 

and white spruce); 2) host species composition represented by the abundance of each of these 

species in each plot; 3) proportion of non-host trees in each plot; 4) individual tree size 

attributes including DBH, height, crown ratio, and various transformations of these variables; 

and 5) measures of competition and tree social status such as basal area of larger trees and the 

ratio between height and mean height of trees in each plot. While some previous studies 

considered topography an important factor affecting SBW defoliation (e.g., Osawa et al. 1986, 

Bouchard and Auger 2014), preliminary analysis found no noticeable relationship between 

common topographic attributes (e.g. elevation, slope, aspect) and SBW defoliation in the data 

(Figure 4.1). Similarly, there was no clear relationship between insecticide spraying and SBW 

defoliation (Figure 4.1; Chen et al. 2017b). Consequently, these attributes were not included in 

our models. In addition, attributes of site potential productivity were also not considered since 
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they were metrics derived from other stand and site characteristics. A summary of these 

attributes is presented in Supplemental Materials C.1. 

 

Figure 4.1. Relationships between individual tree defoliation and topographic as well as 

insecticide spraying attributes, where aspect is computed as cos(45º - aspect in degree) + 1, and 

r is the correlation coefficient. 

4.2.3. Statistical Analysis 

Individual tree defoliation and its temporal development were analysed using Bayesian models 

based on a Markov chain Monte Carlo (MCMC) technique. All of these analyses were conducted 

in R v3.2.2 (R Core Team 2015). Model selection (of suitable model formulations and 

explanatory variables) was based on a combined consideration of biological interpretability and 
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Akaike Information Criterion (AIC). The selected models are described in more detail below. 

Additionally, coefficient of determination (R2; defined as 1 - residual sum of squares/total sum of 

squares) and mean bias (predicted - observed) were also calculated and reported. 

4.2.3.1. Individual Tree Defoliation 

Distributions of observed individual tree and stand-level defoliation showed a relatively close 

resemblance, and were both bounded and skewed (Figure 4.2). Therefore, a beta distribution, 

which is bounded and flexible in skewness, was a suitable option to summarize these data. 

Therefore, by assuming a multivariate normal prior distribution on β (parameter on the mean of 

individual tree defoliation; with mean μ and variance-covariance Σ) and a uniform prior 

distribution on ϕ (parameter on the precision of individual tree defoliation), the posterior 

distribution of these parameters, π(β, ϕ|y), was expressed as follows: 

where ai = βXi·ϕ; bi = (1 - βXi)·ϕ; y is the response variable of individual tree defoliation (%) 

transformed to a proportion of (0, 1); and X are the covariates. 
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Figure 4.2. Distributions of observed individual tree and stand-level defoliation, as well as ranges 

of distributions of individual tree defoliation predictions by stand type and region. 

The computation of the above posterior distribution was based on a MCMC technique, which 

allowed us to test different options of prior distributions, e.g., flat priors for both β and ϕ as well 

as the one selected for this analysis shown above, without being limited to special forms of prior 

distribution like conjugate priors that yield analytical forms of posteriors. Specifically, this 

computation was based on a random walk Metropolis-Hastings algorithm in the following form:
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where        (    )    is the random perturbation at iteration n, and s is a scale constant 

chosen to control the behavior of convergence (i.e., searching the support with a relatively small 

or large step size; set to be 1/100 - 1/10 of the starting values of different parameters). 

Starting values of the above computation were randomly taken from the distributions of the 

parameter estimates of a linear model of the logit of the same response variable. A chain of 2 

500 iterations of the simulation was used to generate posterior samples, and this procedure was 

repeated five times to verify the convergence of these chains, for each of the two study regions. 

The last 1 000 iterations in each of these five chains were pooled together to summarize β 

(Table 4.1). 

Table 4.1. Model parameter estimates and 95% credible intervals for individual tree defoliation 

(Equation 3).  
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Parameter 
Mean (95% credible interval) 

Maine New Brunswick 

β1 (Intercept) -2.2831 (-2.3048, -2.2570) -2.7603 (-2.8270, -2.7006) 
β2 (Balsam fir ∙ DEFP) 0.6888 (0.6777, 0.7019) 0.8592 (0.8044, 0.9114) 
β2 (DEFP) 0.0512 (0.0505, 0.0518) 0.0586 (0.0573, 0.0598) 
β2 (White spruce ∙ DEFP) -1.2676 (-1.4087, -1.2115) 0.6858 (0.6187, 0.7590) 
β3 (ABDBF) -0.0080 (-0.0087, -0.0076) -0.0035 (-0.0040, -0.0030) 
β3 (ABDRS) -0.0043 (-0.0049, -0.0038) -0.0009 (-0.0014, -0.0006) 
β3 (ABDWS) -0.0048 (-0.0058, -0.0040) -0.0029 (-0.0036, -0.0023) 
β4 (BAHW/BA) 0.7845 (0.7219, 0.8403) 0.2337 (0.0882, 0.3542) 
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DEFP is stand-level defoliation (%); ABD is species abundance in a plot; BF, RS, and WS are 

balsam fir, red/black spruce, and white spruce, respectively; BA and BAHW are basal area and 

that of non-host (mainly hardwood) trees in a plot (m2 ha-1), respectively. 

When AIC of models with various covariates X was compared, it indicated that SBW host species 

(SPP; an indicator variable; including balsam fir, red/black spruce, and white spruce) was the 

single most important predictor of individual tree defoliation for a given level of stand 

defoliation (DEFP; %), while all the other examined tree-, stand-, and site-level characteristics did 

not have as much influence individually or even in combination (Table 4.2). Consequently, βX 

took the following form: 

where ABD is a metric reflecting both relative and absolute abundance of SBW host species at a 

location calculated as (    )   , in which    is the number of non-host or host species i, and   

is the mean of   ; BA and BAHW are total basal area (m2 ha-1) and that of non-host (mainly 

hardwood) trees in a plot (m2 ha-1), respectively. BAHW/BA worked as a limiting factor of stand-

level defoliation (i.e., stand-level defoliation cannot exceed 100% - non-host%). 

                                    (3)  
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Table 4.2. Akaike Information Criterion (AIC) and changes in AIC (ΔAIC) in model selection for 

individual tree defoliation (Equation [3]) and its temporal development (Equation 4). 

* For New Brunswick, HT and MHTSW were initial values measured at the beginning of the study, 

and CR was not available. 

DEFP is stand-level defoliation (%); DEFI is initial (first year) defoliation (%); SPP is species (balsam 

fir, red/black spruce, and white spruce); BA and BAHW are basal area and that of non-host 

(mainly hardwood) trees at a location (m2 ha-1), respectively; ABD is species abundance at a 

location; DBH is diameter at breast height (cm); HT is height (m); MHTSW is mean height of 

softwood trees at a location (m); BAL is basal area of trees larger than the subject tree in DBH at 

a location (m2 ha-1);  CR is crown ratio; and t is time (year). 

4.2.3.2. Temporal Development of Individual Tree Defoliation 

A two-step approach was used to model the temporal development of balsam fir and red/black 

spruce individual tree defoliation in Maine (white spruce was not modeled due to insufficient 

observations of defoliation over time). First, a combination of a function similar to that 

proposed by Ratkowsky et al. (1983) and a Ricker function was used to model the hump-shaped 

temporal trends exhibited in individual tree defoliation y (Figure 4.3). The Ricker function has 

Model AIC ΔAIC AIC ΔAIC 

Equation (3) 
Maine 

(n = 42 349) 

New Brunswick 

(n = 5 519) 

Null 14904 -- 241 -- 
DEFP -10614 -25518 -4151 -4392 
DEFP, SPP -18711 -8097 -4868 -717 
DEFP, SPP, ABD -22180 -3469 -5396 -528 
DEFP, SPP, ABD, BAHW/BA -22634 -454 -5411 -15 
DEFP, SPP, ABD, BAHW/BA, DBH, HT, HT/MHTSW, BAL, CR* -23181 -547 -5428 -17 

Equation (4) 
Balsam fir 

(n = 21 368) 

Red/black spruce 

(n = 17 547) 
t 9587 -- -1643 -- 
t, DEFI, CR 9299 -288 -2047 -404 
t, DEFI, CR, ABD, BAHW/BA, DBH, HT/MHTSW, BAL 9178 -121 -1927 +120 
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been considered efficient in depicting density-dependent population growth such as in the case 

of SBW (Bolker 2008), while the former function supplemented it to capture the sudden collapse 

of SBW population hence defoliation that has been observed (Irland et al. 1988). 

 

Figure 4.3. A) Temporal development of stand-level defoliation, by region, where each line 

represents one sample plot and n is the year that defoliation peaked at this plot; B) Spatial 

autocorrelations and their significance levels of stand-level defoliation, which turns negative at 

distances over 120 km in both regions. 

Initial (first year) defoliation (DEFI; % transformed to a proportion of (0, 1)) and crown ratio (CR) 

were found to have greater influence on the temporal development of individual tree 

defoliation, while it appeared to be invariant to a variety of tree-, stand-, and site-level factors 

(Table 4.2). Consequently, this temporal development was modeled as follows: 

    (      (    ))        (             )     (4)  
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where t is time (year); and ε is the error. Parameters γ1 - γ5 were estimated for each of the two 

species (group) using the same Bayesian model and settings described in the previous section, 

except that starting values of the computation were randomly taken from the distributions of 

the parameter estimates of a nonlinear least squares model for the same response variable.  

Second, 2 847 and 2 070 time series errors ε of balsam fir and red/black spruce, respectively, 

from Equation (4) were each fitted with a single autoregressive moving average (ARMA) model. 

Selection of these two ARMA models was based on maximum likelihood and by comparing 

various candidate models' theoretical autocorrelations and partial autocorrelations to the 

observed ones. Consequently, a first order ARMA model in the following form was applied to 

each of the species (group): 

where        ̂ . Parameters δ (mean of ε), φ, and θ were estimated using the same 

Bayesian model and settings described in the previous section, except that uniform priors were 

assigned to these parameters, and starting values of the computation were taken from the 

parameter estimates of a linear least squares model for the same response variable. 

4.3. Results 

4.3.1. Individual Tree Defoliation 

A total of 21 987, 18 422, and 1 940 observations of balsam fir, red/black spruce, and white 

spruce, respectively, from Maine, and 2 336, 2 523, and 660 observations, respectively, from 

New Brunswick were available in the analysis of individual tree defoliation. Our models had R2 of 

0.78 and 0.80 and mean biases (predicted - observed) of +1.32% and +1.48% for Maine and New 

Brunswick, respectively. All parameter involved in these models converged distinctively and 

significantly from zero, and were consistent in their direction and magnitude, except individual 

           (      )         (5)  
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tree defoliation of white spruce relative to that of red/black spruce was in opposite directions 

between the two regions (Table 4.1). 

For a given stand-level defoliation, individual tree defoliation was predominantly influenced by 

species (Table 4.2). Specifically, at 25% stand-level defoliation (with all the other covariates at 

their means), individual tree defoliation of balsam fir, red/black spruce, and white spruce were 

predicted to be 42%, 26%, and 9%, respectively, in Maine, and 41%, 22%, and 37%, respectively, 

in New Brunswick. The orders of individual tree defoliation of the species indicated above (i.e., 

balsam fir > red/black spruce > white spruce in Maine and balsam fir > white spruce > red/black 

spruce in New Brunswick) remain the same over the complete range of stand-level defoliation 

(Figure 4.4). 
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Figure 4.4. Predicted individual tree defoliation (%) with 95% credible intervals as a function of 

stand-level defoliation (%; with all the other covariates at their means) by percentages of non-

host trees in a location and region. 

Additionally, host abundance had a secondary role in individual tree defoliation such that it was 

lower in pure stands than in mixed stands. Specifically, a 10% increase in the numbers of balsam 

fir, red/black spruce, and white spruce from their means at a location would reduce their 

defoliation by 0.71%, 0.24%, and 0.01%, respectively, in Maine, and by 0.64%, 0.08%, and 0.14%, 
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respectively, in New Brunswick (with all the other covariates at their means). Meanwhile, a 

variety of other common tree-, stand-, and site-level characteristics tested in this study were 

found to have negligible effects on individual tree defoliation (Figure 4.1, Table 4.2). Observed 

correlations between these characteristics and individual tree defoliation also confirmed this 

finding (Figure 4.1, Supplemental Materials C.2). 

4.3.2. Temporal Development of Individual Tree Defoliation 

A total of 2 847 and 2 070 time series with more than two annual observations of balsam fir and 

red/black spruce defoliation, respectively, were available for this analysis. The models for the 

temporal trends in defoliation alone had R2 of 0.59 and 0.44 and mean biases (predicted - 

observed) of +1.97% and -0.30% for balsam fir and red/black spruce, respectively. When 

combined with the ARMA models, R2 was 0.63 and 0.53 and mean biases (predicted - observed) 

were +0.63% and +0.24% for balsam fir and red/black spruce, respectively. All parameter 

estimates converged distinctively and significantly from zero (Table 4.3). 

Table 4.3. Model parameter estimates and 95% credible intervals for the temporal development 

of individual tree defoliation by species. 

Parameter 
Mean (95% credible interval) 

Balsam fir Red/black spruce 

 Equation [4]  

γ1 -0.018 (-0.017, -0.018) -0.004 (-0.004, -0.005) 
γ2 11.96 (11.86, 12.06) 18.16 (17.74, 18.56) 
γ3 -0.044 (-0.046, -0.042) -0.022 (-0.025, -0.020) 
γ4 -0.001 (-0.001, -0.001) -0.004 (-0.004, -0.003) 
γ5 -0.297 (-0.316, -0.273) -0.087 (-0.102, -0.076) 

 Equation [5]  

δ -0.072 (-0.113, -0.051) -0.877 (-1.378, -0.482) 
θ1 0.295 (0.281, 0.315) 0.564 (0.542, 0.583) 
θ2 0.018 (0.007, 0.025) -0.150 (-0.166, -0.127) 
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A large amount of variation existed in the temporal development of individual tree defoliation 

(Figure 4.3), and it appeared to be invariant to the common tree-, stand-, and site-level 

characteristics in that defoliation developed through similar trajectories regardless of these 

characteristics and initial defoliation (SBW population). Specifically, individual- tree defoliation 

reached peak levels of approximately 40% and 25% for balsam fir and red/black spruce, 

respectively, and subsequently declined to zero in 12-13 years and 18-19 years for balsam fir 

and red/black spruce, respectively. In addition, crown ratio was found to be most influential 

among the aforementioned characteristics, even though greater crown ratio only led to a 

slightly longer duration and higher levels of defoliation (Figure 4.5).
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Figure 4.5. Temporal development of individual tree defoliation (%) with 95% credible intervals 

as a function of time (year) at three levels of initial (first year) defoliation (%) by species and 

crown ratio. 

4.4. Discussion 

Despite the variation in SBW defoliation being previously discussed from an implicit 

entomological perspective of SBW population dynamics (e.g., birth and death, immigration and 

emigration, and SBW and host relationship; Greenbank 1963a, Royama 1984, Nealis and 

Régnière 2004) as well as a forest ecology perspective on specific tree and stand characteristics 

(e.g., species, pure vs. mixed stands, hardwood contents in stands, and stand age; Greenbank 

1963b, Seymour 1980, Alfaro et al. 2001, Colford-Gilks et al. 2012), there was a lack of 
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systematic and quantitative evaluations of trees' susceptibility to SBW defoliation. One 

exemption is Hennigar et al. (2008) who quantified defoliation of each spruce species relative to 

observed mean defoliation of balsam fir in the same stand. In comparison, our study has 

significantly advanced our current understanding in trees' susceptibility to SBW defoliation in 

several aspects. 

First, the above literature in forestry has primarily focused on the variation in SBW defoliation at 

stand-level. Consequently, comparisons of this variation among species were based on 

aggregations of trees of various species, while whether this variation was also due to differences 

among trees (e.g., DBH, height, crown ratio, crown position), degree of tree-level competition, 

and/or their locations (hence site characteristics like elevation, aspect, and slope) were largely 

left unresolved. In contrast, our study has performed a rather comprehensive evaluation of the 

effects of a variety of tree-, stand-, and site-level characteristics on the variation and temporal 

dynamics in SBW defoliation, which were found to be predominantly dependent on species, 

while all the other examined tree-, stand-, and site-level characteristics had more limited 

influences individually or even in combination (Table 4.2), which has important implications for 

future analyses on the topic. 

In addition, the current literature has generally relied on on-site measurements of defoliation to 

evaluate the variation in SBW defoliation. For example, Hennigar et al. (2008) used mean 

defoliation of balsam fir as a predictor of the defoliation of spruce species in the same stand. 

On-site measurements of defoliation, even for only one species (e.g., balsam fir as mentioned 

above), could be costly and time-consuming, which may consequently hinder the application of 

the findings to predict defoliation. In comparison, our study has developed an approach to 

predict individual tree defoliation using stand-level measurements of defoliation, which can 

potentially be obtained through remote sensing (e.g., aerial or satellite imagery; Rahimzadeh-



90 
 

Bajgiran et al. 2018). This approach could open up an opportunity of more timely and efficient 

monitoring of the frequently shifting SBW defoliation over large areas during outbreaks.  

Finally, limited data in previous studies may have restricted their general applicability. For 

example, Nealis and Régnière (2004) was based on data from one balsam fir-spruce-trembling 

aspen (Populus tremuloides Michx.) mixed stand; Hennigar et al. (2008) only considered stands 

where red, black, and white spruce, as well as balsam fir were all present; and Colford-Gilks et 

al. (2012) was limited to balsam fir and spruce mixedwood stands. To our knowledge, much of 

the previous literature on this topic has relied on data from eastern Canada. Contrarily, our data 

comprised a wide range of forest conditions and types including Maine, and likely better 

represent the general variation in SBW defoliation, which affects broad areas and forest types in 

North America. As a result, our data helped to show that SBW defoliation was lower in pure 

than mixed stands of the host species (i.e., red, black, and white spruce, as well as balsam fir), 

which indicates that monoculture of any of the host species likely results in less SBW defoliation 

of this species than in mixed stands with other host species. 

The relationship between individual tree defoliation of various host species and stand-level 

defoliation was nonlinear (Figure 4.4), which indicates that these species' susceptibility varied 

with SBW defoliation pressure (SBW population). However, the orders of these species' 

susceptibility remained unchanged, but differed between the two regions. Specifically, this 

order of susceptibility was balsam fir > white spruce > red/black spruce in New Brunswick, which 

matched that reported by Hennigar et al. (2008) who used data from the same source from New 

Brunswick as our analysis. In Maine, this order was slightly different and indicated that balsam 

fir > red/black spruce > white spruce, which agreed with some professional opinions gathered in 

Irland et al. (1988) such that white spruce was less susceptible to SBW defoliation than red 

spruce. Balsam fir was found to be more susceptible than red/black spruce in both regions, 
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where both species (group) were abundant in regard to their distributions in space and in the 

range of defoliation pressure. Consequently, their order in susceptibility found in this analysis 

was likely representative. Contrarily, white spruce was much less common, and its gradients of 

distribution in our data such that more observations were obtained from areas of higher 

defoliation pressure in New Brunswick (i.e. its north) and areas of lower defoliation pressure in 

Maine (i.e. its southeast), likely played a role in the regional discrepancy in its susceptibility 

(Supplemental Materials C.1). As a result, the predicted defoliation of white spruce was more 

likely a function of extrapolation of these unbalanced samples, which resulted in overestimation 

and underestimation of its susceptibility in New Brunswick and Maine, respectively. Although 

the results clearly indicated that white spruce is less susceptible than balsam fir, its susceptibility 

relative to red/black spruce needs to be more thoroughly investigated using more 

comprehensive and balanced data. 

In general, it has been considered that insect pest populations are lower in diversified forest 

stands. For example, Jactel et al. (2005) reviewed 54 studies on the response of insect damage 

or abundance to pure vs. mixed forest stand, and found this damage or abundance was 

significantly greater in pure forest stands. However, they also noted that stands infested by 

polyphagous insects were exceptions to their findings. Similarly, Vehvilainen et al. (2007), which 

applied a meta-analysis to seven long-term forest diversity experiments, also concluded that 

whether forest diversity increased or reduced insect herbivore abundance was largely species 

specific. SBW preferably feeds on the buds of a range of coniferous trees (mainly the species 

presented in this study). Since these host species' buds break at different times, which are 10-14 

days later for red/black spruce than for balsam fir and white spruce (Greenbank 1963b, Irland et 

al. 1988), such differences in phenology likely lead to the provision of alternative sources of 

preferred food to SBW for an extended period in mixed-species stands, and consequently result 
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in increases in SBW population (i.e., more survival of SBW) and defoliation of its hosts. Our 

preliminary analysis also indicated that individual tree defoliation was negatively correlated with 

the proportion of hardwood in plots, which has long been observed (Mott 1963, Baskerville 

1975). However, the effects of hardwood in reducing defoliation as well as in increasing the 

variation in defoliation were both at a minimal magnitude, which may be related to the 

generally low hardwood contents in our plots. 

Despite the high variation observed in the temporal development of defoliation (Figure 4.3), a 

relatively large amount of this variation was explained by our models. More importantly, our 

models showed comparable trajectories of the temporal development of defoliation between 

SBW's major hosts of balsam fir and red/black spruce in addition to their distinctive differences 

in magnitude. Specifically, defoliation of both species seemed to have developed towards their 

respective converged trajectories, despite differences in initial defoliation, stand and site 

conditions, and geographical locations, which resembled the movement towards an equilibrium 

of SBW defoliation during its epidemic (Pureswaran et al. 2016). In addition, there tended to be 

sudden surges in defoliation over time in our data (Figure 4.3), which was short-lived (mostly 

one year) and occurred at various times at different locations. It was difficult for our models to 

capture these sudden surges, which appeared to be stochastic oscillations towards equilibria 

and unlikely to be explained by the birth and death process in SBW population dynamics 

without resorting to immigration and emigration. While Royama (1984) suggested a synchrony 

between SBW populations during an outbreak, it was not observed in this study, especially 

considering that spatial autocorrelation in defoliation were actually negative at distances over 

120 km in both Maine and New Brunswick (Figure 4.3). Therefore, SBW populations are likely 

synchronized over large spatio-temporal scales, while oscillating significantly at small scales. Our 
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results also indicated that an outbreak would likely last much longer (~ 15 years) than the 10-

year observation period currently available in our data.  

Considering our sample size, the Bayesian models developed in this study generated parameter 

estimates very close to those from frequentist methods as expected. However, two valuable 

advantages of these Bayesian models remained. First, our observations of a wide range of SBW 

defoliation were concentrated in relatively low levels that have been largely overlooked in 

previous studies as outlined by Chen et al. (2017b). Therefore, the posterior distribution of 

individual tree defoliation generated in this study would likely improve our existing knowledge 

either as input to similar studies or when combined with additional data. Second, MCMC 

simulations were conveniently applied in our Bayesian models, and helped prevent potentially 

misleading estimations in an obvious multi-modal situation (Equation 4), which is fairly common 

in nonlinear modeling and often challenging for frequentist methods to adequately handle.  

A variety of factors showed comparable effects on individual tree defoliation between Maine 

and New Brunswick despite their differences in sampling procedure, past defoliation and 

management histories, and forest composition. This likely indicates the overall validity of this 

variety of factors' effects on individual tree defoliation found in our analysis over a rather wide 

range of forest and defoliation conditions. Nevertheless, inconsistency in sampling procedures 

may hinder the utilization of data from various sources such as the gradients in our samples may 

have caused regional discrepancy in white spruce' susceptibility. Future studies of SBW 

defoliation will benefit from more balanced and comprehensive samples over space and the 

range of defoliation, not only in terms of species composition, but other relevant factors like 

management history and stand structure. Overall, the results of this analysis highlight the 

distinctive spatial and temporal patterns present in regional SBW defoliation data as well as 

provide a flexible modeling framework for extension to other forms of defoliation.  
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CHAPTER 5 

REFINING THE FOREST VEGETATION SIMULATOR FOR PROJECTING THE EFFECTS OF SPRUCE 

BUDWORM DEFOLIATION IN THE ACADIAN REGION OF NORTH AMERICA1 

5.1. Introduction 

The Forest Vegetation Simulator (FVS) is a distance-independent, individual-tree forest growth 

model widely used in the United States and parts of Canada by government agencies, industry, 

educational institutions, and private landowners to support forest management decision making 

(Dixon 2002). FVS was developed to predict stand dynamics and development in response to 

various management alternatives and disturbance-causing agents. Specifically, FVS has 

incorporated the effects of a number of insect and pathogen agents including root diseases 

(Heterobasidion annosum (Fr.) Bref., Armillaria ostoyae (Romag.) Herink, and Phellinus weirii 

(Murrill) R. L. Gilbertson), white pine blister rust (Cronartium ribicola Fisch.), bark beetles 

(Dendroctonus spp.), and Douglas-fir tussock moth (Orgyia pseudotsugata McDunnough) on 

forest stand dynamics through its more than a dozen extensions (Crookston and Dixon 2005). 

Spruce budworm (SBW; Choristoneura fumiferana (Clem.)) is the most influential insect 

disturbance agent in the spruce-fir (Picea-Abies) forests in North America. Periodic SBW 

outbreaks of every 30-60 years have occurred for hundreds of years and caused tens of millions 

m3 of tree mortality in both the 1910s and 1970s-1980s outbreaks in Maine alone (Royama 

1984, Irland et al. 1988, Fraver et al. 2007). Since SBW outbreaks result in great uncertainty in 

future wood supply and forest conditions in this region, it is important for forest growth models 

to account for the potential effects of SBW defoliation on forest development and provide 

information for forest management and protection planning. Although FVS is widely used in 

                                                           
1
 This chapter previously appeared as an article as follows: Chen, C., Weiskittel, A., Bataineh, M., 

and MacLean, D.A. 2018. Refining the Forest Vegetation Simulator for projecting the effects of 
spruce budworm defoliation in the Acadian Region of North America. Forestry Chronicle 94: 
240-253. 
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eastern North America, it currently does not have an extension with the capacity to account for 

effects of SBW defoliation. 

An exception is the work by Hennigar et al. (2011, 2013a), who developed multipliers that 

simulate the effects of SBW defoliation on tree growth and survival that can be used in FVS 

through its keywords (Dixon 2002). These multipliers were converted from parameters used in 

STAMAN, a stand growth model used in the Spruce Budworm Decision Support System from 

Canada (SBW-DSS; Vanguard Forest Management Services Ltd. 1993, MacLean 1996, MacLean 

et al. 2001). However, it is potentially problematic to use the STAMAN modifiers in FVS for two 

reasons: 1) STAMAN applies annual defoliation levels predetermined for five-year periods for 

each species within simulated plots (MacLean et al 2001, Hennigar et al. 2013b), which cannot 

represent highly variable SBW defoliation at the tree level within plots over time (Baskerville 

and MacLean 1979; Chen et al. In press) and 2) STAMAN modifiers were calibrated using 

historically severe defoliation data from New Brunswick, Canada (MacLean et al. 2001), which 

differed significantly with the relatively low-level defoliation patterns observed in Maine during 

the last outbreak in the 1970s-1980s (Chen et al. 2017a). Since the STAMAN modifiers were 

customized for use in FVS and outside their original geographical range (Hennigar et al. 2013a), 

SBW modifiers specifically designed for FVS may potentially be superior. 

The Acadian variant of FVS (FVS-ACD; Weiskittel et al. 2017) is one of the latest developments 

among the geographically specific variants of FVS. It offers flexibility of accounting for the 

specific effects of management activities and disturbance agents on individual trees at an annual 

resolution, and represents forests in the Acadian region where SBW is endemic (Weiskittel et al. 

2017). The inputs required to run FVS-ACD are typical for tree-level growth models and include 

species, diameter at breast height (DBH), height and crown ratio of each tree (if available), an 

expansion factor to estimate per unit area (e.g., ha) values of individual tree attributes (e.g., 



96 
 

basal area and volume), a threshold DBH of ingrowth, and climate site index (Weiskittel et al. 

2017) of each stand. Projections of stand development by FVS-ACD are based on predictions of 

changes in the dimensions of each tree from each stand, as well as mortality, ingrowth, and 

their interactions. The specific variables representing these dimensions are DBH, height, and 

height to crown base (hence crown ratio), of which the increments are predicted recursively at 

each time step (every year in this study) based on their updated current states, as well as 

metrics of competition (arithmetically aggregated from the updated dimensions of living trees) 

and potential productivity (represented by climate site index; held constant from its initial 

inputs). Meanwhile, individual tree mortality is predicted by the same categories of variables 

above, while ingrowth is predicted at the stand level by metrics of competition, species 

composition, and potential productivity (Li et al. 2011). Consequently, interactions among 

growth, mortality, and ingrowth are reflected in the updated list of trees and their dimensions at 

each annual time step. 

For this analysis, we propose annualized modifiers that adjust annual predictions of each of the 

components (DBH, height, and height to crown base increments, as well as mortality and 

ingrowth) of FVS-ACD to account for effects of SBW defoliation. In this case, a modifier with the 

value zero indicates a complete cessation in the change of a component, while a value of one 

shows nonexistence of an effect of SBW defoliation. Similarly, a value greater than one 

represents a magnifying effect of SBW defoliation (e.g., tree mortality). Chen et al. (2017a, 

2017b) found that even low levels of SBW defoliation had significant effects on the above 

components of FVS-ACD, which were primarily dependent on species and less affected by 

common stand and site factors. Considering FVS-ACD already has a rather comprehensive 

evaluation of stand and site factors in its component equations, our proposed modifiers were 

formulated as functions of only defoliation and species. However, additional covariates 
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significantly reduced errors in predicted mortality and height to crown base, and were included 

in modifiers for these two components of FVS-ACD. 

SBW defoliation primarily affects current-year foliage and has cumulative effects on tree growth 

and mortality (Blais 1958, MacLean 1980, Irland et al. 1988). Therefore, cumulative sums of the 

defoliation of current-year foliage (cumulative defoliation) were used as the metric of 

defoliation in our modifiers. Cumulative defoliation was predicted for each tree in each year of a 

predicted defoliation duration using an equation developed by Chen et al. (In press; described in 

detail below), who found SBW defoliation tends to converge to similar temporal trajectories for 

each species despite considerable differences in tree, stand, and site factors. When this duration 

of predicted defoliation of a tree is over, values of our modifiers will automatically be reduced to 

one (i.e., defoliation no longer have effects on growth and mortality). In addition, cumulative 

defoliation can also be set to a series of predetermined values over an assumed period to reflect 

potential defoliation scenarios like that in Hennigar et al. (2013a), although it is unlikely that 

defoliation would repeat such a fixed temporal pattern over the range of conditions of Acadian 

forests (e.g., Zhao et al. 2014), which are also undergoing constant changes. A parametric model 

like the one proposed by Chen et al. (In press) is flexible enough to be recalibrated to reflect 

these changing forest conditions and defoliation dynamics with future available data.  

Parameter estimations in the proposed modifiers were supported by individual tree defoliation 

data collected at annual intervals from an extensive network of 375 permanent sample plots 

that covered > 40 000 km2 and 10 years of the last outbreak in the 1970s-1980s in Maine. These 

data comprised a wide range of forest conditions and cumulative defoliation observations, 

especially at relatively low levels (< 300%) compared to severe defoliation observations from 

Canada (Chen et al. 2017a). Consequently, these data provided an opportunity to evaluate 

whether modifiers calibrated using severe defoliation data from Canada (Erdle and MacLean 
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1999, Hennigar et al. 2011, 2013a) sufficiently represent forest responses to SBW defoliation 

across the Acadian region, and whether our proposed modifiers significantly improved the 

ability of FVS-ACD to account for effects of SBW defoliation. This evaluation was performed by 

applying both types of modifiers to the above data from Maine and data collected in New 

Brunswick during the same SBW outbreak. 

Our specific objectives for this study were to 1) develop annualized modifiers for the 

components (DBH, height, and height to crown base increments, as well as mortality and 

ingrowth) of FVS-ACD to account for effects of SBW defoliation; 2) evaluate the performance of 

FVS-ACD refined by these modifiers and by those from STAMAN against observed forest 

development in Maine and New Brunswick during the last SBW outbreak; and 3) conduct long-

term simulations across contrasting stand types in terms of percentage of susceptible trees 

(balsam fir (Abies balsamea L.), red spruce (Picea rubens Sarg.), black spruce (Picea mariana 

(Mill.) B.S.P.), and white spruce (Picea glauca (Moench) Voss)), initial volume, and peak 

defoliation of stands using this refined version of FVS-ACD. It was expected that differences in 

peak defoliation would have negligible influence on stand development as Chen et al. (In press) 

found SBW defoliation tends to converge to similar temporal trajectories for each species 

(differences in cumulative defoliation of trees reduces significantly as years of defoliation 

increases). 

5.2. Material and Methods 

5.2.1. Study Area 

The combined study area (44°56'-48°00' N, 64°28'-70°44' W) in Maine and New Brunswick is in a 

transition zone from the temperate hardwood forest to the boreal softwood forest, and is 

primarily composed of spruce-fir forests. Soils in Maine and New Brunswick are generally 

infertile, acidic, and low in permeability (Ferwerda et al. 1997, Rees et al. 2005). Maine has a 
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humid continental climate with warm, humid summers, and cold, snowy winters. Annual 

precipitation varies from 909 to 1 441 mm and is distributed evenly year-round. Climate in New 

Brunswick is similar to that of Maine with annual precipitation ranging from 889 to 1 143 mm, 

evenly distributed through the year. Elevation of the study areas in Maine and New Brunswick 

ranged from 41-691 m and 0-578 m, respectively. Periodic SBW outbreaks every 30-60 years 

have occurred for hundreds of years in this area (Fraver et al. 2007), while the last outbreak was 

mostly in the 1970s-1980s. 

5.2.2. Data 

The modifiers were developed on data collected in Maine, United States by the University of 

Maine Cooperative Forestry Research Unit Growth Impact Study (Solomon and Brann 1992), 

while the evaluation of these modifiers was performed using the above data and Canadian 

Forest Service permanent sample plots (PSP) data collected in New Brunswick, Canada (MacLean 

and Erdle 1986, Erdle and MacLean 1999). There are two major differences between the two 

datasets: 1) species composition, with balsam fir, red spruce, black spruce, white spruce, and 

hardwoods accounting for 36, 24, 2, 3, and 18 percent of all trees, respectively, in Maine, versus 

32, 23, 11, 9, and 14 percent of all trees, respectively, in New Brunswick at the beginning of 

these data and 2) stage of the SBW outbreak, with the Maine data covering most of the 

temporal extent of the outbreak, while New Brunswick data were at the declining stage of the 

outbreak. Each of the two datasets is summarized in Table 5.1 and described in detail below.
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Table 5.1. List of species and their number, mean diameter at breast height (DBH; cm), and mean height (m) in 1975 in Maine and in 

1985 in New Brunswick, as well as mean annual defoliation (%) and its distribution of the susceptible species (balsam fir, as well as red, 

black, and white spruce) in 1975-1985 in Maine and in 1985-1991 in New Brunswick. 

 Maine  New Brunswick 

Species Number 
DBH 
(cm) 

Height 
(m) 

Annual defoliation (%)* 
 

Number 
DBH 
(cm) 

Annual defoliation (%)* 

    
Mean 

Number of observations    
Mean 

Number of observations 
    < 10 10-30 > 30    < 10 10-30 > 30 

American beech 105 20 14.5 -- -- -- --  16 20 -- -- -- -- 
Aspen 151 22 19.0 -- -- -- --  5 25 -- -- -- -- 
Balsam fir 2 645 17 14.7 37 3 480 4 992 12 936  1 190 19 26 3 852 2 433 2 045 
Black spruce 163 17 13.1 13 1 092 419 311  467 19 8 2 521 712 36 
Eastern hemlock 209 22 13.6 -- -- -- --  25 34 -- -- -- -- 
Paper birch 241 20 16.3 -- -- -- --  109 23 -- -- -- -- 
Red maple 436 19 15.7 -- -- -- --  193 21 -- -- -- -- 
Red spruce 1 699 19 14.6 19 7 507 5 627 4 769  812 23 10 4 070 1 482 132 
Sugar maple 86 26 16.6 -- -- -- --  50 29 -- -- -- -- 
White cedar 724 21 11.8 -- -- -- --  183 28 -- -- -- -- 
White pine 58 24 15.7 -- -- -- --  39 38 -- -- -- -- 
White spruce 180 21 14.8 1 1 973 17 49  333 23 22 1 052 829 450 
Yellow birch 151 23 15.4 -- -- -- --  91 29 -- -- -- -- 
Other hardwood 100 19 13.3 -- -- -- --  8 16 -- -- -- -- 
Other softwood 34 22 16.5 -- -- -- --  120 24 -- -- -- -- 

* For each tree, minimum annual defoliation was 0% and 5% in Maine and New Brunswick, respectively, according to different protocols 

of measurements. 
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5.2.2.1. Growth Impact Study of Maine 

The Growth Impact Study was initiated in 1975 (after SBW activity reached epidemic level in 

1974) as a cooperative effort among federal and state forest agencies, as well as private forestry 

companies to document the impact of SBW on growth and mortality of the Maine forest. Data 

were collected at 424 ~0.02 ha circular plots including 8 762 trees ≥ 11.4 cm in DBH throughout 

northern Maine during 1975-1985. Specifically, 7 798 trees from 375 of these plots with known 

coordinates (hence climate site indices can be derived) were used in this study. The data 

included annual records of species, DBH, cause of death, total height, crown length, and degree 

of defoliation. The exact locations of 49 plots were not able to be determined and were dropped 

from this analysis. 

Each year during the study period, current-year and previous-years foliage on each host tree 

within each plot were visually examined for the degree of defoliation, and categorized 

separately into one of five (before 1982; 0, 1-5, 6-20, 21-50, and 51-100 percent) or eleven 

classes (after 1982; 0-10, 11-20, 21-30, 31-40, 41-50, 51-60, 61-70, 71-80, 81-90, 91-99, and 100 

percent) of defoliation. Observed annual defoliation of current-year foliage (mean ± SD) of 

balsam fir, red spruce, black spruce, and white spruce were 37 ± 31%, 19 ± 23%, 13 ± 20%, and 1 

± 8%, respectively. 

5.2.2.2. Permanent Sample Plots of New Brunswick 

Approximately 1 500 random PSPs were established between 1976-1979 as part of the New 

Brunswick Department of Forests, Mines, and Energy Forest Inventory. Of these plots, 136 were 

selected for SBW related studies based on stratification by species, maturity, and degree of 

insecticide use for protection. Each PSP consisted of three permanent prism points (basal area 

factor = 2 m2 ha-1) located 40 m apart where species, DBH, year of death, initial height, and 

degree of defoliation of each tree were measured intermittently during 1976-1993 (Chen et al 
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2017a). Specifically, DBH measurements of 3 641 trees compatible in size with the Growth 

Impact Study dataset (i.e. DBH ≥ 11.4 cm) in 1985, 1988, and 1991, as well as measurements of 

annual defoliation of current-year foliage during this period from 103 plots with known 

coordinates (hence climate site indices can be derived) were used in this study. Defoliation of 

current-year foliage in the New Brunswick PSPs was estimated for each host tree every year by 

scanning the crowns with binoculars. The results were put into seven percentage classes of 0-10, 

11-20, 21-40, 41-60, 61-80, 81-99, and 100 percent. Observed annual defoliation of current-year 

foliage (mean ± SD) of balsam fir, red spruce, black spruce, and white spruce were 24 ± 27, 10 ± 

10, 8 ± 8, and 19 ± 22 percent, respectively. 

5.2.2.3. Data Compilation 

Midpoints of the defoliation classes were used to calculate cumulative defoliation, which was an 

input to all of the modifiers. Since height was only measured once during 1976-1979 in New 

Brunswick, a mixed-effects model outlined by Robinson and Wykoff (2004) was applied to assess 

the relationship between height and DBH as well as species in this period. Subsequently, this 

relationship was used to impute height in 1985, which was an input to initiate the projections by 

FVS-ACD. Similarly, initial crown ratio (in 1985) was set to 0.2 (its approximate mean value in 

Maine) in New Brunswick since its measurements were also not available. 

5.2.3. SBW Modifiers of FVS-ACD 

There are various strategies for developing modifiers to be used in growth and yield models with 

contrasting advantages and disadvantages (e.g. Weiskittel et al. 2011a). In an ideal scenario, the 

base condition is first modeled and then direct effects are captured in the modifier using the 

same data (e.g. Kuehne et al. 2016). Unfortunately, this strategy was not possible in this analysis 

since the available data were after the start of the SBW outbreak in the region and there were 

relatively few observations that were not defoliated. Instead, the base equations from FVS-ACD, 
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which have been extensively evaluated and show limited bias across a range of conditions, were 

used to determine expected trends under no defoliation. Consequently, annualized SBW 

modifiers were developed and used to adjust each component of FVS-ACD in the following way: 

[1]  Adjusted FVS-ACD component = FVS-ACD component × modifier 

Specifically, modifiers for DBH increment (ΔDBH; cm yr-1) and height increment (ΔHT; m yr-1) are 

in the form of Equation [2], modifier for height to crown base (HCB; m) is in the form of 

Equation [3], modifier for mortality (MORT; probability in the form of a 0-1 ratio) is in the form 

of Equation [4], and modifiers for ingrowth (IPH; trees ha-1) and ingrowth proportion of each 

susceptible species (balsam fir, red, black, and white spruce; IPHprop) are in the form of Equation 

[5]. 

[ ]    (          ) 

[ ]    (                   ) 

[ ]                       
                (   )             

[ ]              

In these modifiers, BALmod is a modified metric of basal area of trees larger than the subject tree 

in DBH (BAL; m2 ha-1) computed as (         ) (              ), in which topht is top 

height (height of the tallest tree; m), tph is trees ha-1; and BA is basal area (m2 ha-1); pBALSW is 

the proportion of BAL of softwood; CR is crown ratio; CSI is climate site index (m); CDEF is 

cumulative defoliation (%); and b1-b11 are parameters. 

Although two modifiers may share the same form (e.g., Equation [2] for ΔDBH and ΔHT), 

separate sets of parameters were estimated for each modifier. The spp subscripts indicate 

species-specific parameters (Table 5.2). These parameters were estimated using the Maine data 

and a recursive annualization technique proposed by Weiskittel et al. (2007). Modifier for HCB 
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(Equation [3]) was limited by recursively calculated crown ratio since HCB was predicted using 

an allometric equation instead of from its increment. 

Table 5.2. Parameter estimates of the modifiers developed in this study. 

Parameter Species Value SE p-value 

b1spp 

ΔDBH 

balsam fir  -0.0116 0.0001 < 0.0001 
black spruce -0.0237 0.0022 < 0.0001 
red spruce -0.0213 0.0003 < 0.0001 
white spruce -0.1360 0.0064 < 0.0001 

ΔHT 

balsam fir -0.0155 0.0002 < 0.0001 
black spruce -0.1373 0.0088 < 0.0001 
red spruce -0.2908 0.0040 < 0.0001 
white spruce -0.6066 0.0388 < 0.0001 

b2spp 

HCB 

balsam fir 0.0075 < 0.0001 < 0.0001 
black spruce 0.0074 0.0003 < 0.0001 
red spruce 0.0069 < 0.0001 < 0.0001 
white spruce 0.0099 0.0003 < 0.0001 

b3spp 

balsam fir -0.9296 0.0113 < 0.0001 
black spruce -0.6275 0.0386 < 0.0001 
red spruce -0.6308 0.0115 < 0.0001 
white spruce -0.6547 0.0361 < 0.0001 

b4 

MORT 

 0.5232 0.0229 < 0.0001 

b5  0.0106 0.0006 < 0.0001 

b6  0.0498 0.0048 < 0.0001 

b7  -0.1243 0.0046 < 0.0001 

b8  -0.1994 0.0082 < 0.0001 

b9spp 

balsam fir 0.0022 < 0.0001 < 0.0001 
black spruce 0.0078 0.0007 < 0.0001 
red spruce 0.0016 0.0001 < 0.0001 
white spruce 0.0169 0.0011 < 0.0001 

b10 
IPH  -0.0012 0.0008 0.1409 
IPHprop  -0.0077 0.0054 0.1550 

b11 
IPH  0.1397 0.0218 < 0.0001 

IPHprop  1.2459 0.1268 < 0.0001 
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ΔDBH is diameter at breast height increment (cm yr-1); ΔHT is height increment (m yr-1); MORT is 

mortality (probability in the form of a 0-1 ratio); HCB is height to crown base (m); IPH is 

ingrowth (trees ha-1 yr-1); IPHprop is proportion of ingrowth of each susceptible species (balsam 

fir, as well as red, black, and white spruce); and b1-b11 are parameters, of which the spp 

subscripts indicate species-specific parameters. 

Cumulative defoliation was a covariate included in each of the modifiers, and was computed as 

the sum of annual defoliation of current-year foliage (%), which was predicted for each year of 

the duration of FVS-ACD projection using a model proposed by Chen et al. (In press) in the 

following form:   

[ ]        (      (    ))        (             )     

where t is time (year); DEF is annual defoliation of current-year foliage (% transformed to 0-1); 

CR is crown ratio; ε is the error; and parameters γ1 - γ5 were estimated for each species. Since 

Chen et al. (In press) found SBW defoliation tends to converge to similar temporal trajectories 

for each species despite considerable differences in tree, stand, and site factors, this predicted 

series of defoliation (annual defoliation in future years) may also be viewed as a most likely 

scenario of defoliation based on the initially available information (observed first year 

defoliation and crown ratio). 

5.2.4. SBW Modifiers from STAMAN 

Hennigar et al. (2013a) converted parameters that account for effects of SBW defoliation in 

STAMAN for use as modifiers in FVS. Values of these modifiers were predetermined and stored 

in a lookup table. Specifically, periodic five-year additive modifier values for survival (hence 

mortality) were categorized by species, DBH class, and defoliation, while periodic five-year 

multiplicative modifiers for diameter and height increments shared a single set of values 

determined by defoliation alone. These periodic modifiers were converted to annualized 
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modifiers to be applied in FVS-ACD and compared with our modifiers. Potential influences of 

SBW defoliation on ingrowth and crown recession were not considered by these modifiers. 

Besides being calibrated using different data (i.e., STAMAN modifiers were calibrated using 

defoliation data from New Brunswick; Erdle and MacLean 1999), there are three main 

differences between the STAMAN modifiers and those we developed for FVS-ACD: 1) values of 

our modifiers were predicted by Equations [2-5] for each tree in each year, while modifiers from 

STAMAN are expressed as a function of defoliation level and were extracted from a lookup table 

(Hennigar et al. 2013a); 2) cumulative defoliation and a modified six-year moving average of 

defoliation (MacLean et al. 2001) were used in our modifiers and STAMAN modifiers, 

respectively; and 3) to reduce prediction errors, a tree would be removed from the list of trees 

(i.e., its expansion factor (per hectare number of trees it represents) would be zero) in our 

modifiers when its mortality probability exceeded an optimization criterion, which was the 

mortality probability that maximized the ratio of true positive rate over false positive rate of 

mortality. Since information about this criterion was not available for the STAMAN modifiers, a 

portion of a tree would be killed by reducing its expansion factor proportionally by its predicted 

mortality probability as commonly done in FVS (Dixon 2002). 

5.2.5. Output of the Modified FVS-ACD 

The final output used to evaluate and compare FVS-ACD that utilized the above two types of 

modifiers was in the form of stand total volume (m3 ha-1), which was estimated using a species-

specific taper equation developed for the Acadian region (Li et al. 2012, Weiskittel and Li 2012). 

Predicted species, DBH, and height of each tree in each year were used as input to the taper 

equation. Individual tree volume was aggregated using expansion factors to calculate stand 

volume, of which 95% confidence intervals were also presented. 
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Projections of stand development with and without the influence of SBW defoliation were 

performed for 40 years from 1975 to 2015 using FVS-ACD with modifiers developed in this study 

and FVS-ACD alone, respectively. This projection period roughly represents a full cycle of the 

periodic SBW outbreak (i.e., from the outset of one outbreak to the next one). These projections 

were conducted for stands with various percentages of susceptible trees (< 50%, 50-75%, and > 

75%), initial volume (< 200 m3 ha-1, 200-300 m3 ha-1, and > 300 m3 ha-1), and peak annual 

defoliation (< 30%, 30-70%, and > 70%). Observed conditions of these stands and SBW 

defoliation in 1975 were used as starting points of the projections. Standard errors of the 

predictions of each of the above stand types at each time step were calculated and used to 

construct the confidence intervals. 

5.3. Results 

5.3.1. Values of the Two Types of Modifiers 

Values of our modifiers as a function of cumulative defoliation of the range of 0-300% are 

shown in Figure 5.1. Specific values of our modifiers and STAMAN modifiers (which are available 

for DBH and height increment, as well as mortality) at 50%, 100%, and 200% cumulative 

defoliation are listed in Table 5.3. In general, our modifiers for DBH and height increments have 

smaller values than the STAMAN counterparts, which indicate larger growth reductions from our 

modifiers. Likewise, larger values of our mortality modifier compared to the STAMAN modifier, 

which indicate no increase in mortality for any species, represent more predicted mortality 

under the influence of SBW defoliation. Covariates other than those of defoliation were set at 

their means in this analysis, while the above three levels of cumulative defoliation were 

assumed to be equally distributed in five years in STAMAN modifiers, i.e., current-year 

defoliation to be 10%, 20%, and 40%, respectively, in each of the five years.
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Table 5.3.  Values of our modifiers and STAMAN modifiers at 50%, 100%, and 200% cumulative 

defoliation with the other covariates at their means. 

Modifier Species 
Cumulative defoliation (%) 

50 100 200 

ΔDBH (cm yr-1) 
our modifier 

balsam fir 0.56 0.31 0.10 

red spruce 0.34 0.12 0.01 

black spruce 0.31 0.09 0.01 

white spruce 0.00 0.00 0.00 

STAMAN modifier all species 0.94 0.88 0.75 

ΔHT (m yr-1) 
our modifier 

balsam fir 0.46 0.21 0.05 

red spruce 0.00 0.00 0.00 

black spruce 0.00 0.00 0.00 

white spruce 0.00 0.00 0.00 

STAMAN modifier all species 0.94 0.88 0.75 

Mortality (0-1 ratio) 

our modifier 

balsam fir 2.64 4.28 7.57 

red spruce 2.22 3.44 5.88 

black spruce 6.96 12.93 24.86 

white spruce 13.90 26.81 52.61 

STAMAN modifier 

balsam fir 1.00 1.00 1.00 

red spruce 1.00 1.00 1.00 

black spruce 1.00 1.00 1.00 

white spruce 1.00 1.00 1.00 

Height to crown base (m) our modifier 

balsam fir 0.50 0.64 1.05 

red spruce 0.65 0.78 1.16 

black spruce 0.67 0.83 1.30 

white spruce 0.66 0.84 1.36 

Ingrowth (trees ha-1) our modifier (stand level) 0.08 0.02 0.00 

Ingrowth proportion our modifier (stand level) 0.86 0.48 0.00 
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Figure 5.1. Values and their 95% confidence intervals of our modifiers as a function of 

cumulative defoliation (%) with the other covariates at their means. 

5.3.2. Performance of FVS-ACD Using the Two Types of Modifiers 

FVS-ACD refined by our modifiers consistently had smaller mean biases (predicted - observed) 

and root mean squared errors (RMSE) of predicted stand volumes than FVS-ACD refined by 

STAMAN modifiers and FVS-ACD alone (Table 5.4). Specifically, overall mean bias and RMSE of 

FVS-ACD refined by our modifiers were 64% and 26% lower, respectively, in Maine and were 

79% and 26% lower, respectively, in New Brunswick than those of FVS-ACD refined by STAMAN 

modifiers. While both mean biases and RMSE appeared to be rather consistent over the range 

of observed initial stand volume in all three models, they became much higher in FVS-ACD and 

FVS-ACD refined by STAMAN modifiers over the time period of prediction, although FVS-ACD 
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refined by STAMAN modifiers performed slightly better than FVS-ACD (Figure 5.2). 

Consequently, stand volumes predicted by FVS-ACD refined by our modifiers were the closest to 

the observed ones in both regions despite being only developed using the Maine data (Figure 

5.3). 

 

Figure 5.2. Comparisons of root mean squared errors (RMSE) and mean biases (predicted - 

observed) in predicted stand volume (m3 ha-1) made by the Forest Vegetation Simulator Acadian 

variant (FVS-ACD), FVS-ACD refined by our modifiers, and FVS-ACD refined by STAMAN modifier 

over time and initial volume of stands for the available data in Maine. 
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Table 5.4. Statistics of the observed stand volume (m3 ha-1) and its predictions made by Forest Vegetation Simulator Acadian variant 

(FVS-ACD) refined by our modifiers and STAMAN modifiers, as well as FVS-ACD alone using observed values in 1975 and 1985 in Maine 

and New Brunswick, respectively, as input.  

   
Mean 

(m3 ha-1) 
 Mean bias 

(m3 ha-1) 
 Root mean squared error 

(m3 ha-1) 

M
ai

n
e

 

  
1976 1985  Overall 1976 1985  Overall 1976 1985 

Observed 
all trees 225 196  -- -- --  -- -- -- 

susceptible trees 136 106  -- -- --  -- -- -- 

Our modifiers 
all trees 247 233  +21 +11 +35  70 30 98 

susceptible trees 153 125  +9 +6 +13  58 21 76 

STAMAN modifiers 
all trees 249 315  +58 +13 +117  94 31 154 

susceptible trees 154 194  +41 +8 +86  75 22 124 

FVS-ACD 
all trees 251 327  +67 +15 +129  103 32 164 

susceptible trees 156 204  +50 +9 +96  84 23 131 

N
e

w
 B

ru
n

sw
ic

k 

  1986* 1991  Overall 1986* 1991  Overall 1986* 1991 

Observed 
all trees 182 179  -- -- --  -- -- -- 

susceptible trees 139 134  -- -- --  -- -- -- 

Our modifiers 
all trees 182 187  +5 0 +8  26 2 36 

susceptible trees 139 139  +4 0 +6  24 2 34 

STAMAN modifiers 
all trees 188 217  +24 +6 +38  35 6 51 

susceptible trees 143 166  +20 +4 +32  31 5 44 

FVS-ACD 
all trees 188 219  +24 +6 +41  37 7 53 

susceptible trees 144 168  +20 +5 +34  33 5 47 

* The year of observation is 1985 while all predictions are for 1986. Susceptible trees are balsam fir, as well as red, black, and white 

spruce.
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Figure 5.3. Comparisons of observed volume (m3 ha-1), as well as that predicted by the Forest 

Vegetation Simulator Acadian variant (FVS-ACD), FVS-ACD refined by our modifiers, and FVS-

ACD refined by STAMAN modifier over time in Maine and New Brunswick.  

5.3.3. Forty-year Projections of Stand Development Using Our Refined FVS-ACD 

Without defoliation, stands with a greater percentage of susceptible trees were predicted by 

FVS-ACD to have higher volumes after 40 years. Specifically, stands with >75%, 50-75%, and 

<50% susceptible trees were predicted to have volumes of 498, 468, and 455 m3 ha-1, 

respectively (Figure 5.4). With defoliation, FVS-ACD refined by our modifiers predicted the 

above order of yield to reverse with the volumes being 375, 380, and 391 m3 ha-1, respectively. 

Peak annual defoliation was projected to have relatively little influence on stand development, 
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with mean volumes in 2015 for stands with >70%, 30-70%, and <30% peak annual defoliation 

projected to be 377, 407, and 384 m3 ha-1, respectively. In addition, higher initial volume had 

higher yield in 2015 irrespective of whether the influence of defoliation was considered. Finally, 

growing stock volume under the influence of defoliation did not fully recover and reach the level 

without the influence of defoliation for any of the stand types examined during the 40-year 

projection period (Figure 5.4). 

 

Figure 5.4. Forty-year projections of stand volume (m3 ha-1) of various types of stands with and 

without the influence spruce budworm (SBW) defoliation using the Forest Vegetation Simulator 

Acadian variant (FVS-ACD) refined by our SBW modifiers. Observed defoliation in 1975 was used 

as the input of the defoliation scenario. 
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5.4. Discussion 

The major differences between FVS-ACD and the northeast variant of FVS (FVS-NE; Dixon and 

Keyser 2008), which has also been applied in the Acadian region, are the use of site indices 

related to climate attributes, not using the potential times modifier approach, and utilizing an 

annualization technique in model development (Weiskittel et al. 2017). Previous work has 

highlighted the key stand-level prediction differences between FVS-ACD and FVS-NE for 

common forest types in Maine, but the differences are more limited for typical spruce-fir stands 

where SBW would have the largest influence (Weiskittel et al. 2017). While it is potentially 

problematic to predict potential growth in mixed-species stands (Russell et al. 2014), the 

compounding effects of SBW defoliation make it even more difficult. In addition, the use of an 

annual time step in FVS-ACD allows for capturing the highly variable and cumulative effects of 

SBW defoliation, especially on mortality as it starts to increase after several years of defoliation 

(MacLean 1980, Chen et al. 2017a). A multi-year projection period (or a linearly interpolated 

annual prediction) could overestimate the influence of defoliation for the flat period of the first 

a few years and/or underestimate the relatively quick increase in mortality in the ensuing years 

of an SBW outbreak. 

The metric of cumulative defoliation used in this study was designed to represent the 

compounding effect of SBW defoliation, and was highly compatible with the annualization 

technique used in FVS-ACD. Like many other insect and pathogen disturbance agents 

represented in FVS, a challenging aspect of representing the influences of SBW defoliation on 

forest development was to predict the temporal dynamics of defoliation itself. STAMAN 

projections use a scenario definition approach, where current annual defoliation is defined for 

each year of a SBW outbreak cycle, and then converted into a modified six-year moving-average 

of these defoliation values (MacLean et al. 2001). In the STAMAN modifiers, defoliation levels 
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were thus predetermined for the assumed duration of an outbreak and fixed at the same value 

for each susceptible tree. This obviously ignores the long-observed individual tree spatio-

temporal variability in SBW defoliation (e.g., MacLean and Lidstone 1982, Gray et al. 2000, Zhao 

et al. 2014, Doran et al. 2017) and the varying conditions of Acadian forests. Although relatively 

large errors existed in our predicted annual individual tree defoliation due to its highly variable 

nature, errors in our predicted totals of defoliation (i.e., cumulative defoliation) became smaller 

at a relative scale as the duration of FVS-ACD projection (i.e., sample size) increased since the 

predicted annual defoliation was generally unbiased (with a mean bias of +1.97%; Chen et al. In 

press). In general, our predicted cumulative defoliation performed well and generated 

predictions of the FVS-ACD components very close to those using observed defoliation.  

The significant improvement in the predictions by the refined FVS-ACD was also due to a 

systematic modification of each component equations of FVS-ACD. Chen et al. (2017a, 2017b) 

showed that both various components of FVS-ACD and various species responded differently to 

SBW defoliation, which justified the approach used in this analysis. However, these responses 

also differed from those observed in most SBW impact studies under much higher levels of 

severe defoliation conditions. Some typical differences for an example with 100% cumulative 

defoliation (equivalent to removal of one age-class of foliage) are described in detail below.  

First, our modifier indicates 69%, 88%, and 100% reductions in DBH increment of balsam fir, red 

spruce, and white spruce, respectively, which correspond to predicted mean DBH increments of 

0.07, 0.09, and 0.03 cm yr-1 of respective average-sized trees (i.e., DBH of 17.5, 19.6, and 20.7 

cm, respectively). These percentage reductions are greater than the 20-60% reduction reported 

for years 3-5 of a SBW outbreak by MacLean (1979) and the maximum 50% reduction estimated 

by Pothier et al. (2005), although such a reduction was estimated to be 80% or more under 

severe cumulative defoliation levels of 400-600% (Ostaff and MacLean 1995). Piene (1980) 
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probably has the best quantification of early outbreak (low-level) cumulative defoliation, and 

found that young balsam fir trees with 80-100% defoliation of a single age-class of foliage during 

the first year of defoliation (i.e., cumulative defoliation of 80-100%) had about 20% reduction of 

stem volume growth, and a loss of two age classes of needles (i.e., cumulative defoliation of 

200%) resulted in about 50% reduction of the stem volume growth. Our predicted absolute DBH 

increments were generally lower than that of balsam fir of 0.06 to 0.17 cm yr-1 reported by 

MacLean (1988), as well as those of balsam fir, black spruce, and white spruce of 0.10-0.28, 

0.10-0.24, and 0.10-0.36 cm yr-1, respectively, indicated by Steinman and MacLean (1994). 

Second, our modifier indicates 79%, 100%, and 100% reductions in height increment of balsam 

fir, red spruce, and white spruce, respectively, which all correspond to predicted mean height 

increment of <0.05 m yr-1. Although records of height increment influenced by SBW defoliation 

were not found in previous studies, our predictions agree with the large number of height 

growth cessations (76% of the observations) due to widespread top-kill observed in this study as 

well as suggested by Van Sickle (1987) and Ostaff and MacLean (1989). However, these previous 

data on top-kill were at higher cumulative defoliation levels. Similarly, there are no other 

references for measures of height to crown base and ingrowth influenced by SBW defoliation. In 

addition, our modifier suggests 7.4 trees ha-1 yr-1 ingrowth observed during the last SBW 

outbreak compared to the 22.8 trees ha-1 yr-1 ingrowth reported by Li et al. (2011) mainly for the 

period after the outbreak. 

Finally, our modifier indicates 3.3, 2.4, and 25.8 times increases in mortality probability of 

balsam fir, red spruce, and white spruce, respectively, which correspond to predicted mean 

annual mortality probabilities of 2.0%, 0.3%, and 0.8% of respective average-sized trees 

indicated above. These are much lower than the cumulative mortality probabilities of 73%-100% 

for balsam fir and 27%-66% for spruce species under 336%-840% cumulative defoliation 
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reported by a number of previous studies (e.g., Blais 1958, MacLean and Ostaff 1989, Piene 

1989, MacLean et al. 1996). SBW-caused tree mortality is typically minimal until at least 3-4 

years of severe (>70% current) defoliation have occurred (MacLean 1980), and thus at 100% 

cumulative defoliation should reflect normal, undefoliated mortality rates. 

Overall, our results in Figure 5.1 indicate much higher reductions of growth and increases of 

mortality than other SBW impact literature (e.g., MacLean 1980, Piene 1980, Ostaff and 

MacLean 1989, 1995, Erdle and MacLean 1999, Pothier et al. 2005). Previous studies have 

generally showed little effect of annual defoliation less than 30% on growth or mortality. Mean 

needle longevity of balsam fir has been shown to range from a mean of 5.5 years on 22-27 year-

old fir in Cape Breton, Nova Scotia (Fleming and Piene 1992) to 9.5 years on 50-year-old balsam 

fir with low defoliation in Quebec (Doran et al. 2017). Cumulative defoliation of 100% would 

equate to removal of only one age class out of approximately five to nine age classes of foliage 

on the tree, so our modifiers predict surprisingly strong effects on growth reduction and 

mortality for relatively low defoliation levels. This could reflect unusually large impacts given 

stand conditions during the 1970s-1980s SBW outbreak in Maine. 

In general, SBW defoliation had a more significant influence on height growth than on diameter 

growth and had a more important role in affecting both mortality and ingrowth than survivor 

growth. The large percentage changes of FVS-ACD components under the influence of 

defoliation partly reflect the fact that FVS-ACD was calibrated using data collected after the SBW 

outbreak. Therefore, baseline values (i.e., without the influence of defoliation) in FVS-ACD likely 

are greater than those in studies conducted during SBW outbreaks. Nevertheless, these large 

changes confirmed that even low levels of SBW defoliation had significant effects on various 

components of forest dynamics (Chen et al. 2017a, 2017b). Therefore, species- and equation-

specific modifiers developed for each component of FVS-ACD and each SBW host species likely 
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have improved this model's ability to accurately represent the highly variable influences of SBW 

defoliation on forest development. In comparison, changes in ingrowth and height to crown 

base as well as differences in DBH and height increments among SBW host species were not 

previously considered in the STAMAN modifiers. 

Projections by FVS-ACD and its STAMAN-modified version comprised significant and consistent 

over-prediction (Figure 5.2 and 5.3). This is understandable for the unmodified FVS-ACD, in 

which the reduced tree growth and survival due to SBW defoliation was not accounted for. It is 

also expected for FVS-ACD refined by STAMAN modifiers, which were calibrated using higher 

levels of severe defoliation data than ours from Canada (Erdle and MacLean 1999, MacLean et 

al. 2001). Consequently, mean defoliation was considered to start reducing tree survival at 

levels >30%, and this effect of reduced survival was also consistently smaller than that in our 

refined FVS-ACD at comparable defoliation levels (Hennigar et al. 2013a). In contrast, observed 

individual tree defoliation averaged 28% and 22% in Maine and New Brunswick, respectively, 

which means that SBW defoliation appeared to have no effect on predicted tree survival in 

many cases in FVS-ACD refined by STAMAN modifiers. This did not seem to agree with the 

observations, which suggest that even low levels of defoliation resulted in significant increases 

in mortality (Chen et al. 2017a, 2017b). 

While projections of the volume of susceptible trees by our refined FVS-ACD were not 

significantly different from the observations, relatively small over-predictions existed in 

projections involving trees of all species in Maine (Figure 5.3). Possible causes could be the 

growth of living trees (that are not modified in the model) was not as fast as indicated by the 

model because their growth may still be limited by the standing dead trees recently killed by 

SBW defoliation, and growth of non-susceptible trees like eastern hemlock (Tsuga canadensis 

(L.) Carrière) may also have been slightly influenced by defoliation. 
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Overall, these biases (over-prediction) are believed to be the cause of the increasing errors of 

predictions over time, and could severely affect the accuracy of long-term projections by the 

models. These biases may be reduced by introducing additional modifiers, which are built upon 

predictions of these biases using some potential tree, stand, and defoliation variables as 

predictors. Subsequently, the above predicted values (i.e., modifier values) will be subtracted 

from the biases and consequently reduce them. For the mortality component in our refined FVS-

ACD, we currently kill a tree when its mortality probability exceeds a threshold, which is the 

value that maximized the ratio of true positive rate over false positive rate of mortality. This 

could be an alternative to the approach that kills fractions of trees by reducing the expansion 

factors by the predicted mortality probability, which uses no criterion to protect against 

potential errors in predictions considering the fact that many trees lived through the projection 

period (i.e., the predicted mortality did not happen despite part of a tree being killed in the 

model). However, we believe that a stochastic component, which kills a tree based on a well-

designed random process and the predicted mortality probability, may be developed to evaluate 

its ability to further reduce biases in the predictions of mortality. 

Limitations in our refined FVS-ACD that require further improvements are mainly in four 

important aspects. First, FVS was developed for use in a static climate, and are generally 

incapable of reflecting the effects of climate change on stand dynamics (Crookston et al. 2010). 

In addition, climate change may also directly affect the dynamics of SBW defoliation (e.g., Gray 

2008), which may already be evolving in response to changes of the Acadian forests. However, it 

is challenging to separate the changes of SBW defoliation dynamics from its usually high spatial 

and temporal variations, and update it in growth models. Second, it is important for growth 

models like FVS-ACD to incorporate the effects of SBW defoliation with forest management and 

protection activities, considering various silvicultural techniques have been proposed as long-
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term solutions to alleviating the influence of defoliation, as well as the control of SBW has 

largely relied on the application of insecticide (Baskerville 1975, Mott 1980, Blais 1983). Such 

data on effects of management (such as species composition changes from thinning or salvage 

activities) and protection activities (e.g., Hennigar et al. 2013b) could be incorporated into FVS-

ACD. Third, the data used to develop the modifiers may not be fully representative of SBW 

outbreaks. As highlighted previously, the data in Maine were initiated after defoliation reached 

epidemic level and a significant portion of the landscape was sprayed with insecticide, which 

complicates the interpretation of our findings. Also, ground-based estimates of defoliation can 

be difficult and the observations in Maine were made by multiple observers, which could 

increase bias and underlying variability. Finally, the modifiers were developed using the base 

FVS-ACD equations, which are primarily based on data from more recent conditions. 

Consequently, the modifiers may be adjusting for additional factors above and beyond SBW 

defoliation. Ideally, the base and modifier equations would be developed using the same data to 

reduce this potential confounding influence. However, as mentioned above, the available data 

for this analysis were only after the start of the SBW outbreak and there were relatively few 

observations for non-defoliated trees. All of these above issues in addition to sampling design 

limitations may have contributed to large differences in defoliation dynamics of white spruce 

between this study and some previous studies (Table 5.1; Chen et al. In press). 

In general, the refined FVS-ACD showed significant improvement compared to previous works 

like FVS-NE refined by STAMAN modifiers. This improvement includes more accurate predictions 

of volume, species composition, and diameter distribution, as well as a much closer 

resemblance of the patterns in volume increment (Figure 5.2 and 5.3). We believe that our 

refined FVS-ACD is suitable to predict forest stand dynamics and support management as well as 

protection activities against SBW defoliation in the Acadian region during future outbreaks 
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similar to the one during the 1970s-1980s. Given the significant differences between the 

previous model and the model developed here, prior analyses (e.g. Hennigar et al. 2011) 

examining economic viability of insecticide spraying and potential growth losses in Maine may 

need to be further examined. To our knowledge, data used in this analysis are the best available 

data for assessing the effects of SBW defoliation on individual trees for this region. Only after 

the next SBW outbreak, new data for testing the developed relationships will be available. Until 

that time, we must assume that modifiers developed in this analysis reflect the general trends 

following SBW defoliation. The R code and parameters to run FVS-ACD with these developed 

modifiers are provided in Supplemental Materials D.1 and D.2. Overall, this work highlights the 

need and importance of effectively accounting for defoliation in growth and yield models.
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CHAPTER 6 

EPILOGUE 

It was found in this dissertation that species was the primary factor in affecting both trees' 

growth responses and susceptibility to spruce budworm (Choristoneura fumiferana (Clem.); 

SBW) defoliation. Specifically, what levels of defoliation trees sustained and how much growth 

reduction as well as mortality occurred under these levels of defoliation were more determined 

by species than the common tree, stand, and site attributes examined. Although growth 

reduction and mortality observed in this dissertation appeared to be lower than those reported 

by many previous SBW studies, these effects of defoliation seemed to be relatively more 

significant considering our data represented relatively low levels of defoliation observed during 

the last SBW outbreak. Overall, our findings are largely consistent between Maine and New 

Brunswick with regional differences being primarily related to the fact that New Brunswick data 

were in the end of the last SBW outbreak. As more accurate and precise predictions of forest 

development were achieved using findings from this dissertation than a similar work from 

Canada, these findings appeared to be generally valid and will help advance our understandings 

of SBW defoliation dynamics and its influence on the Acadian forest. 

This dissertation was based on extensive data from Maine and New Brunswick, which had large 

spatio-temporal extents and comprised wide ranges of forest conditions as well as detailed 

individual tree measurements and defoliation observations. Consequently, these data provided 

strong support to the findings of this dissertation. In the meantime, differences in scales and 

resolutions of data likely played an important role in the discrepancies in the findings among 

SBW studies. In particular, many studies based their conclusions on data disproportionally 

incomparable to the extents and variability of SBW defoliation during its outbreaks. Insufficient 

data are a general limitation of SBW studies including this dissertation mainly in the following 
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aspects: 1) data do not have a temporal extent to cover the transition from extremely low levels 

of defoliation (endemic SBW populations) to high levels of defoliation (endemic SBW 

populations), and to show how the development of forests have modified after defoliation 

subsides; 2) data generally cannot facilitate the investigation of the effects of forest 

management and protection activities like insecticide spraying and salvage (pre-salvage) cutting 

on defoliation and consequent forest development; and 3) sampling designs such as the spatial 

distribution and size of sample plots are insufficient to investigate the spatio-temporal dynamics 

of defoliation, which are highly variable at a range of scales. 

While the influences of SBW defoliation on the growth and mortality of trees have been rather 

intensively studied, the dynamics and variation of defoliation have been less investigated. 

Recent hypothesis of SBW population dynamics suggests that SBW defoliation was more 

synchronized at regional scale and more variable at smaller scales, and immigration as well as 

emigration played an important role in both the synchrony and variation of defoliation hence 

the high fluctuation in its temporal dynamics. Therefore, it is unrealistic to predict local 

defoliation risk (or development) and its influences without understanding the spatial dynamics 

of defoliation. Although we have discussed the variation in individual tree defoliation in Chapter 

4 from a non-spatial perspective, it is worth further investigating how this variation in 

defoliation changes spatially and how this spatial dynamics interact and influence local 

defoliation and its temporal developments in the future. 

Our data contain relatively large numbers of wind throws of trees, which may be partly related 

to the fact that sustained SBW defoliation has weakened trees and made them more prone to 

wind damage. It is also likely that defoliation has affected the regimes of other forest 

disturbances such as disease and fire by weakening trees and accumulating dead wood as fuel. It 

is beneficiary to forest protection and management planning to understand how different forest 
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disturbances interact with each other and potentially cause secondary impacts following SBW 

outbreaks. Likewise, forest management activities like salvage (pre-salvage) cutting, which 

resembles natural disturbances, are also important elements in helping understand the 

interactions and consequences of human and natural disturbances proceeding and ensuing SBW 

outbreaks. 

SBW defoliation probably has as much influences on the growth and mortality of trees as on 

forest ecosystems. SBW defoliation likely has influences on forest development at a much larger 

temporal scale considering SBW has a longer history in the Acadian region than its current hosts. 

It will be interesting to know whether spruce-fir (Picea-Abies) forests and SBW together are in a 

stable state or just transit to such a state. In addition, would human activities and/or climate 

change significantly alter this long-term forest development? Consequently, whether some 

species or forest ecosystems are dependent on periodic SBW outbreaks, how these outbreaks 

affected forest carbon and nutrition cycles, and how these altered cycles affect future climate 

and its interactions with the Acadian forests are also interesting and important topics worth 

investigation following this dissertation. 
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APPENDIX A: SUPPLEMENTAL MATERIALS OF CHAPTER 2 

A.1. Temporal Variation in Defoliation 

The following graph presents how annual spruce budworm (SBW) defoliation changed at each of 

our sample plots over time, where each line represents one sample plot and n is the year that 

defoliation peaked at this sample plot. It shows that there is a large amount of temporal 

variation in defoliation. Despite this variation, there is a rather clear pattern such that 

defoliation rises, peaks, and declines rapidly, and unlikely remains at high levels over time in 

contrary to some previous assumptions (Intermittent insecticide spraying at different locations 

may also have contributed to this pattern). In addition, the graph indicates that New Brunswick 

was mainly in the later phase of the SBW outbreak. 

 

Figure A.1. Temporal variation in defoliation. 

A.2. The Effects of Insecticide Spraying on the Stand Growth Components 

The following graph compares stand growth components of net growth, mortality, and ingrowth 

between sample plots with and without insecticide spraying in Maine during the last spruce 

budworm (SBW) outbreak, and shows that the effects of insecticide spraying were minimal and 

not significant. MacLean et al. (1984) also found that spraying did not result in significant 

difference in mortality rates of black, red spruce, and their hybrids in New Brunswick. However, 

since spraying was more likely to be applied to areas facing higher defoliation pressure, it was 
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possible that such areas would otherwise have been more influenced by SBW defoliation 

without the protection of spraying. 

 

Figure A.2. The Effects of Insecticide Spraying on the Stand Growth Components. 
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A.3. A Summary of the Data 

A summary of the attributes derived from the data used in this analysis is shown in the following table. 

Table A.1. A summary of the data. 

 Maine (n = 3 846)  New Brunswick (n = 753) 

Attributes Mean Median SD Min. Max.  Mean Median SD Min. Max. 

Net growth (m3 ha-1 year-1) 3.70 3.09 2.88 0.00 41.13  5.36 4.93 3.36 0.00 55.32 
Mortality (m3 ha-1 year-1) 4.96 0.00 13.76 0.00 231.68  3.11 0.00 5.85 0.00 59.73 
Mortality rate in volume (% year-1) 2.42 0.00 7.03 0.00 100.00  1.69 0.00 3.55 0.00 44.64 
Ingrowth (m3 ha-1 year-1) 0.53 0.00 1.76 0.00 40.20  0.80 0.00 2.62 0.00 43.42 
Ingrowth rate in volume (% year-1) 0.40 0.00 2.27 0.00 82.52  0.47 0.00 1.49 0.00 20.34 
Standing volume (m3 ha-1) 224.58 214.56 112.00 1.93 625.78  193.89 190.46 69.23 23.61 393.60 
Stand density index 583.17 586.79 237.20 15.73 1394.51  618.62 622.33 186.14 97.19 1226.12 
Relative density 0.30 0.30 0.12 0.01 0.66  0.30 0.30 0.09 0.05 0.61 
Dominant height (m) 19.23 19.20 2.85 6.71 28.04  17.93 17.61 3.00 12.64 31.97 
Cumulative defoliation (%)  84.98 58.51 86.36 0.00 585.63  64.28 47.18 53.50 5.31 321.87 
Proportion of balsam fir in volume 0.26 0.21 0.24 0.00 1.00  0.33 0.30 0.24 0.00 0.89 
Proportion of white spruce in volume 0.03 0.00 0.11 0.00 1.00  0.09 0.04 0.14 0.00 0.78 
Proportion of black spruce in volume 0.03 0.00 0.13 0.00 1.00  0.11 0.00 0.24 0.00 1.00 
Proportion of red spruce in volume 0.25 0.15 0.27 0.00 1.00  0.22 0.10 0.26 0.00 0.98 
Proportion of hardwood in volume 0.19 0.11 0.21 0.00 1.00  0.10 0.04 0.13 0.00 0.50 
Biomass growth index 1.95 2.00 0.34 0.94 2.74  -- -- -- -- -- 
Climate Site Index 13.47 13.37 1.37 9.23 19.03  11.63 11.59 1.26 8.61 14.90 
Wetness Index 7.27 7.37 2.86 0.75 15.84  10.60 10.61 1.49 7.07 14.02 
Slope (%) 9.76 5.24 14.04 0.00 132.70  6.59 2.62 6.10 0.00 27.97 
Aspect (degree) 174.00 174.51 113.11 0.00 360.00  176.20 186.34 98.17 0.00 358.80 
Elevation (m) 263.20 284.57 129.62 41.02 691.30  202.40 188.75 133.97 0.00 577.50 
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A.4. Comparisons between Our Mortality and Ingrowth Models with Zero-one-inflated Models 

We built zero-one-inflated beta regression models for mortality and ingrowth in the following 

customary way to compare with our mortality and ingrowth models: 

[ ]        (    )  (    )    (    )       

where y is the proportion of mortality/ingrowth;    and (    )     are the probabilities of y = 

0 and y = 1, respectively; and   is the mean of a beta distribution.  

   ,   , and   were all modeled through logit link functions, while the precision parameter φ of 

the beta distribution was modeled by a log link function as follows: 
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where   ,   ,  , and    are predictors for   ,   ,  , and  , respectively; and   ,   ,  , and    

are corresponding parameters. 

Parameter estimation was conducted in the following Bayesian setting using R package "zoib" 

(Liu and Kong 2016): 
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where      ;    (   ) ; I indicates an indicator variable; and  (      ) is the 

multivariate normal prior distribution of the parameters. 

Different combinations of predictors derived from various tree, stand, and site attributes were 

tested in Equations [2] – [5]. The root mean squared error (RMSE) of the predictions on 
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mortality using parameters estimated from Equation [6] ranged from 0.0998 (where x 

comprised only cumulative defoliation; and   ,   , and    comprised only intercept) to 0.0750 

(where x comprised standing volume, relative density, proportion of balsam fir ∙ cumulative 

defoliation, and proportion of spruce ∙ cumulative defoliation;    comprised cumulative 

defoliation and proportion of hardwood; and   , and    comprised only intercept). In 

comparison, RMSE of our mortality model was 0.0682 and 0.0584 (with random effects). 

More importantly, our model outperformed the above zero-one-inflated beta model in terms of 

predicting excessive zero and over-dispersed observations. First, our model had 904 close-to-

zero predictions ( ̂       when y = 0) comparing to 385 the zero-one-inflated beta model has 

(albeit being named as zero-one-inflated beta model, predicted values of the above specific 

model obviously cannot be either zero or one). Second, the maximum predicted value of our 

model is 0.41, which is 0.23 in the zero-one-inflated beta model. 

The following graphs compare the predictions of mortality between the zero-one-inflated beta 

model and our model. Specifically, Graph A shows that predictions from our model better 

resembles the distribution of the observed mortality. Graphs A and B both show that our model 

yields closer predictions of large observed values. Graph C shows that our model has a larger 

number of close-to-zero predictions. In Graphs B and C, x-axis values were jittered by Uniform (-

0.01, 0.01) and Uniform (-0.0005, 0.0005), respectively, to show overlapping observations. 
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Figure A.3. Comparisons between our mortality and ingrowth models with zero-one-inflated 

models. 

Similarly, consistent findings as for mortality in terms of model performance were also found for 

ingrowth analysis. The minimum RMSE of the predictions on ingrowth from zero-one-inflated 

beta model was 0.0262 comparing to 0.0233 and 0.0222 (with random effects) of our model. 

Overall, we evaluated the more traditional zero-inflated approach and found it to not be 

superior to our approach. More importantly, our findings in terms of parameter significance and 

magnitude of influence were consistent with the zero-inflated approach. 

A.5. The Effects of Site Characteristics on the Stand Dynamics Examined 

Site characteristics represented by the variables of Slope, cos(Aspect), Slope ∙ cos(Aspect), 

Elevation, Wetness index, Climate site index, and Biomass growth index were initially tested in 

our models. However, none of them yielded significant effects or accounted for more than 1% of 

the variation in the response variables in both regions. The following table shows correlations 

between these characteristics and the response variables (and their residuals) in our models. It 

demonstrates that the correlations were generally negligible (especially with the residuals) and 

sometimes contradicting between the two regions. After these tests, dominant height appeared 

to be a better proxy of site potential productivity than the other covariates mentioned above. 

Hence, dominant height was used in our models.
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Table A.2. The effects of site characteristics on the stand dynamics examined. 

 Slope  cos(Aspect) 
Slope 

⋅cos(Aspect) 
Elevation  

Wetness 
index 

Climate 
site index 

Biomass 
growth index 

Maine 

Annual net growth 0.045 -0.089 -0.024 0.013 -0.054 -0.046 0.007 

Residuals of 
annual net growth 

-0.003 0.074 0.009 0.013 -0.078 -0.003 -0.015 

Annual mortality rates 0.028 0.007 0.039 0.003 -0.005 -0.032 -0.009 

Residuals of 
annual morality rates 

-0.006 0.019 0.023 0.010 0.022 0.015 -0.027 

Annual ingrowth rates 0.006 -0.014 -0.025 -0.040 -0.023 -0.012 0.056 

Residuals of 
annual ingrowth rates 

0.027 -0.041 0.019 0.009 0.007 0.002 0.015 

New Brunswick 

Annual net growth 0.201 -0.030 0.030 0.210 -0.020 0.141 -- 

Residuals of 
annual net growth 

0.006 0.028 0.023 -0.019 -0.031 0.022 -- 

Annual mortality rates 0.037 0.030 -0.041 -0.009 0.013 -0.003 -- 

Residuals of 
annual morality rates 

0.047 -0.036 0.011 -0.008 0.051 0.018 -- 

Annual ingrowth rates 0.034 0.009 0.031 -0.058 -0.042 -0.038 -- 

Residuals of 
annual ingrowth rates 

-0.023 0.002 -0.002 -0.026 -0.002 0.022 -- 
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A.6. The Fit of Our Models 

In addition to the statistics presented in the text and tables, the following graphs illustrate the 

fit of our models by plotting predicted values of net growth, mortality, and ingrowth over 

corresponding observed values (a few large observations were truncated to show details in the 

fit). 

 

Figure A.4. The fit of our models for the Maine data. 
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Figure A.5. The fit of our models for the New Brunswick data. 

A.7. Cumulative Mortality Probability of Different Host Species 

Our data indicated differences in host species' vulnerability to SBW defoliation. The following 

graph illustrates the observed cumulative mortality probability (%) over the observed 

cumulative defoliation (%) by species. It shows that cumulative mortality probability of 
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red/black spruce surpasses that of balsam fir at high levels of defoliation. Since the beginning 

part of the SBW outbreak was not recorded, the actual cumulative mortality probability should 

be stretched to the right for New Brunswick. 

 

Figure A.6. Cumulative mortality probability of different host species. 
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APPENDIX B: SUPPLEMENTAL MATERIALS OF CHAPTER 3 

B.1. A Summary of the Data 

A summary of individual trees attributes of various host species, where BAL is basal area of trees larger than the subject tree in DBH (m2 

ha-1); cumulative defoliation is cumulative sums of the percentage defoliation of current-year foliage from all previous years until current 

year (%). 

Table B.1. A summary of the data. 

 Maine  New Brunswick 

Attributes Mean Median SD Min. Max.  Mean Median SD Min. Max. 

 Balsam fir 
 n = 89 976  n = 2 819 
DBH (cm) 17.49 16.51 4.55 11.43 53.85  19.21 18.30 6.16 9.00 43.50 
ΔDBH (cm year-1) 0.13 0.08 0.13 0.00 1.52  0.27 0.23 0.19 0.00 1.80 
Height* (m) 14.51 14.63 3.04 2.13 26.52  12.05 12.00 3.13 2.60 25.00 
ΔHeight (m year-1) 0.07 0.00 0.21 0.00 13.41  -- -- -- -- -- 
Height to crown base (m) 11.48 11.28 4.47 0.00 26.21  -- -- -- -- -- 
ΔHeight to crown base (m 
year-1) 

0.22 0.00 0.69 0.00 14.63  -- -- -- -- -- 

Crown ratio 0.22 0.20 0.23 0.00 1.00  -- -- -- -- -- 
Mortality (% year-1) 5.81 -- -- -- --  2.76 -- -- -- -- 
BAL of softwood (m2 ha-1) 17.10 15.38 11.22 0.00 63.11  12.13 10.60 8.64 0.00 44.35 
BAL of hardwood (m2 ha-1) 5.35 2.78 6.92 0.00 42.34  4.50 3.35 4.47 0.00 24.61 
Cumulative defoliation (%)  193 158 146 0 845  148 120 115 10 700 
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(Table B.1. continued) 

 Maine  New Brunswick 

Attributes Mean Median SD Min. Max.  Mean Median SD Min. Max. 

 Black spruce 
 n = 8 584  n = 1 240 
DBH (cm) 17.32 16.00 4.83 11.43 36.58  18.65 17.50 5.99 7.30 46.80 
ΔDBH (cm year-1) 0.12 0.08 0.13 0.00 1.27  0.16 0.13 0.13 0.00 0.97 
Height* (m) 12.91 12.50 2.68 6.40 20.73  12.71 12.50 2.97 5.50 21.50 
ΔHeight (m year-1) 0.04 0.00 0.12 0.00 2.44  -- -- -- -- -- 
Height to crown base (m) 9.53 9.45 3.96 0.00 20.73  -- -- -- -- -- 
ΔHeight to crown base (m 
year-1) 

0.12 0.00 0.45 0.00 10.36  -- -- -- -- -- 

Crown ratio 0.27 0.28 0.26 0.00 1.00  -- -- -- -- -- 
Mortality (% year-1) 1.43 -- -- -- --  1.56 -- -- -- -- 
BAL of softwood (m2 ha-1) 11.99 10.71 8.40 0.00 43.92  12.96 12.15 8.35 0.00 43.46 
BAL of hardwood (m2 ha-1) 0.47 0.00 2.20 0.00 33.62  1.83 0.74 2.90 0.00 14.34 
Cumulative defoliation (%)  65 38 89 0 620  41 35 32 10 375 

 Red spruce 
 n = 83 563  n = 2 257 
DBH (cm) 19.57 18.03 6.41 11.43 59.69  22.65 20.90 8.30 8.60 61.90 
ΔDBH (cm year-1) 0.14 0.13 0.14 0.00 1.52  0.22 0.20 0.19 0.00 3.70 
Height* (m) 14.59 14.63 3.09 3.96 26.82  13.48 13.50 3.83 4.00 30.00 
ΔHeight (m year-1) 0.05 0.00 0.15 0.00 6.10  -- -- -- -- -- 
Height to crown base (m) 11.05 10.36 4.17 0.00 26.82  -- -- -- -- -- 
ΔHeight to crown base (m 
year-1) 

0.14 0.13 0.14 0.00 1.52  -- -- -- -- -- 

Crown ratio 0.25 0.28 0.23 0.00 1.00  -- -- -- -- -- 
Mortality (% year-1) 1.24 -- -- -- --  0.96 -- -- -- -- 
BAL of softwood (m2 ha-1) 16.84 15.34 11.93 0.00 63.74  9.51 7.89 7.49 0.00 36.54 
BAL of hardwood (m2 ha-1) 3.29 0.00 5.61 0.00 42.34  2.28 0.71 3.88 0.00 19.28 
Cumulative defoliation (%)  100 70 104 0 659  51 45 40 10 360 
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(Table B.1. continued) 

 Maine  New Brunswick 

Attributes Mean Median SD Min. Max.  Mean Median SD Min. Max. 

 White spruce 
 n = 9 154  n = 845 
DBH (cm) 20.67 19.05 7.43 11.43 50.55  24.04 23.00 8.41 9.70 63.60 
ΔDBH (cm year-1) 0.15 0.13 0.16 0.00 1.27  0.29 0.25 0.19 0.00 1.20 
Height* (m) 14.58 14.33 3.51 6.71 25.60  12.75 12.50 3.83 4.00 25.50 
ΔHeight (m year-1) 0.06 0.00 0.18 0.00 3.35  -- -- -- -- -- 
Height to crown base (m) 10.53 10.06 4.51 0.00 25.60  -- -- -- -- -- 
ΔHeight to crown base (m 
year-1) 

0.19 0.00 0.59 0.00 9.75  -- -- -- -- -- 

Crown ratio 0.28 0.31 0.26 0.00 1.00  -- -- -- -- -- 
Mortality (% year-1) 0.38 -- -- -- --  1.13 -- -- -- -- 
BAL of softwood (m2 ha-1) 15.48 13.47 12.16 0.00 54.85  8.75 6.66 7.56 0.00 34.00 
BAL of hardwood (m2 ha-1) 4.61 1.19 7.40 0.00 42.34  2.39 1.43 3.26 0.00 22.91 
Cumulative defoliation (%)  5 0 28 0 280  114 85 91 10 640 
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APPENDIX C: SUPPLEMENTAL MATERIALS OF CHAPTER 4 

C.1. Correlation between Tree-level as well as Stand-level Characteristics and Defoliation 

Table C.1. Correlation coefficients between some common tree-level as well as stand-level characteristics and individual tree defoliation. 

Individual tree 
defoliation 

(%) 

DBH 
(cm) 

Height 
(m) 

Crown 
ratio 

BAL 
(m2 ha-1) 

BA 
(m2 ha-1) 

BAHW/BA Height/MHTSW 

Maine -0.07 0.00 0.03 0.03 -0.02 -0.02 -0.02 
New Brunswick 0.00 -0.03 -- 0.07 0.16 0.04 0.06 

BAL is basal area of trees larger than the subject tree in DBH at a location (m2 ha-1); BA and BAHW are basal area and that of hardwoods in 

a plot (m2 ha-1), respectively; MHTSW is mean height of softwood trees at a location (m). Height (MHTSW) in New Brunswick is of the initial 

measurements obtained during 1976-1979. 
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C.2. Locations of Sample Plots and Some Characteristics of Samples 

 

Figure C.1. Locations of sample plots as well as distributions of white spruce (WS) sample 

density (trees per plot) and mean stand-level defoliation (%) by region. Ideally, white spruce 

samples would be uniformly distributed over the regions and ranges of defoliation (i.e., 

balanced samples). However, white spruce sample density was slightly higher in southeastern 

Maine (where defoliation was lower), and was much higher in northern New Brunswick (where 

defoliation was also much higher). These patterns in samples likely contributed to the observed 

regional difference in white spruce' susceptibility.
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C.3. Standard Deviation in Individual Tree Defoliation 

 

Figure C.2. Observed distribution of trees in different defoliation classes with various 

percentages of non-host trees by region (left axes; shown by shaded background). Predicted 

standard deviation of individual tree defoliation (%) as a function of stand-level defoliation (%) 

by percentage of non-host trees at a location (right axes; shown by lines, with all the other 

covariates at their means). 
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APPENDIX D: SUPPLEMENTAL MATERIALS OF CHAPTER 5 

D.1. Developed R code to implement the Forest Vegetation Simulator Acadian variant (FVS-

ACD) refined by our spruce budworm modifiers 

# FVS_ACD(): performing growth and yield projections using FVS-ACD. 

# Usage: FVS_ACD(PLOT, SPP, DBH, HT, CR, DEF, CSI, EXPF, CutPoint, T=0, 

N_YEAR) 

# Arguments: 

# PLOT: numeric or character (do not use factor), sorting is not 

required; 

# SPP: species, numeric or character (do not use factor); 

# DBH: diameter at breast height (cm), numeric; 

# HT: height (m), numeric; 

# CR: crown ratio, numeric; 

# DEF: cumulative defoliation observed (%), 0 if not defoliated, 

numeric; 

# CSI: climate site index, numeric; 

# EXPF: expansion factor of each plot, numeric; 

# CutPoint: the cut point DBH of ingrowth (cm), numeric; 

# T: years into defoliation, default value of 0 indicates the 

first year of defoliation, value of 999 indicates not applying 

defoliation modifiers, numeric; 

# N_year: duration of projection (year), numeric. 

# Value: return a list of the length indicated by N_YEAR, each element 

of the list is a data.frame representing projections at that year with 

columns of PLOT, SPP, DBH, HT, CR, and DEF. 

FVS_ACD <- function(PLOT, SPP, DBH, HT, CR, DEF, CSI, EXPF, CutPoint, 

T=0, N_YEAR) 

{ 
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PROJ <- vector("list", N_YEAR) 

N <- MORT <- ING <- 0 

DEF_I <- DEF 

HW_SPP <- c("YB","RM","SM","BT","AB","OH","PB") 

SW_SPP <- c("EH","RS","WC","BF","BS","WP","OS","WS") 

while(N_YEAR-N >= 1) 

{ 

m <- match(SPP, PARA$SPP) 

m[is.na(m)] <- 1 

n <- length(PLOT) 

ID <- ID.new <- ID.int <- 1:n 

MCW <- PARA$b1.MCW[m]*DBH^PARA$b2.MCW[m] 

PBA <- BAL.SW <- BAL.HW <- BA.SW <- BA.HW <- tph <- topht <- SDI <- 

SDImax <- CCF <- numeric(n) 

for(i in 1:n) 

{ 

PBA[i] <- 0.25*pi*sum(DBH[PLOT==PLOT[i] & 

SPP==SPP[i]]^2)/10^4*EXPF 

BAL.SW[i] <- 0.25*pi*sum(DBH[PLOT==PLOT[i] & DBH>DBH[i] & 

SPP%in%SW_SPP]^2)/10^4*EXPF 

BAL.HW[i] <- 0.25*pi*sum(DBH[PLOT==PLOT[i] & DBH>DBH[i] & 

SPP%in%HW_SPP]^2)/10^4*EXPF 

BA.SW[i] <- 0.25*pi*sum(DBH[PLOT==PLOT[i] & 

SPP%in%SW_SPP]^2)/10^4*EXPF 

BA.HW[i] <- 0.25*pi*sum(DBH[PLOT==PLOT[i] & 

SPP%in%HW_SPP]^2)/10^4*EXPF 

tph[i] <- length(DBH[PLOT==PLOT[i]])*EXPF 

topht[i] <- max(HT[PLOT==PLOT[i]]) 

SDI[i] <- sum((DBH[PLOT==PLOT[i]]/25.4)^1.605)*EXPF 
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SDImax[i] <- -6017.3*mean(PARA$SG[m][PLOT==PLOT[i]]) + 4156.3 

CCF[i] <- 100*0.25*pi*sum(MCW[PLOT==PLOT[i]]^2)/10^4*EXPF 

 } 

BAL <- BAL.SW + BAL.HW 

BA <- BA.SW + BA.HW 

RS <- sqrt(10000/tph)/topht 

BAperc <- 1 - BAL/BA 

BALmod <- (1-BAperc)/RS 

pBAL.SW <- BAL.SW/(BAL+0.1) 

RD <- SDI/SDImax 

PBA <- PBA/BA 

PLOT_add <- data.frame(PLOT=PLOT, SPP=SPP, CSI=CSI, ID=ID, 

stringsAsFactors=FALSE)[!duplicated(data.frame(PLOT=PLOT, SPP=SPP, 

CSI=CSI, ID=ID, stringsAsFactors=FALSE)[,1:2]),] 

if(T!=999) 

{ 

dDEF <- T*(1-exp(PARA$p1.DEF[m]*(T-PARA$p2.DEF[m]))) + 

PARA$p3.DEF[m]*T*exp((PARA$p4.DEF[m]*DEF_I+PARA$p5.DEF[m]*CR)*T) 

+ (SPP=="WS")*T 

DEF <- DEF + dDEF 

DEF[dDEF<0] <- DEF[dDEF<0]-dDEF[dDEF<0]-100 

DEF[DEF<0] <- 0 

mod_DBH <- exp(PARA$p.DBH[m] * DEF) 

mod_HT <- exp(PARA$p.HT[m] * DEF) * 

ifelse(runif(n)>PARA$p.HTc[m], 1, 0) 

mod_HCB <- exp(PARA$p1.HCB[m]*DEF + PARA$p2.HCB[m]*CR) 

mod_MORT <- PARA$p.MORT[m] * DEF 

mod_IPH <- PARA$p1.IPH[1] * c(unlist(by(DEF, list(PLOT), 

function(x) rep(mean(x),length(x))))) + PARA$p2.IPH[1] 
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names(mod_IPH) <- ID[match(c(unlist(by(PLOT, list(PLOT), 

function(x) x))), PLOT)] 

mod_IPH <- mod_IPH[match(ID[!duplicated(PLOT)], names(mod_IPH))] 

mod_IPH[mod_IPH==0] <- 1 

mod_Icomp <- PARA$p1.Icomp[1] * c(unlist(by(DEF, list(PLOT,SPP), 

function(x) rep(mean(x),length(x))))) + PARA$p2.Icomp[1] 

names(mod_Icomp) <- ID[match(c(unlist(by(PLOT, list(PLOT, SPP), 

function(x) x))), PLOT)] 

mod_Icomp <- mod_Icomp[match(rownames(PLOT_add), 

names(mod_Icomp))] 

mod_Icomp[mod_Icomp==0] <- 1 

mod_DBH[is.na(mod_DBH)] <- mod_HT[is.na(mod_HT)] <- 

mod_HCB[is.na(mod_HCB)] <- mod_IPH[is.na(mod_IPH)] <- 

mod_Icomp[is.na(mod_Icomp)] <- 1 

mod_MORT[is.na(mod_MORT)] <- 0 

} else 

{ 

mod_DBH <- mod_HT <- mod_HCB <- mod_IPH <- mod_Icomp <- 1 

mod_MORT <- 0 

} 

dDBH <- exp(-1.6331538+PARA$b0.DBH[m] + (0.0070441+PARA$b1.DBH[m])*DBH 

-0.0002784*DBH^2 + 0.1257197*log(CR+0.001) + (-

0.2705499+PARA$b4.DBH[m])*log(BALmod+0.001) + 0.2941056*log(CSI) + (-

0.0616965+PARA$b6.DBH[m])*sqrt(BA*RD) -0.1465285*sqrt(pBAL.SW)) * 

mod_DBH 

dDBH[dDBH<0] <- 0 

dHT <- exp(-3.925083+PARA$b0.HT[m] + (-0.061691+PARA$b1.HT[m])*HT + 

0.255589*log(HT) + 0.199307*log(CR+0.001) + (-

0.091328+PARA$b4.HT[m])*log(BALmod+0.001) + 1.025877*log(CSI) + 
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(0.115358+PARA$b6.HT[m])*log(BA*RD) + 

(0.098963+PARA$b7.HT[m])*sqrt(pBAL.SW) + 0.003199*BA*RD) * mod_HT 

dHT[dHT<0] <- 0 

HCB <- HT/(1+exp((0.29070+PARA$b0.HCB[m])+0.00636*DBH-

0.02288*HT+0.08232*DBH/HT-0.03086*log(CCF+1)-

0.01701*(BAL.SW+BAL.HW+1))) * mod_HCB 

ID.index <- ID[ID%in%ID.int] 

HCB[ID.index][HCB[ID.index]<(1-CR[ID.index])*HT[ID.index]] <- ((1-

CR[ID.index])*HT[ID.index])[HCB[ID.index]<(1-

CR[ID.index])*HT[ID.index]] 

dMORT <- 

1/(1+exp(PARA$b0.MORT[m]+PARA$b1.MORT[m]*DBH+PARA$b2.MORT[m]*DBH^2)) * 

(0.010591127*BALmod + 0.049789571*sqrt(pBAL.SW) - 0.124299218*CR - 

0.199434641*log(CSI) + 0.523150752 + mod_MORT) 

CR <- (HT-HCB)/HT 

CR[CR<0] <- 0 

DBH <- DBH + dDBH 

HT <- HT + dHT 

MORT <- MORT + dMORT 

link1 <- -0.2116-0.0255*(BA.SW+BA.HW)-0.1396*BA.HW/(BA.SW+BA.HW)-

0.0054*(tph/1000)+0.0433*CSI+0.0409*CutPoint 

PI <- 1/(1+exp(-link1)) 

eta <- 3.8982-0.0257*(BA.SW+BA.HW)-

0.3668*BA.HW/(BA.SW+BA.HW)+0.0002*(tph/1000)+0.0216*CSI-0.0514*CutPoint 

IPH <- exp(eta)*PI 

names(IPH) <- 1:n 

IPH <- IPH[match(ID[!duplicated(PLOT)], names(IPH))] * mod_IPH 
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perc <- 

PARA$b0.ING[m]+PARA$b1.ING[m]*(BA.SW+BA.HW)+PARA$b2.ING[m]*PBA+PARA$b3.

ING[m]*CSI+PARA$b4.ING[m]*CutPoint 

perc <- 1/(1+exp(-perc)) 

names(perc) <- 1:n 

perc <- perc[match(rownames(PLOT_add), names(perc))] * mod_Icomp 

IPH <- IPH[match(names(perc), names(IPH))] 

dING <- IPH*perc/EXPF 

dING[is.na(dING)] <- 0 

names(dING) <- names(perc) 

if(length(ING)==1) 

{ 

ING <- ING + dING 

names(ING) <- names(dING) 

ING.new <- data.frame(PLOT=PLOT_add$PLOT[match(names(ING), 

rownames(PLOT_add))], SPP=PLOT_add$SPP[match(names(ING), 

rownames(PLOT_add))], ING=ING) 

} else 

{ 

dING <- data.frame(PLOT=PLOT_add$PLOT[match(names(dING), 

rownames(PLOT_add))], SPP=PLOT_add$SPP[match(names(dING), 

rownames(PLOT_add))], ING=dING, ID=names(dING)) 

ING.new <- merge(ING.new, dING, by=c("PLOT","SPP"), 

all=FALSE) 

ING <- ING.new$ING <- ING.new$ING.x + ING.new$ING.y 

rownames(ING.new) <- ING.new$ID 

ING.new <- ING.new[,c("PLOT","SPP","ING")]  

} 

ING.add <- which(ING>=1) 
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if(length(ING.add)>0) 

{ 

DBH <- c(DBH, rep(CutPoint, sum(trunc(ING[ING.add]))))  

HT <- c(HT, rep(11.10, sum(trunc(ING[ING.add]))))  

CR <- c(CR, rep(0.204, sum(trunc(ING[ING.add])))) 

MORT <- c(MORT, rep(0, sum(trunc(ING[ING.add]))))  

ID.new <- c(ID, (n+1):(n+sum(trunc(ING[ING.add]))))  

CSI <- c(CSI, rep(PLOT_add$CSI[match(rownames(ING.new[ING.add,]), 

rownames(PLOT_add))], trunc(ING.new$ING[ING.add]))) 

SPP <- c(SPP, rep(PLOT_add$SPP[match(rownames(ING.new[ING.add,]), 

rownames(PLOT_add))], trunc(ING.new$ING[ING.add])))  

PLOT <- c(PLOT, 

rep(PLOT_add$PLOT[match(rownames(ING.new[ING.add,]), 

rownames(PLOT_add))], trunc(ING[ING.add]))) 

if(sum(DEF==0)<n) 

{ 

DEF <- c(DEF, 

rep(ifelse(PLOT_add$SPP[match(rownames(ING.new[ING.add,]), 

rownames(PLOT_add))]%in%c("BF","BS","RS","WS"), 29, 0), 

trunc(ING[ING.add]))) 

DEF_I <- c(DEF_I, 

rep(ifelse(PLOT_add$SPP[match(rownames(ING.new[ING.add,]), 

rownames(PLOT_add))]%in%c("BF","BS","RS","WS"), 29, 0), 

trunc(ING[ING.add])))} else 

{ 

DEF <- c(DEF, rep(0, sum(trunc(ING[ING.add])))) 

DEF_I <- c(DEF_I, rep(0, 

sum(trunc(ING[ING.add])))) 

}} 
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ING[ING.add] <- ING.new$ING[ING.add] <- ING[ING.add] - 

trunc(ING[ING.add]) 

MORT.drop <- which(MORT>=0.214) 

if(length(MORT.drop)>0) 

{PLOT <- PLOT[-MORT.drop]; SPP <- SPP[-MORT.drop]; DBH <- DBH[-

MORT.drop]; HT <- HT[-MORT.drop]; CR <- CR[-MORT.drop]; MORT <- MORT[-

MORT.drop]; DEF <- DEF[-MORT.drop]; DEF_I <- DEF_I[-MORT.drop]; CSI <- 

CSI[-MORT.drop]; ID.new <- ID.new[-MORT.drop]} 

ID.int <- intersect(ID, ID.new) 

ID <- ID.new 

N <- N+1 

T <- T+1 

PROJ[[N]] <- data.frame(PLOT=PLOT, SPP=SPP, DBH=DBH, HT=HT, CR=CR, 

DEF=DEF, stringsAsFactors=FALSE) 

} 

PROJ 

}
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D.2. Parameters (PARA) used in the R code for the Forest Vegetation Simulator Acadian 

variant refined by our spruce budworm modifiers 

PARA <- rbind( 

data.frame(SPP="All of the others", SG=0.3, b0.DBH=0, b1.DBH=0, 

b4.DBH=0, b6.DBH=0, b0.HT=0, b1.HT=0, b4.HT=0, b6.HT=0, b7.HT=0, 

b0.MORT=2.6967072576, b1.MORT=-0.001250889, b2.MORT=0.0007521152, 

b1.MCW=2.24262, b2.MCW=0.462653333, b0.HCB=0, b0.ING=0, b1.ING=0, 

b2.ING=0, b3.ING=0, b4.ING=0, p1.DEF=0, p2.DEF=0, p3.DEF=0, p4.DEF=0, 

p5.DEF=0, p.DBH=0, p.HT=0, p.HTc=0.8948422, p1.HCB=0, p2.HCB=0, 

p.MORT=0, p1.IPH=-0.0011637, p1.Icomp=-0.007686, p2.IPH=0.1397053, 

p2.Icomp=1.245914), 

data.frame(SPP="AB", SG=0.64, b0.DBH=-0.034977457, b1.DBH=0.007276127, 

b4.DBH=0.117697955, b6.DBH=-0.0382661, b0.HT=-0.415979307, 

b1.HT=0.0274010197, b4.HT=0.196582208, b6.HT=-0.164287184, 

b7.HT=0.17710536, b0.MORT=2.152681379, b1.MORT=-0.0269825907, 

b2.MORT=0.0002203177, b1.MCW=2.93, b2.MCW=0.434, b0.HCB=-0.218384027, 

b0.ING=-2.9832, b1.ING=-0.0020, b2.ING=2.4837, b3.ING=0.0673, b4.ING=-

0.0167, p1.DEF=0, p2.DEF=0, p3.DEF=0, p4.DEF=0, p5.DEF=0, p.DBH=0, 

p.HT=0, p.HTc=0.9226306, p1.HCB=0, p2.HCB=0, p.MORT=0, p1.IPH=-

0.0011637, p1.Icomp=-0.007686, p2.IPH=0.1397053, p2.Icomp=1.245914), 

data.frame(SPP="BF", SG=0.35, b0.DBH=0.124494862, b1.DBH=0.00123841, 

b4.DBH=0.021706955, b6.DBH=-0.012162306, b0.HT=-0.252382258, 

b1.HT=0.0100278394, b4.HT=-0.115915182, b6.HT=-0.019904875, 

b7.HT=0.35826384, b0.MORT=2.5743949775, b1.MORT=-0.0851930923, 

b2.MORT=0.0015971909, b1.MCW=1.37, b2.MCW=0.572, b0.HCB=0.093585699, 

b0.ING=-3.0291, b1.ING=0.0027, b2.ING=2.7779, b3.ING=0.0211, 

b4.ING=0.0221, p1.DEF=0.0175090638, p2.DEF=11.9561909843, p3.DEF=-

0.0442501199, p4.DEF=-0.0009501345, p5.DEF=-0.2969766902, p.DBH=-
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0.0116125, p.HT=-0.0155001, p.HTc=0.8689313, p1.HCB=0.007474090, 

p2.HCB=-0.929648888, p.MORT=0.002153933, p1.IPH=-0.0011637, p1.Icomp=-

0.007686, p2.IPH=0.1397053, p2.Icomp=1.245914), 

data.frame(SPP="BS", SG=0.46, b0.DBH=-0.032226829, b1.DBH=-0.01442781, 

b4.DBH=-0.021477635, b6.DBH=-0.001507636, b0.HT=0.09727877, b1.HT=-

0.0270708651, b4.HT=0.034082833, b6.HT=0.023416841, b7.HT=-0.27796473, 

b0.MORT=1.9568828063, b1.MORT=0.0535388009, b2.MORT=-0.0010376306, 

b1.MCW=0.535, b2.MCW=0.742, b0.HCB=-0.227771445, b0.ING=-1.2500, 

b1.ING=-0.0132, b2.ING=2.0470, b3.ING=-0.0514, b4.ING=0.0351, 

p1.DEF=0.004462929, p2.DEF=18.161944433, p3.DEF=-0.021691545, p4.DEF=-

0.003606711, p5.DEF=-0.087007898, p.DBH=-0.0236663, p.HT=-0.1373007, 

p.HTc=0.9119572, p1.HCB=0.007364462, p2.HCB=-0.627453191, 

p.MORT=0.007823319, p1.IPH=-0.0011637, p1.Icomp=-0.007686, 

p2.IPH=0.1397053, p2.Icomp=1.245914), 

data.frame(SPP="BT", SG=0.39, b0.DBH=0.107871306, b1.DBH=-0.0004487118, 

b4.DBH=-0.049918635, b6.DBH=0.049907667, b0.HT=0.097631862, b1.HT=-

0.0019892345, b4.HT=-0.033205181, b6.HT=0.178102299, b7.HT=-0.42712909, 

b0.MORT=2.1791849646, b1.MORT=-0.0125375225, b2.MORT=0.0008529794, 

b1.MCW=4.04, b2.MCW=0.308, b0.HCB=0.010040571, b0.ING=-2.9832, b1.ING=-

0.0020, b2.ING=2.4837, b3.ING=0.0673, b4.ING=-0.0167, p1.DEF=0, 

p2.DEF=0, p3.DEF=0, p4.DEF=0, p5.DEF=0, p.DBH=0, p.HT=0, 

p.HTc=0.9171139, p1.HCB=0, p2.HCB=0, p.MORT=0, p1.IPH=-0.0011637, 

p1.Icomp=-0.007686, p2.IPH=0.1397053, p2.Icomp=1.245914), 

data.frame(SPP="EH", SG=0.4, b0.DBH=-0.073679869, b1.DBH=0.01541532, 

b4.DBH=0.176123957, b6.DBH=-0.070655479, b0.HT=-0.338641101, 

b1.HT=0.0149152575, b4.HT=0.042828473, b6.HT=-0.023914376, b7.HT=-

0.02984288, b0.MORT=4.5205542708, b1.MORT=-0.0670350692, 

b2.MORT=0.0012041907, b1.MCW=2.44, b2.MCW=0.408, b0.HCB=0.403937729, 

b0.ING=-4.7182, b1.ING=0.0070, b2.ING=3.2269, b3.ING=0.1000, 
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b4.ING=0.0188, p1.DEF=0, p2.DEF=0, p3.DEF=0, p4.DEF=0, p5.DEF=0, 

p.DBH=0, p.HT=0, p.HTc=0.9189400, p1.HCB=0, p2.HCB=0, p.MORT=0, 

p1.IPH=-0.0011637, p1.Icomp=-0.007686, p2.IPH=0.1397053, 

p2.Icomp=1.245914), 

data.frame(SPP="OH", SG=0.5121, b0.DBH=0.182086574, b1.DBH=0.004291105, 

b4.DBH=0.031149091, b6.DBH=-0.038283159, b0.HT=0.190850506, 

b1.HT=0.008856123, b4.HT=0.096511731, b6.HT=-0.179549618, 

b7.HT=0.11449758, b0.MORT=4.552236589, b1.MORT=-0.5204997134, 

b2.MORT=0.0125996045, b1.MCW=4.04, b2.MCW=0.308, b0.HCB=-0.042894377, 

b0.ING=-2.9832, b1.ING=-0.0020, b2.ING=2.4837, b3.ING=0.0673, b4.ING=-

0.0167, p1.DEF=0, p2.DEF=0, p3.DEF=0, p4.DEF=0, p5.DEF=0, p.DBH=0, 

p.HT=0, p.HTc=0.9104781, p1.HCB=0, p2.HCB=0, p.MORT=0, p1.IPH=-

0.0011637, p1.Icomp=-0.007686, p2.IPH=0.1397053, p2.Icomp=1.245914), 

data.frame(SPP="OS", SG=0.445, b0.DBH=0, b1.DBH=0, b4.DBH=0, b6.DBH=0, 

b0.HT=0, b1.HT=0, b4.HT=0, b6.HT=0, b7.HT=0, b0.MORT=2.6967072576, 

b1.MORT=-0.001250889, b2.MORT=0.0007521152, b1.MCW=1.597128571, 

b2.MCW=0.513957143, b0.HCB=0, b0.ING=-4.7182, b1.ING=0.0070, 

b2.ING=3.2269, b3.ING=0.1000, b4.ING=0.0188, p1.DEF=0, p2.DEF=0, 

p3.DEF=0, p4.DEF=0, p5.DEF=0, p.DBH=0, p.HT=0, p.HTc=0.8592058, 

p1.HCB=0, p2.HCB=0, p.MORT=0, p1.IPH=-0.0011637, p1.Icomp=-0.007686, 

p2.IPH=0.1397053, p2.Icomp=1.245914), 

data.frame(SPP="PB", SG=0.55, b0.DBH=0.147672195, b1.DBH=-0.01733291, 

b4.DBH=-0.121852844, b6.DBH=0.002444024, b0.HT=-0.130932583, b1.HT=-

0.0078414315, b4.HT=0.111669147, b6.HT=-0.044044815, b7.HT=0.11333075, 

b0.MORT=2.5863343441, b1.MORT=-0.0518497247, b2.MORT=0.0021853588, 

b1.MCW=1.48, b2.MCW=0.623, b0.HCB=-0.180946077, b0.ING=-2.5645, 

b1.ING=0.0020, b2.ING=2.6624, b3.ING=-0.0010, b4.ING=-0.0127, p1.DEF=0, 

p2.DEF=0, p3.DEF=0, p4.DEF=0, p5.DEF=0, p.DBH=0, p.HT=0, 
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p.HTc=0.8744374, p1.HCB=0, p2.HCB=0, p.MORT=0, p1.IPH=-0.0011637, 

p1.Icomp=-0.007686, p2.IPH=0.1397053, p2.Icomp=1.245914), 

data.frame(SPP="RM", SG=0.54, b0.DBH=-0.053329455, b1.DBH=-

0.0000425553, b4.DBH=-0.018221214, b6.DBH=0.02432616, b0.HT=0.12732005, 

b1.HT=-0.0245368295, b4.HT=0.053246849, b6.HT=0.00579006, 

b7.HT=0.14672003, b0.MORT=2.1674971386, b1.MORT=0.0557266595, b2.MORT=-

0.0010435394, b1.MCW=2.17, b2.MCW=0.491, b0.HCB=-0.202478201, b0.ING=-

0.6566, b1.ING=0.0123, b2.ING=1.7669, b3.ING=-0.0421, b4.ING=-0.0283, 

p1.DEF=0, p2.DEF=0, p3.DEF=0, p4.DEF=0, p5.DEF=0, p.DBH=0, p.HT=0, 

p.HTc=0.9213483, p1.HCB=0, p2.HCB=0, p.MORT=0, p1.IPH=-0.0011637, 

p1.Icomp=-0.007686, p2.IPH=0.1397053, p2.Icomp=1.245914), 

data.frame(SPP="RS", SG=0.4, b0.DBH=0.040808688, b1.DBH=0.004242409, 

b4.DBH=-0.004858248, b6.DBH=-0.008108392, b0.HT=-0.048412618, b1.HT=-

0.0079040397, b4.HT=-0.145815645, b6.HT=0.060567801, b7.HT=0.0797388, 

b0.MORT=2.0420797297, b1.MORT=0.0425701678, b2.MORT=-0.0004901795, 

b1.MCW=1.80, b2.MCW=0.461, b0.HCB=-0.121308265, b0.ING=-1.2500, 

b1.ING=-0.0132, b2.ING=2.0470, b3.ING=-0.0514, b4.ING=0.0351, 

p1.DEF=0.004462929, p2.DEF=18.161944433, p3.DEF=-0.021691545, p4.DEF=-

0.003606711, p5.DEF=-0.087007898, p.DBH=-0.0213097, p.HT=-0.2907858, 

p.HTc=0.9008300, p1.HCB=0.006873691, p2.HCB=-0.630759428, 

p.MORT=0.001598985, p1.IPH=-0.0011637, p1.Icomp=-0.007686, 

p2.IPH=0.1397053, p2.Icomp=1.245914), 

data.frame(SPP="SM", SG=0.63, b0.DBH=0.12397129, b1.DBH=0.006428658, 

b4.DBH=0.0137845, b6.DBH=-0.047456949, b0.HT=0.088620046, 

b1.HT=0.0258811205, b4.HT=0.073470611, b6.HT=-0.218583608, b7.HT=-

0.14200099, b0.MORT=2.7069022565, b1.MORT=0.0086263655, 

b2.MORT=0.0007235392, b1.MCW=3.31, b2.MCW=0.356, b0.HCB=-0.16382426, 

b0.ING=-2.9832, b1.ING=-0.0020, b2.ING=2.4837, b3.ING=0.0673, b4.ING=-

0.0167, p1.DEF=0, p2.DEF=0, p3.DEF=0, p4.DEF=0, p5.DEF=0, p.DBH=0, 
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p.HT=0, p.HTc=0.9097510, p1.HCB=0, p2.HCB=0, p.MORT=0, p1.IPH=-

0.0011637, p1.Icomp=-0.007686, p2.IPH=0.1397053, p2.Icomp=1.245914), 

data.frame(SPP="WC", SG=0.31, b0.DBH=-0.414076962, b1.DBH=0.01074121, 

b4.DBH=0.145425792, b6.DBH=-0.001819793, b0.HT=0, b1.HT=0, b4.HT=0, 

b6.HT=0, b7.HT=0, b0.MORT=3.647647507, b1.MORT=-0.0606735724, 

b2.MORT=0.0008507857, b1.MCW=1.597128571, b2.MCW=0.513957143, 

b0.HCB=0.419622685, b0.ING=-4.7182, b1.ING=0.0070, b2.ING=3.2269, 

b3.ING=0.1000, b4.ING=0.0188, p1.DEF=0, p2.DEF=0, p3.DEF=0, p4.DEF=0, 

p5.DEF=0, p.DBH=0, p.HT=0, p.HTc=0.9217702, p1.HCB=0, p2.HCB=0, 

p.MORT=0, p1.IPH=-0.0011637, p1.Icomp=-0.007686, p2.IPH=0.1397053, 

p2.Icomp=1.245914), 

data.frame(SPP="WP", SG=0.35, b0.DBH=0.133589236, b1.DBH=0.008688826, 

b4.DBH=0.064063728, b6.DBH=-0.011417414, b0.HT=0.004458537, 

b1.HT=0.0069854589, b4.HT=-0.079402408, b6.HT=0.031357732, 

b7.HT=0.16043057, b0.MORT=3.3383526175, b1.MORT=-0.0294498474, 

b2.MORT=0.0009561864, b1.MCW=1.597128571, b2.MCW=0.513957143, b0.HCB=-

0.146685117, b0.ING=-5.1074, b1.ING=-0.0117, b2.ING=3.8817, 

b3.ING=0.0501, b4.ING=0.0726, p1.DEF=0, p2.DEF=0, p3.DEF=0, p4.DEF=0, 

p5.DEF=0, p.DBH=0, p.HT=0, p.HTc=0.9076621, p1.HCB=0, p2.HCB=0, 

p.MORT=0, p1.IPH=-0.0011637, p1.Icomp=-0.007686, p2.IPH=0.1397053, 

p2.Icomp=1.245914), 

data.frame(SPP="WS", SG=0.4, b0.DBH=0.286219598, b1.DBH=-0.00003104828, 

b4.DBH=-0.049962785, b6.DBH=-0.027217847, b0.HT=-0.004902983, 

b1.HT=0.001696414, b4.HT=-0.204246802, b6.HT=0.058944828, 

b7.HT=0.15403836, b0.MORT=0.5437824528, b1.MORT=0.1052397713, 

b2.MORT=0.0006332627, b1.MCW=1.50, b2.MCW=0.496, b0.HCB=0.100275538, 

b0.ING=-1.2500, b1.ING=-0.0132, b2.ING=2.0470, b3.ING=-0.0514, 

b4.ING=0.0351, p1.DEF=0, p2.DEF=0, p3.DEF=0, p4.DEF=0, p5.DEF=0, 

p.DBH=-0.1359938, p.HT=-0.6065810, p.HTc=0.8662084, p1.HCB=0.009869723, 
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p2.HCB=-0.654718900, p.MORT=0.016924216, p1.IPH=-0.0011637, p1.Icomp=-

0.007686, p2.IPH=0.1397053, p2.Icomp=1.245914), 

data.frame(SPP="YB", SG=0.62, b0.DBH=0.09393567, b1.DBH=0.003789904, 

b4.DBH=0.087753032, b6.DBH=-0.047504164, b0.HT=0.052168661, b1.HT=-

0.0178393926, b4.HT=0.048486031, b6.HT=-0.001779362, b7.HT=0.00445344, 

b0.MORT=2.6967072576, b1.MORT=-0.001250889, b2.MORT=0.0007521152, 

b1.MCW=4.04, b2.MCW=0.308, b0.HCB=0.003235064, b0.ING=-2.5645, 

b1.ING=0.0020, b2.ING=2.6624, b3.ING=-0.0010, b4.ING=-0.0127, p1.DEF=0, 

p2.DEF=0, p3.DEF=0, p4.DEF=0, p5.DEF=0, p.DBH=0, p.HT=0, 

p.HTc=0.9160839, p1.HCB=0, p2.HCB=0, p.MORT=0, p1.IPH=-0.0011637, 

p1.Icomp=-0.007686, p2.IPH=0.1397053, p2.Icomp=1.245914) 

)  
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